1
|
Honkamäki L, Kulta O, Puistola P, Hopia K, Emeh P, Isosaari L, Mörö A, Narkilahti S. Hyaluronic Acid-Based 3D Bioprinted Hydrogel Structure for Directed Axonal Guidance and Modeling Innervation In Vitro. Adv Healthc Mater 2025; 14:e2402504. [PMID: 39502022 DOI: 10.1002/adhm.202402504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Indexed: 01/03/2025]
Abstract
Neurons form predefined connections and innervate target tissues through elongating axons, which are crucial for the development, maturation, and function of these tissues. However, innervation is often overlooked in tissue engineering (TE) applications. Here, multimaterial 3D bioprinting is used to develop a novel 3D axonal guidance structure in vitro. The approach uses the stiffness difference of acellular hyaluronic acid-based bioink printed as two alternating, parallel-aligned filaments. The structure has soft passages incorporated with guidance cues for axonal elongation while the stiff bioink acts as a structural support and contact guidance. The mechanical properties and viscosity differences of the bioinks are confirmed. Additionally, human pluripotent stem cell (hPSC) -derived neurons form a 3D neuronal network in the softer bioink supplemented with guidance cues whereas the stiffer restricts the network formation. Successful 3D multimaterial bioprinting of the axonal structure enables complete innervation by peripheral neurons via soft passages within 14 days of culture. This model provides a novel, stable, and long-term platform for studies of 3D innervation and axonal dynamics in health and disease.
Collapse
Affiliation(s)
- Laura Honkamäki
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Oskari Kulta
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Paula Puistola
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Karoliina Hopia
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Promise Emeh
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Lotta Isosaari
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Anni Mörö
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Susanna Narkilahti
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| |
Collapse
|
2
|
Shu F, Huang H, Xiao S, Xia Z, Zheng Y. Netrin-1 co-cross-linked hydrogel accelerates diabetic wound healing in situ by modulating macrophage heterogeneity and promoting angiogenesis. Bioact Mater 2024; 39:302-316. [PMID: 38827174 PMCID: PMC11143790 DOI: 10.1016/j.bioactmat.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 06/04/2024] Open
Abstract
Diabetic wounds, characterized by prolonged inflammation and impaired vascularization, are a serious complication of diabetes. This study aimed to design a gelatin methacrylate (GelMA) hydrogel for the sustained release of netrin-1 and evaluate its potential as a scaffold to promote diabetic wound healing. The results showed that netrin-1 was highly expressed during the inflammation and proliferation phases of normal wounds, whereas it synchronously exhibited aberrantly low expression in diabetic wounds. Neutralization of netrin-1 inhibited normal wound healing, and the topical application of netrin-1 accelerated diabetic wound healing. Mechanistic studies demonstrated that netrin-1 regulated macrophage heterogeneity via the A2bR/STAT/PPARγ signaling pathway and promoted the function of endothelial cells, thus accelerating diabetic wound healing. These data suggest that netrin-1 is a potential therapeutic target for diabetic wounds.
Collapse
Affiliation(s)
- Futing Shu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Hongchao Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People's Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
3
|
Díaz-Piña DA, Rivera-Ramírez N, García-López G, Díaz NF, Molina-Hernández A. Calcium and Neural Stem Cell Proliferation. Int J Mol Sci 2024; 25:4073. [PMID: 38612887 PMCID: PMC11012558 DOI: 10.3390/ijms25074073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.
