1
|
Grigg J, Barratt B, Bønnelykke K, Custovic A, Ege M, Pasquali C, Palomares O, Shaheen S, Sokolowska M, Vercelli D, Maizels R, von Mutius E. European Respiratory Society Research Seminar on Preventing Pediatric Asthma. Pediatr Pulmonol 2025; 60:e27401. [PMID: 39625247 PMCID: PMC11748117 DOI: 10.1002/ppul.27401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
This report is a summary of the presentations given at the European Respiratory Society's Research Seminar on Asthma Prevention. The seminar reviewed both epidemiological and mechanistic studies and concluded that; (i) reducing exposure of pregnant women and children to air pollution will reduce incident asthma, (ii) there are promising data that both fish oil and a component of raw cow's milk prevent asthma, and (iii) modulating trained immunity by either mimicking helminth infection or oral and sublingual bacterial products is a promising area of research.
Collapse
Affiliation(s)
- Jonathan Grigg
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Blizard InstituteQueen Mary University of LondonLondonUK
| | - Benjamin Barratt
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College LondonLondonUK
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in ChildhoodCopenhagen University HospitalCopenhagenDenmark
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Markus Ege
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- Dr von Hauner Children's HospitalLudwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC‐M), German Center for Lung ResearchMunichGermany
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular BiologySchool of Chemistry, Complutense University of MadridMadridSpain
| | - Seif Shaheen
- Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
- Allergy and Lung Health Unit, Melbourne School of Population and Global HealthThe University of MelbourneVictoriaAustralia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma ResearchUniversity of ZurichDavosSwitzerland
| | - Donata Vercelli
- Department of Cellular and Molecular MedicineThe University of ArizonaTucsonArizonaUSA
- Asthma and Airway Disease Research CenterThe University of ArizonaTucsonArizonaUSA
- The BIO5 InstituteThe University of ArizonaTucsonArizonaUSA
- Arizona Center for the Biology of Complex DiseasesThe University of ArizonaTucsonArizonaUSA
| | - Rick Maizels
- Wellcome Centre of Integrative Parasitology, School of Infection and ImmunityUniversity of GlasgowGlasgowUK
| | - Erika von Mutius
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
| |
Collapse
|
2
|
Oli P, Joshi K, Punetha S. Traditional uses, phytochemistry, pharmacology, and nutraceutical potential of horse gram (Macrotyloma uniflorum): A systematic review. J Food Sci 2024; 89:8102-8127. [PMID: 39656760 DOI: 10.1111/1750-3841.17594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Macrotyloma uniflorum is known for being a rich source of protein, fat, fiber, carbohydrates, vitamins, and micronutrients. Since ancient times, it has been used as a pulse and traditional remedy in the Himalayan Mountains for curing kidney and bladder stones, bronchitis, asthma, piles, leukoderma, and heart diseases. Horse gram contains bioactive compounds such as phenolic acids, flavonoids, and tannins, which contribute to its health advantages. These bioactive compounds demonstrated antioxidant, antidiabetic, anti-inflammatory, anticarcinogenic, antimicrobial, antidiarrheal, and neuroprotective effects. These horse gram products are now considered superfoods and are widely utilized in worldwide cuisines. Horse gram and its crude extracts or fractions have been shown to exhibit a wide range of in vivo and in vitro pharmacological and nutraceutical properties. However, there is currently a scarcity of structure-activity investigations of isolated compounds and mechanistic research on this species. This review demonstrates that horse gram, despite its traditional usage by diverse cultures, has a profusion of bioactive chemicals with a wide range of biological effects that might be employed as biopharmaceuticals and adopted by nutraceutical industries. This study focuses on the thorough phytochemistry, folk medicinal applications, and pharmacological properties of this versatile legume plant. Furthermore, we discussed the value of plants as a source of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Pooja Oli
- G. B. Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
| | - Kuldeep Joshi
- G. B. Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
- Centre for GMP Extraction Facility, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Shailaja Punetha
- G. B. Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
| |
Collapse
|
3
|
El Skhawy N, Eissa MM, Allam M, Eleryan EM. Immunomodulatory role of Trichinella spiralis-derived antigen on imiquimod-induced psoriasis in mice model. Parasitol Res 2024; 123:397. [PMID: 39592463 DOI: 10.1007/s00436-024-08415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
The immunomodulatory activity of parasites has been extensively investigated in multiple immune-related diseases. However, dermatological diseases have been off the list for a long time despite their vast incidence and the deleterious consequences of some of them. This study explored the immunomodulatory role of autoclaved Trichinella spiralis (T. spiralis) larvae antigen (ATSLA) as a psoriasis immunotherapeutic candidate in a mice model. Psoriasis was induced in Swiss albino mice using commercial imiquimod cream (IMQ). Mice were randomly divided into the IMQ untreated control group and the IMQ treated group that was treated with ATSLA twice, on day 0 and day 3. Additional mice served as normal controls. Assessment of skin thickness, erythema, and scales was recorded. Total skin scores were calculated. Skin MDA levels, splenic indices, serum and skin IL-23, and tumor necrosis factor alpha (TNF-α) were measured. Skin sections were stained with H&E and immune stained for CD68-positive cells using immunohistochemistry. Treatment with ATSLA significantly reduced skin thickness, erythema, scales, and total skin scores in the IMQ-treated group compared to the untreated control. This was accompanied by a reduction in the splenic index, skin MDA levels, IL-23, and TNF-α in both the skin and serum of the treated group. Pathologically, skin sections of the treated group showed less epidermal thickness, acanthosis, hyperkeratosis, and CD68 cell count. The study concluded the immunotherapeutic activity of ATSLA in experimental psoriatic skin lesions. This will enrich the psoriasis immunotherapeutic list with novel candidates of parasitic origin.
Collapse
Affiliation(s)
- Nahla El Skhawy
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maram Allam
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M Eleryan
- Department of Dermatology and Venereology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Pyuza JJ, van Dorst MM, Stam K, Wammes L, König M, Kullaya VI, Kruize Y, Huisman W, Andongolile N, Ngowi A, Shao ER, Mremi A, Hogendoorn PC, Msuya SE, Jochems SP, de Steenhuijsen Piters WA, Yazdanbakhsh M. Lifestyle score is associated with cellular immune profiles in healthy Tanzanian adults. Brain Behav Immun Health 2024; 41:100863. [PMID: 39398291 PMCID: PMC11470418 DOI: 10.1016/j.bbih.2024.100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Immune system and vaccine responses vary across geographical locations worldwide, not only between high and low-middle income countries (LMICs), but also between rural and urban populations within the same country. Lifestyle factors such as housing conditions, exposure to microorganisms and parasites and diet are associated with rural-and urban-living. However, the relationships between these lifestyle factors and immune profiles have not been mapped in detail. Here, we profiled the immune system of 100 healthy Tanzanians living across four rural/urban areas using mass cytometry. We developed a lifestyle score based on an individual's household assets, housing condition and recent dietary history and studied the association with cellular immune profiles. Seventeen out of 80 immune cell clusters were associated with living location or lifestyle score, with eight identifiable only using lifestyle score. Individuals with low lifestyle score, most of whom live in rural settings, showed higher frequencies of NK cells, plasmablasts, atypical memory B cells, T helper 2 cells, regulatory T cells and activated CD4+ T effector memory cells expressing CD38, HLA-DR and CTLA-4. In contrast, those with high lifestyle score, most of whom live in urban areas, showed a less activated state of the immune system illustrated by higher frequencies of naïve CD8+ T cells. Using an elastic net machine learning model, we identified cellular immune signatures most associated with lifestyle score. Assuming a link between these immune profiles and vaccine responses, these signatures may inform us on the cellular mechanisms underlying poor responses to vaccines, but also reduced autoimmunity and allergies in low- and middle-income countries.
Collapse
Affiliation(s)
- Jeremia J. Pyuza
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Institute of Public Health, Kilimanjaro Christian University Medical College (KCMUCo), Moshi, Tanzania
- Kilimanjaro Clinical Research Institute (KCRI), Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Marloes M.A.R. van Dorst
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Koen Stam
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Linda Wammes
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Marion König
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Vesla I. Kullaya
- Kilimanjaro Clinical Research Institute (KCRI), Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical College (KCMUCo), Moshi, Tanzania
| | - Yvonne Kruize
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Wesley Huisman
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | - Nikuntufya Andongolile
- Department of Community Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Anastazia Ngowi
- Department of Community Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Elichilia R. Shao
- Department of Internal Medicine, Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Department of Internal Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Alex Mremi
- Department of Pathology, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | | | - Sia E. Msuya
- Institute of Public Health, Kilimanjaro Christian University Medical College (KCMUCo), Moshi, Tanzania
- Department of Community Medicine, Kilimanjaro Christian Medical Centre (KCMC), Moshi, Tanzania
| | - Simon P. Jochems
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| | | | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, ZA, Leiden, Netherlands
| |
Collapse
|
5
|
Chaidee A, Charoenram N, Sengthong C, Dangtakot R, Pinlaor P, Pongking T, Pinlaor S. Transcriptome changes of liver fluke Opisthorchis viverrini in diabetic hamsters. Parasite 2024; 31:54. [PMID: 39269256 PMCID: PMC11396942 DOI: 10.1051/parasite/2024056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
A recent study in hamsters showed that infection with the liver fluke Opisthorchis viverrini in diabetic hosts worsens the severity of hepatobiliary disease. However, the effects of diabetes on the worm's phenotype and gene expression pattern remain unknown. This study investigated the impact of diabetes on the global gene expression and development of O. viverrini in diabetic hamsters. Parasitological parameters were assessed, and mRNA sequencing with bioinformatic analysis was performed. The study revealed that worm establishment rates in diabetic hamsters were directly correlated with fasting plasma glucose levels. Interestingly, worms collected from diabetic hosts exhibited stunted growth and reduced egg production. Transcriptomic analysis revealed significant alterations in gene expression, with 4314 and 567 differentially expressed genes at 21- and 35-days post-infection, respectively. Gene ontology enrichment analysis highlighted changes in biological processes related to stress response, metabolism, and cellular organization. Notably, genes associated with parasite virulence, including granulin, tetraspanins, and thioredoxins, showed significant upregulation in diabetic hosts. These findings demonstrate the profound impact of host diabetic status on O. viverrini development and gene expression, providing insights into the complex interplay between host metabolism and parasite biology, including molecular adaptations of O. viverrini in hosts. This study contributes to our understanding of opisthorchiasis in the context of metabolic disorders and may inform future strategies for disease management in diabetic human populations.
