1
|
Liu Y, Wang TT, Lu Y, Riaz M, Qyang Y. Cardiac macrophage: Insights from murine models to translational potential for human studies. J Mol Cell Cardiol 2025; 204:17-31. [PMID: 40354877 DOI: 10.1016/j.yjmcc.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Macrophages are a cell type that are known to play dynamic roles in acute and progressive pathology. They are highly attuned to their microenvironments throughout maturation, tailoring their functional responses according to the specific tissues in which they reside and their developmental origin. Cardiac macrophages (cMacs) have emerged as focal points of interest for their interactions with the unique electrical and mechanical stimuli of the heart, as well as for their role in maintaining cardiac homeostasis. Through an in-depth analysis of their origin, lineage, and functional significance, this review aims to shed light on cMacs' distinct contributions to both normal physiological maintenance as well as disease progression. Central to our discussion is the comparison of cMac characteristics between mouse and human models, highlighting current challenges and proposing novel experimental tools for deciphering cMac function within the intricate human cardiac microenvironments based on current murine studies. Our review offers valuable insights for identifying novel therapeutic targets and interventions tailored to the distinct roles of these immune cells in cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Yufeng Liu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Tricia T Wang
- Yale Biological and Biomedical Sciences, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Yinsheng Lu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Yale Stem Cell Center, New Haven, CT, USA; Department of Mechanical Engineering and Materials Science, Graduate School of Arts and Sciences, Yale University, New Haven, CT, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Alfaki DA, Elbasheir MM. Plasmodium falciparum and immune phagocytosis: characterization of the process. Immunol Cell Biol 2025; 103:422-432. [PMID: 40064477 DOI: 10.1111/imcb.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 02/25/2025] [Indexed: 05/28/2025]
Abstract
Phagocytosis is a critical immunological process that enables the immune system to recognize and eliminate foreign pathogens and self-derived pathogenic molecules. Improving the overall understanding of this immune mechanism during malarial infection is imperative. The mechanisms by which phagocytosis eradicates malaria parasites, particularly Plasmodium falciparum, remain incompletely understood and warrant further investigation. In this context, previous studies have shown that various factors such as phagocyte cell subclasses, plasma protein molecules and Plasmodium evasion tactics influence the phagocytic process differently. However, the mechanisms underlying phagocytic activity during P. falciparum infections are still ambiguous. In this review, we summarize key immunological aspects and current knowledge of phagocytic activity during P. falciparum infection. We highlight the significant involvement of distinct active cells that induce phagocytosis. Additionally, we discuss the implications of phagocytosis and potential therapeutic approaches to enhance its effectiveness.
Collapse
Affiliation(s)
- Dia Aldeen Alfaki
- Department of Haematology, Faculty of Medical Laboratory Sciences, Alzaeim Alazhari University, Khartoum, Sudan
| | - Mohamed Mubarak Elbasheir
- Department of Parasitology, Faculty of Medical Laboratory Sciences, Alzaeim Alazhari University, Khartoum, Sudan
| |
Collapse
|
3
|
Ranbhise JS, Ju S, Singh MK, Han S, Akter S, Ha J, Choe W, Kim SS, Kang I. Chronic Inflammation and Glycemic Control: Exploring the Bidirectional Link Between Periodontitis and Diabetes. Dent J (Basel) 2025; 13:100. [PMID: 40136728 PMCID: PMC11940948 DOI: 10.3390/dj13030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Periodontitis and diabetes mellitus are two highly prevalent chronic conditions that share a bidirectional relationship, significantly impacting public health. Periodontitis, a gum inflammation caused by microbial dysbiosis, aggravates glycemic control in diabetics, while uncontrolled diabetes heightens periodontitis severity. These conditions create a vicious cycle, where inflammation and microbial dysbiosis mutually drive disease progression, exacerbating systemic health. The underlying mechanisms involve inflammation, immune dysfunction, and microbial dysbiosis, with both diseases contributing to a chain of chronic inflammation that exacerbates systemic health. This relationship is significant because managing one condition can significantly impact the other. In diabetic individuals, interventions such as periodontal therapy have shown effectiveness in improving glycemic control, underscoring the potential of integrated strategies for managing these conditions simultaneously. In this review, we highlight the importance of a deeper understanding of the molecular and immunological interactions between these diseases is essential for developing integrated therapeutic approaches, with the potential to enhance the quality of life of the patient significantly.
Collapse
Affiliation(s)
- Jyotsna Suresh Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (J.S.R.); (S.J.); (M.K.S.); (S.H.); (S.A.); (J.H.); (W.C.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Parker J. Pathophysiological Effects of Contemporary Lifestyle on Evolutionary-Conserved Survival Mechanisms in Polycystic Ovary Syndrome. Life (Basel) 2023; 13:life13041056. [PMID: 37109585 PMCID: PMC10145572 DOI: 10.3390/life13041056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is increasingly being characterized as an evolutionary mismatch disorder that presents with a complex mixture of metabolic and endocrine symptoms. The Evolutionary Model proposes that PCOS arises from a collection of inherited polymorphisms that have been consistently demonstrated in a variety of ethnic groups and races. In utero developmental programming of susceptible genomic variants are thought to predispose the offspring to develop PCOS. Postnatal exposure to lifestyle and environmental risk factors results in epigenetic activation of developmentally programmed genes and disturbance of the hallmarks of health. The resulting pathophysiological changes represent the consequences of poor-quality diet, sedentary behaviour, endocrine disrupting chemicals, stress, circadian disruption, and other lifestyle factors. Emerging evidence suggests that lifestyle-induced gastrointestinal dysbiosis plays a central role in the pathogenesis of PCOS. Lifestyle and environmental exposures initiate changes that result in disturbance of the gastrointestinal microbiome (dysbiosis), immune dysregulation (chronic inflammation), altered metabolism (insulin resistance), endocrine and reproductive imbalance (hyperandrogenism), and central nervous system dysfunction (neuroendocrine and autonomic nervous system). PCOS can be a progressive metabolic condition that leads to obesity, gestational diabetes, type two diabetes, metabolic-associated fatty liver disease, metabolic syndrome, cardiovascular disease, and cancer. This review explores the mechanisms that underpin the evolutionary mismatch between ancient survival pathways and contemporary lifestyle factors involved in the pathogenesis and pathophysiology of PCOS.
Collapse
Affiliation(s)
- Jim Parker
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Di Vincenzo S, Ferraro M, Taverna S, Malizia V, Buscetta M, Cipollina C, Lazzara V, Pinto P, Bassano M, La Grutta S, Pace E. Tyndallized Bacteria Preferentially Induce Human Macrophage M1 Polarization: An Effect Useful to Balance Allergic Immune Responses and to Control Infections. Antibiotics (Basel) 2023; 12:antibiotics12030571. [PMID: 36978438 PMCID: PMC10044585 DOI: 10.3390/antibiotics12030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Macrophage polarization is a dynamic process through which macrophages acquire specific features whose extremes are represented by M1 and M2 polarization. Interleukin (IL)-6, IL-1β, IL-12 and IL-8 belong to M1 macrophages while transforming growth factor-beta (TGF-β belongs to M2 cytokines. M2 polarization prevalence is observed in allergic diseases. Tyndallization is a thermal process able to inactivate microorganisms and to allow their use for chronic respiratory disease treatment via immune response modulation. The present study explores the effects of a blend of tyndallized bacteria (TB) on macrophage polarization. THP-1-derived macrophages were exposed to different concentrations of TB (106, 5 × 106, 107, 5 × 107, 108 CFU/mL) and then cell viability and TB phagocytosis, and IL-8, IL-1β, IL-6, IL-12 and TGF-β1 gene expression and release were assessed. TB were tolerated, phagocyted and able to increase IL-8, IL-1β and IL-6 gene expression and release IL-12 gene expression, as well as decrease TGF-β1 gene expression and release. The effects on IL-8, IL-6 and TGF-β1 release were confirmed in human monocyte-derived macrophages (hMDMs) exposed to TB. In conclusion, TB promote M1 polarization, and this mechanism might have valuable potential in controlling allergic diseases and infections, possibly preventing disease exacerbations.
Collapse
Affiliation(s)
- Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
- Correspondence: (S.D.V.); (S.L.G.); Tel.: +39-091-680-9148 (S.D.V.)
| | - Maria Ferraro
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| | - Velia Malizia
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| | | | - Chiara Cipollina
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
- Rimed Foundation, 90100 Palermo, Italy
- NBFC—National Biodiversity Future Center, 90100 Palermo, Italy
| | - Valentina Lazzara
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Paola Pinto
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Marco Bassano
- Dipartimento di Farmacia, Università degli Studi-Federico II, 80100 Napoli, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
- Correspondence: (S.D.V.); (S.L.G.); Tel.: +39-091-680-9148 (S.D.V.)