Collapse
Affiliation(s)
- Dafne Astrid Díaz-Piña
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
- Facultad de Medicina, Circuito Exterior Universitario, Universidad Nacional Autónoma de México Universitario, Copilco Universidad, Coyoacán, Ciudad de México 04360, Mexico
| | - Nayeli Rivera-Ramírez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| |
Collapse
|
4
|
Staii C. Nonlinear Growth Dynamics of Neuronal Cells Cultured on Directional Surfaces. Biomimetics (Basel) 2024; 9:203. [PMID: 38667214 PMCID: PMC11048115 DOI: 10.3390/biomimetics9040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
During the development of the nervous system, neuronal cells extend axons and dendrites that form complex neuronal networks, which are essential for transmitting and processing information. Understanding the physical processes that underlie the formation of neuronal networks is essential for gaining a deeper insight into higher-order brain functions such as sensory processing, learning, and memory. In the process of creating networks, axons travel towards other recipient neurons, directed by a combination of internal and external cues that include genetic instructions, biochemical signals, as well as external mechanical and geometrical stimuli. Although there have been significant recent advances, the basic principles governing axonal growth, collective dynamics, and the development of neuronal networks remain poorly understood. In this paper, we present a detailed analysis of nonlinear dynamics for axonal growth on surfaces with periodic geometrical patterns. We show that axonal growth on these surfaces is described by nonlinear Langevin equations with speed-dependent deterministic terms and gaussian stochastic noise. This theoretical model yields a comprehensive description of axonal growth at both intermediate and long time scales (tens of hours after cell plating), and predicts key dynamical parameters, such as speed and angular correlation functions, axonal mean squared lengths, and diffusion (cell motility) coefficients. We use this model to perform simulations of axonal trajectories on the growth surfaces, in turn demonstrating very good agreement between simulated growth and the experimental results. These results provide important insights into the current understanding of the dynamical behavior of neurons, the self-wiring of the nervous system, as well as for designing innovative biomimetic neural network models.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Santos R, Lokmane L, Ozdemir D, Traoré C, Agesilas A, Hakibilen C, Lenkei Z, Zala D. Local glycolysis fuels actomyosin contraction during axonal retraction. J Cell Biol 2023; 222:e202206133. [PMID: 37902728 PMCID: PMC10616508 DOI: 10.1083/jcb.202206133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
In response to repulsive cues, axonal growth cones can quickly retract. This requires the prompt activity of contractile actomyosin, which is formed by the non-muscle myosin II (NMII) bound to actin filaments. NMII is a molecular motor that provides the necessary mechanical force at the expense of ATP. Here, we report that this process is energetically coupled to glycolysis and is independent of cellular ATP levels. Induction of axonal retraction requires simultaneous generation of ATP by glycolysis, as shown by chemical inhibition and genetic knock-down of GAPDH. Co-immunoprecipitation and proximal-ligation assay showed that actomyosin associates with ATP-generating glycolytic enzymes and that this association is strongly enhanced during retraction. Using microfluidics, we confirmed that the energetic coupling between glycolysis and actomyosin necessary for axonal retraction is localized to the growth cone and near axonal shaft. These results indicate a tight coupling between on-demand energy production by glycolysis and energy consumption by actomyosin contraction suggesting a function of glycolysis in axonal guidance.
Collapse
Affiliation(s)
- Renata Santos
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Institut des Sciences Biologiques, Centre national de la recherche scientifique, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l’Ecole Normale Supérieure, École Normale Supérieure, Centre national de la recherche scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Dersu Ozdemir
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Clément Traoré
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Annabelle Agesilas
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Coralie Hakibilen
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Zsolt Lenkei
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Diana Zala
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| |
Collapse
|
6
|
Staii C. Biased Random Walk Model of Neuronal Dynamics on Substrates with Periodic Geometrical Patterns. Biomimetics (Basel) 2023; 8:267. [PMID: 37366862 DOI: 10.3390/biomimetics8020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Neuronal networks are complex systems of interconnected neurons responsible for transmitting and processing information throughout the nervous system. The building blocks of neuronal networks consist of individual neurons, specialized cells that receive, process, and transmit electrical and chemical signals throughout the body. The formation of neuronal networks in the developing nervous system is a process of fundamental importance for understanding brain activity, including perception, memory, and cognition. To form networks, neuronal cells extend long processes called axons, which navigate toward other target neurons guided by both intrinsic and extrinsic factors, including genetic programming, chemical signaling, intercellular interactions, and mechanical and geometrical cues. Despite important recent advances, the basic mechanisms underlying collective neuron behavior and the formation of functional neuronal networks are not entirely understood. In this paper, we present a combined experimental and theoretical analysis of neuronal growth on surfaces with micropatterned periodic geometrical features. We demonstrate that the extension of axons on these surfaces is described by a biased random walk model, in which the surface geometry imparts a constant drift term to the axon, and the stochastic cues produce a random walk around the average growth direction. We show that the model predicts key parameters that describe axonal dynamics: diffusion (cell motility) coefficient, average growth velocity, and axonal mean squared length, and we compare these parameters with the results of experimental measurements. Our findings indicate that neuronal growth is governed by a contact-guidance mechanism, in which the axons respond to external geometrical cues by aligning their motion along the surface micropatterns. These results have a significant impact on developing novel neural network models, as well as biomimetic substrates, to stimulate nerve regeneration and repair after injury.
