1
|
Sharma RK, Sahai R, Singh NC, Maheshwari M, Yadav N, Sarkar J, Mitra K. Ormeloxifene induces mitochondrial fission-mediated pro-death autophagy in colon cancer cells. Biochem Biophys Res Commun 2025; 759:151698. [PMID: 40153998 DOI: 10.1016/j.bbrc.2025.151698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Ormeloxifene (ORM) is a nonsteroidal selective estrogen receptor modulator (SERM), developed by the CSIR-Central Drug Research Institute that is approved as an oral contraceptive. However, it has also shown promising anti-cancer activity, especially in breast cancer. Here, we have investigated the anti-cancer effect of ORM on colon cancer cells and show that its antiproliferative activity is mediated through mitochondrial fission and autophagy-associated cell death. We observed that ORM treatment led to an elevation in autophagy markers like LC3II, Beclin1, and Atg7. Autophagy induction and LC3II turnover were monitored by immunofluorescence staining and confocal microscopy. Transmission electron microscopy results confirmed the formation of autophagosomes and autophagolysosomes. Autophagic flux was confirmed by the increased expression of LC3II in cells co-treated with BafilomycinA1(autophagy inhibitor) and ORM. This was further corroborated using tandem mRFP-GFP-LC3 (tfLC3) transfection in DLD-1 cells. Interestingly, we observed that inhibition of autophagy reduced the apoptotic cell population, suggesting pro-death autophagy. ORM treatment caused notable ultrastructural alterations indicative of cellular stress. Notably, ORM triggered the generation of mitochondrial ROS, associated with increased levels of mitochondrial fission and a decrease in mitochondrial fusion proteins. Changes in mitochondrial dynamics were observed under the TEM, which included reduced mitochondrial size and increased mitochondrial number. Inhibition of mitochondrial fission resulted in enhanced cell survival and a concomitant decrease in the autophagic markers, implying that ORM-induced autophagy depends on mitochondrial fission. Taken together, our findings bring to light a novel mechanism where Ormeloxifene targets mitochondrial dynamics to promote autophagy-associated cell death in colon cancer cells.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rohit Sahai
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Nishakumari Chentunarayan Singh
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India
| | - Mayank Maheshwari
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Nisha Yadav
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Sarkar
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kalyan Mitra
- Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR - Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Yi F, Tao S, Wu H. Bilirubin metabolism in relation to cancer. Front Oncol 2025; 15:1570288. [PMID: 40291905 PMCID: PMC12021636 DOI: 10.3389/fonc.2025.1570288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Bilirubin, a metabolite of hemoglobin, was long thought to be a harmful waste product, but recent studies have found it to have antioxidant and anti-tumor effects. With the extensive research on the mechanism of malignant tumor development, the antioxidant effect of bilirubin is increasingly becoming a hotspot in anti-cancer research. At present, there are two main views on the relationship between bilirubin and cancer, namely, its pro-cancer and anti-cancer effects, and in recent years, studies on the relationship between bilirubin and cancer have not been systematically summarized, which is not conducive to the further investigation of the role of bilirubin on cancer. To understand the multifaceted role of bilirubin in tumorigenesis as well as to develop more effective and affordable antitumor therapies, this review provides an overview of the effects of bilirubin on tumors in terms of oxidative, inflammatory, and cellular signaling pathways, as well as the resulting therapeutic ideas and approaches.
Collapse
Affiliation(s)
- Fengyun Yi
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Siyu Tao
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
3
|
Yang L, Ma L, Fu P, Nie J. Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions. Front Med 2025; 19:250-264. [PMID: 40011387 DOI: 10.1007/s11684-024-1117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 02/28/2025]
Abstract
Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Lina Yang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jing Nie
- Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing, 100034, China.
| |
Collapse
|
4
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Zhang J, Hu G, Guo H, Yang W, Li X, Ni Y, He M, Ding P, Yu Y. Amino modifications exacerbate the developmental abnormalities of polystyrene microplastics via mitochondria-mediated apoptosis pathway in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178031. [PMID: 39689476 DOI: 10.1016/j.scitotenv.2024.178031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment and have been identified as a potential threat to ecosystems. However, the mechanisms of toxicity of modified MPs remain unknown. This study investigated the developmental toxicity of amino-modified polystyrene microplastics (PS-NH2) with environmentally relevant concentrations ranging from 0.1 to 100 μg/L in the early developmental stages of zebrafish. Adding amino functional groups resulted in significant alterations in the surface morphology and zeta potential of traditional polystyrene microplastics (PS-MPs). Zebrafish larvae exposed to PS-NH2 exhibited increased developmental toxicity compared to PS-MPs, as indicated by reduced body length, heart rate, and spontaneous movement. The expression of cat1, sod1, gstr1, nrf2a, nrf2b, and HO-1, as well as alterations in ROS, SOD, CAT, and MDA levels, all demonstrated oxidative damage caused by PS-NH2 exposure. Mitochondrial dysfunction was also induced, as evidenced by changes in the expression of cox4i1, ndufs1, and uqcrc1, as well as changes in the levels of ATP, cytochrome c, NAD, and NADH. Furthermore, PS-NH2 exposure disrupted apoptosis regulation, increasing apoptotic cells and caspase activity, along with changes in caspase-3 and bcl-2 expression. Molecular docking showed that PS-NH2 interacts with bcl-2 with high binding energy. This study contributes to understanding the toxic effects and mechanisms of charge-modified MPs in zebrafish.
Collapse
Affiliation(s)
- Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongzhi Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenhui Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yuyang Ni
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Shenyang 110122, China
| | - Miao He
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
6
|
Hanna DH, Al-Atmani AK, AlRashidi AA, Shafee EE. Camellia sinensis methanolic leaves extract: Phytochemical analysis and anticancer activity against human liver cancer cells. PLoS One 2024; 19:e0309795. [PMID: 39541389 PMCID: PMC11563400 DOI: 10.1371/journal.pone.0309795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The study's primary goal is to ascertain whether there is a relationship between the processed green tea methanolic extract's (GTME) phytochemical components and its potential effectiveness against human liver cancer cells. The GTME's phytochemical composition was identified using gas chromatography-mass spectrometry, and the extract's capacity to lower cellular proliferation and cause apoptosis in HepG2 cancerous liver cell lines was checked. RESULTS The findings of the gas chromatography-mass chromatogram showed that GTME included bioactive antioxidants and anticancer substances. Additionally, utilizing the MTT, comet assay, and acridine assay, GTME revealed a selective cytotoxic impact with a significant IC50 value (27.3 µg/ml) on HepG2 cells without any harmful effects on WI-38 healthy cells. Also, compared to untreated cells, the extract-treated HepG2 cells had an upsurge in the proportion of cells that have undergone apoptosis and displayed a comet nucleus, which is a sign of DNA damage. In addition, HepG2 cells treated with GTME revealed a stop in the G1 phase and sub-G1 apoptotic cells (37.32%) in a flow cytometry analysis. Furthermore, reactive oxygen species were shown to be responsible for HepG2 apoptosis, and the tested extract significantly reduced their levels in the treated cells. Lastly, compared to untreated cells in treated HepG2 cells, GTME significantly changed protein expression levels linked with cell cycle arrest in the G1 phase and apoptosis. CONCLUSION These findings provided information about the processes through which the GTME inhibited the growth of HepG2. Therefore, it has potential as an effective natural therapy for the treatment of human liver cancer. However, to validate these findings, animal models must be used for in vivo studies.
Collapse
Affiliation(s)
- Demiana H. Hanna
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | - Ahlam K. Al-Atmani
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | | | - E. El. Shafee
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Aulak KS, Mavarakis L, Tian L, Paul D, Comhair SA, Dweik RA, Tonelli AR. Characteristic disease defects in circulating endothelial cells isolated from patients with pulmonary arterial hypertension. PLoS One 2024; 19:e0312535. [PMID: 39466801 PMCID: PMC11516004 DOI: 10.1371/journal.pone.0312535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary arterial pressures that can lead to right heart failure and death. No cure exists for this disease, but therapeutic advancements have extended its median survival from 2 to 7 years. Mechanistic research in PAH has been limited by factors including that a) animal models do not fully recapitulate the disease or provide insights into its pathogenesis, and b) cellular material from PAH patients is primarily obtained from donor lungs during autopsy or transplantation, which reflect end-stage disease. Therefore, there is a need to identify tools that can elucidate the specific mechanisms of human disease in individual patients, a critical step to guide treatment decisions based on specific pathway abnormalities. Here we demonstrate a simple method to isolate and culture circulating endothelial cells (CECs) obtained at the time of right heart catheterization in PAH patients. We tested these CECs using transcriptomics and found that they have typical traits of PAH, including those involving key treatment pathways, i.e. nitric oxide, endothelin, prostacyclin and BMP/activin pathways. CECs show important gene expression changes in other central PAH disease pathways. In summary, we present a new cellular model for the ex-vivo mechanistic evaluation of critical PAH pathways that participate in the pathogenesis of the disease and may help personalized therapeutic decisions.
Collapse
Affiliation(s)
- Kulwant S. Aulak
- Department of Immunology and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Lori Mavarakis
- Department of Immunology and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Liping Tian
- Department of Immunology and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Deborah Paul
- Department of Pulmonary, Cleveland Clinic, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland, Ohio, United States of America
| | - Suzy A. Comhair
- Department of Immunology and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Raed A. Dweik
- Department of Pulmonary, Cleveland Clinic, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland, Ohio, United States of America
| | - Adriano R. Tonelli
- Department of Pulmonary, Cleveland Clinic, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland, Ohio, United States of America
| |
Collapse
|
8
|
Asghariazar V, Karimi A, Adeli S, Kadkhodayi M, Zare E, Vajdi M, Nasimi Doost Azgoomi R, Asghari Vostakolaei M. Anticancer activity of naringenin on human liposarcoma: An experimental and bioinformatic study. Prostaglandins Other Lipid Mediat 2024; 174:106884. [PMID: 39154788 DOI: 10.1016/j.prostaglandins.2024.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Naringenin (NAR) has shown potential as a cancer treatment, reducing cell proliferation and invasion in soft tissue sarcomas like liposarcoma (LPS). This study investigates NAR's role and molecular mechanism. Bioinformatic analysis was performed to assess the expression level of genes in LPS based on the GEO dataset. The heat map and PPI of genes were also analyzed. MTT, wound healing, DAPI staining, and flow cytometry evaluated the cell viability, migration, and apoptosis. Besides, real-time PCR was used to measure the NAR's impact on the expression levels of EMT, apoptosis, inflammation, and metastasis-related genes. The results showed that NAR reduces cell viability, proliferation, and migration but induces apoptosis in LPS cells. RT-PCR results revealed that NAR is capable of regulating the expression level of the apoptosis, EMT, migration, and Inflammation-related genes. This study demonstrated that NAR may play a crucial role in reducing cell viability, inducing apoptosis, and attenuating migration in Sw872 LPS cells. Consequently, NAR might be a promising and efficient factor in the treatment of LPS.