Collapse
Affiliation(s)
- Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand - Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Naruechar Charoenram
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chatchawan Sengthong
- Institute for Urban Disease Control and Prevention, Department of Disease Control, Ministry of Public Health, Bangkok 10220, Thailand
| | - Rungtiwa Dangtakot
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand - Department of Medical Technology, Faculty of Allied Health Sciences, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand
| | - Porntip Pinlaor
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand - Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thatsanapong Pongking
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand - Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand - Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Zhang QZ, Liu JH, Gao YR, Liang J, Tang CL. Effect of macrophage polarization on parasitic protection against type 1 diabetes mellitus. Exp Parasitol 2024; 256:108649. [PMID: 37914152 DOI: 10.1016/j.exppara.2023.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Type 1 diabetes mellitus is a chronic disease caused by the destruction of pancreatic beta cells. Based on the hygiene hypothesis, a growing body of evidence suggests a negative association between parasitic infections and diabetes in humans and animal models. The mechanism of parasite-mediated prevention of type 1 diabetes mellitus may be related to the adaptive and innate immune systems. Macrophage polarization is a new paradigm for the treatment of type 1 diabetes mellitus, and different host macrophage subsets play various roles during parasite infection. Proinflammatory cytokines are released by M1 macrophages, which are important in the development of type 1 diabetes mellitus. Parasite-activated M2 macrophages prevent the development of type 1 diabetes mellitus and can influence the development of adaptive immune responses through several mechanisms, including Th2 cells and regulatory T cells. Here, we review the role and mechanism of macrophage polarization in parasitic protection against type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Qi-Zhi Zhang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jun-Hui Liu
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China
| | - Yan-Ru Gao
- Basic Medical Science Teaching Center, Medical Department, Wuhan City College, Wuhan, 430083, China
| | - Jun Liang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, 430030, China.
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
7
|
Arora N, Keshri AK, Kaur R, Rawat SS, Kumar R, Mishra A, Prasad A. Taenia solium excretory secretory proteins (ESPs) suppresses TLR4/AKT mediated ROS formation in human macrophages via hsa-miR-125. PLoS Negl Trop Dis 2023; 17:e0011858. [PMID: 38157380 PMCID: PMC10783723 DOI: 10.1371/journal.pntd.0011858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/11/2024] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Helminth infections are a global health menace affecting 24% of the world population. They continue to increase global disease burden as their unclear pathology imposes serious challenges to patient management. Neurocysticercosis is classified as neglected tropical disease and is caused by larvae of helminthic cestode Taenia solium. The larvae infect humans and localize in central nervous system and cause NCC; a leading etiological agent of acquired epilepsy in the developing world. The parasite has an intricate antigenic make-up and causes active immune suppression in the residing host. It communicates with the host via its secretome which is complex mixture of proteins also called excretory secretory products (ESPs). Understanding the ESPs interaction with host can identify therapeutic intervention hot spots. In our research, we studied the effect of T. solium ESPs on human macrophages and investigated the post-translation switch involved in its immunopathogenesis. METHODOLOGY T. solium cysts were cultured in vitro to get ESPs and used for treating human macrophages. These macrophages were studied for cellular signaling and miR expression and quantification at transcript and protein level. CONCLUSION We found that T. solium cyst ESPs treatment to human macrophages leads to activation of Th2 immune response. A complex cytokine expression by macrophages was also observed with both Th1 and Th2 cytokines in milieu. But, at the same time ESPs modulated the macrophage function by altering the host miR expression as seen with altered ROS activity, apoptosis and phagocytosis. This leads to activated yet compromised functional macrophages, which provides a niche to support parasite survival. Thus T. solium secretome induces Th2 phenomenon in macrophages which may promote parasite's survival and delay their recognition by host immune system.
Collapse
Affiliation(s)
- Naina Arora
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Anand K. Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rimanpreet Kaur
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Suraj S. Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajiv Kumar
- Biotechnology Division, CSIR-Institute for Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| |
Collapse
|
8
|
Campillo Poveda M, Britton C, Devaney E, McNeilly TN, Gerbe F, Jay P, Maizels RM. Tuft Cells: Detectors, Amplifiers, Effectors and Targets in Parasite Infection. Cells 2023; 12:2477. [PMID: 37887321 PMCID: PMC10605326 DOI: 10.3390/cells12202477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Tuft cells have recently emerged as the focus of intense interest following the discovery of their chemosensory role in the intestinal tract, and their ability to activate Type 2 immune responses to helminth parasites. Moreover, they populate a wide range of mucosal tissues and are intimately connected to immune and neuronal cells, either directly or through the release of pharmacologically active mediators. They are now recognised to fulfil both homeostatic roles, in metabolism and tissue integrity, as well as acting as the first sensors of parasite infection, immunity to which is lost in their absence. In this review we focus primarily on the importance of tuft cells in the intestinal niche, but also link to their more generalised physiological role and discuss their potential as targets for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Marta Campillo Poveda
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK;
| | - Collette Britton
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK; (C.B.); (E.D.)
| | - Eileen Devaney
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK; (C.B.); (E.D.)
| | - Tom N. McNeilly
- Disease Control Department, Moredun Research Institute, Penicuik EH26 0PZ, UK;
| | - François Gerbe
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France; (F.G.); (P.J.)
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France; (F.G.); (P.J.)
| | - Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK;
| |
Collapse
|
9
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Ilík V, Kreisinger J, Modrý D, Schwarz EM, Tagg N, Mbohli D, Nkombou IC, Petrželková KJ, Pafčo B. High diversity and sharing of strongylid nematodes in humans and great apes co-habiting an unprotected area in Cameroon. PLoS Negl Trop Dis 2023; 17:e0011499. [PMID: 37624869 PMCID: PMC10484444 DOI: 10.1371/journal.pntd.0011499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/07/2023] [Accepted: 07/03/2023] [Indexed: 08/27/2023] Open
Abstract
Rapid increases in human populations and environmental changes of past decades have led to changes in rates of contact and spatial overlap with wildlife. Together with other historical, social and environmental processes, this has significantly contributed to pathogen transmission in both directions, especially between humans and non-human primates, whose close phylogenetic relationship facilitates cross-infections. Using high-throughput amplicon sequencing, we studied strongylid communities in sympatric western lowland gorillas, central chimpanzees and humans co-occurring in an unprotected area in the northern periphery of the Dja Faunal Reserve, Cameroon. At the genus level, we classified 65 strongylid ITS-2 amplicon sequencing variants (ASVs) in humans and great apes. Great apes exhibited higher strongylid diversity than humans. Necator and Oesophagostomum were the most prevalent genera, and we commonly observed mixed infections of more than one strongylid species. Human strongylid communities were dominated by the human hookworm N. americanus, while great apes were mainly infected with N. gorillae, O. stephanostomum and trichostrongylids. We were also able to detect rare strongylid taxa (such as Ancylostoma and Ternidens). We detected eight ASVs shared between humans and great apes (four N. americanus variants, two N. gorillae variants, one O. stephanostomum type I and one Trichostrongylus sp. type II variant). Our results show that knowledge of strongylid communities in primates, including humans, is still limited. Sharing the same habitat, especially outside protected areas (where access to the forest is not restricted), can enable mutual parasite exchange and can even override host phylogeny or conserved patterns. Such studies are critical for assessing the threats posed to all hosts by increasing human-wildlife spatial overlap. In this study, the term "contact" refers to physical contact, while "spatial overlap" refers to environmental contact.
Collapse
Affiliation(s)
- Vladislav Ilík
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Praha, Czech Republic
| | - David Modrý
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Erich Marquard Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Nikki Tagg
- Centre for Research and Conservation/KMDA, Antwerp, Belgium
| | - Donald Mbohli
- Association de la Protection des Grands Singes, Yaoundé, Cameroon
| | | | - Klára Judita Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
11
|
Amer AS, Othman AA, Dawood LM, El-Nouby KA, Gobert GN, Abou Rayia DM. The interaction of Schistosoma mansoni infection with diabetes mellitus and obesity in mice. Sci Rep 2023; 13:9417. [PMID: 37296126 PMCID: PMC10256771 DOI: 10.1038/s41598-023-36112-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Human schistosomiasis is one of the most prevalent parasitic diseases worldwide. Various host factors can affect the host-parasite interactions. Therefore, the aim of the present work was to determine the parasitological, histopathological, biochemical, and immunological status of Schistosoma mansoni-infected hosts with metabolic disorders to identify the underlying possible mechanisms of these comorbidities. The study animals were divided into four groups. Group I represented the control groups, namely, the normal control group, the S. mansoni-infected control group, and the noninfected type 1 diabetes (T1DM), type 2 diabetes (T2DM), and obesity groups. The mice of the other three groups underwent induction of T1DM (Group II), T2DM (Group III) and obesity (Group IV) before being infected with S. mansoni. All mice were subjected to body weight measurement, blood glucose and insulin assessment, parasitological evaluation of adult worm count, tissue egg count and intestinal oogram. Histopathological and immunohistochemical study using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells (HSCs) and image analysis of Masson's trichrome-stained liver sections using ImageJ (Fiji) software were carried out. Additionally, immunological analysis of tumour necrosis factor (TNF) beta, interleukin-5 (IL-5), IL-10, Forkhead box P3 (FOXP3) and pentraxin 3 (PTX3) levels besides biochemical study of total lipid profile were evaluated. The present study revealed a significant increase in the adult worm count and tissue egg output in the obesity group compared to the infected control group. The oogram of counted eggs showed prevalence of immature eggs in T1DM group, while T2DM and obese groups showed prevalence of mature eggs. The fibrosis area percentage showed significant increase in T2DM and obese groups while it was decreased in T1DM group in comparison to infected control group. Our data also showed significant increase in the levels of TNF-β, IL-5, PTX3 in T1DM, T2DM and obesity groups in comparison to infected control group, whilst the levels of FOXP3 and IL-10 were increased in the infected groups in comparison to their noninfected controls. Moreover, infected T1DM, T2DM and obesity groups showed higher blood glucose and lipid profile in comparison to the infected control group. However, these parameters were improved in comparison to their noninfected controls. In sum, induction of T2DM and obesity increased tissue egg counts, mature egg percentage, and fibrosis density, while schistosome infection induced changes in the lipid profile and blood glucose levels in infected diabetic and obese groups and impacted favorably insulin levels in obese mice. By better understanding the complexities of host-parasite interactions, efforts to reduce the burden of these debilitating diseases can be improved.