Collapse
Affiliation(s)
- Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
7
|
Matino L, Mariano A, Ausilio C, Garg R, Cohen-Karni T, Santoro F. Modulation of Early Stage Neuronal Outgrowth through Out-of-Plane Graphene. NANO LETTERS 2022; 22:8633-8640. [PMID: 36301701 DOI: 10.1021/acs.nanolett.2c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The correct wiring of a neural network requires neuron to integrate an incredible repertoire of cues found in their extracellular environment. The astonishing efficiency of this process plays a pivotal role in the correct wiring of the brain during development and axon regeneration. Biologically inspired micro- and nanostructured substrates have been shown to regulate axonal outgrowth. In parallel, several studies investigated graphene's potential as a conductive neural interface, able to enhance cell adhesion, neurite sprouting and outgrowth. Here, we engineered a 3D single- to few-layer fuzzy graphene morphology (3DFG), 3DFG on a collapsed Si nanowire (SiNW) mesh template (NT-3DFGc), and 3DFG on a noncollapsed SiNW mesh template (NT-3DFGnc) as neural-instructive materials. The micrometric protruding features of the NWs templates dictated neuronal growth cone establishment, as well as influencing axon elongation and branching. Furthermore, neurons-to-graphene coupling was investigated with comprehensive view of integrin-mediated contact adhesion points and plasma membrane curvature processes.
Collapse
Affiliation(s)
- Laura Matino
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e delle Produzioni Industriali, DICMAPI, Università "Federico II", Naples 80125, Italy
| | - Anna Mariano
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Chiara Ausilio
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tzahi Cohen-Karni
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Francesca Santoro
- Tissue Electronics, Istituto Italiano di Tecnologia, Naples 80125, Italy
- Faculty of Electrical Engineering and IT, RWTH Aachen 52074, Germany
- Institute for Biological Information Processing-Bioelectronics, IBI-3, Forschungszentrum Juelich 52428, Germany
| |
Collapse
|
8
|
Xiao Z, Brunel N, Tian C, Guo J, Yang Z, Cui X. Constrained Nonlinear and Mixed Effects Integral Differential Equation Models for Dynamic Cell Polarity Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:847671. [PMID: 35693156 PMCID: PMC9175011 DOI: 10.3389/fpls.2022.847671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Polar cell growth is a process that couples the establishment of cell polarity with growth and is extremely important in the growth, development, and reproduction of eukaryotic organisms, such as pollen tube growth during plant fertilization and neuronal axon growth in animals. Pollen tube growth requires dynamic but polarized distribution and activation of a signaling protein named ROP1 to the plasma membrane via three processes: positive feedback and negative feedback regulation of ROP1 activation and its lateral diffusion along the plasma membrane. In this paper, we introduce a mechanistic integro-differential equation (IDE) along with constrained semiparametric regression to quantitatively describe the interplay among these three processes that lead to the polar distribution of active ROP1 at a steady state. Moreover, we introduce a population variability by a constrained nonlinear mixed model. Our analysis of ROP1 activity distributions from multiple pollen tubes revealed that the equilibrium between the positive and negative feedbacks for pollen tubes with similar shapes are remarkably stable, permitting us to infer an inherent quantitative relationship between the positive and negative feedback loops that defines the tip growth of pollen tubes and the polarity of tip growth.