Collapse
Affiliation(s)
- Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaghayegh Adeli
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahtab Kadkhodayi
- Immunology Research Center Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, The University of Tabriz, Tabriz, Iran
| | - Erfan Zare
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ramin Nasimi Doost Azgoomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Asghari Vostakolaei
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
9
|
Qiao M, Zeng C, Liu C, Lei Z, Liu B, Xie H. The advancement of siRNA-based nanomedicine for tumor therapy. Nanomedicine (Lond) 2024; 19:1841-1862. [PMID: 39145477 PMCID: PMC11418284 DOI: 10.1080/17435889.2024.2377062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Small interfering RNA (siRNA) has been proved to be able to effectively down-regulate gene expression through the RNAi mechanism. Thus, siRNA-based drugs have become one of the hottest research directions due to their high efficiency and specificity. However, challenges such as instability, off-target effects and immune activation hinder their clinical application. This review explores the mechanisms of siRNA and the challenges in siRNA-based tumor therapy. It highlights the use of various nanomaterials - including lipid nanoparticles, polymeric nanoparticles and inorganic nanoparticles - as carriers for siRNA delivery in different therapeutic modalities. The application strategies of siRNA-based nanomedicine in chemotherapy, phototherapy and immunotherapy are discussed in detail, along with recent clinical advancements. Aiming to provide insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Muchuan Qiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Chenlu Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Ziwei Lei
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
10
|
Eid RA, Abadi AM, Alghamdi MA, El-Kott AF, Mohamed G, Al-Shraim M, Alaa Eldeen M, Zaki MSA, Shalaby FM. Echinops Asteraceae extract guards against malathion-induced liver damage via minimizing oxidative stress, inflammation, and apoptosis. Toxicon 2024; 244:107750. [PMID: 38750940 DOI: 10.1016/j.toxicon.2024.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Malathion (MAL) is one of the highly toxic organophosphorus (OP) compounds that induces hepatotoxicity. Echinops. ritro leaves extract (ERLE) is traditionally used in the treatment of bacterial/fungal infections. This study's goal was to investigate the potential of extracts from ERLE against hepatotoxicity induced by MAL in male albino rats. Four equal groups of forty mature male albino rats were created: The rats in the first group used as a control. The second group of rats received ERLE orally. The third group received MAL. ERLE and MAL were administered to the fourth group of rats. Six-week treatment groups were conducted. Using lipid peroxidation indicators [malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST)], oxidative stress markers [catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], apoptotic markers [Bcl-2 & caspase-3] and tumor necrosis factor alpha (TNF-α). Rats treated with MAL underwent a significant increase on MDA, ALT, AST, caspase-3 and TNF-α marker with a significant decrease in antioxidant markers [CAT, SOD, GPx] and Bcl-2. Histologically, MAL-treated group's liver sections displayed damaged hepatocytes with collapsed portions, pyknotic nuclei, vacuolated cytoplasm, and congested central veins. Ultra structurally, rat livers treated with MAL showed dilated cisternae of endoplasmic reticulum, swollen mitochondria with disrupted cristae, nuclei with disrupted chromatin content, multiple lysosomes, multiple vacuolations and a disrupted blood sinusoid. With rats treated with ERLE, these alterations were essentially non-existent. It is possible to conclude that ERLE protects against MAL hepatotoxicity, and that this protection is related, at least in part, to its antioxidant activities.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Alsaleem Mohammed Abadi
- Department of Family and Community Medicine, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia; Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia; Department of Zoology, College of Science, Damanhur University, Damanhur 22511, Egypt.
| | - Gamal Mohamed
- Department of Human Anatomy, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, 12573, Saudi Arabia.
| | - Fatma Mohsen Shalaby
- King Khalid University, Faculty of Sciences, Biology Department, Abha, Kingdom of Saudi Arabia; Mansoura University, Faculty of Sciences, Department of Zoology, Mansoura, Egypt.
| |
Collapse
|
11
|
Du J, Zhang X, Li B, Huo S, Zhang J, Fu Y, Song M, Shao B, Li Y. The hepatotoxicity of hexafluoropropylene oxide trimer acid caused by apoptosis via endoplasmic reticulum-mitochondrial crosstalk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171234. [PMID: 38428612 DOI: 10.1016/j.scitotenv.2024.171234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
As a ubiquitous pollutant in the environment, hexafluoropropylene oxide trimer acid (HFPO-TA) has been proven to have strong hepatotoxicity. However, the underlying mechanism is still unclear. Consequently, in vivo and in vitro models of HFPO-TA exposure were established to investigate the detrimental effects of HFPO-TA on the liver. In vivo, we discovered that HFPO-TA enhanced endoplasmic reticulum (ER)-mitochondrial association, caused mitochondrial oxidative damage, activated ER stress, and induced apoptosis in mouse livers. In vitro experiments confirmed that IP3R overexpression on ER structure increased mitochondrial calcium levels, which led to mitochondrial damage and mitochondria-dependent apoptosis in HepG2 cells exposed to HFPO-TA. Subsequently, damaged mitochondria released a large amount of mitochondrial ROS, which activated ER stress and ER stress-dependent apoptosis. In conclusion, this study demonstrates that HFPO-TA can induce apoptosis by regulating the crosstalk between ER and mitochondria, ultimately leading to liver damage. These findings reveal the significant hepatotoxicity of HFPO-TA and its potential mechanisms.
Collapse
Affiliation(s)
- Jiayu Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yang Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Department of Veterinary Medicine, Heze Vocational College, Heze 274031, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Samia S, Sandeep Chary P, Khan O, Kumar Mehra N. Recent trends and advances in novel formulations as an armament in Bcl-2/Bax targeted breast cancer. Int J Pharm 2024; 653:123889. [PMID: 38346605 DOI: 10.1016/j.ijpharm.2024.123889] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Breast cancer (BC) remains a significant health burden worldwide, necessitating the development of innovative therapeutic strategies. The B-cell lymphoma 2 (Bcl-2) family proteins, Bcl-2 and Bax, play a crucial role in regulating apoptosis and thus are promising targets for BC therapy. We focus on the recent advancements in novel formulations that specifically target Bcl-2/Bax pathway to combat BC. It provides an overview on biological functions of Bcl-2/Bax in apoptosis regulation, emphasizing their significance in pathogenesis and progression of the disease while covering the numerous therapeutic approaches aimed at modulating the Bcl-2/Bax pathway, including small-molecule inhibitors, peptides, gene-based therapies and other repurposed drugs harboured onto cutting-edge technologies and nanocarrier systems employed to enhance the targeted delivery of Bcl-2/Bax inhibitors tumor cells. These advanced formulations aim to improve therapeutic efficacy, minimize off-target effects, and overcome drug resistance, offering promising prospects in its treatment. In conclusion, it illuminates the diverse and evolving landscape of novel formulations as an essential armament in targeting these proteins while bridging and unravelling the obscurity of Bcl-2/Bax pathway-targeted drug delivery systems which are presently in their nascent stages of exploration for BC therapy which can benefit researchers, clinicians, and pharmaceutical scientists.
Collapse
Affiliation(s)
- Shaikh Samia
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
13
|
El-Atawy MA, Hanna DH, Bashal AH, Ahmed HA, Alshammari EM, Hamed EA, Aljohani AR, Omar AZ. Synthesis, Characterization, Antioxidant, and Anticancer Activity against Colon Cancer Cells of Some Cinnamaldehyde-Based Chalcone Derivatives. Biomolecules 2024; 14:216. [PMID: 38397453 PMCID: PMC10886690 DOI: 10.3390/biom14020216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of the current investigation was to produce cinammaldehyde-based chalcone derivatives (3a-k) to evaluate their potential effectiveness as antioxidant and inhibitory agents versus human Caco-2 cancer cells. The findings obtained using the DPPH assay showed that compound 3e had the highest effective antioxidant activity with the best IC50 value compared with the other compounds. Moreover, the cytotoxic findings revealed that compound 3e was the best compound for inhibiting Caco-2 development in contrast to all other produced derivatives, with the lowest IC50 concentration (32.19 ± 3.92 µM), and it also had no detrimental effects on healthy human lung cells (wi38 cells). Exposure of Caco-2 cells with this IC50 value of compound 3e resulted in a substantial rise in the number of early and late cells that are apoptotic with a significant comet nucleus when compared with control cells employing the annexin V/PI and comet evaluations, respectively. Furthermore, qRT-PCR and ELISA examinations indicated that compound 3e significantly altered the expression of genes and their relative proteins related to apoptosis in the treated Caco-2 cells, thus significantly inhibiting Caco-2 growth through activating Caspase-3 via an intrinsic apoptotic pathway. As a result, compound 3e could serve as an effective therapy for human colon cancer.
Collapse
Affiliation(s)
- Mohamed A. El-Atawy
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; (M.A.E.-A.); (A.H.B.); (H.A.A.); (A.R.A.)
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (E.A.H.); (A.Z.O.)
| | - Demiana H. Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ali H. Bashal
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; (M.A.E.-A.); (A.H.B.); (H.A.A.); (A.R.A.)
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; (M.A.E.-A.); (A.H.B.); (H.A.A.); (A.R.A.)
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia;
| | - Ezzat A. Hamed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (E.A.H.); (A.Z.O.)
| | - Abdullah R. Aljohani
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia; (M.A.E.-A.); (A.H.B.); (H.A.A.); (A.R.A.)