Collapse
Affiliation(s)
- Alaa S Amer
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Lamees M Dawood
- Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Kholoud A El-Nouby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Geoffrey N Gobert
- School of Biological Science, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
12
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
13
|
Dagenais A, Villalba-Guerrero C, Olivier M. Trained immunity: A “new” weapon in the fight against infectious diseases. Front Immunol 2023; 14:1147476. [PMID: 36993966 PMCID: PMC10040606 DOI: 10.3389/fimmu.2023.1147476] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Innate immune cells can potentiate the response to reinfection through an innate form of immunological memory known as trained immunity. The potential of this fast-acting, nonspecific memory compared to traditional adaptive immunological memory in prophylaxis and therapy has been a topic of great interest in many fields, including infectious diseases. Amidst the rise of antimicrobial resistance and climate change—two major threats to global health—, harnessing the advantages of trained immunity compared to traditional forms of prophylaxis and therapy could be game-changing. Here, we present recent works bridging trained immunity and infectious disease that raise important discoveries, questions, concerns, and novel avenues for the modulation of trained immunity in practice. By exploring the progress in bacterial, viral, fungal, and parasitic diseases, we equally highlight future directions with a focus on particularly problematic and/or understudied pathogens.
Collapse
Affiliation(s)
- Amy Dagenais
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Carlos Villalba-Guerrero
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
- *Correspondence: Martin Olivier,
| |
Collapse
|
14
|
Filarial infections compromise influenza vaccination efficacy: Lessons from the mouse. Immunol Lett 2023; 255:62-66. [PMID: 36889363 DOI: 10.1016/j.imlet.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Helminth parasites infect more than a quarter of the human population and inflict significant changes to the immunological status of their hosts. Several human studies report impaired responses to vaccinations in helminth-infected individuals. Analysing the impact of helminth infections on the efficacy of influenza vaccinations in the mouse system helps to elucidate the underlying immunological processes. Concurrent infection with the parasitic nematode Litomosoides sigmodontis reduced the quantity and quality of antibody responses to vaccination against seasonal influenza in BALB/c and C57BL/6 mice. This led to impaired vaccination-induced protection against challenge infections with the human pathogenic 2009 pandemic H1N1 influenza A virus in helminth-infected mice. Impaired responses were also observed if vaccinations were performed after immune-driven or drug-induced clearance of a previous helminth infection. Mechanistically, the suppression was associated with a systemic and sustained expansion of IL-10-producing CD4+CD49b+LAG-3+ type 1 regulatory T cells and partially abrogated by in vivo blockade of the IL-10 receptor. In summary, these findings raise the concern that individuals in helminth-endemic areas may not always benefit from vaccinations, even in the absence of an acute and diagnosable helminth infection.
Collapse
|
15
|
Soloski MJ, Poulain M, Pes GM. Does the trained immune system play an important role in the extreme longevity that is seen in the Sardinian blue zone? FRONTIERS IN AGING 2022; 3:1069415. [PMID: 36601618 PMCID: PMC9806115 DOI: 10.3389/fragi.2022.1069415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Villages in the island of Sardinia in the Mediterranean that display exceptional longevity are clustered within a defined mountainous region. Because of their unique location we hypothesize that these villages had a unique infectious disease exposure relevant to the observed successful longevity. These highland villages had a significant exposure to malaria in the first half of the 20th century after which malaria was eliminated due to vector control mechanisms. In addition, there is likely a high incidence of Helicobacter pylori infections among shepherds in Sardinia, the primary occupation of many living in the LBZ, as well as helminth infections among children. This suggests that individuals living in the LBZ had a unique infectious disease exposure. Specifically, we hypothesize that the continued high exposure of residents in the LBZ to these infectious agents prior to the 1950s lead to the generation of a uniquely trained (or imprinted) immune system. Once some of these diseases were eliminated in the latter half of the century, individuals within the LBZ were equipped with a trained immune system that was uniquely capable of not only responding effectively to common infections but also responding in a manner that maximized maintaining tissue health. In addition, there are lifestyle factors that also favor such a trained immune system. This hypothesis may help explain the slow progression of chronic immune mediated diseases as well as other chronic non-transmissible age-related diseases seen in the Sardinian LBZ and serve as a template for future studies that support or refute this hypothesis.
Collapse
Affiliation(s)
- Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States,*Correspondence: Mark J. Soloski,
| | - Michel Poulain
- IACCHOS Université Catholique de Louvain, Estonian Institute for Population Studies, Tallinn University, Tallinn, Estonia
| | - Giovanni M. Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
| |
Collapse
|
16
|
Maruszewska-Cheruiyot M, Stear MJ, Machcińska M, Donskow-Łysoniewska K. Importance of TGFβ in Cancer and Nematode Infection and Their Interaction-Opinion. Biomolecules 2022; 12:1572. [PMID: 36358922 PMCID: PMC9687433 DOI: 10.3390/biom12111572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Historically, there has been little interaction between parasitologists and oncologists, although some helminth infections predispose to the development of tumours. In addition, both parasites and tumours need to survive immune attack. Recent research suggests that both tumours and parasites suppress the immune response to increase their chances of survival. They both co-opt the transforming growth factor beta (TGFβ) signalling pathway to modulate the immune response to their benefit. In particular, there is concern that suppression of the immune response by nematodes and their products could enhance susceptibility to tumours in both natural and artificial infections.
Collapse
Affiliation(s)
| | - Michael James Stear
- Department of Animal, Plant and Soil Science, Agribio, La Trobe University, Bundoora 3086, Australia
| | - Maja Machcińska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | | |
Collapse
|
17
|
Unalan-Altintop T, Vahabov C, Ergunay K, Kurt O, Kav T, Akyon Y, Erguven S. Investigation of Dientamoeba fragilis and Blastocystis in patients from Turkey with ulcerative colitis and irritable bowel syndrome: Any relation with genotypes? Acta Trop 2022; 231:106451. [PMID: 35390312 DOI: 10.1016/j.actatropica.2022.106451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/12/2022] [Accepted: 04/03/2022] [Indexed: 12/17/2022]
Abstract
Blastocystis sp. and Dientamoeba fragilis are two most common protists worldwide, whose pathogenic potentials are a matter of debate since their discovery. This study aims to investigate the relationship between the activation of ulcerative colitis (UC) and irritable bowel syndrome (IBS) with these protists. A total of 100 patients (35 IBS, 35 active UC, and 30 remittent UC), diagnosed at Hacettepe University Adult Hospital (Ankara, Turkey), were screened for D. fragilis and Blastocystis sp. with microscopic examination using the methods of wet mount, trichrome staining, conventional PCR, nested PCR, real-time PCR and genotyping. Eight patients (4 IBS, 2 active, and 2 remittent UC patients) were found to be D. fragilis positive. 18S rRNA region of the parasite was amplified in four of the patients, whereas cathepsin L-like cysteine peptidase; clan Sc, family S9, serine peptidase; and clan MH, family M20 metallopeptidase in six different patients. All isolates were Genotype 1. Sequence results showed very limited diversity. A total of nine patients (3 IBS, 5 active UC, 1 remittent UC) were found to be positive for Blastocystis sp., all of which were Subtype 3. One active UC and one IBS patient were found to be positive for both parasites. No statistically significant difference was detected between the patient groups in means of parasite detection. D. fragilis was found to be related to older age (p=0,045). In our study, no significant correlation was identified between D. fragilis and Blastocystis sp., and the activation of UC and IBS. More studies are needed on the host-parasite relationship, including the role of gut microbiota, together with transcriptomic and metabolomic assessments to unveil the pathogenicity of both protists.