Collapse
Affiliation(s)
- Zhen Xiao
- Department of Statistics, University of California, Riverside, Riverside, CA, United States
| | - Nicolas Brunel
- Laboratoire de Mathématiques et Modélisation d'Evry, UMR CNRS 8071, ENSIIE, Évry-Courcouronnes, France
| | - Chenwei Tian
- Department of Statistics, University of California, Riverside, Riverside, CA, United States
| | - Jingzhe Guo
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
9
|
Miles L, Powell J, Kozak C, Song Y. Mechanosensitive Ion Channels, Axonal Growth, and Regeneration. Neuroscientist 2022:10738584221088575. [PMID: 35414308 PMCID: PMC9556659 DOI: 10.1177/10738584221088575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cells sense and respond to mechanical stimuli by converting those stimuli into biological signals, a process known as mechanotransduction. Mechanotransduction is essential in diverse cellular functions, including tissue development, touch sensitivity, pain, and neuronal pathfinding. In the search for key players of mechanotransduction, several families of ion channels were identified as being mechanosensitive and were demonstrated to be activated directly by mechanical forces in both the membrane bilayer and the cytoskeleton. More recently, Piezo ion channels were discovered as a bona fide mechanosensitive ion channel, and its characterization led to a cascade of research that revealed the diverse functions of Piezo proteins and, in particular, their involvement in neuronal repair.
Collapse
Affiliation(s)
- Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Casey Kozak
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuanquan Song
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Feedback-controlled dynamics of neuronal cells on directional surfaces. Biophys J 2022; 121:769-781. [PMID: 35101418 PMCID: PMC8943704 DOI: 10.1016/j.bpj.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
The formation of neuronal networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body and axonal navigation toward target neurons. Axonal growth is guided by the interactions between the tip of the axon (growth cone) and its extracellular environmental cues, which include intercellular interactions, the biochemical landscape around the neuron, and the mechanical and geometrical features of the growth substrate. Here, we present a comprehensive experimental and theoretical analysis of axonal growth for neurons cultured on micropatterned polydimethylsiloxane (PDMS) surfaces. We demonstrate that closed-loop feedback is an essential component of axonal dynamics on these surfaces: the growth cone continuously measures environmental cues and adjusts its motion in response to external geometrical features. We show that this model captures all the characteristics of axonal dynamics on PDMS surfaces for both untreated and chemically modified neurons. We combine experimental data with theoretical analysis to measure key parameters that describe axonal dynamics: diffusion (cell motility) coefficients, speed and angular distributions, and cell-substrate interactions. The experiments performed on neurons treated with Taxol (inhibitor of microtubule dynamics) and Y-27632 (disruptor of actin filaments) indicate that the internal dynamics of microtubules and actin filaments plays a critical role for the proper function of the feedback mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrate to guide neuronal growth and promote nerve repair.
Collapse
|
11
|
Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021; 6:4141-4160. [PMID: 33997498 PMCID: PMC8099454 DOI: 10.1016/j.bioactmat.2021.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
12
|
Sunnerberg JP, Descoteaux M, Kaplan DL, Staii C. Axonal growth on surfaces with periodic geometrical patterns. PLoS One 2021; 16:e0257659. [PMID: 34555083 PMCID: PMC8459970 DOI: 10.1371/journal.pone.0257659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022] Open
Abstract
The formation of neuron networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system, and for creating novel bioinspired materials for tissue engineering and neuronal repair. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body towards target neurons. Axonal growth is guided by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical features of the growth substrate. The dynamics of the growing axon and its biomechanical interactions with the growing substrate remains poorly understood. In this paper, we develop a model of axonal motility which incorporates mechanical interactions between the axon and the growth substrate. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on surfaces with micropatterned periodic geometrical features: diffusion (cell motility) coefficients, speed and angular distributions, and axon bending rigidities. Experiments performed on neurons treated Taxol (inhibitor of microtubule dynamics) and Blebbistatin (disruptor of actin filaments) show that the dynamics of the cytoskeleton plays a critical role in the axon steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrates that promote neuronal growth and nerve repair.