- Saudi Irrigation Organization (SIO), Al-Hassa 31982, Saudi Arabia
| | - Alaa Z. Omar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt; (E.A.H.); (A.Z.O.)
| |
Collapse
|
14
|
Fei C, Liu L, Qi H, Peng Y, Han J, Wang C, Li X. Curdlan-Decorated Fullerenes Mitigate Immune-Mediated Hepatic Injury for Autoimmune Hepatitis Therapeutics via Reducing Macrophage Infiltration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5536-5547. [PMID: 38267397 PMCID: PMC10860698 DOI: 10.1021/acsami.3c16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Autoimmune hepatitis (AIH) is a severe immune-mediated inflammatory liver disease whose standard of care is immunosuppressive treatment with inevitable undesired outcomes. Macrophage is acknowledged to aggravate liver damage, providing a promising AIH therapeutic target. Accordingly, in this study, a kind of curdlan-decorated fullerene nanoparticle (Cur-F) is fabricated to alleviate immune-mediated hepatic injury for treating AIH via reducing macrophage infiltration in a concanavalin A (Con A)-induced AIH mouse model. After intravenous administration, Cur-F primarily distributes in liver tissues, efficiently eliminates the excessive reactive oxygen species, significantly attenuates oxidative stress, and subsequently suppresses the nuclear factor kappa-B-gene binding (NF-κB) signal pathway, resulting in the lowered production of pro-inflammatory cytokines and the balancing of the immune homeostasis with the prevention of macrophage infiltration in the liver. The regulation of hepatic inflammation contributes to inhibiting inflammatory cytokines-induced hepatocyte apoptosis, decreasing the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) contents and thus ameliorating immune-mediated hepatic injury. Notably, there is no detectable toxicity to the body. Our findings may open up novel avenues for AIH based on curdlan and fullerene materials.
Collapse
Affiliation(s)
- Chenglong Fei
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemistry and Chemical Engineering, Inner
Mongolia University, Inner
Mongolia 010021, China
| | - Lei Liu
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hedong Qi
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyang Peng
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfen Han
- School
of Chemistry and Chemical Engineering, Inner
Mongolia University, Inner
Mongolia 010021, China
| | - Chunru Wang
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Key
Laboratory of Molecular Nanostructure and Nanotechnology, Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Muehling J, Fröba-Pohl A, Muensterer OJ, von Schweinitz D, Kappler R. Impact of BCL-2 Expression on Course of Disease in Neuroblastoma. Eur J Pediatr Surg 2024; 34:69-77. [PMID: 37774735 DOI: 10.1055/s-0043-1774798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
OBJECTIVE The antiapoptotic BCL-2 protein has implications for maturation and differentiation of neural tissue and acts as a strong modulator of carcinogenesis in different tumors. Recent research focuses not only on its benefit as a prognostic factor, but also as a potential therapeutic target. The role of BCL-2 in neuroblastoma, the most common extracranial solid tumor in childhood, remains controversial. The aim of our study was to determine the gene expression level of BCL-2 in a large cohort of neuroblastoma patients and its correlation with clinical parameters. METHODS Tumor samples and clinical data were collected from 100 neuroblastoma patients treated according to the NB2004 protocol of the German Society of Pediatric Oncology and Hematology. BCL-2 gene expression levels were measured by quantitative reverse transcription polymerase chain reaction and correlated with clinical parameters. RESULTS BCL-2 expression was detected in all tumor samples. Relative BCL-2 expression levels were higher in females versus males (1.839 vs. 1.342; p = 0.0143), in patients with low versus high International Neuroblastoma Staging System stage (2.051 vs. 1.463; p = 0.0206), in nonmetastatic versus metastatic disease (1.801 vs. 1.342; p = 0.0242), as well as in patients without presurgical chemotherapy (2.145 vs. 1.402; p = 0.0016), but was not associated with overall survival and MYCN amplification. CONCLUSION Our study demonstrates the ubiquitous expression of BCL-2 in neuroblastoma and suggests the possibility for targeted therapy with BCL-2 inhibitors, even in lower-stage neuroblastoma. It also underlines the need for further research on concomitant genetic alterations for a better understanding of the impact of BCL-2 on this pediatric tumor type.
Collapse
Affiliation(s)
- Jakob Muehling
- Department of Pediatric Surgery, Munich University Hospital, Dr. von Hauner Children's Hospital, München, Germany
| | - Alexandra Fröba-Pohl
- Department of Pediatric Surgery, Munich University Hospital, Dr. von Hauner Children's Hospital, München, Germany
| | - Oliver J Muensterer
- Department of Pediatric Surgery, Munich University Hospital, Dr. von Hauner Children's Hospital, München, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Munich University Hospital, Dr. von Hauner Children's Hospital, München, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Munich University Hospital, Dr. von Hauner Children's Hospital, München, Germany
| |
Collapse
|
16
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
17
|
Nasr FA, Noman OM, Al-zharani M, Ahmed MZ, Qamar W, Rizwan Ahamad S, Al Mishari AA, Aleissa MS, Rudayni HA, Alqahtani AS. Chemical profile, antiproliferative and pro-apoptotic activities of essential oils of Pulicaria arabica against A549 lung cancer cell line. Saudi Pharm J 2023; 31:101879. [PMID: 38192283 PMCID: PMC10772242 DOI: 10.1016/j.jsps.2023.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Pulicaria arabica has been traditionally utilized in folk medicine for various purposes such as ulcer treatments as well as antidiarrheal agent. Herein, the chemical profiles of Pulicaria arabica essential oils (PAEOs) and the in vitro antiproliferative effect of PAEOs were investigated. Hydrodistillation was employed to prepare PAEOs which were then characterized by GC/MS, while the antiproliferative effects were investigated by MTT assay as well as flow cytometric and RT-PCR analysis. Sixty-four (99.99 %) constituents were recognized from PAEOs. Carvotanacetone (36.97 %), (-)-carvomenthone (27.20 %) and benzene, 2-(1,1-dimethylethyl)-1,4-dimethoxy- (6.92 %) were the main components. PAEOs displayed IC50 values ranging from 30 to 50 μg/mL. DNA content analysis revealed that A549 cells exposed to PAEOs exhibited an increase in G1 cells population. The flow cytometry analysis results also showed that the PAEOs antiproliferative effect was mediated via apoptosis induction. Furthermore, a modulation in the pro-apoptotic markers (caspase-3 and Bax) and anti-apoptotic (Bcl-2) was also observed. In conclusion, PAEOs exhibited a moderate anti-proliferative effect on A549 cells through modulating the cell cycle progression and apoptosis initiation. These findings could offer a potential therapeutic use of PAEOs in lung cancer treatment.
Collapse
Affiliation(s)
- Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Al-zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Z. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Al Mishari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Aleissa
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan A. Rudayni
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Hanna DH, Aziz MM, Shafee EE. Effective-by-method for the preparation of folic acid-coated TiO 2 nanoparticles with high targeting potential for apoptosis induction against bladder cancer cells (T24). Biotechnol Appl Biochem 2023; 70:1597-1615. [PMID: 36905187 DOI: 10.1002/bab.2456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
The research's goal is to create the surfaces of titanium dioxide nanoparticles (TiO2 NPs) in a layer of folic acid (FA) that can effectively target human bladder cancer cells (T24). An efficient method for creating FA-coated TiO2 NPs was used, and many tools have been used to analyze its physicochemical properties. The cytotoxic effects of FA-coated NPs on T24 cells and the mechanisms of apoptosis generation were examined employing a variety of methodologies. The prepared FA-coated TiO2 NPs suspensions with a hydrodynamic diameter around 37 nm and a negative surface charge of -30 mV reduced T24 cell proliferation with stronger IC50 value (21.8 ± 1.9 μg/ml) than TiO2 NPs (47.8 ± 2.5 μg/ml). This toxicity resulted in apoptosis induction (16.63%) that was caused through enhanced reactive oxygen species formation and stopping the cell cycle over G2/M phase. Moreover, FA-TiO2 NPs raised the expression levels of P53, P21, BCL2L4, and cleaved Caspase-3, while decreasing Bcl-2, Cyclin B, and CDK1 in treated cells. Overall, these findings revealed efficient targeting of the FA-TiO2 NPs resulted in increasing cellular internalization caused increased apoptosis in T24 cells. As a result, FA-TiO2 NPs might be a viable treatment for human bladder cancer.
Collapse
Affiliation(s)
- Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Marina M Aziz
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - E El Shafee
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
19
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 347] [Impact Index Per Article: 173.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
20
|
Solanki R, Jangid AK, Jadav M, Kulhari H, Patel S. Folate Functionalized and Evodiamine-Loaded Pluronic Nanomicelles for Augmented Cervical Cancer Cell Killing. Macromol Biosci 2023; 23:e2300077. [PMID: 37163974 DOI: 10.1002/mabi.202300077] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Evodiamine (Evo) is a natural, biologically active plant alkaloid with wide range of pharmacological activities. In the present study Evo-loaded folate-conjugated Pluronic F108 nano-micelles (ENM) is synthesized to enhance the therapeutic efficacy of Evo against cervical cancer. ENM are synthesized, physicochemically characterized and in vitro anticancer activity is performed. The study demonstrates that ENM have nanoscale size (50.33 ± 3.09 nm), monodispersity of 0.122 ± 0.072, with high drug encapsulation efficiency (71.30 ± 3.76%) and controlled drug release at the tumor microenvironment. ENM showed dose-dependent and time-dependent cytotoxicity against HeLa human cervical cancer cells. The results of in vitro anticancer studies demonstrated that ENM have significant anticancer effects and greatly induce apoptosis as compared to pure Evo. The cellular uptake study suggests that increased anticancer activity of ENM is due to the improved intracellular delivery of Evo through overexpressed folate receptors. Overall, the designed ENM can be a potential targeted delivery system for hydrophobic anticancer bioactive compound like Evo.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| |
Collapse
|
21
|
Jiang Y, Wang L, Yang B, Ma G, Chen Z, Ma J, Chang X, Fang L, Wang Z. Bifidobacterium-derived membrane vesicles inhibit triple-negative breast cancer growth by inducing tumor cell apoptosis. Mol Biol Rep 2023; 50:7547-7556. [PMID: 37498438 DOI: 10.1007/s11033-023-08702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Bacterial outer membrane vesicles have gained increasing attention for its antitumor effect and application in drug delivery. However, the bacterial membrane vesicles (MVs) that are secreted by Gram-positive bacteria are rarely mentioned. Bifidobacterium has a certain anti-tumor effect, but there is a certain risk when injected into human body. Here we investigated the potential of Bifidobacterium-derived membrane vesicles (B-MVs) as therapeutic agents to treat triple-negative breast cancer. METHODS AND RESULTS Firstly, we discovered that Bifidobacterium can produce B-MVs and isolated them. In vivo, we found that B-MVs can inhibit tumor growth in mice and the mice were in good state. H&E staining displayed extensive apoptotic cells in tumor tissues. Western blotting and immunohistochemistry showed that B-MVs increased the expression of Bax, while decreased the expression of Bcl-2. These results suggested that B-MVs may induce apoptosis of tumor cells in vivo. Furthermore, to further confirm this phenomenon, we conducted experiments in vitro. Hoechst 33,258 staining assay, flow cytometry and western blotting also demonstrated B-MVs promoted cell apoptosis in vitro. CONCLUSIONS We speculate B-MVs may inhibit tumor growth by inducing tumor cell apoptosis in triple-negative breast cancer, which provided a new direction in the treatment of TNBC.