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| |
Collapse
|
6
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
7
|
Beignon AS, Galeotti C, Menager MM, Schvartz A. Trained immunity as a possible newcomer in autoinflammatory and autoimmune diseases pathophysiology. Front Med (Lausanne) 2023; 9:1085339. [PMID: 36743677 PMCID: PMC9896524 DOI: 10.3389/fmed.2022.1085339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Autoimmune disorders have been well characterized over the years and many pathways-but not all of them-have been found to explain their pathophysiology. Autoinflammatory disorders, on the other hand, are still hiding most of their molecular and cellular mechanisms. During the past few years, a newcomer has challenged the idea that only adaptive immunity could display memory response. Trained immunity is defined by innate immune responses that are faster and stronger to a second stimulus than to the first one, being the same or not. In response to the trained immunity inducer, and through metabolic and epigenetic changes of hematopoietic stem and progenitor cells in the bone marrow that are transmitted to their cellular progeny (peripheral trained immunity), or directly of tissue-resident cells (local innate immunity), innate cells responsiveness and functions upon stimulation are improved in the long-term. Innate immunity can be beneficial, but it could also be detrimental when maladaptive. Here, we discuss how trained immunity could contribute to the physiopathology of autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Anne-Sophie Beignon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Mickael M. Menager
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Adrien Schvartz
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France,*Correspondence: Adrien Schvartz,
| |
Collapse
|
8
|
López‐Haber C, Netting DJ, Hutchins Z, Ma X, Hamilton KE, Mantegazza AR. The phagosomal solute transporter SLC15A4 promotes inflammasome activity via mTORC1 signaling and autophagy restraint in dendritic cells. EMBO J 2022; 41:e111161. [PMID: 36031853 PMCID: PMC9574736 DOI: 10.15252/embj.2022111161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Phagocytosis is the necessary first step to sense foreign microbes or particles and enables activation of innate immune pathways such as inflammasomes. However, the molecular mechanisms underlying how phagosomes modulate inflammasome activity are not fully understood. We show that in murine dendritic cells (DCs), the lysosomal histidine/peptide solute carrier transporter SLC15A4, associated with human inflammatory disorders, is recruited to phagosomes and is required for optimal inflammasome activity after infectious or sterile stimuli. Dextran sodium sulfate-treated SLC15A4-deficient mice exhibit decreased colon inflammation, reduced IL-1β production by intestinal DCs, and increased autophagy. Similarly, SLC15A4-deficient DCs infected with Salmonella typhimurium show reduced caspase-1 cleavage and IL-1β production. This correlates with peripheral NLRC4 inflammasome assembly and increased autophagy. Overexpression of constitutively active mTORC1 rescues decreased IL-1β levels and caspase1 cleavage, and restores perinuclear inflammasome positioning. Our findings support that SLC15A4 couples phagocytosis with inflammasome perinuclear assembly and inhibition of autophagy through phagosomal content sensing. Our data also reveal the previously unappreciated importance of mTORC1 signaling pathways to promote and sustain inflammasome activity.
Collapse
Affiliation(s)
- Cynthia López‐Haber
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Department of Microbiology and Immunology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Daniel J Netting
- Department of Microbiology and Immunology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Zachary Hutchins
- Department of Microbiology and Immunology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Xianghui Ma
- Division of Gastroenterology, Hepatology, and Nutrition, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Present address:
Department of Microbiology and Immunology, Sidney Kimmel Medical CollegeThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
9
|
Gaffney E, Murphy D, Walsh A, Connolly S, Basdeo SA, Keane J, Phelan JJ. Defining the role of neutrophils in the lung during infection: Implications for tuberculosis disease. Front Immunol 2022; 13:984293. [PMID: 36203565 PMCID: PMC9531133 DOI: 10.3389/fimmu.2022.984293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Neutrophils are implicated in the pathogenesis of many diseases involving inflammation. Neutrophils are also critical to host defence and have a key role in the innate immune response to infection. Despite their efficiencies against a wide range of pathogens however, their ability to contain and combat Mycobacterium tuberculosis (Mtb) in the lung remains uncertain and contentious. The host response to Mtb infection is very complex, involving the secretion of various cytokines and chemokines from a wide variety of immune cells, including neutrophils, macrophages, monocytes, T cells, B cells, NK cells and dendritic cells. Considering the contributing role neutrophils play in the advancement of many diseases, understanding how an inflammatory microenvironment affects neutrophils, and how neutrophils interact with other immune cells, particularly in the context of the infected lung, may aid the design of immunomodulatory therapies. In the current review, we provide a brief overview of the mechanisms that underpin pathogen clearance by neutrophils and discuss their role in the context of Mtb and non-Mtb infection. Next, we examine the current evidence demonstrating how neutrophils interact with a range of human and non-human immune cells and how these interactions can differentially prime, activate and alter a repertoire of neutrophil effector functions. Furthermore, we discuss the metabolic pathways employed by neutrophils in modulating their response to activation, pathogen stimulation and infection. To conclude, we highlight knowledge gaps in the field and discuss plausible novel drug treatments that target host neutrophil metabolism and function which could hold therapeutic potential for people suffering from respiratory infections.
Collapse
|
10
|
The Phagocytosis of Lacticaseibacillus casei and Its Immunomodulatory Properties on Human Monocyte-Derived Dendritic Cells Depend on the Expression of Lc-p75, a Bacterial Peptidoglycan Hydrolase. Int J Mol Sci 2022; 23:ijms23147620. [PMID: 35886967 PMCID: PMC9319067 DOI: 10.3390/ijms23147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
The human gut symbiont Lacticaseibacillus (L.) casei (previously Lactobacillus casei) is under intense research due to its wide range of immunomodulatory effects on the human host. Dendritic cells (DCs) are crucial players in the direct and indirect communication with lactobacilli in the gastrointestinal tract. Here, we demonstrate that human monocyte-derived DCs (moDCs) are able to engulf L. casei BL23, in which the intact bacterial cell wall and morphology have a key role. The absence of the bacterial cell-wall-degrading enzyme, Lc-p75, in L. casei cells causes remarkable morphological changes, which have important consequences in the phagocytosis of L. casei by moDCs. Our results showed that the Lc-p75 mutation induced defective internalization and impaired proinflammatory and T-cell-polarizing cytokine secretion by bacteria-exposed moDCs. The T helper (Th) 1 and Th17 cell activating capacity of moDCs induced by the mutant L. casei was consequently reduced. Moreover, inhibition of the phagocytosis of wild-type bacteria showed similar results. Taken together, these data suggested that formation of short bacterial chains helps to exert the potent immunomodulatory properties of L. casei BL23.
Collapse
|
11
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
12
|
A unique NLRC4 receptor from echinoderms mediates Vibrio phagocytosis via rearrangement of the cytoskeleton and polymerization of F-actin. PLoS Pathog 2021; 17:e1010145. [PMID: 34898657 PMCID: PMC8699970 DOI: 10.1371/journal.ppat.1010145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Many members of the nucleotide-binding and oligomerization domain (NACHT)- and leucine-rich-repeat-containing protein (NLR) family play crucial roles in pathogen recognition and innate immune response regulation. In our previous work, a unique and Vibrio splendidus-inducible NLRC4 receptor comprising Ig and NACHT domains was identified from the sea cucumber Apostichopus japonicus, and this receptor lacked the CARD and LRR domains that are typical of common cytoplasmic NLRs. To better understand the functional role of AjNLRC4, we confirmed that AjNLRC4 was a bona fide membrane PRR with two transmembrane structures. AjNLRC4 was able to directly bind microbes and polysaccharides via its extracellular Ig domain and agglutinate a variety of microbes in a Ca2+-dependent manner. Knockdown of AjNLRC4 by RNA interference and blockade of AjNLRC4 by antibodies in coelomocytes both could significantly inhibit the phagocytic activity and elimination of V. splendidus. Conversely, overexpression of AjNLRC4 enhanced the phagocytic activity of V. splendidus, and this effect could be specifically blocked by treatment with the actin-mediated endocytosis inhibitor cytochalasin D but not other endocytosis inhibitors. Moreover, AjNLRC4-mediated phagocytic activity was dependent on the interaction between the intracellular domain of AjNLRC4 and the β-actin protein and further regulated the Arp2/3 complex to mediate the rearrangement of the cytoskeleton and the polymerization of F-actin. V. splendidus was found to be colocalized with lysosomes in coelomocytes, and the bacterial quantities were increased after injection of chloroquine, a lysosome inhibitor. Collectively, these results suggested that AjNLRC4 served as a novel membrane PRR in mediating coelomocyte phagocytosis and further clearing intracellular Vibrio through the AjNLRC4-β-actin-Arp2/3 complex-lysosome pathway. Vibrio splendidus is ubiquitously present in marine environments and in or on many aquaculture species and is considered to be an important opportunistic pathogen that has caused serious economic losses to the aquaculture industry worldwide. Phagocytosis is the first step of pathogen clearance and is triggered by specific interactions between host pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) from invasive bacteria. However, the mechanism that underlies receptor-mediated V. splendidus phagocytosis is poorly understood. In this study, an atypical AjNLRC4 receptor without LRR and CARD domains was found to serve as the membrane receptor for V. splendidus, not the common cytoplasmic NLRs. The Ig domain of AjNLRC4 is replaced with a conventional LRR domain to bind V. splendidus, and the intracellular domain of AjNLRC4 specifically interacts with β-actin to mediate V. splendidus endocytosis in an actin-dependent manner. Endocytic V. splendidus is ultimately degraded in phagolysosomes. Our findings will contribute to the development of novel strategies for treating V. splendidus infection by modulating the actin-dependent endocytosis pathway.