Collapse
|
18
|
Loukas A. Frontiers in Parasitology Grand Challenge. FRONTIERS IN PARASITOLOGY 2022; 1:902098. [PMID: 39816472 PMCID: PMC11731821 DOI: 10.3389/fpara.2022.902098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2025]
Affiliation(s)
- Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
19
|
Pre-existing helminth infection impairs the efficacy of adjuvanted influenza vaccination in mice. PLoS One 2022; 17:e0266456. [PMID: 35358281 PMCID: PMC8970517 DOI: 10.1371/journal.pone.0266456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/21/2022] [Indexed: 01/15/2023] Open
Abstract
The world health organization estimates that more than a quarter of the human population is infected with parasitic worms that are called helminths. Many helminths suppress the immune system of their hosts to prolong their survival. This helminth-induced immunosuppression “spills over” to unrelated antigens and can suppress the immune response to vaccination against other pathogens. Indeed, several human studies have reported a negative correlation between helminth infections and responses to vaccinations. Using mice that are infected with the parasitic nematode Litomosoides sigmodontis as a model for chronic human filarial infections, we reported previously that concurrent helminth infection impaired the vaccination-induced protection against the human pathogenic 2009 pandemic H1N1 influenza A virus (2009 pH1N1). Vaccinated, helminth-infected mice produced less neutralizing, influenza-specific antibodies than vaccinated naïve control mice. Consequently helminth-infected and vaccinated mice were not protected against a challenge infection with influenza virus but displayed high virus burden in the lung and a transient weight loss. In the current study we tried to improve the vaccination efficacy using vaccines that are licensed for humans. We either introduced a prime-boost vaccination regimen using the non-adjuvanted anti-influenza vaccine Begripal or employed the adjuvanted influenza vaccine Fluad. Although both strategies elevated the production of influenza-specific antibodies and protected mice from the transient weight loss that is caused by an influenza challenge infection, sterile immunity was not achieved. Helminth-infected vaccinated mice still had high virus burden in the lung while non-helminth-infected vaccinated mice rapidly cleared the virus. In summary we demonstrate that basic improvements of influenza vaccination regimen are not sufficient to confer sterile immunity on the background of helminth-induced immunosuppression, despite amelioration of pathology i.e. weight loss. Our findings highlight the risk of failed vaccinations in helminth-endemic areas, especially in light of the ongoing vaccination campaign to control the COVID-19 pandemic.
Collapse
|
20
|
Protective effect and mechanism of Schistosoma japonicum soluble egg antigen against type 1 diabetes in NOD mice. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-021-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
21
|
Mitigation of Toxoplasma gondii-induced ileitis by Trichinellaspiralis infection pinpointing immunomodulation. J Parasit Dis 2022; 46:491-501. [DOI: 10.1007/s12639-022-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022] Open
|
22
|
Dall LB, Deleuran B, Østergaard LJ, Mardahl M, Denton PW, Nejsum P. Helminth products modulate innate immune recognition of nucleic acids in systemic lupus erythematosus. Lupus 2022; 31:415-423. [PMID: 35202548 DOI: 10.1177/09612033221080548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AIM Current treatment of Systemic Lupus Erythematosus (SLE) is suboptimal and causes broad immunosuppression. Therapeutic use of helminths or helminth products has been suggested for autoimmune diseases such as SLE. In the present study, we evaluated possible immunomodulating effects of adult body fluid (ABF) from Ascaris suum on peripheral blood mononuclear cells (PBMCs) from SLE patients in an ex vivo setup. METHODS PBMCs from SLE patients and healthy controls (HC) were isolated and stimulated ex vivo with ABF and Toll-like receptor agonists or activators of the stimulator of interferon genes (STING) or mitochondrial antiviral signaling protein (MAVS) pathways. After 24 h of incubation, the cytokine profile was analyzed using ELISA and Meso Scale Discovery techniques. RESULTS ABF suppressed production of IL-6, TNF-α, CXCL10, and IL-10 by PBMCs from SLE patients and HCs following stimulation with specific agonists. ABF also reduced IFN-у production by stimulated PBMCs from HCs. CONCLUSIONS Our data show that ABF has an immunomodulatory effect on the production of key cytokines in the pathogenesis of SLE. These results suggest that ABF or ABF components hold potential as a novel treatment option for SLE.
Collapse
Affiliation(s)
- Laura B Dall
- Department of Infectious Diseases, 11297Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, 11297Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Rheumatology, 11297Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, 11297Aarhus University, Aarhus, Denmark
| | - Lars J Østergaard
- Department of Infectious Diseases, 11297Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, 11297Aarhus University, Aarhus, Denmark
| | - Maibritt Mardahl
- Department of Infectious Diseases, 11297Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, 11297Aarhus University, Aarhus, Denmark
| | - Paul W Denton
- Department of Biology, 14720University of Nebraska at Omaha, Omaha, NE, USA
| | - Peter Nejsum
- Department of Infectious Diseases, 11297Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, 11297Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
PrayGod G, Filteau S, Range N, Ramaiya K, Jeremiah K, Rehman AM, Krogh-Madsen R, Friis H, Faurholt-Jepsen D. The association of Schistosoma and geohelminth infections with β-cell function and insulin resistance among HIV-infected and HIV-uninfected adults: A cross-sectional study in Tanzania. PLoS One 2022; 17:e0262860. [PMID: 35077485 PMCID: PMC8789133 DOI: 10.1371/journal.pone.0262860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 01/06/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Data on the role of helminths on diabetes in Africa are limited. We investigated whether Schistosoma and geohelminth infections are associated with β-cell function and insulin resistance among adults. Methods A cross-sectional study was conducted among adults during 2016–2017. Demography, Schistosoma and geohelminth infections, HIV and insulin data were collected. Insulin during an oral glucose tolerance test (fasting, 30, and 120-min), overall insulin secretion index, insulinogenic index, HOMA-β, and HOMA-IR were main outcome measures for β-cell function and insulin resistance, respectively. Generalized estimating equations and generalized linear models assessed the association of Schistosoma and geohelminth infections with outcome measures separately by HIV status. Outcomes were presented as marginal means with 95% CI. Results Data were obtained for 1718 participants. Schistosoma infection was associated with higher 30-min insulin (24.2 mU/L, 95% CI: 6.9, 41.6) and overall insulin secretion index (13.3 pmol/L/mmol/L; 3.7, 22.9) among HIV-uninfected participants but with lower fasting insulin (-0.9 mU/L; -1.6, -0.2), 120-min insulin (-12.0 mU/L; -18.9, -5.1), and HOMA-IR (-0.3 mmol/L; -0.6, -0.05) among HIV-infected participants not yet on antiretroviral therapy (ART). Among HIV-infected participants not on ART, geohelminth infection was associated with lower fasting insulin (-0.9 mU/L; -1.6, -0.2), 120-min insulin (-9.1 mU/L; -17.3, -1.0), HOMA-β (-8.9 mU/L)/(mmol/L; -15.3, -2.6) and overall insulin release index (-5.1 pmol/L/mmol/L; -10.3, 0.02), although this was marginally significant. There was no association among those on ART. Conclusions Schistosoma infection was associated with higher β-cell function among HIV-uninfected participants whereas Schistosoma and geohelminth infections were associated with reduced β-cell function among HIV-infected participants not on ART.
Collapse
Affiliation(s)
- George PrayGod
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
- * E-mail:
| | - Suzanne Filteau
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nyagosya Range
- Muhimbili Research Centre, National Institute for Medical Research, Dar es Saalam, Tanzania
| | | | - Kidola Jeremiah
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Andrea M. Rehman
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Rikke Krogh-Madsen
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik Friis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
24
|
Phasuk N, Apiwattanakul N, Punsawad C. Profiles of CD4 +, CD8 +, and regulatory T cells and circulating cytokines in hookworm-infected children in southern Thailand. Med Microbiol Immunol 2021; 211:19-28. [PMID: 34854999 DOI: 10.1007/s00430-021-00723-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/30/2021] [Indexed: 01/15/2023]
Abstract
Hookworm infection is the most common human helminthic infection in the rural areas of southern Thailand. There is little information on the induced cellular immune responses in hookworm-infected children. The present study aimed to investigate the cellular immune responses, regulatory T cells (Tregs), Th1-type cytokines (interleukin (IL)-2 and interferon (IFN)-γ), a Th2-type cytokine (IL-5) and IL-10, which is one of the cytokines secreted by Tregs in hookworm-infected children. Twenty-nine schoolchildren diagnosed with hookworm infections and 28 healthy controls were enrolled in the study. CD4+ and CD8+ T cells and Tregs in whole blood were analyzed using flow cytometry. Plasma IL-2, IL-5, IL-10 and IFN-γ concentrations were quantified by enzyme-linked immunosorbent assay (ELISA). The median CD4+ T cell frequency was significantly higher in hookworm-infected children than healthy controls. Compared to healthy controls, hookworm-infected children had a significantly increased absolute number of Tregs. No differences in circulating CD8+ T cell median frequency or absolute numbers were observed among hookworm-infected children or healthy controls. Elevated IL-2 and IL-10 concentrations were found in hookworm-infected children. Moreover, the absolute number of Tregs was significantly positively correlated with the plasma IL-10 concentration (rs = 0.406, P = 0.029). This study showed that hookworm-infected schoolchildren had significantly different immune responses than healthy controls, including an increase in the CD4+ T cell number, a significant induction of Tregs and significantly elevated circulating IL-10 levels. These alterations could be the mechanism underlying the immunomodulation that alleviates allergic diseases among hookworm-infected individuals.
Collapse
Affiliation(s)
- Nonthapan Phasuk
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
25
|
Gao YR, Sun XZ, Li R, Tang CL, Zhang RH, Zhu YW, Li XR, Pan Q. The effect of regulatory T cells in Schistosoma-mediated protection against type 2 diabetes. Acta Trop 2021; 224:106073. [PMID: 34487719 DOI: 10.1016/j.actatropica.2021.106073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
In western societies, the prevalence of type 2 diabetes (T2D) is related to the hygiene hypothesis, which implies that reduced exposure to infectious factors results in a loss of the immune stimulation necessary to form the immune system during development. In fact, it has been reported that parasites, such as Schistosoma, can improve or prevent the development of T2D, which may be related to the activity of immune cells, including regulatory T cells (Tregs). Hence, Schistosoma, Tregs, and T2D share a close relationship. Schistosoma infection and the molecules released can lead to an increase in Tregs, which play an important role in the suppression of T2D. In this review, we provide an overview of the role of Tregs in the response to Schistosoma infection and the protective mechanism of Schistosoma-related molecular products against T2D.