Collapse
Affiliation(s)
- Yongzhu Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Lanxi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bangya Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Guanrong Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiqi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiulin Chang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China.
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Alshanqiti KH, Alomar SF, Alzoman N, Almomen A. Irisin Induces Apoptosis in Metastatic Prostate Cancer Cells and Inhibits Tumor Growth In Vivo. Cancers (Basel) 2023; 15:4000. [PMID: 37568817 PMCID: PMC10416853 DOI: 10.3390/cancers15154000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Prostate cancer is the second most common cancer in males worldwide, with αVβ5 in-tegrin, a coactivator receptor, being highly expressed in advanced prostate cancer. Irisin, a hormone secreted from skeletal muscles, can reduce cell viability and migration and potentially inhibit αVβ5. OBJECTIVE This study investigates the potential impact of irisin on prostate cancer cells and its underlying mechanism. METHODS In vitro evaluation of the antiproliferative action of irisin on metastatic prostate cancer (PC-3) cells was tested through MTT assay, flow cytometry, and Western blot. An in vivo evaluation of the antiproliferative effect on prostate cancer xenograft was evaluated in nude mice. RESULTS In vitro evaluations showed that irisin reduced PC-3 cell viability to 70% and increased the Annexin-V/7AAD positive cell population. Irisin altered the expression of apoptotic proteins, αVβ5, and proteins involved in the P13k-Akt pathway. In vivo, irisin inhibited tumor growth and progression, positively affecting animal well-being. In conclusion, irisin has an apoptotic effect on PC-3, possibly through altering αVβ5 and the Bcl2/BAX and P13k-Akt signaling pathway, inhibiting tumor growth in vivo. CONCLUSION Our findings can serve as a foundation for further evaluation of irisin's role in prostate cancer.
Collapse
|
23
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Midan HM, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Rizk NI, Elrebehy MA, El-Dakroury WA, Hashem AH, Doghish AS. The potential role of miRNAs in the pathogenesis of adrenocortical carcinoma - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154690. [PMID: 37473498 DOI: 10.1016/j.prp.2023.154690] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Adrenocortical carcinoma (ACC) is a highly malignant infrequent tumor with a dismal prognosis. microRNAs (miRNAs, miRs) are crucial in post-transcriptional gene expression regulation. Due to their ability to regulate multiple gene networks, miRNAs are central to the hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, reprogramming of cellular metabolism, and avoidance of immune destruction. ACC represents a singular form of neoplasia associated with aberrations in the expression of evolutionarily conserved short, non-coding RNAs. Recently, the role of miRNAs in ACC has been examined extensively despite the disease's rarity. Hence, the current review is a fast-intensive track elucidating the potential role of miRNAs in the pathogenesis of ACC besides their association with the survival of ACC.
Collapse
Affiliation(s)
- Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
25
|
Wang C, Liu L, Cheng Y, Shi H. Combined GSK-3β and MEK inhibitors modulate the stemness and radiotherapy sensitivity of cervical cancer stem cells through the Wnt signaling pathway. Chem Biol Interact 2023; 380:110515. [PMID: 37116855 DOI: 10.1016/j.cbi.2023.110515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Cancer stem cells (CSCs) are the basis of cancer and lead to the recurrence and metastasis of cervical cancer. The aim of this study was to investigate the effects of antineoplastic agents on the stemness and radiotherapy sensitivity of cervical CSCs. Side population (SP) and non-side population (NSP) cells from the SiHa cervical cancer cell line were separated using flow cytometry. The cell spheroidization, proliferation, and subcutaneous tumor formation abilities of SP cells were stronger than those of NSP cells, and cervical CSC marker expressions increased in SP cells. The proliferation, anti-apoptosis and migration of SP cells under ionizing radiation were higher than those of SiHa cells. GSK-3β and/or MEK inhibitors can increase the proliferation, migration and anti-apoptosis of SP cells, and CSC marker expressions. The Wnt pathway inhibitor decreased CSC stemness maintenance by combination of GSK-3β and MEK inhibitors. Injection of GSK-3β and MEK inhibitors under ionizing radiation promoted tumor growth and activated downstream factor expressions in the Wnt signaling pathway in vivo. This study demonstrated that combining GSK-3β and MEK inhibitors can activate Wnt signaling pathway in cervical CSCs, thereby affecting their stemness maintenance and radiotherapy sensitivity.
Collapse
Affiliation(s)
- Cong Wang
- Department of Gynecological Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lijun Liu
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Cheng
- Department of Gynecological Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Huirong Shi
- Department of Gynaecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
26
|
Ke F, Wang H, Geng J, Jing X, Fang F, Fang C, Zhang BH. MiR-155 promotes inflammation and apoptosis via targeting SIRT1 in hypoxic-ischemic brain damage. Exp Neurol 2023; 362:114317. [PMID: 36608839 DOI: 10.1016/j.expneurol.2023.114317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) is one of the major causes of infant death and long-term neurological disturbances, which puts great pressure on families and society. Previous studies have reported that neuroinflammation regulates the pathogenesis of HIBD. MiR-155 has been reported to participate in many brain injuries; however, its direct implication and related mechanisms are not illuminated in HIBD. Herein, we identified that miR-155 plays a vital role in HIBD both in in vitro and in vivo models. We found that miR-155 promoted inflammation and apoptosis via targeting SIRT1 and negatively regulated its expression levels in oxygen-glucose deprivation/reoxygenation (OGD/R) in an in vitro model. Silencing of SIRT1 reversed the effects of miR-155 inhibitor on apoptosis and the NF-κB pathway in OGD/R-treated PC12 cells and microglia (BV2) cells. Moreover, in a neonatal rat HIBD model, miR-155 enhanced apoptosis and inflammation in the brains of rats with HIBD in vivo. Together, our results demonstrated that miR-155 exerted a negative effect in HIBD by targeting SIRT1, which could contribute to the treatment of neonatal patients with hypoxic-ischemic brain damage.
Collapse
Affiliation(s)
- Fangzi Ke
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiaqing Geng
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqi Jing
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chengzhi Fang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Bing-Hong Zhang
- Departments of Neonatology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
27
|
Morishita A, Oura K, Tadokoro T, Shi T, Fujita K, Tani J, Atsukawa M, Masaki T. Galectin-9 in Gastroenterological Cancer. Int J Mol Sci 2023; 24:ijms24076174. [PMID: 37047155 PMCID: PMC10094448 DOI: 10.3390/ijms24076174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Immunochemotherapy has become popular in recent years. The detailed mechanisms of cancer immunity are being elucidated, and new developments are expected in the future. Apoptosis allows tissues to maintain their form, quantity, and function by eliminating excess or abnormal cells. When apoptosis is inhibited, the balance between cell division and death is disrupted and tissue homeostasis is impaired. This leads to dysfunction and the accumulation of genetically abnormal cells, which can contribute to carcinogenesis. Lectins are neither enzymes nor antibodies but proteins that bind sugar chains. Among soluble endogenous lectins, galectins interact with cell surface sugar chains outside the cell to regulate signal transduction and cell growth. On the other hand, intracellular lectins are present at the plasma membrane and regulate signal transduction by regulating receptor–ligand interactions. Galectin-9 expressed on the surface of thymocytes induces apoptosis of T lymphocytes and plays an essential role in immune self-tolerance by negative selection in the thymus. Furthermore, the administration of extracellular galectin-9 induces apoptosis of human cancer and immunodeficient cells. However, the detailed pharmacokinetics of galectin-9 in vivo have not been elucidated. In addition, the cell surface receptors involved in galectin-9-induced apoptosis of cancer cells have not been identified, and the intracellular pathways involved in apoptosis have not been fully investigated. We have previously reported that galectin-9 induces apoptosis in various gastrointestinal cancers and suppresses tumor growth. However, the mechanism of galectin-9 and apoptosis induction in gastrointestinal cancers and the detailed mechanisms involved in tumor growth inhibition remain unknown. In this article, we review the effects of galectin-9 on gastrointestinal cancers and its mechanisms.
Collapse
|
28
|
Huang S, Cui M, Wang R, Yang G, Wang N, Cui L, Ma G. Combined treatment with Prunella vulgaris and Radix bupleuri activated the Bax/Bcl-2 and Caspase-3 signal pathways in papillary thyroid carcinoma cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-12. [PMID: 36924446 DOI: 10.1080/15257770.2023.2189464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
To explore the effect of Prunella vulgaris (PV) combined with Radix bupleuri (RB) on apoptosis of papillary thyroid carcinoma cells. Our study was divided into four groups: the control group, the PV group, the RB group, and the PV combined with the RB group. The viability of cells from different treatment groups was assessed by the CCK-8 assay. Cell migration and invasion were assessed by healing wounding and the transwell assay, respectively. Cell apoptosis rate and cell cycle arrest were detected by a flow cytometry assay. The protein expression of Bcl-2, Bax, Caspase-3, CyclinA1, CyclinB1, and CDK1 was detected using a western blot assay. Our results indicated that, compared with the control group, PV combined with RB group could significantly alter the cell morphology, inhibit cell migration and invasion, decrease the number of cells in the G0/G1 phase and increase the number of cells in the G2/M phase, and promote the cell apoptosis. Moreover, PV combined with RB treatment also obviously increased the expression of Bax/Bcl2 and caspase-3 proteins and decreased the expression of Cyclin A1, Cyclin B1, and CDK1 proteins. Overall, our results indicated that PV combined with RB could activate the Bax/Bcl-2 and Caspase-3 signal pathways to induce cell apoptosis in papillary thyroid carcinoma cells; this also provides a new way to treat thyroid cancer.