Collapse
Affiliation(s)
- Jacob P. Sunnerberg
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, United States of America
| | - Marc Descoteaux
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yurchenko I, Farwell M, Brady DD, Staii C. Neuronal Growth and Formation of Neuron Networks on Directional Surfaces. Biomimetics (Basel) 2021; 6:biomimetics6020041. [PMID: 34208649 PMCID: PMC8293217 DOI: 10.3390/biomimetics6020041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
The formation of neuron networks is a process of fundamental importance for understanding the development of the nervous system and for creating biomimetic devices for tissue engineering and neural repair. The basic process that controls the network formation is the growth of an axon from the cell body and its extension towards target neurons. Axonal growth is directed by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical properties of the growth substrate. Despite significant recent progress, the steering of the growing axon remains poorly understood. In this paper, we develop a model of axonal motility, which incorporates substrate-geometry sensing. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on micropatterned surfaces: diffusion (cell motility) coefficients, speed and angular distributions, and cell-substrate interactions. Experiments performed on neurons treated with inhibitors for microtubules (Taxol) and actin filaments (Y-27632) indicate that cytoskeletal dynamics play a critical role in the steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which geometrical patterns impart high traction forces to the growth cone. These results have important implications for bioengineering novel substrates to guide neuronal growth and promote nerve repair.
Collapse
|
14
|
Zhou X, Lu J, Zhang Y, Guo J, Lin W, Van Norman JM, Qin Y, Zhu X, Yang Z. Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Dev Cell 2021; 56:1030-1042.e6. [PMID: 33756107 DOI: 10.1016/j.devcel.2021.02.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/22/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Invasive or penetrative growth is critical for developmental and reproductive processes (e.g., pollen tube penetration of pistils) and disease progression (e.g., cancer metastasis and fungal hyphae invasion). The invading or penetrating cells experience drastic changes in mechanical pressure from the surroundings and must balance growth with cell integrity. Here, we show that Arabidopsis pollen tubes sense and/or respond to mechanical changes via a cell-surface receptor kinase Buddha's Paper Seal 1 (BUPS1) while emerging from compressing female tissues. BUPS1-defective pollen tubes fail to maintain cell integrity after emergence from these tissues. The mechano-transduction function of BUPS1 is established by using a microfluidic channel device mimicking the mechanical features of the in vivo growth path. BUPS1-based mechano-transduction activates Rho-like GTPase from Plant 1 (ROP1) GTPase to promote exocytosis that facilitates secretion of BUPS1's ligands for mechanical signal amplification and cell wall rigidification in pollen tubes. These findings uncover a membrane receptor-based mechano-transduction system for cells to cope with the physical challenges during invasive or penetrative growth.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jun Lu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China; National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, People's Republic of China
| | - Yuqin Zhang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingzhe Guo
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Wenwei Lin
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyue Zhu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Abstract
The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
16
|
Cohen S, Sazan H, Kenigsberg A, Schori H, Piperno S, Shpaisman H, Shefi O. Large-scale acoustic-driven neuronal patterning and directed outgrowth. Sci Rep 2020; 10:4932. [PMID: 32188875 PMCID: PMC7080736 DOI: 10.1038/s41598-020-60748-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/31/2020] [Indexed: 11/09/2022] Open
Abstract
Acoustic manipulation is an emerging non-invasive method enabling precise spatial control of cells in their native environment. Applying this method for organizing neurons is invaluable for neural tissue engineering applications. Here, we used surface and bulk standing acoustic waves for large-scale patterning of Dorsal Root Ganglia neurons and PC12 cells forming neuronal cluster networks, organized biomimetically. We showed that by changing parameters such as voltage intensity or cell concentration we were able to affect cluster properties. We examined the effects of acoustic arrangement on cells atop 3D hydrogels for up to 6 days and showed that assembled cells spontaneously grew branches in a directed manner towards adjacent clusters, infiltrating the matrix. These findings have great relevance for tissue engineering applications as well as for mimicking architectures and properties of native tissues.