Collapse
Affiliation(s)
- Yan-Ru Gao
- Medical Department, Wuhan City College, Wuhan, 430083, China
| | - Xue-Zhi Sun
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| | - Ru Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Xiu-Rong Li
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| |
Collapse
|
26
|
Lawson JS, Glenn WK. Infection and food combine to cause atherosclerotic coronary heart disease - Review and hypothesis. IJC HEART & VASCULATURE 2021; 35:100807. [PMID: 34286061 PMCID: PMC8273202 DOI: 10.1016/j.ijcha.2021.100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
HYPOTHESIS It is hypothesised that a combination of childhood and later life infections and excess food consumption, particularly of Western style food, initiates and contributes to atherosclerotic coronary heart disease. To consider this hypothesis we have conducted a brief review of the role of childhood infections, food, and their combined influence on atherosclerosis. EVIDENCE (i) Studies of populations with high prevalence of infections and low "hunter gather" like food consumption, have extremely low prevalence of atherosclerosis, (ii) there are consistent associations between infections in childhood and adult atherosclerotic coronary heart disease, (iii) there is an association between increased body weight, (an indication of excess eating), and atherosclerotic heart disease, and (iv) there is evidence that a combination of increased body weight and infections influences the development of atherosclerotic coronary heart disease.Infections do not appear to act independently to cause atherosclerosis. A combination of both food and infection appears to be required to cause atheroma. CONCLUSION The hypothesis that infections when combined with excess eating initiates atherosclerosis, is plausible. ACTION Action aimed at prevention of atherosclerotic heart disease is possible. There are three safe approaches to prevention (i) encouragement of Mediterranean like diets, (ii) avoidance of overeating and (iii) vigorous control of infections among all age groups. There is a need to monitor patients with a history of serious childhood infections and poor nutrition. In addition, for high risk subjects, cholesterol lowering statins are of proven and safe value.
Collapse
Affiliation(s)
- James S. Lawson
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wendy K. Glenn
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Li Z, Zhang W, Luo F, Li J, Yang W, Zhu B, Wu Q, Wang X, Sun C, Xie Y, Xu B, Wang Z, Qian F, Chen J, Wan Y, Hu W. Allergen-Specific Treg Cells Upregulated by Lung-Stage S. japonicum Infection Alleviates Allergic Airway Inflammation. Front Cell Dev Biol 2021; 9:678377. [PMID: 34169075 PMCID: PMC8217774 DOI: 10.3389/fcell.2021.678377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022] Open
Abstract
Schistosoma japonicum infection showed protective effects against allergic airway inflammation (AAI). However, controversial findings exist especially regarding the timing of the helminth infection and the underlying mechanisms. Most previous studies focused on understanding the preventive effect of S. japonicum infection on asthma (infection before allergen sensitization), whereas the protective effects of S. japonicum infection (allergen sensitization before infection) on asthma were rarely investigated. In this study, we investigated the protective effects of S. japonicum infection on AAI using a mouse model of OVA-induced asthma. To explore how the timing of S. japonicum infection influences its protective effect, the mice were percutaneously infected with cercaria of S. japonicum at either 1 day (infection at lung-stage during AAI) or 14 days before ovalbumin (OVA) challenge (infection at post–lung-stage during AAI). We found that lung-stage S. japonicum infection significantly ameliorated OVA-induced AAI, whereas post–lung-stage infection did not. Mechanistically, lung-stage S. japonicum infection significantly upregulated the frequency of regulatory T cells (Treg cells), especially OVA-specific Treg cells, in lung tissue, which negatively correlated with the level of OVA-specific immunoglobulin E (IgE). Depletion of Treg cells in vivo partially counteracted the protective effect of lung-stage S. japonicum infection on asthma. Furthermore, transcriptomic analysis of lung tissue showed that lung-stage S. japonicum infection during AAI shaped the microenvironment to favor Treg induction. In conclusion, our data showed that lung-stage S. japonicum infection could relieve OVA-induced asthma in a mouse model. The protective effect was mediated by the upregulated OVA-specific Treg cells, which suppressed IgE production. Our results may facilitate the discovery of a novel therapy for AAI.
Collapse
Affiliation(s)
- Zhidan Li
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenbin Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Qunfeng Wu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoling Wang
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Chengsong Sun
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Xu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiaxu Chen
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China
| | - Yanmin Wan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Hu
- NHC Key Laboratory of Parasite and Vector Biology (National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention), Shanghai, China.,State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Human Phenome Institute, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Place DE, Kanneganti TD. Intestinal tête-à-tête: helminths blunt immunity against flaviviruses. Cell Res 2021; 31:723-724. [PMID: 33846568 DOI: 10.1038/s41422-021-00505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
29
|
Sánchez-López CM, Trelis M, Bernal D, Marcilla A. Overview of the interaction of helminth extracellular vesicles with the host and their potential functions and biological applications. Mol Immunol 2021; 134:228-235. [PMID: 33836351 DOI: 10.1016/j.molimm.2021.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Helminth Extracellular Vesicles (EVs) have emerged as important mediators in host-parasite communications, participating in the parasite survival and its pathogenic effects. In the last decade, a growing amount of information reporting the isolation and characterization of EVs from different helminth species has appeared, but unfortunately, few reports have focused on functional studies of helminth EVs in different cell lines, organoids or animal models. We here review these in vitro and in vivo studies, which clearly demonstrate that helminths secrete EVs, which affect their environment. Helminth EVs are actively internalized by different cell lines, modulating cellular functions important for host-parasite communication. We discuss how these lines of investigation should provide potential new biomarkers of infection, and since helminth EVs can modulate the host immune response, we also discuss how they can provide a new landscape for the development of new vaccine tools against helminthiases as well as immunotherapy.
Collapse
Affiliation(s)
- Christian M Sánchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-Universitat de València, 46026 Valencia, Spain
| | - María Trelis
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-Universitat de València, 46026 Valencia, Spain
| | - Dolores Bernal
- Departament de Bioquimica i Biologia Molecular, Facultat de Ciencies Biològiques, Universitat de València, C/ Dr. Moliner, 50, 46100 Burjassot, Valencia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Av. V.A. Estellés, s/n, 46100, Burjassot, Valencia, Spain; Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-Universitat de València, 46026 Valencia, Spain.
| |
Collapse
|
30
|
Soleymani N, Grunberger RB, Abnous K, Borji H, Vahdati F. Identification and Immunological Characterization of Somatic Proteins from Adults of Toxocara cati by Proteomics Technique. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:23-31. [PMID: 33786044 PMCID: PMC7988680 DOI: 10.18502/ijpa.v16i1.5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Toxocara cati is considered as one of the main etiological agents of toxocariasis with global and regional importance. As there is no information on proteomics of T. cati, herein, we reported the results obtained by proteomic analysis of somatic proteins extract, using a mass spectrometry (LC–MS/MS) approach. Methods: Somatic extract fractions were separated by two-dimensional SDS-PAGE and were electro blotted on to PVDF membranes for immunoblot analysis, then collected the immunogenic spots which response of antibodies of the paratenic hosts (mice) to the antigens (Mashhad, 2017), and analyzed by LC–MS/MS. The LC-MS/MS data were analyzed by Mascot database, Taxonomy Toxocara, and common contaminants, in Omics Center, Biotechnology Medical University of Graz (Austria, 2018). Result: The protein spots were isolated between 15–140 kDa ranges using 3–10 non-linear IPG strips and Brilliant Blue Coomassie. Ten proteins were characterized as immunogenic proteins, seven of them were identified and three of them were unknown proteins. Conclusion: This study provided additional information about the somatic antigens of T. cati, which can lead to the development of new strategies for novel immuno-modulators, drug targets, subunit vaccines and immunodiagnostic kits for toxocariasis.
Collapse
Affiliation(s)
- Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ruth Birner Grunberger
- Austrian Center of Industrial Biotechnology, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.,Omics Center Graz, Bio Tech Med-Graz, Graz, Austria.,Institute of Chemical Technologies and Analytics, Vienna, Austria
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Vahdati
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Caraballo L, Zakzuk J, Acevedo N. Helminth-derived cystatins: the immunomodulatory properties of an Ascaris lumbricoides cystatin. Parasitology 2021; 148:1-13. [PMID: 33563346 DOI: 10.1017/s0031182021000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Helminth infections such as ascariasis elicit a type 2 immune response resembling that involved in allergic inflammation, but differing to allergy, they are also accompanied with strong immunomodulation. This has stimulated an increasing number of investigations, not only to better understand the mechanisms of allergy and helminth immunity but to find parasite-derived anti-inflammatory products that could improve the current treatments of chronic non-communicable inflammatory diseases such as asthma. A great number of helminth-derived immunomodulators have been discovered and some of them extensively analysed, showing their potential use as anti-inflammatory drugs in clinical settings. Since Ascaris lumbricoides is one of the most successful parasites, several groups have focused on the immunomodulatory properties of this helminth. As a result, several excretory/secretory components and purified molecules have been analysed, revealing interesting anti-inflammatory activities potentially useful as therapeutic tools. One of these molecules is A. lumbricoides cystatin, whose genomic, cellular, molecular, and immunomodulatory properties are described in this review.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| |
Collapse
|
32
|
Veitch JSM, Bowman J, Mastromonaco G, Schulte-Hostedde AI. Corticosterone response by Peromyscus mice to parasites, reproductive season, and age. Gen Comp Endocrinol 2021; 300:113640. [PMID: 33017585 DOI: 10.1016/j.ygcen.2020.113640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/14/2020] [Accepted: 09/28/2020] [Indexed: 01/15/2023]
Abstract
A common response to parasite infestations is increased production of glucocorticoid hormones that regulate immune function. We examined relationships between ectoparasite infestations and fecal corticosterone metabolites (FCM) in deer mice (Peromyscus maniculatus). Furthermore, we experimentally removed fleas to determine if reductions in ectoparasites affected FCM production. Individuals were assigned to control (no flea removal) or treatment (anti-flea application, physical combing) groups and individuals were recaptured to assess changes in FCM concentrations. There was a significant and negative effect of number of anti-flea treatment applications on FCM concentrations of deer mice. However, models including host biology traits and environmental predictors had a better model fit compared to models containing ectoparasite predictors. In particular, there was a significant relationship of deer mouse FCM with date and host age, where glucocorticoid production decreased towards the end of the breeding season and increased with age. Overall, adverse events associated with reproduction and age class, rather than ectoparasites, may be more important to variation in glucocorticoids of deer mice.