Collapse
Affiliation(s)
- Shujuan Huang
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| | - Maoxiang Cui
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| | - Rufeng Wang
- School of Basic Medical Sciences, Cangzhou Medical College, Cangzhou, Hebei, P.R. China
| | - Guiran Yang
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, Hebei, P.R. China
| | - Ning Wang
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| | - Lijun Cui
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| | - Guang Ma
- Pathology Teaching and Research Department, Cangzhou Medical College, Cangzhou, Hebei, P. R. China
| |
Collapse
|
29
|
van Eijck CWF, de Koning W, van der Sijde F, Moskie M, Groot Koerkamp B, Homs MYV, van der Burg SH, van Eijck CHJ, Mustafa DAM. A multigene circulating biomarker to predict the lack of FOLFIRINOX response after a single cycle in patients with pancreatic ductal adenocarcinoma. Eur J Cancer 2023; 181:119-134. [PMID: 36652890 DOI: 10.1016/j.ejca.2022.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION 5-fluorouracil, folinic acid, irinotecan and oxaliplatin (FOLFIRINOX) is promising in treating patients with pancreatic ductal adenocarcinoma. However, many patients and physicians are reluctant to start FOLFIRINOX due to its high toxicity and limited clinical response rates. In this study, we investigated the effect of a single FOLFIRINOX cycle, in combination with a granulocyte colony-stimulating factor, on the blood immune transcriptome of patients with pancreatic ductal adenocarcinoma. We aimed to identify an early circulating biomarker to predict the lack of FOLFIRINOX response. METHODS Blood samples of 68 patients from all disease stages, who received at least four FOLFIRINOX cycles, were collected at baseline and after the first cycle. The response to treatment was radiologically evaluated following the Response Evaluation Criteria in Solid Tumours criteria 1.1. Targeted immune-gene expression profiling (GEP) was performed using NanoString technologies. To predict the lack of FOLFIRINOX response, we developed a FOLFIRINOX delta GEP (FFX-ΔGEP) score. RESULTS A single FOLFIRINOX cycle significantly altered 395 genes, correlating to 30 significant alterations in relative immune cell abundances and pathway activities. The eight-gene (BID, FOXP3, KIR3DL1, MAF, PDGFRB, RRAD, SIGLEC1 and TGFB2) FFX-ΔGEP score predicted the lack of FOLFIRINOX response with a leave-one-out cross-validated area under the curve (95% confidence interval) of 0.87 (0.60-0.98), thereby outperforming the predictiveness of absolute and proportional Δcarbohydrate antigen19-9 values. CONCLUSIONS A single FOLFIRINOX cycle, combined with granulocyte colony-stimulating factor, alters the peripheral immune transcriptome indisputably. Our novel FFX-ΔGEP is, to our knowledge, the first multigene early circulating biomarker that predicts the lack of FOLFIRINOX response after one cycle. Validation in a larger independent patient cohort is crucial before clinical implementation.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands; Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Willem de Koning
- Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands; Department of Pathology Unit of Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Fleur van der Sijde
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands; Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Miranda Moskie
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Marjolein Y V Homs
- Department of Medical Oncology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Casper H J van Eijck
- Department of Surgery, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands; Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| | - Dana A M Mustafa
- Department of Pathology Unit of Tumour Immuno-Pathology, Erasmus University Medical Center Rotterdam, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
30
|
Ebrahimnezhad N, Nayebifar S, Soltani Z, Khoramipour K. High-intensity interval training reduced oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes: The role of the PGC1α-Keap1-Nrf2 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1313-1319. [PMID: 37885999 PMCID: PMC10598812 DOI: 10.22038/ijbms.2023.70833.15387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/05/2023] [Indexed: 10/28/2023]
Abstract
Objectives This study aimed to determine the effect of 8-week high-intensity interval training (HIIT) on oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes (T2D). The study focused on examining the role of proliferator-activated receptor gamma co-activator 1α (PGC1α)/Kelch-like ECH-associated protein Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Materials and Methods Twenty-eight 8-week-old Wistar rats were randomly assigned to one of four groups (n=7): control (Con), type 2 diabetes (T2D), exercise (Ex), and exercise + type 2 diabetes (Ex+T2D). The Ex and Ex+T2D groups completed an 8-week exercise program consisting of 80-100% Vmax and 4-10 intervals. The homeostasis model assessment of insulin resistance (HOMA-IR) index was used to assess insulin resistance. The levels of Bcl2, BAX, musculoaponeurotic fibrosarcoma (Maf), Nrf2, Keap1, and PGC1α in the hippocampus were assessed using the western blot method. Additionally, the levels of antioxidant enzymes in the hippocampus were measured using ELISA. Results The findings indicated that the T2D group had lower levels of antioxidant enzymes, Maf, Bcl2, PGC1α, and Nrf2, and higher levels of BAX and Keap1 in the hippocampus. Conversely, the HIIT group exhibited increased levels of antioxidant enzymes, Maf, Bcl2, Nrf2, and PGC1α, along with decreased levels of BAX and Keap1 in the hippocampus. Conclusion The study demonstrated that 8-week HIIT was effective in reducing hippocampal apoptosis and oxidative stress induced by T2D by activating the PGC1α-Keap1-Nrf2 signaling pathway. The metabolic changes induced by exercise may lead to an increase in PGC1 expression, which is the primary stimulator of the Keap1-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Narjes Ebrahimnezhad
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Sistan and Baluchestan University, Zahedan, Iran
| | - Shila Nayebifar
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Sistan and Baluchestan University, Zahedan, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Kayvan Khoramipour
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
31
|
Wu Y, Yang Y, Lv X, Gao M, Gong X, Yao Q, Liu Y. Nanoparticle-Based Combination Therapy for Ovarian Cancer. Int J Nanomedicine 2023; 18:1965-1987. [PMID: 37077941 PMCID: PMC10106804 DOI: 10.2147/ijn.s394383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/19/2023] [Indexed: 04/21/2023] Open
Abstract
Ovarian cancer is one of the most common malignant tumors in gynecology with a high incidence. Combination therapy, eg, administration of paclitaxel followed by a platinum anticancer drug is recommended to treat ovarian cancer due to its advantages in, eg, reducing side effects and reversing (multi)drug-resistance compared to single treatment. However, the benefits of combination therapy are often compromised. In chemo and chemo/gene combinations, co-deposition of the combined therapeutics in the tumor cells is required, which is difficult to achieve due to dramatic pharmacokinetic differences between combinational agents in free forms. Moreover, some undesired properties such as the low-water solubility of chemodrugs and the difficulty of cellular internalization of gene therapeutics also hinder the therapeutic potential. Delivery of dual or multiple agents by nanoparticles provides opportunities to tackle these limits. Nanoparticles encapsulate hydrophobic drug(s) to yield aqueous dispersions facilitating its administration and/or to accommodate hydrophilic genes facilitating its access to cells. Moreover, nanoparticle-based therapeutics can not only improve drug properties (eg, in vivo stability) and ensure the same drug disposition behavior with controlled drug ratios but also can minimize drug exposure of the normal tissues and increase drug co-accumulation at targeted tissues via passive and/or active targeting strategies. Herein, this work summarizes nanoparticle-based combination therapies, mainly including anticancer drug-based combinations and chemo/gene combinations, and emphasizes the advantageous outcomes of nanocarriers in the combination treatment of ovarian cancer. In addition, we also review mechanisms of synergetic effects resulting from different combinations.
Collapse
Affiliation(s)
- Yingli Wu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Yu Yang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Xiaolin Lv
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Menghan Gao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xujin Gong
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
- Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
- Correspondence: Qingqiang Yao, Jining Medical University, No. 133 HeHua Road, Jinan, Shandong, 272067, People’s Republic of China, Email
| | - Yanna Liu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
- Yanna Liu, Shandong First Medical University, No. 6699 Qingdao Road, HuaiYin District, Jinan, Shandong, 250117, People’s Republic of China, Email
| |
Collapse
|
32
|
Redox Regulation of Autophagy in Cancer: Mechanism, Prevention and Therapy. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010098. [PMID: 36676047 PMCID: PMC9863886 DOI: 10.3390/life13010098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS), products of normal cellular metabolism, play an important role in signal transduction. Autophagy is an intracellular degradation process in response to various stress conditions, such as nutritional deprivation, organelle damage and accumulation of abnormal proteins. ROS and autophagy both exhibit double-edged sword roles in the occurrence and development of cancer. Studies have shown that oxidative stress, as the converging point of these stimuli, is involved in the mechanical regulation of autophagy process. The regulation of ROS on autophagy can be roughly divided into indirect and direct methods. The indirect regulation of autophagy by ROS includes post-transcriptional and transcriptional modulation. ROS-mediated post-transcriptional regulation of autophagy includes the post-translational modifications and protein interactions of AMPK, Beclin 1, PI3K and other molecules, while transcriptional regulation mainly focuses on p62/Keap1/Nrf2 pathway. Notably, ROS can directly oxidize key autophagy proteins, such as ATG4 and p62, leading to the inhibition of autophagy pathway. In this review, we will elaborate the molecular mechanisms of redox regulation of autophagy in cancer, and discuss ROS- and autophagy-based therapeutic strategies for cancer treatment.
Collapse
|
33
|
Milutinović MG, Milivojević NN, Đorđević NM, Nikodijević DD, Radisavljević SR, Đeković Kesić AS, Marković SD. Gold(III) Complexes with Phenanthroline-derivatives Ligands Induce Apoptosis in Human Colorectal and Breast Cancer Cell Lines. J Pharm Sci 2022; 111:3215-3223. [PMID: 36162493 DOI: 10.1016/j.xphs.2022.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023]
Abstract
Due to their promising effects, gold(III) complexes recently drew increasing attention in the design of new metal-based anticancer therapeutics. Two gold(III) complexes, square-planar [Au(DPP)Cl2]+ - Complex 1 and distorted square-pyramidal [Au(DMP)Cl3] - Complex 2 (where DPP=4,7-diphenyl-1,10-phenanthroline and DMP=2,9-dimethyl-1,10-phenanthroline) were previously synthetized, described and approved as complexes with pronounced cytotoxic effects on colorectal HCT-116 and breast MDA-MB-231 cancer cells. This study investigated the type of cell death by AO/EB double staining, and identification of possible targets responsible for their cytotoxicity, monitored by immunofluorescence and qPCR methods. Both complexes induced apoptosis in all applied concentrations. In the HCT-116 cells apoptosis was activated by external apoptotic pathway, via increase of Fas receptor protein expression and Caspase 8 gene expression. Also, the mitochondrial pathway was triggered by affecting the Bcl-2 members of regulatory proteins and increased caspase 9 protein expression. In MDA-MB-231 cells, apoptosis was initiated from the mitochondria, due to disbalance between expressions of pro- and anti-apoptotic Bcl-2 family members and caspase 9 activation. Complex 1 shows better activity compared to Complex 2, which is in accordance with its structural characteristics. The results deal weighty data about proapoptotic activity of gold(III) complexes and highlighted potential targets for cancer therapy.