Collapse
|
13
|
Chua CLL, Ng IMJ, Yap BJM, Teo A. Factors influencing phagocytosis of malaria parasites: the story so far. Malar J 2021; 20:319. [PMID: 34271941 PMCID: PMC8284020 DOI: 10.1186/s12936-021-03849-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
There are seven known species of Plasmodium spp. that can infect humans. The human host can mount a complex network of immunological responses to fight infection and one of these immune functions is phagocytosis. Effective and timely phagocytosis of parasites, accompanied by the activation of a regulated inflammatory response, is beneficial for parasite clearance. Functional studies have identified specific opsonins, particularly antibodies and distinct phagocyte sub-populations that are associated with clinical protection against malaria. In addition, cellular and molecular studies have enhanced the understanding of the immunological pathways and outcomes following phagocytosis of malaria parasites. In this review, an integrated view of the factors that can affect phagocytosis of infected erythrocytes and parasite components, the immunological consequences and their association with clinical protection against Plasmodium spp. infection is provided. Several red blood cell disorders and co-infections, and drugs that can influence phagocytic capability during malaria are also discussed. It is hoped that an enhanced understanding of this immunological process can benefit the design of new therapeutics and vaccines to combat this infectious disease.
Collapse
Affiliation(s)
| | - Ida May Jen Ng
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Bryan Ju Min Yap
- School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Department of Medicine, The Doherty Institute, University of Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Systemic bacterial infections affect dendritic cell development and function. Int J Med Microbiol 2021; 311:151517. [PMID: 34233227 DOI: 10.1016/j.ijmm.2021.151517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are critical in host defense against infection. DC depletion is an early event in the course of sepsis that may impair the host defense mechanisms. Here, we addressed whether DC depletion and dysfunction are pathogen-independent, mediated via pattern recognition receptors, and are due to impaired DC development upon systemic infection with the Gram-negative bacterium Escherichia coli and the Gram-positive pathogen Staphylococcus aureus. Infection with E. coli and S. aureus led to reduced numbers of splenic DC subsets and of DC progenitors in the bone marrow (BM) with this effect persisting significantly longer in mice infected with S. aureus than with E. coli. The reduction of DC subsets and their progenitors was mainly TLR-independent as was the infection-induced monopoiesis. Moreover, de novo DC development was impaired in mice infected with S. aureus, and BM cells from E. coli or S. aureus infected mice favored macrophage differentiation in vitro. As a consequence of reduced DC numbers and their reduced expression of MHC II less CD4+ and CD8+ T cells, especially Th1 and IFN-γ producing CD8+ T cells, could be detected in S. aureus compared to E. coli infected mice. These differences are reflected in the rapid killing of E. coli as opposed to an increase in bacterial load in S. aureus. In summary, our study supports the idea that systemic bacterial infections generally affect the number and development of DCs and thereby the T cell responses, but the magnitude is pathogen-dependent.
Collapse
|
15
|
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinical syndromes that cause significant mortality in clinical settings and morbidity among survivors accompanied by huge healthcare costs. Lung-resident cell dysfunction/death and neutrophil alveolitis accompanied by proteinous edema are the main pathological features of ALI/ARDS. While understanding of the mechanisms underlying ALI/ARDS pathogenesis is progressing and potential treatments such as statin therapy, nutritional strategies, and mesenchymal cell therapy are emerging, poor clinical outcomes in ALI/ARDS patients persist. Thus, a better understanding of lung-resident cell death and neutrophil alveolitis and their mitigation and clearance mechanisms may provide new therapeutic strategies to accelerate lung repair and improve outcomes in critically ill patients. Macrophages are required for normal tissue development and homeostasis as well as regulating tissue injury and repair through modulation of inflammation and other cellular processes. While macrophages mediate various functions, here we review recent dead cell clearance (efferocytosis) mechanisms mediated by these immune cells for maintaining tissue homeostasis after infectious and non-infectious lung injury.
Collapse
Affiliation(s)
- Patrick M Noone
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| | - Sekhar P Reddy
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, IL 60612, USA
- Department of Pathology, College of Medicine, University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
16
|
Santecchia I, Ferrer MF, Vieira ML, Gómez RM, Werts C. Phagocyte Escape of Leptospira: The Role of TLRs and NLRs. Front Immunol 2020; 11:571816. [PMID: 33123147 PMCID: PMC7573490 DOI: 10.3389/fimmu.2020.571816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
The spirochetal bacteria Leptospira spp. are causative agents of leptospirosis, a globally neglected and reemerging zoonotic disease. Infection with these pathogens may lead to an acute and potentially fatal disease but also to chronic asymptomatic renal colonization. Both forms of disease demonstrate the ability of leptospires to evade the immune response of their hosts. In this review, we aim first to recapitulate the knowledge and explore the controversial data about the opsonization, recognition, intracellular survival, and killing of leptospires by scavenger cells, including platelets, neutrophils, macrophages, and dendritic cells. Second, we will summarize the known specificities of the recognition or escape of leptospire components (the so-called microbial-associated molecular patterns; MAMPs) by the pattern recognition receptors (PRRs) of the Toll-like and NOD-like families. These PRRs are expressed by phagocytes, and their stimulation by MAMPs triggers pro-inflammatory cytokine and chemokine production and bactericidal responses, such as antimicrobial peptide secretion and reactive oxygen species production. Finally, we will highlight recent studies suggesting that boosting or restoring phagocytic functions by treatments using agonists of the Toll-like or NOD receptors represents a novel prophylactic strategy and describe other potential therapeutic or vaccine strategies to combat leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
- INSERM, Equipe Avenir, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - María Florencia Ferrer
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Monica Larucci Vieira
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Martín Gómez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Catherine Werts
- Institut Pasteur, Microbiology Department, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France
- CNRS, UMR 2001 Microbiologie intégrative et Moléculaire, Paris, France
| |
Collapse
|
17
|
Yue Y, Liu X, Li Y, Xia B, Yu W. The role of TLR4/MyD88/NF-κB pathway in periodontitis-induced liver inflammation of rats. Oral Dis 2020; 27:1012-1021. [PMID: 32853444 PMCID: PMC8247295 DOI: 10.1111/odi.13616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to clarify the immune mechanism of hepatic injury induced by periodontitis using a rat model. METHODS Twenty-four SPF male Wistar rats were randomly divided into two groups: control group (CG) and periodontitis group (PG). In order to induce experimental periodontitis, we tied the wire ligature around bilateral maxillary first molar of rats. After 8 weeks, the following indicators were valued: gingival index, tooth mobility, probing pocket depth; indexes about oxidative stress and circulating biomarkers; bone retraction by micro-CT analysis; Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and nuclear factor kappa B (NF-κB) by qRT-PCR and Western blotting; tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) by qRT-PCR and immunohistochemical staining; inflammation of periodontal and hepatic tissues by histopathological observation. RESULTS Periodontal indicators and micro-CT results showed the raised levels of inflammatory response and bone retraction in PG compared with CG. The mRNA and protein levels of TLR4, MyD88, NF-κB, TNF-α, and IL-6 have indicated high values in PG versus CG. Histopathological analysis revealed a correlation between periodontitis and hepatic injury. CONCLUSION TLR4/MyD88/NF-κB pathway may play a role in periodontitis-induced liver inflammation of rats.
Collapse
Affiliation(s)
- Yiyun Yue
- Department of Periodontology, Jilin University, Changchun, China
| | - Xinchan Liu
- Department of Geriatric Stomatology, Jilin University, Changchun, China
| | - Yan Li
- Department of Periodontology, Jilin University, Changchun, China
| | - Boyuan Xia
- Department of Periodontology, Jilin University, Changchun, China
| | - Weixian Yu
- Department of Geriatric Stomatology, Jilin University, Changchun, China.,Jilin Provincial Laboratory of Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
18
|
Levin-Konigsberg R, Mantegazza AR. A guide to measuring phagosomal dynamics. FEBS J 2020; 288:1412-1433. [PMID: 32757358 PMCID: PMC7984381 DOI: 10.1111/febs.15506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune‐based assays that will be described in this guide.