Collapse
Affiliation(s)
- Jasmine S M Veitch
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada. https://www.0000-0003-0010-3475
| | - Jeff Bowman
- Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, 2140 East Bank Drive, DNA Building, Peterborough, ON K9L 0G2, Canada; Trent University, 1600 East Bank Drive, Peterborough, ON K9L 0G2, Canada
| | - Gabriela Mastromonaco
- Reproductive Sciences, Toronto Zoo, 361A Old Finch Avenue, Toronto, ON M1B 5K7, Canada
| | - Albrecht I Schulte-Hostedde
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada. https://www.0000-0001-7263-4764
| |
Collapse
|
33
|
Toychiev A, Navruzov B, Pazylova D, Davis N, Badalova N, Osipova S. Intestinal protozoa and helminths in ulcerative colitis and the influence of anti-parasitic therapy on the course of the disease. Acta Trop 2021; 213:105755. [PMID: 33188747 DOI: 10.1016/j.actatropica.2020.105755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study is to determine the prevalence of intestinal helminths and protozoa in patients with ulcerative colitis (UC) and to estimate the influence of the anti-parasitic therapy on the course of the disease. METHODS The study was conducted at the Research Institute of Epidemiology, Microbiology and Infectious Diseases and Coloproctology Department of the Republic Clinical Hospital №1 of the Ministry of Health of the Republic of Uzbekistan. One hundred UC patients and 200 healthy individuals were examined by triple coproscopy. Additionally, 20, 25 and 22 UC patients with Blastocystis infection were treated with nitazoxanide (1.0 g/day), mesalazine (1.5-2 g/day) or a combination of nitazoxanide (1.0 g/day) and mesalazine (≥1.5-2 g/day) for 14 consecutive days, respectively. Parasitological, clinical and endoscopic examinations were conducted before therapy, immediately after and 6 and 12 weeks after therapy completion. RESULTS The overall prevalence of helminths in UC patients and control individuals was not significantly different: 14±3.4% and 8.5±1.9%, respectively (OR: 1.7524; 95% CI: 0.8258 to 3.7186; P=0.1). Giardia lamblia was the most prevalent parasite in both groups, but the difference compared to the control was insignificant (OR: 0.4565; 95% CI: 0.2020 to 1.0318; P=0.05). A significantly higher prevalence of Blastocystis sp., Chilomastix mesnili and Iodamoeba butschlii in UC patients compared to control individuals was found (P<0.0005): 65.0%, 14.0% and 22.0%, respectively. During all follow-up periods, the clinical response and clinical remission were not statistically different between the groups (P>0.05). Mucosal healing immediately and 6 weeks after therapy with a combination of nitazoxanide with mesalazine was significantly better than with a monotherapy of nitazoxanide, respectively (P<0.05). UC patients treated with a combination of nitazoxanide with mesalazine showed better mucosal healing than in patients treated with a monotherapy of mesalazine (P>0.05). CONCLUSIONS Diagnosis of Blastocystis sp. should be introduced in the complex examination of UC patients. Further clinical studies are necessary for assessment of the efficiency of anti-Blastocystis therapy in UC patients.
Collapse
|
34
|
Heath MD, Mohsen MO, de Kam PJ, Carreno Velazquez TL, Hewings SJ, Kramer MF, Kündig TM, Bachmann MF, Skinner MA. Shaping Modern Vaccines: Adjuvant Systems Using MicroCrystalline Tyrosine (MCT ®). Front Immunol 2020; 11:594911. [PMID: 33324411 PMCID: PMC7721672 DOI: 10.3389/fimmu.2020.594911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
The concept of adjuvants or adjuvant systems, used in vaccines, exploit evolutionary relationships associated with how the immune system may initially respond to a foreign antigen or pathogen, thus mimicking natural exposure. This is particularly relevant during the non-specific innate stage of the immune response; as such, the quality of this response may dictate specific adaptive responses and conferred memory/protection to that specific antigen or pathogen. Therefore, adjuvants may optimise this response in the most appropriate way for a specific disease. The most commonly used traditional adjuvants are aluminium salts; however, a biodegradable adjuvant, MCT®, was developed for application in the niche area of allergy immunotherapy (AIT), also in combination with a TLR-4 adjuvant-Monophosphoryl Lipid A (MPL®)-producing the first adjuvant system approach for AIT in the clinic. In the last decade, the use and effectiveness of MCT® across a variety of disease models in the preclinical setting highlight it as a promising platform for adjuvant systems, to help overcome the challenges of modern vaccines. A consequence of bringing together, for the first time, a unified view of MCT® mode-of-action from multiple experiments and adjuvant systems will help facilitate future rational design of vaccines while shaping their success.
Collapse
Affiliation(s)
- Matthew D. Heath
- Allergy Therapeutics (UK) Ltd, Worthing, United Kingdom
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
| | - Mona O. Mohsen
- Interim Translational Research Institute “iTRI”, National Center for Cancer Care and Research (NCCCR), Doha, Qatar
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
| | | | | | - Simon J. Hewings
- Allergy Therapeutics (UK) Ltd, Worthing, United Kingdom
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
| | - Matthias F. Kramer
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
- Bencard Allergie (GmbH), München, Germany
| | | | - Martin F. Bachmann
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Murray A. Skinner
- Allergy Therapeutics (UK) Ltd, Worthing, United Kingdom
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
| |
Collapse
|
35
|
Ayelign B, Akalu Y, Teferi B, Molla MD, Shibabaw T. Helminth Induced Immunoregulation and Novel Therapeutic Avenue of Allergy. J Asthma Allergy 2020; 13:439-451. [PMID: 33116652 PMCID: PMC7548329 DOI: 10.2147/jaa.s273556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
Allergic diseases are increasing at an alarming rate worldwide, particularly in developed countries. In contrast, there is a decrease in the prevalence of helminthic infections and other neglected diseases. The hygiene hypothesis elaborates parasitic infection, and allergy-associated diseases have an inverse relationship. Acute helminthic infection and allergic reaction stimulate Type 2 helper cells (Th2) immune response with up-regulation of cytokines IL-4-, IL-5-, and IL-13-mediated IgE and mast cell production, as well as eosinophilia. However, people who chronically suffer from helminthic infections are demarcated through polarized Th2 resulting in alternative macrophage activation and T regulatory response. This regulatory system reduces allergy incidence in individuals that are chronically diseased through helminth. As a result, the excretory-secretory (ES) substance derived from parasites and extracellular vesicular components can be used as a novel therapeutic modality of allergy. Therefore, the aim of this review meticulously explored the link between helminth infection and allergy, and utilization of the helminth secretome for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
36
|
Abstract
The hygiene hypothesis posits that the decreased incidence of parasitic infection in developed countries may underlie an increased prevalence of allergic and autoimmune diseases in these countries. As unique inflammation modulator of intracellular parasitism, Trichinella spiralis, or its excretory-secretory (ES) product, shows improved responses to allergies, autoimmune diseases, inflammatory bowel disease, type 1 diabetes, rheumatic arthritis and autoimmune encephalomyelitis by exerting immunomodulatory effects on both innate and adaptive immune cells in animal models. Research has shown that T. spiralis differs from other helminths in manipulation of the host immune response not only by well-known characteristics of its life cycle, but also by its inflammation modulation pathway. How the parasite achieves inflammation modulation has not been fully elucidated yet. This review will generalize the mechanism and focuses on ES immunomodulatory molecules of T. spiralis that may be important for developing new therapeutics for inflammatory disorders.
Collapse
|
37
|
Bohnacker S, Troisi F, de Los Reyes Jiménez M, Esser-von Bieren J. What Can Parasites Tell Us About the Pathogenesis and Treatment of Asthma and Allergic Diseases. Front Immunol 2020; 11:2106. [PMID: 33013887 PMCID: PMC7516051 DOI: 10.3389/fimmu.2020.02106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
The same mechanisms that enable host defense against helminths also drive allergic inflammation. This suggests that pathomechanisms of allergic diseases represent evolutionary old responses against helminth parasites and that studying antihelminth immunity may provide insights into pathomechanisms of asthma. However, helminths have developed an intricate array of immunoregulatory mechanisms to modulate type 2 immune mechanisms. This has led to the hypothesis that the lack of helminth infection may contribute to the rise in allergic sensitization in modern societies. Indeed, the anti-inflammatory potential of helminth (worm) parasites and their products in allergy and asthma has been recognized for decades. As helminth infections bring about multiple undesired effects including an increased susceptibility to other infections, intended helminth infection is not a feasible approach to broadly prevent or treat allergic asthma. Thus, the development of new helminth-based biopharmaceutics may represent a safer approach of harnessing type 2–suppressive effects of helminths. However, progress regarding the mechanisms and molecules that are employed by helminths to modulate allergic inflammation has been relatively recent. The scavenging of alarmins and the modulation of lipid mediator pathways and macrophage function by helminth proteins have been identified as important immunoregulatory mechanisms targeting innate immunity in asthma and allergy. In addition, by regulating the activation of dendritic cells and by promoting regulatory T-cell responses, helminth proteins can counterregulate the adaptive T helper 2 cell response that drives allergic inflammation. Despite these insights, important open questions remain to be addressed before helminth molecules can be used for the prevention and treatment of asthma and other allergic diseases.