Collapse
Affiliation(s)
- Milena G Milutinović
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Nevena N Milivojević
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena M Đorđević
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Danijela D Nikodijević
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Snežana R Radisavljević
- University of Kragujevac, Department of Chemistry, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ana S Đeković Kesić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Natural Sciences, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Snežana D Marković
- University of Kragujevac, Department of Biology and Ecology, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
34
|
Xu L, Li Y, Wei Z, Bai R, Gao G, Sun W, Jiang X, Wang J, Li X, Pi Y. Chenodeoxycholic Acid (CDCA) Promoted Intestinal Epithelial Cell Proliferation by Regulating Cell Cycle Progression and Mitochondrial Biogenesis in IPEC-J2 Cells. Antioxidants (Basel) 2022; 11:antiox11112285. [PMID: 36421471 PMCID: PMC9687205 DOI: 10.3390/antiox11112285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Chenodeoxycholic acid (CDCA), a primary bile acid (BA), has been demonstrated to play an important role as a signaling molecule in various physiological functions. However, the role of CDCA in regulating intestinal epithelial cell (IEC) function remains largely unknown. Herein, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to investigate the effects of CDCA on IEC proliferation and explore the underlying mechanisms. IPEC-J2 cells were treated with CDCA, and flow cytometry and transcriptome analysis were adopted to investigate the effects and potential molecular mechanisms of CDCA on the proliferation of IECs. Our results indicated that adding 50 μmol/L of CDCA in the media significantly increased the proliferation of IPEC-J2 cells. In addition, CDCA treatment also hindered cell apoptosis, increased the proportion of G0/G1 phase cells in the cell cycle progression, reduced intracellular ROS, and MDA levels, and increased mitochondrial membrane potential, antioxidation enzyme activity (T-AOC and CAT), and intracellular ATP level (p < 0.05). RNA-seq results showed that CDCA significantly upregulated the expression of genes related to cell cycle progression (Cyclin-dependent kinase 1 (CDK1), cyclin G2 (CCNG2), cell-cycle progression gene 1 (CCPG1), Bcl-2 interacting protein 5 (BNIP5), etc.) and downregulated the expression of genes related to mitochondrial biogenesis (ND1, ND2, COX3, ATP6, etc.). Further KEGG pathway enrichment analysis showed that CDCA significantly enriched the signaling pathways of DNA replication, cell cycle, and p53. Collectively, this study demonstrated that CDCA could promote IPEC-J2 proliferation by regulating cell cycle progression and mitochondrial function. These findings provide a new strategy for promoting the intestinal health of pigs by regulating intestinal BA metabolism.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Bai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Business Economics, Wageningen University, 6700 EW Wageningen, The Netherlands
| | - Ge Gao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (X.L.); (Y.P.); Tel.: +86-010-82108134 (X.L.)
| |
Collapse
|
35
|
Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 2022; 12:985363. [PMID: 36313628 PMCID: PMC9597512 DOI: 10.3389/fonc.2022.985363] [Citation(s) in RCA: 345] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Apoptosis, as a very important biological process, is a response to developmental cues or cellular stress. Impaired apoptosis plays a central role in the development of cancer and also reduces the efficacy of traditional cytotoxic therapies. Members of the B-cell lymphoma 2 (BCL-2) protein family have pro- or anti-apoptotic activities and have been studied intensively over the past decade for their importance in regulating apoptosis, tumorigenesis, and cellular responses to anticancer therapy. Since the inflammatory response induced by apoptosis-induced cell death is very small, at present, the development of anticancer drugs targeting apoptosis has attracted more and more attention. Consequently, the focus of this review is to summarize the current research on the role of BCL-2 family proteins in regulating apoptosis and the development of drugs targeting BCL-2 anti-apoptotic proteins. Additionally, the mechanism of BCL-2 family proteins in regulating apoptosis was also explored. All the findings indicate the potential of BCL-2 family proteins in the therapy of cancer.
Collapse
Affiliation(s)
- Shanna Qian
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhong Wei
- Gastrointestinal Surgery, Anhui Provincial Hospital, Hefei, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
36
|
Cell Death Mechanisms in Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2022; 47:3525-3542. [PMID: 35976487 DOI: 10.1007/s11064-022-03697-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Ischemic stroke is one of the major causes of morbidity and mortality, affecting millions of people worldwide. Inevitably, the interruption of cerebral blood supply after ischemia may promote a cascade of pathophysiological processes. Moreover, the subsequent restoration of blood flow and reoxygenation may further aggravate brain tissue injury. Although recombinant tissue plasminogen activator (rt-PA) is the only approved therapy for restoring blood perfusion, the reperfusion injury and the narrow therapeutic time window restrict its application for most stroke patients. Increasing evidence indicates that multiple cell death mechanisms are relevant to cerebral ischemia-reperfusion injury, including apoptosis, necrosis, necroptosis, autophagy, pyroptosis, ferroptosis, and so on. Therefore, it is crucial to comprehend various cell death mechanisms and their interactions. In this review, we summarize the various signaling pathways underlying cerebral ischemia-reperfusion injury and elaborate on the crosstalk between the different mechanisms.
Collapse
|
37
|
Yaseen Y, Kubba A, Shihab W, Tahtamouni L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e86504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new series of niflumic acid (NF) derivatives were synthesized by esterification of (NF) to give ester compound 1, which was treated with hydrazine hydrate to produce (NF) hydrazide 2. Hydrazine-1-carboxamide compounds (3A–C), and hydrazine-1-carbothioamide derivatives (4A–D) were synthesized by treatment of (NF) hydrazide with phenyl isocyanate, and phenyl isothiocyanate derivatives, respectively. The cyclization of (4B–D) and (3B) was achieved using NaOH solution to produce 1,2,4-triazole derivatives (5A–C) and 6, respectively. The prepared compounds were characterized using IR, 1HNMR, 13CNMR, and MS (ESI) spectroscopy. A molecular docking study was performed to evaluate the binding affinity of the synthesized compounds against EGFR and VEGFR kinase domains which revealed that compounds 3B, and 4A had the best binding energy (-7.87, and -7.33 kcal/mol, respectively) against VEGFR, while compound 5A had the best binding energy (-7.95 kcal/mol) against EGFR. The biological investigation results indicated that all the tested compounds caused cell killing in the two cancer cell lines (Hep G2 and A549) studied, with compound 4C being the most cytotoxic, as well as being cancer selective. Additionally, compound 4C-treated Hep G2 cells were arrested at the S and G2/M cell cycle phases. Cytotoxicity of compound 4C was attributed to apoptosis as determined by flow cytometry and qRT-PCR results of the apoptosis markers p53, BAX, and caspase-3. Finally, compound 4C inhibited VEGFR kinase activity, while compound 5B inhibited EGFR kinase activity. In conclusion, the novel (NF) derivatives are potent anticancer agents, inhibiting cell proliferation by inhibiting EGFR and VEGFR tyrosine kinase enzymes.
Collapse
|
38
|
Clinical Knowledge Mining Based on Image Enhancement Algorithm: Endoscopic Clinical Analysis of Peptic Ulcer in Children. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3716829. [PMID: 35814556 PMCID: PMC9270174 DOI: 10.1155/2022/3716829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 12/03/2022]
Abstract
The incidence rate of peptic ulcer is increasing gradually. Medical images can meet the needs of patients as an auxiliary diagnosis and treatment method for peptic ulcer. However, in the long-term treatment, the actual effect is average, and the diagnosis effect of gastrointestinal diseases will gradually deteriorate. In this paper, we use an image enhancement algorithm to study the mechanism of peptic ulcer from the perspective of a medical image. In this paper, 56 images of children with peptic ulcer were selected, and the gastroscopy based on the image enhancement algorithm provided technical support for the rapid diagnosis of patients with peptic ulcer. Experimental results show that the clinical features of peptic ulcer have different characteristics according to the age difference of patients, which can play a positive role in promoting the treatment of patients of different ages.
Collapse
|
39
|
Zischler L, Cogo SC, Micheau O, Elifio-Esposito S. Evidence that BJcuL, a C-type lectin from Bothrops jararacussu venom, influences deubiquitinase activity, resulting in the accumulation of anti-apoptotic proteins in two colorectal cancer cell lines. Int J Biol Macromol 2022; 209:1205-1210. [PMID: 35461862 DOI: 10.1016/j.ijbiomac.2022.04.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
BJcuL is a snake venom C-type lectin (SVCTL) purified from the snake's venom Bothrops jararacussu. It has been previously demonstrated that BJcuL induces the accumulation of pro-apoptotic proteins of the extrinsic pathway, such as FADD and caspase-8, in the colorectal cancer cell line HT29, suggesting that the lectin may be able to enhance TRAIL-induced apoptosis. To test this hypothesis, we exposed two colorectal cancer cell lines, HT29 and HCT116, to increasing concentrations of BJcuL (1-20 μg/mL) in the presence or absence of TRAIL. Contrary to our expectations, however, BJcuL was unable to induce apoptosis in these cells, as shown by annexin-V/7AAD, clonogenic assays, and immunoblotting. Nevertheless, BJcuL was able to induce the accumulation of FADD and caspase-8, as well as anti-apoptotic proteins such as c-FLIP and survivin and poly-ubiquitinated proteins. Incubation with the deubiquitinase inhibitor WP1130 (10 μM) resulted in decreased BJcuL-induced survivin levels. Altogether, our results evince the effects of SVCTL on the ubiquitin-proteasome system in vitro for the first time. Compounds that can influence such system are important tools in the search for new therapeutic or diagnostic targets in cancer since they can elucidate the molecular mechanisms involved in determining cell fate as well as contributing to drug-development strategies in partnership with the pharmaceutical industry.