Collapse
Affiliation(s)
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Moretti J, Blander JM. Increasing complexity of NLRP3 inflammasome regulation. J Leukoc Biol 2020; 109:561-571. [PMID: 32531835 DOI: 10.1002/jlb.3mr0520-104rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammasomes are multiprotein complexes that assemble upon detection of danger signals to activate the inflammatory enzyme caspase-1, trigger secretion of the highly proinflammatory cytokine IL-1β, and induce an inflammatory cell death called pyroptosis. Distinctiveness of the nucleotide-binding oligomerization (NOD), Leucine-rich repeat (LRR)-containing protein (NLRP3) inflammasome resides in the diversity of molecules that induce its activation, indicating a certain intricacy. Furthermore, besides the canonical activation of NLRP3 in response to various stimuli, caspase-11-dependent detection of intracellular LPS activates NLRP3 through a noncanonical pathway. Several aspects of the NLRP3 inflammasome are not characterized or remain unclear. In this review, we summarize the different modes of NLRP3 activation. We describe recent insights into post-translational and cellular regulation that confer further complexity to NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Julien Moretti
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Joan and Sanford I. Weill Department of Medicine, Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
20
|
Hsieh MY, Lin JJ, Hsia SH, Huang JL, Yeh KW, Chang KW, Lee WI. Diminished toll-like receptor response in febrile infection-related epilepsy syndrome (FIRES). Biomed J 2020; 43:293-304. [PMID: 32651134 PMCID: PMC7424096 DOI: 10.1016/j.bj.2020.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/06/2022] Open
Abstract
Background Defective human TLR3 signaling causes recurrent and refractory herpes simplex encephalitis/encephalopathy. Children with febrile infection-related epilepsy syndrome with refractory seizures may have defective TLR responses. Methods Children with febrile infection-related epilepsy syndrome were enrolled in this study to evaluate TLR1-9 responses (IL-6, IL-8, IL-12p40, INF-α, INF-γ, and TNF-α) in their peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (MDDCs), compared to those with febrile seizures and non-refractory epilepsy with/without underlying encephalitis/encephalopathy. Results Adenovirus and enterovirus were found in throat cultures of enrolled patients (2–13 years) as well as serologic IgM elevation of mycoplasma pneumonia and herpes simplex virus, although neither detectable pathogens nor anti-neural autoantibodies in the CSF could be noted. Their PBMCs and MDDCs trended to have impaired TLR responses and significantly lower in cytokine profiles of TLR3, TLR4, TLR7/8, and TLR9 responses but not other TLRs despite normal TLR expressions and normal candidate genes for defective TLR3 signaling. They also had decreased naïve T and T regulatory cells, and weakened phagocytosis. Conclusion Children with febrile infection-related epilepsy syndrome (FIRES) could have impaired TLR3, TLR4, TLR7/8, and TLR9 responses possibly relating to their weakened phagocytosis and decreased T regulatory cells.
Collapse
Affiliation(s)
- Meng-Ying Hsieh
- Division of Pediatrics, Chang Gung Memorial Hospital at Taipei, Taipei, Taiwan; Division of Pediatric Neurology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Jainn-Jim Lin
- Division of Pediatric Critical Care, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Hsuan Hsia
- Division of Pediatric Critical Care, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Long Huang
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Wei Yeh
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuei-Wen Chang
- Division of Pediatrics, Chang Gung Memorial Hospital at Taipei, Taipei, Taiwan; Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-I Lee
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
21
|
The Dynll1-Cox4i1 Complex Regulates Intracellular Pathogen Clearance via Release of Mitochondrial Reactive Oxygen Species. Infect Immun 2020; 88:IAI.00738-19. [PMID: 32041786 PMCID: PMC7093135 DOI: 10.1128/iai.00738-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cellular membrane proteins are a critical part of the host defense mechanisms against infection and intracellular survival of Listeria monocytogenes The complex spatiotemporal regulation of bacterial infection by various membrane proteins has been challenging to study. Here, using mass spectrometry analyses, we depicted the dynamic expression landscape of membrane proteins upon L. monocytogenes infection in dendritic cells. We showed that Dynein light chain 1 (Dynll1) formed a persistent complex with the mitochondrial cytochrome oxidase Cox4i1, which is disturbed by pathogen insult. We discovered that the dissociation of the Dynll1-Cox4i1 complex is required for the release of mitochondrial reactive oxygen species and serves as a regulator of intracellular proliferation of Listeria monocytogenes Our study shows that Dynll1 is an inhibitor of mitochondrial reactive oxygen species and can serve as a potential molecular drug target for antibacterial treatment.
Collapse
|
22
|
Haider M, Dambuza IM, Asamaphan P, Stappers M, Reid D, Yamasaki S, Brown GD, Gow NAR, Erwig LP. The pattern recognition receptors dectin-2, mincle, and FcRγ impact the dynamics of phagocytosis of Candida, Saccharomyces, Malassezia, and Mucor species. PLoS One 2019; 14:e0220867. [PMID: 31393930 PMCID: PMC6687134 DOI: 10.1371/journal.pone.0220867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023] Open
Abstract
Phagocytosis is a receptor-mediated process critical to innate immune clearance of pathogens. It proceeds in a regulated sequence of stages: (a) migration of phagocytes towards pathogens, (b) recognition of PAMPs and binding through PRRs, (c) engulfment and internalisation into phagosomes, (d) phagosome maturation, and (e) killing of pathogen or host cells. However, little is known about the role that individual receptors play in these discrete stages in the recognition of fungal cells. In a previous study, we found that dectin-2 deficiency impacted some but not all stages of macrophage-mediated phagocytosis of Candida glabrata. Because the C-type lectin receptor dectin-2 critically requires coupling to the FcRγ chain for signalling, we hypothesised that this coupling may be important for regulating phagocytosis of fungal cargo. We therefore examined how deficiency in FcRγ itself or two receptors to which it couples (dectin-2 and mincle) impacts phagocytosis of six fungal organisms representing three different fungal taxa. Our data show that deficiency in these proteins impairs murine bone marrow-derived macrophage migration, engulfment, and phagosome maturation, but not macrophage survival. Therefore, FcRγ engagement with selective C-type lectin receptors (CLRs) critically affects the spatio-temporal dynamics of fungal phagocytosis.
Collapse
Affiliation(s)
- Mohammed Haider
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Ivy M. Dambuza
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Patawee Asamaphan
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Mark Stappers
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Delyth Reid
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Lars P. Erwig
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
23
|
Emam M, Tabatabaei S, Sargolzaei M, Sharif S, Schenkel F, Mallard B. The effect of host genetics on in vitro performance of bovine monocyte-derived macrophages. J Dairy Sci 2019; 102:9107-9116. [PMID: 31400895 DOI: 10.3168/jds.2018-15960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
The dynamic interaction between the host and pathogens, along with environmental factors, influences the regulation of mammalian immune responses. Therefore, comprehensive in vivo immune-phenotyping during an active response to a pathogen can be complex and prone to confounding effects. Evaluating critical fundamental aspects of the immune system at a cellular level is an alternative approach to reduce this complexity. Therefore, the objective of the current study was to examine an in vitro model for functional phenotyping of bovine monocyte-derived macrophages (MDM), cells which play a crucial role at all phases of inflammation, as well influence downstream immune responses. As indicators of MDM function, phagocytosis and nitric oxide (NO-) production were tested in MDM of 16 cows in response to 2 common bacterial pathogens of dairy cows, Escherichia coli and Staphylococcus aureus. Notable functional variations were observed among the individuals (coefficient of variation: 33% for phagocytosis and 70% in the production of NO-). The rank correlation analysis revealed a significant, positive, and strong correlation (rho = 0.92) between NO- production in response to E. coli and S. aureus, and a positive but moderate correlation (rho = 0.58) between phagocytosis of E. coli and S. aureus. To gain further insight into this trait, another 58 cows were evaluated solely for NO- response against E. coli. The pedigree of the tested animals was added to the statistical model and the heritability was estimated to be 0.776. Overall, the finding of this study showed a strong effect of host genetics on the in vitro activities of MDM and the possibility of ranking Holstein cows based on the in vitro functional variation of MDM.
Collapse
Affiliation(s)
- Mehdi Emam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Saeid Tabatabaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Select Sires Inc., Plain City, OH 43064
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Flavio Schenkel
- Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bonnie Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Center for Genetic Improvement of Livestock, Department of Animal Bioscience, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
24
|
Kubelkova K, Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front Cell Infect Microbiol 2019; 9:241. [PMID: 31334134 PMCID: PMC6616152 DOI: 10.3389/fcimb.2019.00241] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
Primary interaction of an intracellular bacterium with its host cell is initiated by activation of multiple signaling pathways in response to bacterium recognition itself or as cellular responses to stress induced by the bacterium. The leading molecules in these processes are cell surface membrane receptors as well as cytosolic pattern recognition receptors recognizing pathogen-associated molecular patterns or damage-associated molecular patterns induced by the invading bacterium. In this review, we demonstrate possible sequences of events leading to recognition of Francisella tularensis, present findings on known mechanisms for manipulating cell responses to protect Francisella from being killed, and discuss newly published data from the perspective of early stages of host-pathogen interaction.