Collapse
Affiliation(s)
- Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Fabiana Troisi
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Marta de Los Reyes Jiménez
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
38
|
Stefanson A, Bakovic M. Dietary polyacetylene falcarinol upregulated intestinal heme oxygenase-1 and modified plasma cytokine profile in late phase lipopolysaccharide-induced acute inflammation in CB57BL/6 mice. Nutr Res 2020; 80:89-105. [PMID: 32738564 DOI: 10.1016/j.nutres.2020.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Unlike polyphenols, which are widely available in the diet, polyacetylenes are available only from the Apiaceae family vegetables, including carrot, parsnip, fennel, celery, and many herbs (parsley, lovage, etc). The aim of this study was to investigate the hypothesis that polyacetylene falcarinol (FA) reduces intestinal inflammation and examine its similarity of effect to isothiocyanate R-sulforaphane during the late phase of acute inflammation. To this end, 3-month-old male CB57BL/6 mice were fed twice daily for 1 week with 5 mg/kg of FA, sulforaphane, or vehicle before receiving an intraperitoneal injection of 5 mg/kg endotoxin (lipopolysaccharide [LPS]) to induce modest acute inflammation. The expression of intestinal and hepatic heme oxygenase-1 at the mRNA and protein levels, circulating cytokines, as well as intestinal and mesenteric n-6 and n-3 fatty acid lipid mediators was compared 24 hours after LPS administration to examine its effects on the late phase of inflammation. Intestinal nuclear factor (erythroid-derived 2)-like 2 target enzyme heme oxygenase-1 was upregulated 8.42-fold at the mRNA level and 10.7-fold at the protein level by FA-supplemented diet. However, the FA-supplemented diet produced a unique type-2 plasma cytokine skew after LPS treatment. Plasma cytokines interleukin (IL)-4, IL-13, IL-9, and IL-10 were upregulated, reflecting the cytokine profile of reduced type 1 inflammation. A detailed lipidomic analysis of n-6 and n-3 fatty acid pro- and anti-inflammatory pathways in the mesentery and intestinal mucosa showed that FA diet was more similar to the control groups than to other LPS treated groups. In this study, we demonstrated that FA-supplemented diet produced a unique immunomodulatory effect not observed with sulforaphane in late phases of inflammation. These results support the hypothesis that FA may have role as a dietary immunosuppressant in patients with inflammatory gastrointestinal as well as other inflammatory disorders that may be alleviated by increasing consumption of carrot or other FA-containing food sources.
Collapse
Affiliation(s)
- Amanda Stefanson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario, Canada N1G 2W1.
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
39
|
Myeloid-derived suppressor cells exert immunosuppressive function on the T helper 2 in mice infected with Echinococcus granulosus. Exp Parasitol 2020; 215:107917. [PMID: 32446699 DOI: 10.1016/j.exppara.2020.107917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/24/2019] [Accepted: 05/14/2020] [Indexed: 01/15/2023]
Abstract
Cystic echinococcosis (CE) is a worldwide hazardous zoonotic parasitosis caused by Echinococcus granulosus. CE development involves complex immunological mechanisms, including participation of multiple immune cells and effector molecules. Myeloid-derived suppressor cells (MDSCs) are known to be involved in chronic and acute inflammatory conditions. In this study, we aimed to characterize the immune function of MDSCs in CE to improve the understanding, prevention and treatment of CE. Our results indicated that MDSCs overexpressing Ly6C and Ly6G inhibit the formation and activity of T helper 2 cells in a NO-dependent manner during E. granulosus infection.
Collapse
|
40
|
Antibodies in sera from multiple sclerosis patients recognize Trichinella spiralis muscle larvae excretory–secretory antigens. Immunobiology 2020; 225:151954. [DOI: 10.1016/j.imbio.2020.151954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
|
41
|
Khosravi M, Mirsamadi ES, Mirjalali H, Zali MR. Isolation and Functions of Extracellular Vesicles Derived from Parasites: The Promise of a New Era in Immunotherapy, Vaccination, and Diagnosis. Int J Nanomedicine 2020; 15:2957-2969. [PMID: 32425527 PMCID: PMC7196212 DOI: 10.2147/ijn.s250993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
Experimental and epidemiological evidence shows that parasites, particularly helminths, play a central role in balancing the host immunity. It was demonstrated that parasites can modulate immune responses via their excretory/secretory (ES) and some specific proteins. Extracellular vesicles (EVs) are nano-scale particles that are released from eukaryotic and prokaryotic cells. EVs in parasitological studies have been mostly employed for immunotherapy of autoimmune diseases, vaccination, and diagnosis. EVs can carry virulence factors and play a central role in the development of parasites in host cells. These molecules can manipulate the immune responses through transcriptional changes. Moreover, EVs derived from helminths modulate the immune system via provoking anti-inflammatory cytokines. On the other hand, EVs from parasite protozoa can induce efficient immunity, that makes them useful for probable next-generation vaccines. In addition, it seems that EVs from parasites may provide new diagnostic approaches for parasitic infections. In the current study, we reviewed isolation methods, functions, and applications of parasite's EVs in immunotherapy, vaccination, and diagnosis.
Collapse
Affiliation(s)
- Mojdeh Khosravi
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Effects of the dietary fibre inulin and Trichuris suis products on inflammatory responses in lipopolysaccharide-stimulated macrophages. Mol Immunol 2020; 121:127-135. [PMID: 32200170 DOI: 10.1016/j.molimm.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 01/15/2023]
Abstract
Consumption of fermentable dietary fibres, such as inulin, or administration of helminth products (e.g. Trichuris suis ova) have independently been shown to alleviate inflammation in vivo. We recently found that dietary inulin and T. suis infection in pigs co-operatively suppressed type-1 inflammatory responses in the gut, suggesting the potential of dietary components to augment anti-inflammatory responses induced by certain helminths. Here, we explored whether T. suis antigens and inulin could directly suppress inflammatory responses in vitro in a cooperative manner. T. suis soluble products (TsSP) strongly suppressed lipopolysaccharide (LPS)-induced IL-6 and TNF-α secretion from murine macrophages and induced an anti-inflammatory phenotype as evidenced by transcriptomic and gene pathway analyses. Inulin regulated the expression of a small number of genes and transcriptional pathways in macrophages after exposure to LPS, but did not enhance the suppressive activity of TsSP, either directly or in co-culture experiments with intestinal epithelial cells. Culture of macrophages with short-chain fatty acids, the products of microbial fermentation of inulin, did however appear to enhance TsSP-mediated inhibition of TNF-α production. Our results confirm a direct role for helminth products in suppressing inflammatory responses in macrophages. In contrast, inulin had little capacity to directly modulate LPS-induced responses. Our results suggest distinct mode-of-actions of T. suis and inulin in regulating inflammatory responses, and that the role of inulin in modulating the response to helminth infection may be dependent on other factors such as production of metabolites by the gut microbiota.
Collapse
|
43
|
Maizels RM. Regulation of immunity and allergy by helminth parasites. Allergy 2020; 75:524-534. [PMID: 31187881 DOI: 10.1111/all.13944] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
There is increasing interest in helminth parasite modulation of the immune system, both from the fundamental perspective of the "arms race" between host and parasite, and equally importantly, to understand if parasites offer new pathways to abate and control untoward immune responses in humans. This article reviews the epidemiological and experimental evidence for parasite down-regulation of host immunity and immunopathology, in allergy and other immune disorders, and recent progress towards defining the mechanisms and molecular mediators which parasites exploit in order to modulate their host. Among these are novel products that interfere with epithelial cell alarmins, dendritic cell activation, macrophage function and T-cell responsiveness through the promotion of an immunoregulatory environment. These modulatory effects assist parasites to establish and survive, while dampening immune reactivity to allergens, autoantigens and microbiome determinants.
Collapse
Affiliation(s)
- Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunology and Inflammation University of Glasgow Glasgow UK
| |
Collapse
|
44
|
Arora P, Moll JM, Andersen D, Workman CT, Williams AR, Kristiansen K, Brix S. Body fluid from the parasitic worm Ascaris suum inhibits broad-acting pro-inflammatory programs in dendritic cells. Immunology 2020; 159:322-334. [PMID: 31705653 PMCID: PMC7011627 DOI: 10.1111/imm.13151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) are essential for generating T-cell-based immune responses through sensing of potential inflammatory and metabolic cues in the local environment. However, there is still limited insight into the processes defining the resultant DC phenotype, including the type of early transcriptional changes in pro-inflammatory cues towards regulatory or type 2 immune-based cues induced by a variety of exogenous and endogenous molecules. Here we compared the ability of a selected number of molecules to modulate the pro-inflammatory phenotype of lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-stimulated human monocyte-derived DCs towards an anti-inflammatory or regulatory phenotype, including Ascaris suum body fluid [helminth pseudocoelomic fluid (PCF)], the metabolites succinate and butyrate, and the type 2 cytokines thymic stromal lymphopoietin and interleukin-25. Our data show that helminth PCF and butyrate treatment suppress the T helper type 1 (Th1)-inducing pro-inflammatory DC phenotype through induction of different transcriptional programs in DCs. RNA sequencing indicated that helminth PCF treatment strongly inhibited the Th1 and Th17 polarizing ability of LPS + IFN-γ-matured DCs by down-regulating myeloid differentiation primary response gene 88 (MyD88)-dependent and MyD88-independent pathways in Toll-like receptor 4 signaling. By contrast, butyrate treatment had a strong Th1-inhibiting action, and transcripts encoding important gut barrier defending factors such as IL18, IL1B and CXCL8 were up-regulated. Collectively, our results further understanding of how compounds from parasites and gut microbiota-derived butyrate may exert immunomodulatory effects on the host immune system.