Collapse
Affiliation(s)
- L Zischler
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, 80215-901, Curitiba, Paraná, Brazil
| | - S C Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, 80215-901, Curitiba, Paraná, Brazil
| | - O Micheau
- University of Bourgogne Franche-Comté, LNC UMR1231, F-21000 Dijon, France; INSERM, LNC UMR1231, F-21000 Dijon, France
| | - S Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, 80215-901, Curitiba, Paraná, Brazil.
| |
Collapse
|
40
|
Investigation of DHA-Induced Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells through the Combination of Metabolic Imaging and Molecular Biology. Antioxidants (Basel) 2022; 11:antiox11061072. [PMID: 35739970 PMCID: PMC9219962 DOI: 10.3390/antiox11061072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes-induced oxidative stress leads to the onset of vascular complications, which are major causes of disability and death in diabetic patients. Among these, diabetic retinopathy (DR) often arises from functional alterations of the blood-retinal barrier (BRB) due to damaging oxidative stress reactions in lipids, proteins, and DNA. This study aimed to investigate the impact of the ω3-polyunsaturated docosahexaenoic acid (DHA) on the regulation of redox homeostasis in the human retinal pigment epithelial (RPE) cell line (ARPE-19) under hyperglycemic-like conditions. The present results show that the treatment with DHA under high-glucose conditions activated erythroid 2-related factor Nrf2, which orchestrates the activation of cellular antioxidant pathways and ultimately inhibits apoptosis. This process was accompanied by a marked increase in the expression of NADH (Nicotinamide Adenine Dinucleotide plus Hydrogen) Quinone Oxidoreductase 1 (Nqo1), which is correlated with a contextual modulation and intracellular re-organization of the NAD+/NADH redox balance. This investigation of the mechanisms underlying the impairment induced by high levels of glucose on redox homeostasis of the BRB and the subsequent recovery provided by DHA provides both a powerful indicator for the detection of RPE cell impairment as well as a potential metabolic therapeutic target for the early intervention in its treatment.
Collapse
|
41
|
Abstract
Apoptosis is an evolutionarily conserved sequential process of cell death to maintain a homeostatic balance between cell formation and cell death. It is a vital process for normal eukaryotic development as it contributes to the renewal of cells and tissues. Further, it plays a crucial role in the elimination of unnecessary cells through phagocytosis and prevents undesirable immune responses. Apoptosis is regulated by a complex signaling mechanism, which is driven by interactions among several protein families such as caspases, inhibitors of apoptosis proteins, B-cell lymphoma 2 (BCL-2) family proteins, and several other proteases such as perforins and granzyme. The signaling pathway consists of both pro-apoptotic and pro-survival members, which stabilize the selection of cellular survival or death. However, any aberration in this pathway can lead to abnormal cell proliferation, ultimately leading to the development of cancer, autoimmune disorders, etc. This review aims to elaborate on apoptotic signaling pathways and mechanisms, interacting members involved in signaling, and how apoptosis is associated with carcinogenesis, along with insights into targeting apoptosis for disease resolution.
Collapse
|
42
|
Zhang X, Wang M, Feng J, Qin B, Zhang C, Zhu C, Liu W, Wang Y, Liu W, Huang L, Lu S, Wang Z. Multifunctional nanoparticles co-loaded with Adriamycin and MDR-targeting siRNAs for treatment of chemotherapy-resistant esophageal cancer. J Nanobiotechnology 2022; 20:166. [PMID: 35346194 PMCID: PMC8962182 DOI: 10.1186/s12951-022-01377-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
The development of multidrug resistance (MDR) during cancer chemotherapy is a major challenge in current cancer treatment strategies. Numerous molecular mechanisms, including increased drug efflux, evasion of drug-induced apoptosis, and activation of DNA repair mechanisms, can drive chemotherapy resistance. Here we have identified the major vault protein (MVP) and the B-cell lymphoma-2 (BCL2) gene as two potential factors driving MDR in esophageal squamous cell carcinoma (ESCC). We have designed a novel and versatile self-assembling nanoparticle (NP) platform on a multifunctional carboxymethyl chitosan base to simultaneously deliver Adriamycin, and siRNAs targeting MVP and BCL2 (CEAMB NPs), thus reducing drug efflux and promoting apoptosis of esophageal cancer cells. To achieve effective delivery to tumor tissues and inhibit tumor growth in vivo, carboxymethyl chitosan was engineered to contain multiple histidines for enhanced cytosol delivery, cholesterol for improved self-assembly, and epidermal growth factor receptor (EGFR) antibodies to target cancer cells. Our results indicate that these nanoparticles are efficiently synthesized with the desired chemical composition to self-assemble into cargo-containing NPs. Furthermore, we have shown that the synthesized NPs will successfully inhibit cancer cells growth and tumor development when delivered to cultured ESCC cells or to in vivo mouse xenograft models. Our engineered NPs offer a potential novel platform in treating various types of chemotherapy-resistant tumors.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Min Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Junyi Feng
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Bin Qin
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chenglin Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Chengshen Zhu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wentao Liu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Wei Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lei Huang
- Inflammations Immunity Research Theme, Translational and Clinical Research Institute, FMS, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Shuangshuang Lu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhimin Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
43
|
Edifying the Focal Factors Influencing Mesenchymal Stem Cells by the Microenvironment of Intervertebral Disc Degeneration in Low Back Pain. Pain Res Manag 2022; 2022:6235400. [PMID: 35386857 PMCID: PMC8977320 DOI: 10.1155/2022/6235400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the main triggers of low back pain, which is most often associated with patient morbidity and high medical costs. IVDD triggers a wide range of pathologies and clinical syndromes like paresthesia, weakness of extremities, and intermittent/chronic back pain. Mesenchymal stem cells (MSCs) have demonstrated to possess immunomodulatory functions as well as the capability of differentiating into chondrocytes under appropriate microenvironment conditions, which makes them potentially epitome for intervertebral disc (IVD) regeneration. The IVD microenvironment is composed by niche of cells, and their chemical and physical milieus have been exhibited to have robust influence on MSC behavior as well as differentiation. Nevertheless, the contribution of MSCs to the IVD milieu conditions in healthy as well as degeneration situations is still a matter of debate. It is still not clear which factors, if any, are essential for effective and efficient MSC survival, proliferation, and differentiation. IVD microenvironment clues such as nucleopulpocytes, potential of hydrogen (pH), osmotic changes, glucose, hypoxia, apoptosis, pyroptosis, and hydrogels are capable of influencing the MSCs aimed for the treatment of IVDD. Therefore, clinical usage of MSCs ought to take into consideration these microenvironment clues during treatment. Alteration in these factors could function as prognostic indicators during the treatment of patients with IVDD using MSCs. Thus, standardized valves for these microenvironment clues are warranted.
Collapse
|
44
|
Liu WM, Hall NK, Liu HSY, Hood FL, Dalgleish AG. Combination of cannabidiol with low‑dose naltrexone increases the anticancer action of chemotherapy in vitro and in vivo. Oncol Rep 2022; 47:76. [PMID: 35179218 DOI: 10.3892/or.2022.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022] Open
Abstract
We previously reported that both cannabidiol (CBD) and low‑dose naltrexone (LDN) exhibit complex effects on G‑protein coupled receptors, which can impact the expression and function of other members of this superfamily. These receptors feed into and interact with central signalling cascades that determine the ease by which cells engage in apoptosis, and can be used as a way to prime cancer cells to other treatments. The present study was designed to investigate the effect of combining these two agents on cancer cell lines in vitro and in a mouse model, and focused on how the sequence of administration may affect the overall action. The results showed both agents had minimal effect on cell numbers when used simultaneously; however, the combination of LDN and CBD, delivered in this specific sequence, significantly reduced the number of cells, and was superior to the regimen where the order of the agents was reversed. For example, there was a 35% reduction in cell numbers when using LDN before CBD compared to a 22% reduction when using CBD before LDN. The two agents also sensitised cells to chemotherapy as significant decreases in cell viability were observed when they were used before chemotherapy. In mouse models, the use of both agents enhanced the effect of gemcitabine, and crucially, their use resulted in no significant toxicity in the mice, which actually gained more weight compared to those without this pre‑treatment (+6.5 vs. 0%). Overall, the results highlight the importance of drug sequence when using these drugs. There is also a need to translate these observations into standard chemotherapy regimens, especially for common tumour types where treatment is often not completed due to toxicities.
Collapse
Affiliation(s)
- Wai M Liu
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Nadine K Hall
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Harry S Y Liu
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | | | - Angus G Dalgleish
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
45
|
Krishnappa S, Naganna CM, Rajan HK, Rajashekarappa S, Gowdru HB. Cytotoxic and Apoptotic Effects of Chemogenic and Biogenic Nano-sulfur on Human Carcinoma Cells: A Comparative Study. ACS OMEGA 2021; 6:32548-32562. [PMID: 34901604 PMCID: PMC8655766 DOI: 10.1021/acsomega.1c04047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Two-dimensional nanostructures have gained tremendous interest in the field of biomedical applications and cancer activity in particular. Although sulfur is known for its wide range of biological activities, its potentiality in two-dimensional forms as an antitumor agent is hitherto unexplored. To address the current deficient knowledge on nano-sulfur as an antitumor agent, we report the synthesis of nano-sulfur sheets/particles and their cytotoxic, apoptotic activity against human carcinoma cell lines. In vitro cytotoxic effects of biogenic nanosheets (SNP-B) and chemogenic nanoparticles (SNP-C) were assessed against human lung carcinoma (A549), human epidermoid carcinoma (A431), human promyelocytic leukaemia (HL60) and human lung fibroblast (IMR90) cell lines. Cell cycle analysis, apoptotic study, and caspase-3 expression studies were carried out to understand the mechanism of cytotoxic activity of nano-sulfur. The MTT assay indicated a dose-dependent decrease in viability of all the cell lines treated with nano-sulfur, with SNP-B being more toxic compared to SNP-C. The apoptotic study and cell cycle analysis indicated cell cycle arrest followed by apoptosis-induced cell death. The caspase-3 expression study indicated that nano-sulfur induces apoptosis by the activation of caspase through the mitochondrial pathway. Apart from this, a lower cytotoxicity was observed in IMR90 cell lines treated with SNP-B , indicating a higher specificity of synthesized nanosheets towards cancer cells. Taken all together, this work highlights the potentiality of sulfur nanosheets in inducing cytotoxicity and apoptotic activity, and the impact of morphology as a critical determinant on the cytotoxic response on various cell lines.