Collapse
Affiliation(s)
- Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
25
|
Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. Int Rev Immunol 2019; 38:131-156. [PMID: 31066339 DOI: 10.1080/08830185.2019.1609962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vijay Kumar
- Children’s Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Kim BG, Song Y, Lee MG, Ku JM, Jin SJ, Hong JW, Lee S, Kang H. Macrophages from Mice Administered Rhus verniciflua Stokes Extract Show Selective Anti-Inflammatory Activity. Nutrients 2018; 10:nu10121926. [PMID: 30563116 PMCID: PMC6315672 DOI: 10.3390/nu10121926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 12/17/2022] Open
Abstract
The bark of Rhus verniciflua Stokes (RVS) is used as a food additive and herbal medicine for various inflammatory disorders and cancer in Eastern Asia. RVS has been shown to exert anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophages in vitro, but whether oral administration of RVS affects the inflammatory response of macrophage needs to be verified. RVS was given orally to mice for ten days. For isolation of macrophages, intraperitoneal injection of thioglycollate was performed. For determination of serum inflammatory response, intraperitoneal injection of LPS was applied. RVS stimulated monocyte differentiation in thioglycollate-induced peritonitis by increasing the population of cells expressing CD11b and class A scavenger receptors. These monocyte-derived macrophages showed an increased uptake of acetylated low-density lipoprotein. When peritoneal macrophages from the RVS group were stimulated with LPS, the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the supernatant decreased, but the level of IL-12 increased. The surface expression of CD86 was reduced, but surface expression of class II major histocompatibility complex molecules was increased. RVS suppressed the serum levels of LPS-induced TNF-α and IL-6. Collectively, RVS promoted monocyte differentiation upon inflammatory insults and conferred selective anti-inflammatory activity without causing overall inhibitory effects on immune cells.
Collapse
Affiliation(s)
- Bo-Geun Kim
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea.
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Mi-Gi Lee
- Bio Center, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea.
| | - Jin-Mo Ku
- Bio Center, Gyeonggido Business and Science Accelerator, Suwon 16229, Korea.
| | - So-Jung Jin
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea.
| | - Joung-Woo Hong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea.
| | - SeungGwan Lee
- Humanitas College, Kyung Hee University, Yongin 17104, Korea.
| | - Hee Kang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea.
| |
Collapse
|
27
|
Yu L, Zheng Y, Feng Y, Ma F. Role of L-selectin on leukocytes in the binding of sialic acids on sperm surface during the phagocytosis of sperm in female reproductive tract. Med Hypotheses 2018; 120:4-6. [DOI: 10.1016/j.mehy.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
|
28
|
Rubio-Araiz A, Finucane OM, Keogh S, Lynch MA. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J Neuroinflammation 2018; 15:247. [PMID: 30170611 PMCID: PMC6119264 DOI: 10.1186/s12974-018-1281-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023] Open
Abstract
Background Microglia are multifunctional cells that are primarily neuroprotective and a deficit in their functional integrity is likely to be a contributory factor in the deteriorating neuronal function that occurs with age and neurodegeneration. One aspect of microglial dysfunction is reduced phagocytosis, and this is believed to contribute to the accumulation of amyloid-β (Aβ) in Alzheimer’s disease (AD). Therefore, improving phagocytosis should be beneficial in limiting the amyloidosis that characterises AD. Methods Here, we investigated whether an antibody that targets toll-like receptor (TLR)2 might attenuate the inflammatory and metabolic changes induced by lipopolysaccharide (LPS) and amyloid-β. The impact on phagocytosis was assessed by immunohistochemistry. We evaluated the metabolic changes with the SeaHorse Extracellular Flux Analyser and studied the expression of key enzymes driving glycolysis by western blotting. For all experiments, statistical significance was determined by unpaired Student’s t test and two-way analysis of variance (ANOVA). Results We have reported that, when exposed to an inflammatory stimulus, microglia switch their metabolism towards the metabolically- inefficient glycolysis; this potentially impacts on metabolically demanding functions like phagocytosis. Anti-TLR2 antibody increased phagocytosis of Aβ in LPS + Aβ-stimulated microglia and this was linked with the ability of the antibody to attenuate the LPS + Aβ-triggered inflammasome activation. LPS + Aβ increased glycolysis in microglia and increased the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)3, an enzyme that plays a key role in driving glycolysis; these effects were inhibited when cells were incubated with the anti-TLR2 antibody. The data also show that antibody treatment increased oxidative metabolism. Conclusions Thus, microglia with an inflammatory phenotype, specifically cells in which the inflammasome is activated, are glycolytic; this may compromise the metabolic efficiency of microglia and thereby provide an explanation for the reduced phagocytic function of the cells. We propose that, by restoring oxidative metabolism and reducing inflammasome activation in microglia, phagocytic function is also restored. Electronic supplementary material The online version of this article (10.1186/s12974-018-1281-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Rubio-Araiz
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Orla M Finucane
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Samuel Keogh
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.,Current Address: University College Cork, Cork, Ireland
| | - Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
29
|
Moretti J, Vabret N, Blander JM. Measuring Innate Immune Responses to Bacterial Viability. Methods Mol Biol 2018; 1714:167-190. [PMID: 29177862 DOI: 10.1007/978-1-4939-7519-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The innate immune system directly senses microbial viability via the detection of a special class of viability-associated pathogen-associated molecular patterns (vita-PAMPs), such as prokaryotic messenger RNA. In the case of Gram-negative bacteria, detection of bacterial viability by phagocytes leads to a unique activation of inflammasome and type I interferon pathways, resulting in a robust pro-inflammatory innate response and a vigorous adaptive immune response. This protocol describes the methods required to study activation of both inflammasome and type I interferon pathways after stimulation of mouse bone marrow-derived macrophages with live or killed Gram-negative and Gram-positive bacteria. It covers the generation and handling of bone marrow-derived macrophages, the culture and killing of bacteria, the preparation of bacterial messenger RNA, and the stimulation of macrophages with live or killed bacteria. Lastly, this protocol describes the techniques employed to measure the hallmarks of inflammasome (secretion of interleukin-1β) and type I interferon (activation of TBK1, IRF3 and secretion of type I interferon) pathways.
Collapse
Affiliation(s)
- Julien Moretti
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, 10021, USA.,Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicolas Vabret
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, 10021, USA. .,Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA. .,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
30
|
Jawahar S, Nafar A, Paray BA, Al-Sadoon MK, Balasundaram C, Harikrishnan R. Bentonite clay supplemented diet on immunity in stinging catfish, Heteropneustes fossilis against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 75:27-31. [PMID: 29409931 DOI: 10.1016/j.fsi.2018.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 01/22/2018] [Accepted: 01/28/2018] [Indexed: 06/07/2023]
Abstract
The effect of Sodium Bentonite (SB) enriched diet on growth performance, innate immune response, and disease resistance in stinging catfish, Heteropneustes fossilis against Aeromonas hydrophila is reported. The infected fish fed with 5% SB had the maximum weight gain diet (PWG %) and specific growth rate (SGR %) were 26% and 29% when compared to 14% and 17% with 10% diet. Similarly the phagocytic activity increased significantly when infected fish were fed with 5% or 10% SB diets during the experimental period; the complement, respiratory burst and lysozyme activities were also significantly enhanced on weeks 2 and 4. The lower cumulative mortality (10% and 15%) was observed when the infected fish were fed with 5% and 10% SB diets for 30 days. The results suggest that the infected H. fossilis after administration of 5% and 10% SB enriched diets for 30 days had significantly improved growth performance, innate immunity, and disease resistance against A. hydrophilla. Hence, sodium bentonite can be used as a feed additive to stimulate immunity and for disease resistance in the effective production of economically valuable freshwater catfish, H. fossilis.
Collapse
Affiliation(s)
- Sundaram Jawahar
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur 613 005, Tamil Nadu, India
| | - Adil Nafar
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur 613 005, Tamil Nadu, India
| | - Bilal Ahmad Paray
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur 613 005, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India.
| |
Collapse
|
31
|
A multi-omic analysis reveals the regulatory role of CD180 during the response of macrophages to Borrelia burgdorferi. Emerg Microbes Infect 2018; 7:19. [PMID: 29511161 PMCID: PMC5841238 DOI: 10.1038/s41426-017-0018-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Macrophages are cells of the innate immune system with the ability to phagocytose and induce a global pattern of responses that depend on several signaling pathways. We have determined the biosignature of murine bone marrow-derived macrophages and human blood monocytes using transcriptomic and proteomic approaches. We identified a common pattern of genes that are transcriptionally regulated and overall indicate that the response to B. burgdorferi involves the interaction of spirochetal antigens with several inflammatory pathways corresponding to primary (triggered by pattern-recognition receptors) and secondary (induced by proinflammatory cytokines) responses. We also show that the Toll-like receptor family member CD180 is downregulated by the stimulation of macrophages, but not monocytes, with the spirochete. Silencing Cd180 results in increased phagocytosis while tempering the production of the proinflammatory cytokine TNF. Cd180-silenced cells produce increased levels of Itgam and surface CD11b, suggesting that the regulation of CD180 by the spirochete initiates a cascade that increases CR3-mediated phagocytosis of the bacterium while repressing the consequent inflammatory response.