Collapse
Affiliation(s)
- Sharon Cohen
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Sazan
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Avraham Kenigsberg
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Hadas Schori
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Silvia Piperno
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Hagay Shpaisman
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
- Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Orit Shefi
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel.
- Bar-Ilan Institute of Nanotechnologies and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
17
|
Basso JMV, Yurchenko I, Wiens MR, Staii C. Neuron dynamics on directional surfaces. SOFT MATTER 2019; 15:9931-9941. [PMID: 31764921 DOI: 10.1039/c9sm01769k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Geometrical features play a very important role in neuronal growth and the formation of functional connections between neuronal cells. Here, we analyze the dynamics of axonal growth for neuronal cells cultured on micro-patterned polydimethylsiloxane surfaces. We utilize fluorescence microscopy to image axons, quantify their dynamics, and demonstrate that periodic geometrical patterns impart strong directional bias to neuronal growth. We quantify axonal alignment and present a general stochastic approach that quantitatively describes the dynamics of the growth cones. Neuronal growth is described by a general phenomenological model, based on a simple automatic controller with a closed-loop feedback system. We demonstrate that axonal alignment on these substrates is determined by the surface geometry, and it is quantified by the deterministic part of the stochastic (Langevin and Fokker-Planck) equations. We also show that the axonal alignment with the surface patterns is greatly suppressed by the neuron treatment with Blebbistatin, a chemical compound that inhibits the activity of myosin II. These results give new insight into the role played by the molecular motors and external geometrical cues in guiding axonal growth, and could lead to novel approaches for bioengineering neuronal regeneration platforms.
Collapse
Affiliation(s)
- Joao Marcos Vensi Basso
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA.
| | | | | | | |
Collapse
|
18
|
Kang DS, Kim IS, Baik JH, Kim D, Cocco L, Suh PG. The function of PLCγ1 in developing mouse mDA system. Adv Biol Regul 2019; 75:100654. [PMID: 31558431 DOI: 10.1016/j.jbior.2019.100654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023]
Abstract
During neural development, growing neuronal cells consistently sense and communicate with their surroundings through the use of signaling molecules. In this process, spatiotemporally well-coordinated intracellular signaling is a prerequisite for proper neuronal network formation. Thus, intense interest has focused on investigating the signaling mechanisms in neuronal structure formation that link the activation of receptors to the control of cell shape and motility. Recent studies suggest that Phospholipase C gamma1 (PLCγ1), a signal transducer, plays key roles in nervous system development by mediating specific ligand-receptor systems. In this overview of the most recent advances in the field, we discuss the mechanisms by which extracellular stimuli trigger PLCγ1 signaling and, the role PLCγ1 in nervous system development.
Collapse
Affiliation(s)
- Du-Seock Kang
- College of Life Science & Bioengineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea.
| | - Il Shin Kim
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology, South Korea.
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, Korea University, Seoul, 02841, South Korea.
| | - Daesoo Kim
- College of Life Science & Bioengineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea.
| | - Lucio Cocco
- Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, South Korea; Korea Brain Research Institute, Daegu, 41062, South Korea.
| |
Collapse
|
19
|
Yurchenko OV, Savelieva AV, Kolotuchina NK, Voronezhskaya EE, Dyachuk VA. Peripheral sensory neurons govern development of the nervous system in bivalve larvae. EvoDevo 2019; 10:22. [PMID: 31528326 PMCID: PMC6743156 DOI: 10.1186/s13227-019-0133-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Recent findings regarding early lophotrochozoan development have altered the conventional model of neurogenesis and revealed that peripheral sensory elements play a key role in the initial organization of the larval nervous system. Here, we describe the main neurogenetic events in bivalve mollusks in comparison with other Lophotrochozoa, emphasizing a novel role for early neurons in establishing larval nervous systems and speculating about the morphogenetic function of the apical organ. We demonstrate that during bivalve development, peripheral sensory neurons utilizing various transmitters differentiate before the apical organ emerges. The first neurons and their neurites serve as a scaffold for the development of the nervous system. During veliger stage, cerebral, pleural, and visceral ganglia form along the lateral (visceral) nerve cords in anterior-to-posterior axis. The pedal ganglia and corresponding ventral (pedal) nerve cords develop much later, after larval settlement and metamorphosis. Pharmacological abolishment of the serotonin gradient within the larval body disrupts the navigation of "pioneer" axons resulting in malformation of the whole nervous system architecture. Comparative morphological data on neurogenetic events in bivalve mollusks shed new light on the origin of the nervous system, mechanisms of early axon navigation, and sequence of the tetraneurous nervous system formation. Furthermore, this information improves our understanding of the basic nervous system architecture in larval Bivalvia and Mollusca.