Collapse
Affiliation(s)
- Samrat Krishnappa
- Department
of Biotechnology, M.S. Ramaiah Institute
of Technology (Affiliated to Visvesvaraya Technological University,
Belgaum), Bangalore, Karnataka 560 054, India
| | - Chandraprabha M. Naganna
- Department
of Biotechnology, M.S. Ramaiah Institute
of Technology (Affiliated to Visvesvaraya Technological University,
Belgaum), Bangalore, Karnataka 560 054, India
| | - Hari Krishna Rajan
- Department
of Chemistry, M.S. Ramaiah Institute of
Technology, Bangalore, Karnataka 560 054, India
| | - Sharath Rajashekarappa
- Department
of Food Technology, Davangere University, Shivagangotri, Davanagere, Karnataka 577002, India
| | | |
Collapse
|
46
|
Palma TV, Bianchin NB, de Oliveira JS, Assmann CE, das Neves Oliveira M, Schetinger MRC, Morsch VM, Ulrich H, Pillat MM, de Andrade CM. Berberine increases the expression of cytokines and proteins linked to apoptosis in human melanoma cells. Mol Biol Rep 2021; 49:2037-2046. [PMID: 34860319 DOI: 10.1007/s11033-021-07022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Melanoma is the most lethal form of skin cancer, and its incidence has increased considerably in the last decades. Melanoma presents difficult treatment with strong resistance of tumor cells, due to its extremely invasive nature with high capacity to metastases. Berberine (BBR), an isoquinoline alkaloid, is a molecule found in several medicinal plants, and has been studied in several diseases, demonstrating antimicrobial, antidiabetic and anti-inflammatory properties and anti-tumorigenic effects. METHODS AND RESULTS In SK-MEL-28 cells, 50 μM BBR treatment for 24 h decreased cell viability by 50 percent. This concentration generated cell death both by early apoptosis and necrosis, with an increase in the DNA damage index. BBR increased (*p < 0.05) the proportion of cells in G1/G0 phase and decreased (###p < 0.005) the percentage of cells in S phase. The alcaloid increased (****p < 0.001) ROS production compared to untreated controls with an increase in activated caspase 3 and phosphorylated p53 protein levels. In addition, BBR significantly enhanced ERK as well as both pro- and anti-inflammatory cytokine expression compared to untreated controls. CONCLUSIONS BBR has important antiproliferative effects and may be alone or in adjunct therapy a promising candidate for melanoma treatment, a cancer with great incidence and high lethality.
Collapse
Affiliation(s)
- Taís Vidal Palma
- Department of Chemistry, Center for Natural and Exact Sciences, Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Nathiele Botari Bianchin
- Department of Chemistry, Center for Natural and Exact Sciences, Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Juliana Sorraila de Oliveira
- Department of Chemistry, Center for Natural and Exact Sciences, Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Charles Elias Assmann
- Department of Chemistry, Center for Natural and Exact Sciences, Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Maria Rosa Chitolina Schetinger
- Department of Chemistry, Center for Natural and Exact Sciences, Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Department of Chemistry, Center for Natural and Exact Sciences, Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Postgraduate Program in Pharmacology and Postgraduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Cinthia Melazzo de Andrade
- Department of Chemistry, Center for Natural and Exact Sciences, Postgraduate Program in Biological Sciences: Biochemistry Toxicological, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Small Animal Clinic, Center of Rural Sciences, Federal University of Santa Maria-RS, Room 121, Veterinary Hospital Building, Avenue Roraima n° 1000, Santa Maria, RS, 97105900, Brazil.
| |
Collapse
|
47
|
Suroto H, Asriel A, Vega BD, Samijo SK. Early and late apoptosis protein expression (Bcl-2, BAX and p53) in traumatic brachial plexus injury. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:528-532. [PMID: 34854392 PMCID: PMC8672401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This research aims to analyze the expression of pro-apoptotic proteins (Bax, p53) and anti-apoptotic protein (Bcl-2) in the nerve roots of the brachial plexus following traumatic brachial plexus injury (TBPI) in the early and late stage. METHODS A total of 30 biopsy samples were taken from the proximal stump of the postganglionic nerve roots of the TBPI patients' brachial plexus from January 2018 until September 2019. The samples were taken from patients within six months of trauma (early stage, group A) and more than six months following trauma (late stage, group B). Bcl-2, Bax, and p53 expressions in each group were measured and compared. RESULTS We found significant differences in the Bcl-2 (p=0.04), Bax (p<0.0001), p53 (p<0.0001) expressions between group A and B. The Bcl-2/Bax expression ratio in group A and B was 2.26 and 0.22, respectively. Meanwhile, the Bcl-2/p53 expression ratio in group A and B was 1.64 and 0.23, respectively. CONCLUSION Apoptosis is inhibited by Bcl-2 activities in the early stage following trauma. In the late stage, a significant decrease of Bcl-2 coupled with a substantial increase of Bax and p53 indicates a continuation of the apoptotic process.
Collapse
Affiliation(s)
- Heri Suroto
- Department of Orthopaedic & Traumatology, Dr. Soetomo General Hospital/Universitas Airlangga, Surabaya, Indonesia
| | - Asyumaredha Asriel
- Department of Orthopaedic & Traumatology, Dr. Soetomo General Hospital/Universitas Airlangga, Surabaya, Indonesia
| | - Brigita De Vega
- Institute of Orthopaedic and Musculoskeletal Science, University College London, United Kingdom
| | - Steven K. Samijo
- Department of Orthopaedic, Zuyderland Medisch Centrum, Heerlen, Netherlands
| |
Collapse
|
48
|
Razali S, Firus Khan AY, Khatib A, Ahmed QU, Abdul Wahab R, Zakaria ZA. An In Vitro Anticancer Activity Evaluation of Neolamarckia cadamba (Roxb.) Bosser Leaves' Extract and its Metabolite Profile. Front Pharmacol 2021; 12:741683. [PMID: 34721030 PMCID: PMC8548635 DOI: 10.3389/fphar.2021.741683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 12/09/2022] Open
Abstract
The leaves of Neolamarckia cadamba (NC) (Roxb.) Bosser (family: Rubiaceae) are traditionally used to treat breast cancer in Malaysia; however, this traditional claim is yet to be scientifically verified. Hence, this study was aimed to evaluate the anticancer effect of NC leaves' ethanol extract against breast cancer cell line (MCF-7 cells) using an in vitro cell viability, cytotoxicity, and gene expression assays followed by the gas chromatography analysis to further confirm active principles. Results revealed 0.2 mg/ml as the half maximal inhibitory concentration (IC50) against MCF-7. The extract exerted anticancer effect against MCF-7 cells in a dose- and time-dependent manner. The cell cycle assay showed that the extract arrested MCF-7 cells in the G0/G1 phase, and apoptosis was observed after 72 h by the Annexin-V assay. The gene expression assay revealed that the cell cycle arrest was associated with the downregulation of CDK2 and subsequent upregulation of p21 and cyclin E. The extract induced apoptosis via the mediation of the mitochondrial cell death pathways. A chromatography analysis revealed the contribution of D-pinitol and myo-inositol as the two major bioactive compounds to the activity observed. Overall, the study demonstrated that NC leaves' ethanol extract exerts anticancer effect against MCF-7 human breast cancer cells through the induction of apoptosis and cell cycle arrest, thereby justifying its traditional use for the treatment of breast cancer in Malaysia.
Collapse
Affiliation(s)
- Shakirah Razali
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Al'aina Yuhainis Firus Khan
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia.,Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Ridhwan Abdul Wahab
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.,Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
49
|
Şahin Y, Aslantürk ÖS, Çelik T, Sevinçek R, Aygün M, Metin K, Fırıncı E, Özgener H. Cytotoxic and apoptotic effects of 1,2-diborolanes with strong donor substitutes on human cancer cells. Bioorg Chem 2021; 117:105443. [PMID: 34689081 DOI: 10.1016/j.bioorg.2021.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/12/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022]
Abstract
In recent years, boron compounds have become more common as chemotherapy agents against certain types of cancers. Along with the development of boron-based therapeutic agents have come investigations into the various cancers and biochemical and molecular mechanisms affected by boron compounds and the relationships between boron compounds and chemical protection against cancer. In this preliminary study, the effects of new 1,2-N-substituted-1,2-diborolane derivatives on types of breast and liver cancers were examined for the first time. Four were found to significantly affect the cell viabilities and mitochondrial membrane potential changes in MCF-7, HepG2 and Hep3B cancer cells. Each was prepared in n-hexane at various concentrations (5, 10, 25, 50, 75 and 100 µg/mL). Human peripheral blood lymphocytes were used as control cells. Compounds 1, 2, 3a, and 3b 1,2-diborolane derivatives selectively killed cancer cells, but compound 1 was cytotoxic in a concentration-dependent manner on HepG2 and Hep3B and only at concentrations of at least 75 µg/mL on MCF-7 cells. Compound 3a exhibited cytotoxic effect on lymphocytes at 75 and 100 µgmL-1 concentrations, but compounds 1, 2 and 3b, 3c and 3d have not possessed significant cytotoxic effect on lymphocytes. Compounds 3c and 3d have not possessed significant cytotoxic effects. Mitochondrial membrane potential assay results supported these findings. Our results reveal that 1,2-diborolane derivates have high cytotoxic and apoptotic activities on human hepatocarcinoma cells and are therefore potential candidates in the development of new drugs against liver cancer.
Collapse
Affiliation(s)
- Yüksel Şahin
- Department of Chemistry and Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydın, Turkey.
| | - Özlem Sultan Aslantürk
- Department of Chemistry and Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydın, Turkey
| | - Tülay Çelik
- Department of Chemistry and Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydın, Turkey
| | - Resul Sevinçek
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, 35160 İzmir, Turkey
| | - Kubilay Metin
- Department of Chemistry and Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydın, Turkey
| | - Erkan Fırıncı
- Department of Chemistry and Biology, Faculty of Arts and Sciences, Adnan Menderes University, 09010 Aydın, Turkey
| | - Hüseyin Özgener
- Department of Chemistry, Faculty of Science, İzmir Institute of Technology, Urla 35430, İzmir, Turkey
| |
Collapse
|
50
|
García-Niño WR, Zazueta C, Buelna-Chontal M, Silva-Palacios A. Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury. Life (Basel) 2021; 11:1123. [PMID: 34832998 PMCID: PMC8620839 DOI: 10.3390/life11111123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.
Collapse
|