Collapse
|
32
|
Abstract
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; .,Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
33
|
DeFilippo J, Ebersole J, Beck G. Comparison of phagocytosis in three Caribbean Sea urchins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:14-25. [PMID: 28916267 DOI: 10.1016/j.dci.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
In 1983 large numbers of the sea urchin Diadema antillarum unexplainably began showing signs of illness and dying in the Caribbean, and over the next year they came close to extinction, making it one of the worst mass mortality events on record. Present evidence suggests a water-borne pathogen as the etiological agent. Decades later Diadema densities remain low, and its near extinction has been a major factor in transforming living coral reefs in the Caribbean to barren algae-covered rock. In the ensuing decades, no solid explanation has been found to the questions: what killed Diadema; why did Diadema succumb while other species of urchins on the same reefs did not; and why has Diadema still not recovered? A recent hypothesis posited by our lab as to Diadema's vulnerability was directed at possible compromised immunity in Diadema, and experimental results found a significantly impaired humoral response to a key component of gram-negative bacteria. Here we use flow cytometry to examine the cellular arm of invertebrate immunity. We performed cytotoxicity and phagocytosis assays as a measure of the cellular immune responses of cells from Diadema and two other species of sea urchins not affected by the die-off. Despite our previous findings of in impaired humoral response, our study found no apparent difference in the cellular phagocytic response of Diadema compared to the other urchin species studied.
Collapse
Affiliation(s)
- John DeFilippo
- Department of Biology, University of Massachusetts at Boston, Boston, MA, 02125-3393, USA
| | - John Ebersole
- Department of Biology, University of Massachusetts at Boston, Boston, MA, 02125-3393, USA
| | - Gregory Beck
- Department of Biology, University of Massachusetts at Boston, Boston, MA, 02125-3393, USA.
| |
Collapse
|
34
|
Mantegazza AR, Wynosky-Dolfi MA, Casson CN, Lefkovith AJ, Shin S, Brodsky IE, Marks MS. Increased autophagic sequestration in adaptor protein-3 deficient dendritic cells limits inflammasome activity and impairs antibacterial immunity. PLoS Pathog 2017; 13:e1006785. [PMID: 29253868 PMCID: PMC5749898 DOI: 10.1371/journal.ppat.1006785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/02/2018] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Bacterial pathogens that compromise phagosomal membranes stimulate inflammasome assembly in the cytosol, but the molecular mechanisms by which membrane dynamics regulate inflammasome activity are poorly characterized. We show that in murine dendritic cells (DCs), the endosomal adaptor protein AP-3 –which optimizes toll-like receptor signaling from phagosomes–sustains inflammasome activation by particulate stimuli. AP-3 independently regulates inflammasome positioning and autophagy induction, together resulting in delayed inflammasome inactivation by autophagy in response to Salmonella Typhimurium (STm) and other particulate stimuli specifically in DCs. AP-3-deficient DCs, but not macrophages, hyposecrete IL-1β and IL-18 in response to particulate stimuli in vitro, but caspase-1 and IL-1β levels are restored by silencing autophagy. Concomitantly, AP-3-deficient mice exhibit higher mortality and produce less IL-1β, IL-18, and IL-17 than controls upon oral STm infection. Our data identify a novel link between phagocytosis, inflammasome activity and autophagy in DCs, potentially explaining impaired antibacterial immunity in AP-3-deficient patients. Bacterial uptake by phagocytic cells such as dendritic cells (DCs) stimulates signaling from membrane-bound toll-like receptors (TLRs) to shape adaptive immune responses. Pathogenic bacteria that damage phagocytic membranes additionally stimulate the cytoplasmic inflammasome, producing the highly inflammatory cytokines IL-1β and IL-18. Host molecular mechanisms that link phagosomal signaling to inflammasome regulation are poorly characterized. We show that in DCs, the endosomal adaptor protein-3 (AP-3) complex optimizes phagocytosis-induced inflammasome activity by two mechanisms: AP-3 promotes TLR signaling-dependent transcription of inflammasome components and antagonizes autophagy-dependent inflammasome silencing. Consequently, AP-3 deficient DCs hyposecrete IL-1β and IL-18 in response to phagocytosed stimuli, and AP-3 deficient mice succumb to infection by a bacterial pathogen. AP-3 thus links phagosome signaling, inflammasome activity and autophagy in DCs.
Collapse
Affiliation(s)
- Adriana R. Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (ARM); (MSM)
| | - Meghan A. Wynosky-Dolfi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cierra N. Casson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Ariel J. Lefkovith
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Igor E. Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael S. Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail: (ARM); (MSM)
| |
Collapse
|
35
|
Carignan D, Herblot S, Laliberté-Gagné MÈ, Bolduc M, Duval M, Savard P, Leclerc D. Activation of innate immunity in primary human cells using a plant virus derived nanoparticle TLR7/8 agonist. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2317-2327. [PMID: 29128662 DOI: 10.1016/j.nano.2017.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022]
Abstract
Rod-shaped virus-like nanoparticles (VLNP) made of papaya mosaic virus (PapMV) coat proteins (CP) self-assembled around a single stranded RNA (ssRNA) were showed to be a TLR7 agonist. Their utilization as an immune modulator in cancer immunotherapy was shown to be promising. To establish a clinical relevance in human for PapMV VLNP, we showed that stimulation of human peripheral blood mononuclear cells (PBMC) with VLNP induces the secretion of interferon alpha (IFNα) and other pro-inflammatory cytokines and chemokines. Plasmacytoid dendritic cells (pDCs) were activated and secreted IFN-α upon VLNP exposure. Monocyte-derived dendritic cells upregulate maturation markers and produce IL-6 in response to PapMV VLNP stimulation, which suggests the activation of TLR8. Finally, when co-cultured with NK cells, PapMV induced pDCs promoted the NK cytolytic activity against cancer cells. These data obtained with primary human immune cells further strengthen the clinical relevance of PapMV VLNPs as a cancer immunotherapy agent.
Collapse
Affiliation(s)
- Damien Carignan
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Sabine Herblot
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Marie-Ève Laliberté-Gagné
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Marilène Bolduc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada
| | - Michel Duval
- Unité de recherche en hémato-oncologie Charles-Bruneau, Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Pierre Savard
- Neurosciences, Laval University, Québec City, PQ, Canada
| | - Denis Leclerc
- Department of Microbiology, Infectiology and Immunology, Infectious Disease Research Center, Laval University, Quebec City, PQ, Canada.
| |
Collapse
|
36
|
Dos Santos AG, Mendes ÉA, de Oliveira RP, Faria AMC, de Sousa AO, Pirovani CP, de Araújo FF, de Carvalho AT, Costa MC, Assis Santos D, Montoya QV, Rodrigues A, Dos Santos JL. Trichoderma asperelloides Spores Downregulate dectin1/2 and TLR2 Receptors of Mice Macrophages and Decrease Candida parapsilosis Phagocytosis Independent of the M1/M2 Polarization. Front Microbiol 2017; 8:1681. [PMID: 28936201 PMCID: PMC5594820 DOI: 10.3389/fmicb.2017.01681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
The intensive use of pesticides to control pests in agriculture has promoted several issues relating to environment. As chemical pesticides remain controversial, biocontrol agents originating from fungi could be an alternative. Among them, we highlight biocontrol agents derived from the fungi genus Trichoderma, which have been documented in limiting the growth of other phytopathogenic fungus in the roots and leaves of several plant species. An important member of this genus is Trichoderma asperelloides, whose biocontrol agents have been used to promote plant growth while also treating soil diseases caused by microorganisms in both greenhouses and outdoor crops. To evaluate the safety of fungal biological agents for human health, tests to detect potentially adverse effects, such as allergenicity, toxicity, infectivity and pathogenicity, are crucial. In addition, identifying possible immunomodulating properties of fungal biocontrol agents merits further investigation. Thus, the aim of this study was to evaluate the effects of T. asperelloides spores in the internalization of Candida parapsilosis yeast by mice phagocytes, in order to elucidate the cellular and molecular mechanism of this interaction, as a model to understand possible in vivo effects of this fungus. For this, mice were exposed to a fungal spore suspension through-intraperitoneal injection, euthanized and cells from the peripheral blood and peritoneal cavity were collected for functional, quantitative and phenotypic analysis, throughout analysis of membrane receptors gene expression, phagocytosis ability and cells immunophenotyping M1 (CCR7 and CD86) and M2 (CCR2 and CD206). Our analyses showed that phagocytes exposed to fungal spores had reduced phagocytic capacity, as well as a decrease in the quantity of neutrophils and monocytes in the peripheral blood and peritoneal cavity. Moreover, macrophages exposed to T. asperelloides spores did not display the phenotypic profile M1/M2, and had reduced expression of pattern recognition receptors, such as TLR2, dectin-1 and dectin-2, all involved in the first line of defense against clinically important yeasts. Our data could infer that T. asperelloides spores may confer susceptibility to infection by C. parapsilosis.