Collapse
Affiliation(s)
- Olga V. Yurchenko
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| | - Anna V. Savelieva
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| | - Natalia K. Kolotuchina
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| | - Elena E. Voronezhskaya
- N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119991 Russia
| | - Vyacheslav A. Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Nanophotonics and Metamaterials, ITMO University, St. Petersburg, Russia
| |
Collapse
|
20
|
Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019; 13:2077-2100. [PMID: 31350868 DOI: 10.1002/term.2945] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Sunnerberg JP, Moore P, Spedden E, Kaplan DL, Staii C. Variations of Elastic Modulus and Cell Volume with Temperature for Cortical Neurons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10965-10976. [PMID: 31380651 PMCID: PMC7306228 DOI: 10.1021/acs.langmuir.9b01651] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neurons change their growth dynamics and mechanical properties in response to external stimuli such as stiffness of the local microenvironment, ambient temperature, and biochemical or geometrical guidance cues. Here we use combined atomic force microscopy (AFM) and fluorescence microscopy experiments to investigate the relationship between external temperature, soma volume, and elastic modulus for cortical neurons. We measure how changes in ambient temperature affect the volume and the mechanical properties of neuronal cells at both the bulk (elastic modulus) and local (elasticity maps) levels. The experimental data demonstrate that both the volume and the elastic modulus of the neuron soma vary with changes in temperature. Our results show a decrease by a factor of 2 in the soma elastic modulus as the ambient temperature increases from room (25 °C) to physiological (37 °C) temperature, while the volume of the soma increases by a factor of 1.3 during the same temperature sweep. Using high-resolution AFM force mapping, we measure the temperature-induced variations within different regions of the elasticity maps (low and high values of elastic modulus) and correlate these variations with the dynamics of cytoskeleton components and molecular motors. We quantify the change in soma volume with temperature and propose a simple theoretical model that relates this change with variations in soma elastic modulus. These results have significant implications for understanding neuronal development and functions, as ambient temperature, cytoskeletal dynamics, and cellular volume may change with variations in physiological conditions, for example, during tissue compression and infections in vivo as well as during cell manipulation and tissue regeneration ex vivo.
Collapse
|
22
|
Sensory Axon Growth Requires Spatiotemporal Integration of CaSR and TrkB Signaling. J Neurosci 2019; 39:5842-5860. [PMID: 31123102 DOI: 10.1523/jneurosci.0027-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Neural circuit development involves the coordinated growth and guidance of axons. During this process, axons encounter many different cues, but how these cues are integrated and translated into growth is poorly understood. In this study, we report that receptor signaling does not follow a linear path but changes dependent on developmental stage and coreceptors involved. Using developing chicken embryos of both sexes, our data show that calcium-sensing receptor (CaSR), a G-protein-coupled receptor important for regulating calcium homeostasis, regulates neurite growth in two distinct ways. First, when signaling in isolation, CaSR promotes growth through the PI3-kinase-Akt pathway. At later developmental stages, CaSR enhances tropomyosin receptor kinase B (TrkB)/BDNF-mediated neurite growth. This enhancement is facilitated through a switch in the signaling cascade downstream of CaSR (i.e., from the PI3-kinase-Akt pathway to activation of GSK3α Tyr279). TrkB and CaSR colocalize within late endosomes, cotraffic and coactivate GSK3, which serves as a shared signaling node for both receptors. Our study provides evidence that two unrelated receptors can integrate their individual signaling cascades toward a nonadditive effect and thus control neurite growth during development.SIGNIFICANCE STATEMENT This work highlights the effect of receptor coactivation and signal integration in a developmental setting. During embryonic development, neurites grow toward their targets guided by cues in the extracellular environment. These cues are sensed by receptors at the surface that trigger intracellular signaling events modulating the cytoskeleton. Emerging evidence suggests that the effects of guidance cues are diversified, therefore expanding the number of responses. Here, we show that two unrelated receptors can change the downstream signaling cascade and regulate neuronal growth through a shared signaling node. In addition to unraveling a novel signaling pathway in neurite growth, this research stresses the importance of receptor coactivation and signal integration during development of the nervous system.