Collapse
Affiliation(s)
- Pankaj Arora
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Janne Marie Moll
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Daniel Andersen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | | - Andrew R. Williams
- Parasitology and Aquatic PathobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular BiomedicineDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Susanne Brix
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
45
|
Antigenic cross-reactivity between Schistosoma mansoni and allergenic invertebrates putatively due to shared glycanic epitopes. Sci Rep 2020; 10:3350. [PMID: 32099050 PMCID: PMC7042331 DOI: 10.1038/s41598-020-59892-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/28/2020] [Indexed: 01/15/2023] Open
Abstract
Previous studies have shown that rabbit IgG antibodies against Schistosoma mansoni egg antigens (SmSEA) cross-react with allergens in natural rubber latex, peanuts and grass and tree pollens. Here we describe antigenic molecules that cross-react with rabbit anti-S. mansoni IgG antibodies in extracts of the house dust mite (HDM) Dermatophagoides farinae, the Australian cockroach (ACR) Periplaneta australasiae and in the venom of the honey bee Apis mellifera (HBV). Tandem mass spectrometry identified the cross-reactive allergens as Der f 15 in HDM, two homologues of the Periplaneta americana cockroach allergen Cr-PI/Per a 3 in ACR and two isoforms of the allergen Api m 1 (phospholipase A2: PLA2) in HBV. Cross-reactive rabbit anti-SmSEA IgG antibodies eluted from the three invertebrate allergens reacted with S. mansoni egg antigens and variably with schistosome cercarial and worm antigens. Treatment of the electroblotted allergens with sodium metaperiodate abrogated most of the cross-reactivity of the rabbit anti-SmSEA antibodies, suggesting it was due to cross-reactive carbohydrate determinants (CCDs). Furthermore, analyses of the allergens’ amino acid sequences indicated that they had potential for both N- and O-linked glycosylation. A potential role for the CCDs shared by the schistosome and invertebrates in inducing an allergy-protective effect, as proposed by the hygiene hypothesis, is discussed.
Collapse
|
46
|
|
47
|
Defolie C, Merkling T, Fichtel C. Patterns and variation in the mammal parasite-glucocorticoid relationship. Biol Rev Camb Philos Soc 2020; 95:74-93. [PMID: 31608587 DOI: 10.1111/brv.12555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
Abstract
Parasites are ubiquitous and can strongly affect their hosts through mechanisms such as behavioural changes, increased energetic costs and/or immunomodulation. When parasites are detrimental to their hosts, they should act as physiological stressors and elicit the release of glucocorticoids. Alternatively, previously elevated glucocorticoid levels could facilitate parasite infection due to neuroimmunomodulation. However, results are equivocal, with studies showing either positive, negative or no relationship between parasite infection and glucocorticoid levels. Since factors such as parasite type, infection severity or host age and sex can influence the parasite-glucocorticoid relationship, we review the main mechanisms driving this relationship. We then perform a phylogenetic meta-analysis of 110 records from 65 studies in mammalian hosts from experimental and observational studies to quantify the general direction of this relationship and to identify ecological and methodological drivers of the observed variability. Our review produced equivocal results concerning the direction of the relationship, but there was stronger support for a positive relationship, although causality remained unclear. Mechanisms such as host manipulation for parasite survival, host response to infection, cumulative effects of multiple stressors, and neuro-immunomodulatory effects of glucocorticoids could explain the positive relationship. Our meta-analysis results revealed an overall positive relationship between glucocorticoids and parasitism among both experimental and observational studies. Because all experimental studies included were parasite manipulations, we conclude that parasites caused in general an increase in glucocorticoid levels. To obtain a better understanding of the directionality of this link, experimental manipulation of glucocorticoid levels is now required to assess the causal effects of high glucocorticoid levels on parasite infection. Neither parasite type, the method used to assess parasite infection nor phylogeny influenced the relationship, and there was no evidence for publication bias. Future studies should attempt to be as comprehensive as possible, including moderators potentially influencing the parasite-glucocorticoid relationship. We particularly emphasise the importance of testing hosts of a broad age range, concomitantly measuring sex hormone levels or at least reproductive status, and for observational studies, also considering food availability, host body condition and social stressors to obtain a better understanding of the parasite-glucocorticoid relationship.
Collapse
Affiliation(s)
- Charlotte Defolie
- Sociobiology/Anthropology Department, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.,Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Thomas Merkling
- Department of Natural Resource Sciences, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Ste. Anne de Bellevue, Québec, H9X 3V9, Canada
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
48
|
Abdoli A, Mirzaian Ardakani H. Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metab Brain Dis 2020; 35:95-110. [PMID: 31352539 DOI: 10.1007/s11011-019-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
Abstract
Neuropsychiatric disorders (NPDs) are among the major debilitating disorders worldwide with multiple etiological factors. However, in recent years, psychoneuroimmunology uncovered the role of inflammatory condition and autoimmune disorders in the etiopathogenesis of different NPDs. Hence, resolution of inflammation is a new therapeutic target of NPDs. On the other hand, Helminth infections are among the most prevalent infectious diseases in underdeveloped countries, which usually caused chronic infections with minor clinical symptoms. Remarkably, helminths are among the master regulator of inflammatory reactions and epidemiological studies have shown an inverse association between prevalence of autoimmune disorders with these infections. As such, changes of intestinal microbiota are known to be associated with inflammatory conditions in various NPDs. Conversely, helminth colonization alters the intestinal microbiota composition that leads to suppression of intestinal inflammation. In animal models and human studies, helminths or their antigens have shown to be protected against severe autoimmune and allergic disorders, decline the intensity of inflammatory reactions and improved clinical symptoms of the patients. Therefore, "helminthic therapy" have been used for modulation of immune disturbances in different autoimmunity illnesses, such as Multiple Sclerosis (MS) and Inflammatory Bowel Disease (IBD). Here, it is proposed that "helminthic therapy" is able to ameliorate neuroinflammation of NPDs through immunomodulation of inflammatory reactions and alteration of microbiota composition. This review discusses the potential application of "helminthic therapy" for resolution of neuroinflammation in NPDs.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, POBox 74148-46199, Ostad Motahari Ave, Jahrom, Iran.
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
49
|
Long SR, Lanter BB, Pazos MA, Mou H, Barrios J, Su CW, Wang ZQ, Walker WA, Hurley BP, Shi HN. Intestinal helminth infection enhances bacteria-induced recruitment of neutrophils to the airspace. Sci Rep 2019; 9:15703. [PMID: 31673002 PMCID: PMC6823376 DOI: 10.1038/s41598-019-51991-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Intestinal helminth infections elicit Th2-type immunity, which influences host immune responses to additional threats, such as allergens, metabolic disease, and other pathogens. Th2 immunity involves a shift of the CD4+ T-cell population from type-0 to type-2 (Th2) with increased abundance of interleukin (IL)-4 and IL-13. This study sought to investigate if existing gut-restricted intestinal helminth infections impact bacterial-induced acute airway neutrophil recruitment. C57BL/6 mice were divided into four groups: uninfected; helminth-Heligmosomoides polygyrus infected; Pseudomonas aeruginosa infected; and coinfected. Mice infected with H. polygyrus were incubated for 2 weeks, followed by P. aeruginosa intranasal inoculation. Bronchial alveolar lavage, blood, and lung samples were analyzed. Interestingly, infection with gut-restricted helminths resulted in immunological and structural changes in the lung. These changes include increased lung CD4+ T cells, increased Th2 cytokine expression, and airway goblet cell hyperplasia. Furthermore, coinfected mice exhibited significantly more airspace neutrophil infiltration at 6 hours following P. aeruginosa infection and exhibited an improved rate of survival compared with bacterial infected alone. These results suggest that chronic helminth infection of the intestines can influence and enhance acute airway neutrophil responses to P. aeruginosa infection.
Collapse
Affiliation(s)
- Shao Rong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Bernard B Lanter
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michael A Pazos
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliana Barrios
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
50
|
Lumb FE, Crowe J, Doonan J, Suckling CJ, Selman C, Harnett MM, Harnett W. Synthetic small molecule analogues of the immunomodulatory Acanthocheilonema viteae product ES-62 promote metabolic homeostasis during obesity in a mouse model. Mol Biochem Parasitol 2019; 234:111232. [PMID: 31634505 DOI: 10.1016/j.molbiopara.2019.111232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
One of the most rapidly increasing human public health problems is obesity, whose sequelae like type-2 diabetes, represent continuously worsening, life-long conditions. Over the last 15 years, data have begun to emerge from human and more frequently, mouse studies, that support the idea that parasitic worm infection can protect against this condition. We have therefore investigated the potential of two synthetic small molecule analogues (SMAs) of the anti-inflammatory Acanthocheilonema viteae product ES-62, to protect against metabolic dysfunction in a C57BL/6 J mouse model of high calorie diet-induced obesity. We found weekly subcutaneous administration of the SMAs in combination (1 μg of each), starting one week before continuous exposure to high calorie diet (HCD), decreased fasting glucose levels and reversed the impaired glucose clearance observed in male mice, when measured at approximately 7 and 13 weeks after exposure to HCD. Fasting glucose levels were also-reduced in male mice fed a HCD for some 38 weeks when given SMA-treatment 13 weeks after the start of HCD, indicating an SMA-therapeutic potential. For the most part, protective effects were not observed in female mice. SMA treatment also conferred protection against each of reduced ileum villus length and liver fibrosis, but more prominently in female mice. Previous studies in mice indicate that protection against metabolic dysfunction is usually associated with polarisation of the immune system towards a type-2/anti-inflammatory direction but our attempts to correlate improved metabolic parameters with such changes were unsuccessful. Further analysis will therefore be required to define mechanism of action. Nevertheless, overall our data clearly show the potential of the drug-like SMAs as a preventative or treatment for metabolic dysregulation associated with obesity.
Collapse
Affiliation(s)
- Felicity E Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Colin J Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| |
Collapse
|