Collapse
Affiliation(s)
- Andréa G Dos Santos
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa CruzIlhéus, Brazil
| | - Érica A Mendes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade de São PauloSão Paulo, Brazil
| | | | - Ana M C Faria
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Belo HorizonteBelo Horizonte, Brazil
| | | | - Carlos P Pirovani
- Departamento de Ciências Biológicas, Universidade Estadual de Santa CruzIlhéus, Brazil
| | - Fernanda F de Araújo
- Grupo Integrado de Pesquisas em Biomarcadores, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte, Brazil.,Programa de Pós-Graduação em Sanidade e Produção Animal nos Trópicos, Universidade de UberabaUberaba, Brazil
| | - Andréa T de Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Centro de Pesquisas René Rachou, Fundação Oswaldo CruzBelo Horizonte, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Belo HorizonteBelo Horizonte, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Belo HorizonteBelo Horizonte, Brazil
| | - Quimi V Montoya
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual de São PauloRio Claro, Brazil
| | - Andre Rodrigues
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual de São PauloRio Claro, Brazil
| | - Jane L Dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa CruzIlhéus, Brazil
| |
Collapse
|
37
|
Phagocytic Receptors Activate Syk and Src Signaling during Borrelia burgdorferi Phagocytosis. Infect Immun 2017; 85:IAI.00004-17. [PMID: 28717031 DOI: 10.1128/iai.00004-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis of the Lyme disease-causing pathogen Borrelia burgdorferi has been shown to be important for generating an inflammatory response to the pathogen. As a result, understanding the mechanisms of phagocytosis has been an area of great interest in the field of Lyme disease. Several cell surface receptors that participate in B. burgdorferi phagocytosis have been reported, including the scavenger receptor MARCO and integrin α3β1. We sought to define the mechanisms by which these receptors mediate phagocytosis and to identify signaling pathways activated downstream of these receptors upon contact with B. burgdorferi We identified both Syk and Src signaling pathways as ones that participate in B. burgdorferi phagocytosis and the resulting cytokine activation. In our studies, we found that both MARCO and integrin β1 play a role in the activation of the Src kinase pathway. However, only integrin β1 participates in the activation of Syk. Interestingly, the integrin activates Syk without the help of the signaling adaptor Dap12 or FcRγ. Thus, we report that multiple pathways participate in B. burgdorferi internalization and that different cell surface receptors act simultaneously in cooperation and independently to mediate phagocytosis.
Collapse
|
38
|
Blander JM. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation. Immunol Rev 2017; 272:65-79. [PMID: 27319343 DOI: 10.1111/imr.12428] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.
Collapse
Affiliation(s)
- J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Shen T, Wang G, You L, Zhang L, Ren H, Hu W, Qiang Q, Wang X, Ji L, Gu Z, Zhao X. Polysaccharide from wheat bran induces cytokine expression via the toll-like receptor 4-mediated p38 MAPK signaling pathway and prevents cyclophosphamide-induced immunosuppression in mice. Food Nutr Res 2017; 61:1344523. [PMID: 28747866 PMCID: PMC5510218 DOI: 10.1080/16546628.2017.1344523] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Wheat bran-derived polysaccharides have attracted particular attention due to their immunomodulatory effects. However, the molecular mechanisms underlying their functions are poorly understood. The current study was designed to examine the effect of wheat bran polysaccharide (WBP) on RAW 264.7 cells and the underlying signaling pathways, which have not been explored. In addition, we also investigated the immuno-enhancement effects of WBP on cyclophosphamide (CTX)-induced immunosuppression in mice. WBP significantly increased the concentrations of intracellular nitric oxide (NO) and cytokines such as prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α) in RAW 264.7 cells. The result of RT-PCR analysis indicated that WBP also enhanced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α expression. Further analyses demonstrated that WBP rapidly activated phosphorylated p38 mitogen-activated protein kinase (MAPK) and the transcriptional activities of activator protein-1 (AP-1) and nuclear factor (NF)-κB via toll-like receptor 4 (TLR4). Furthermore, in vivo experiments revealed that WBP increased the spleen and thymus indices significantly, and markedly promoted the production of the serum cytokines IL-2 and IFN-γ in CTX-induced immunosuppressed mice. Taken together, these results suggest that WBP can improve immunity by enhancing immune function, and could be explored as a potential immunomodulatory agent in functional food.
Collapse
Affiliation(s)
- Ting Shen
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, PR China
| | - Gongcheng Wang
- Department of Urology, Huai'an First People's Hospital, Nanjing Medical University, Huaian, PR China
| | - Long You
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, PR China
| | - Liang Zhang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, PR China
| | - Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, PR China
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, PR China
| | - Qian Qiang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, PR China
| | - Xinfeng Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, PR China
| | - Lilian Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, PR China
| | - Zhengzhong Gu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, PR China.,Huaiyin Institute of Agricultural Science of Xuhuai Region, Huaian, PR China
| | - Xiangxiang Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, PR China
| |
Collapse
|
40
|
Lasitschka F, Giese T, Paparella M, Kurzhals SR, Wabnitz G, Jacob K, Gras J, Bode KA, Heninger AK, Sziskzai T, Samstag Y, Leszinski C, Jocher B, Al-Saeedi M, Meuer SC, Schröder-Braunstein J. Human monocytes downregulate innate response receptors following exposure to the microbial metabolite n-butyrate. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:480-492. [PMID: 28681454 PMCID: PMC5691313 DOI: 10.1002/iid3.184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 05/26/2017] [Accepted: 06/12/2017] [Indexed: 12/23/2022]
Abstract
Introduction Hyporesponsiveness of human lamina propria immune cells to microbial and nutritional antigens represents one important feature of intestinal homeostasis. It is at least partially mediated by low expression of the innate response receptors CD11b, CD14, CD16 as well as the cystine‐glutamate transporter xCT on these cells. Milieu‐specific mechanisms leading to the down‐regulation of these receptors on circulating monocytes, the precursor cells of resident macrophages, are mostly unknown. Methods Here, we addressed the question whether the short chain fatty acid n‐butyrate, a fermentation product of the mammalian gut microbiota exhibiting histone deacetylase inhibitory activity, is able to modulate expression of these receptors in human circulating monocytes. Results Exposure to n‐butyrate resulted in the downregulation of CD11b, CD14, as well as CD16 surface expression on circulating monocytes. XCT transcript levels in circulating monocytes were also reduced following exposure to n‐butyrate. Importantly, treatment resulted in the downregulation of protein and gene expression of the transcription factor PU.1, which was shown to be at least partially required for the expression of CD16 in circulating monocytes. PU.1 expression in resident macrophages in situ was observed to be substantially lower in healthy when compared to inflamed colonic mucosa. Conclusions In summary, the intestinal microbiota may support symbiosis with the human host organism by n‐butyrate mediated downregulation of protein and gene expression of innate response receptors as well as xCT on circulating monocytes following recruitment to the lamina propria. Downregulation of CD16 gene expression may at least partially be caused at the transcriptional level by the n‐butyrate mediated decrease in expression of the transcription factor PU.1 in circulating monocytes.
Collapse
Affiliation(s)
- Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Marco Paparella
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Stefan R Kurzhals
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Guido Wabnitz
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Katrin Jacob
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Judith Gras
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Konrad A Bode
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Anne-Kristin Heninger
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Timea Sziskzai
- Department of Anesthesiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Cornelia Leszinski
- Department of Surgery, St. Vincentius Hospital, Holzstr. 4a, 67346, Speyer, Germany
| | - Bettina Jocher
- Department of Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Mohammed Al-Saeedi
- Department of Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Stefan C Meuer
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Jutta Schröder-Braunstein
- Institute of Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| |
Collapse
|
41
|
Moretti J, Blander JM. Cell-autonomous stress responses in innate immunity. J Leukoc Biol 2016; 101:77-86. [PMID: 27733577 DOI: 10.1189/jlb.2mr0416-201r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response.
Collapse
Affiliation(s)
- Julien Moretti
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; .,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
42
|
Characterization of Lactobacillus reuteri BCLR-42 and Lactobacillus plantarum BCLP-51 as novel dog probiotics with innate immune enhancing properties. ACTA ACUST UNITED AC 2016. [DOI: 10.14405/kjvr.2016.56.2.75] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice. Nutrients 2016; 8:188. [PMID: 27043618 PMCID: PMC4848657 DOI: 10.3390/nu8040188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Wheat bran is a rich source of dietary fiber, of which arabinoxylan is the most abundant non-starch polysaccharide. Arabinoxylan has been known to exert in vivo immunological activities. Based on prior findings, we pretreated wheat bran with enzymatic hydrolysis to increase the release of soluble arabinoxylan and investigated whether oral administration of wheat bran altered macrophage activity in a mouse model. After four weeks of treatment, we isolated peritoneal macrophages for phagocytic receptor analysis and lipopolysaccharide (LPS)-induced inflammatory changes. In the second experiment, mice given wheat bran were intraperitoneally stimulated with LPS and serum levels of pro- and anti-inflammatory cytokines were determined. The expression of SRA and CD36, and phagocytic activity increased (p < 0.05, respectively). Ex vivo stimulation of macrophages by LPS resulted in reduced surface expression of CD40 (p < 0.05) and decreased production of nitric oxide (p < 0.005), tumor necrosis factor (TNF)-α (p < 0.005), interleukin (IL)-6 (p < 0.01), and IL-12 (p < 0.05). Mice treated with wheat bran showed decreased levels of serum TNF-α and IL-6 (p < 0.05, respectively) and an increased level of serum anti-inflammatory IL-10 (p < 0.05) in response to intraperitoneal LPS. Enzymatically-processed wheat bran boosts macrophage phagocytic capacity possibly through up-regulation of scavenger receptors and confers anti-inflammatory effects, indicating its potential as an immuno-enhancing functional food.
Collapse
|
44
|
Dumas A, Lê-Bury G, Marie-Anaïs F, Herit F, Mazzolini J, Guilbert T, Bourdoncle P, Russell DG, Benichou S, Zahraoui A, Niedergang F. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol 2016; 211:359-72. [PMID: 26504171 PMCID: PMC4621833 DOI: 10.1083/jcb.201503124] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The HIV protein Vpr interacts with EB1, p150Glued, and dynein heavy chain and perturbs the centripetal movement of phagosomes and their maturation, resulting in impaired phagolysosome biogenesis, which is important for bacterial clearance and cytokine production. Human immunodeficiency virus type 1 (HIV-1) impairs major functions of macrophages but the molecular basis for this defect remains poorly characterized. Here, we show that macrophages infected with HIV-1 were unable to respond efficiently to phagocytic triggers and to clear bacteria. The maturation of phagosomes, defined by the presence of late endocytic markers, hydrolases, and reactive oxygen species, was perturbed in HIV-1–infected macrophages. We showed that maturation arrest occurred at the level of the EHD3/MICAL-L1 endosomal sorting machinery. Unexpectedly, we found that the regulatory viral protein (Vpr) was crucial to perturb phagosome maturation. Our data reveal that Vpr interacted with EB1, p150Glued, and dynein heavy chain and was sufficient to critically alter the microtubule plus end localization of EB1 and p150Glued, hence altering the centripetal movement of phagosomes and their maturation. Thus, we identify Vpr as a modulator of the microtubule-dependent endocytic trafficking in HIV-1–infected macrophages, leading to strong alterations in phagolysosome biogenesis.
Collapse
Affiliation(s)
- Audrey Dumas
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Gabrielle Lê-Bury
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Florence Marie-Anaïs
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Floriane Herit
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Julie Mazzolini
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Thomas Guilbert
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Pierre Bourdoncle
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Serge Benichou
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Ahmed Zahraoui
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Florence Niedergang
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France Centre National de la Recherche Scientifique UMR 8104, Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
45
|
Esteban MÁ, Cuesta A, Chaves-Pozo E, Meseguer J. Phagocytosis in Teleosts. Implications of the New Cells Involved. BIOLOGY 2015; 4:907-22. [PMID: 26690236 PMCID: PMC4690022 DOI: 10.3390/biology4040907] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 02/07/2023]
Abstract
Phagocytosis is the process by which cells engulf some solid particles to form internal vesicles known as phagosomes. Phagocytosis is in fact a specific form of endocytosis involving the vesicular interiorization of particles. Phagocytosis is essentially a defensive reaction against infection and invasion of the body by foreign substances and, in the immune system, phagocytosis is a major mechanism used to remove pathogens and/or cell debris. For these reasons, phagocytosis in vertebrates has been recognized as a critical component of the innate and adaptive immune responses to pathogens. Furthermore, more recent studies have revealed that phagocytosis is also crucial for tissue homeostasis and remodeling. Professional phagocytes in teleosts are monocyte/macrophages, granulocytes and dendritic cells. Nevertheless, in recent years phagocytic properties have also been attributed to teleost lymphocytes and thrombocytes. The possible implications of such cells on this important biological process, new factors affecting phagocytosis, evasion of phagocytosis or new forms of phagocytosis will be considered and discussed.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | - Elena Chaves-Pozo
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| | - José Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
46
|
Stamm CE, Collins AC, Shiloh MU. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev 2015; 264:204-19. [PMID: 25703561 DOI: 10.1111/imr.12263] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the primary causative agent of human tuberculosis, has killed more people than any other bacterial pathogen in human history and remains one of the most important transmissible diseases worldwide. Because of the long-standing interaction of Mtb with humans, it is no surprise that human mucosal and innate immune cells have evolved multiple mechanisms to detect Mtb during initial contact. To that end, the cell surface of human cells is decorated with numerous pattern recognition receptors for a variety of mycobacterial ligands. Furthermore, once Mtb is ingested into professional phagocytes, other host molecules are engaged to report on the presence of an intracellular pathogen. In this review, we discuss the role of specific mycobacterial products in modulating the host's ability to detect Mtb. In addition, we describe the specific host receptors that mediate the detection of mycobacterial infection and the role of individual receptors in mycobacterial pathogenesis in humans and model organisms.
Collapse
Affiliation(s)
- Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
47
|
Lu M, Zhang PJ, Li CH, Lv ZM, Zhang WW, Jin CH. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo. Sci Rep 2015. [PMID: 26223836 PMCID: PMC4519775 DOI: 10.1038/srep12608] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK−1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3′UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates.
Collapse
Affiliation(s)
- Meng Lu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Peng-Juan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Cheng-Hua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Zhi-Meng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Wei-Wei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| | - Chun-Hua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, P.R China
| |
Collapse
|
48
|
Inflammasomes and human autoimmunity: A comprehensive review. J Autoimmun 2015; 61:1-8. [PMID: 26005048 DOI: 10.1016/j.jaut.2015.05.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/03/2015] [Indexed: 12/20/2022]
Abstract
Inflammasomes are multi-protein complexes composed of a NOD-like receptor (NLR)/an AIM-like receptor (ALR), the adapter molecule apoptosis-associated speck-like protein that contains a CARD (ASC), and caspase-1. Active caspase-1 cleaves pro-IL-1β and pro-IL-18 to IL-1β and IL-18, resulting in inflammation. Genetic mutations in inflammasomes were first recognized to result in autoinflammatory diseases, which are characterized by the absence of both autoantibodies and autoreactive-T/B cells. However, there is increasing attention being placed on genetic polymorphisms that are involved in the components of inflammasomes, and these have implications for innate immunity and the natural history of autoimmune diseases. For example, while the NOD-like receptor family, pyrin domain containing 1 (NLRP1) haplotypes contributes to susceptibility to developing vitiligo; there are other single nucleotide polymorphisms (SNPs) that alters the susceptibility and severity of rheumatoid arthritis (RA) and juvenile idiopathic arthritis. Indeed, there are multiple factors that contribute to lowering the threshold of immunity and inflammasomes play a key role in this threshold. For example, IL-1β and IL-18 further perpetuate Th17 responses and endothelial cell damage, which potentiate a number of autoimmune diseases, including synovitis in RA, cardiovascular disease, and systemic lupus erythematosus (SLE). There is also increasing data on the role of innate immunity in experimental autoimmune encephalomyelitis (EAE), in lupus nephritis, and in a variety of autoimmune pathologies in which activation of the innate immune system is the driver for the adaptive system. Indeed, it is likely that the chronic pathology of autoimmunity is mediated in part by otherwise innocent bystander cells, augmented by inflammasomes.
Collapse
|
49
|
How Inflammation Impinges on NAFLD: A Role for Kupffer Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:984578. [PMID: 26090470 PMCID: PMC4450298 DOI: 10.1155/2015/984578] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/05/2015] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most prevalent cause of liver disease worldwide and afflicts adults and children as currently associated with obesity and insulin resistance. Even though lately some advances have been made to elucidate the mechanism and causes of the disease much remains unknown about NAFLD. The aim of this paper is to discuss the present knowledge regarding the pathogenesis of the disease aiming at the initial steps of NAFLD development, when inflammation impinges on fat liver deposition. At this stage, the Kupffer cells attain a prominent role. This knowledge becomes subsequently relevant for the development of future diagnostic, prevention, and therapeutic options for the management of NAFLD.
Collapse
|
50
|
Lambert WC, Lambert MW. Development of effective skin cancer treatment and prevention in xeroderma pigmentosum. Photochem Photobiol 2015; 91:475-83. [PMID: 25382223 DOI: 10.1111/php.12385] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare, recessively transmitted genetic disease characterized by increasingly marked dyspigmentation and xerosis (dryness) of sun-exposed tissues, especially skin. Skin cancers characteristically develop in sun-exposed sites at very much earlier ages than in the general population; these are often multiple and hundreds or even thousands may develop. Eight complementation groups have been identified. Seven groups, XP-A…G, are associated with defective genes encoding proteins involved in the nucleotide excision DNA repair (NER) pathway that recognizes and excises mutagenic changes induced in DNA by sunlight; the eighth group, XP-V, is associated with defective translesion synthesis (TLS) bypassing such alterations. The dyspigmentation, xerosis and eventually carcinogenesis in XP patients appear to be due to their cells' failure to respond properly to these mutagenic DNA alterations, leading to mutations in skin cells. A subset of cases, especially those in some complementation groups, may develop neurological degeneration, which may be severe. However, in most XP patients, in the past the multiple skin cancers have led to death at an early age due to either metastases or sepsis. Using either topical 5-fluorouracil or imiquimod, we have developed a protocol that effectively prevents most skin cancer development in XP patients.
Collapse
Affiliation(s)
- W Clark Lambert
- Departments of Pathology and Laboratory Medicine and of Dermatology, Rutgers University - New Jersey Medical School, Newark, NJ
| | | |
Collapse
|