Collapse
|
23
|
Yurchenko I, Vensi Basso JM, Syrotenko VS, Staii C. Anomalous diffusion for neuronal growth on surfaces with controlled geometries. PLoS One 2019; 14:e0216181. [PMID: 31059532 PMCID: PMC6502317 DOI: 10.1371/journal.pone.0216181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
Geometrical cues are known to play a very important role in neuronal growth and the formation of neuronal networks. Here, we present a detailed analysis of axonal growth and dynamics for neuronal cells cultured on patterned polydimethylsiloxane surfaces. We use fluorescence microscopy to image neurons, quantify their dynamics, and demonstrate that the substrate geometrical patterns cause strong directional alignment of axons. We quantify axonal growth and report a general stochastic approach that quantitatively describes the motion of growth cones. The growth cone dynamics is described by Langevin and Fokker-Planck equations with both deterministic and stochastic contributions. We show that the deterministic terms contain both the angular and speed dependence of axonal growth, and that these two contributions can be separated. Growth alignment is determined by surface geometry, and it is quantified by the deterministic part of the Langevin equation. We combine experimental data with theoretical analysis to measure the key parameters of the growth cone motion: speed and angular distributions, correlation functions, diffusion coefficients, characteristics speeds and damping coefficients. We demonstrate that axonal dynamics displays a cross-over from Brownian motion (Ornstein-Uhlenbeck process) at earlier times to anomalous dynamics (superdiffusion) at later times. The superdiffusive regime is characterized by non-Gaussian speed distributions and power law dependence of the axonal mean square length and the velocity correlation functions. These results demonstrate the importance of geometrical cues in guiding axonal growth, and could lead to new methods for bioengineering novel substrates for controlling neuronal growth and regeneration.
Collapse
Affiliation(s)
- Ilya Yurchenko
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Joao Marcos Vensi Basso
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Vladyslav Serhiiovych Syrotenko
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Cristian Staii
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
24
|
Vensi Basso JM, Yurchenko I, Simon M, Rizzo DJ, Staii C. Role of geometrical cues in neuronal growth. Phys Rev E 2019; 99:022408. [PMID: 30934335 DOI: 10.1103/physreve.99.022408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 11/07/2022]
Abstract
Geometrical cues play an essential role in neuronal growth. Here, we quantify axonal growth on surfaces with controlled geometries and report a general stochastic approach that quantitatively describes the motion of growth cones. We show that axons display a strong directional alignment on micropatterned surfaces when the periodicity of the patterns matches the dimension of the growth cone. The growth cone dynamics on surfaces with uniform geometry is described by a linear Langevin equation with both deterministic and stochastic contributions. In contrast, axonal growth on surfaces with periodic patterns is characterized by a system of two generalized Langevin equations with both linear and quadratic velocity dependence and stochastic noise. We combine experimental data with theoretical analysis to measure the key parameters of the growth cone motion: angular distributions, correlation functions, diffusion coefficients, characteristics speeds, and damping coefficients. We demonstrate that axonal dynamics displays a crossover from an Ornstein-Uhlenbeck process to a nonlinear stochastic regime when the geometrical periodicity of the pattern approaches the linear dimension of the growth cone. Growth alignment is determined by surface geometry, which is fully quantified by the deterministic part of the Langevin equation. These results provide insight into the role of curvature sensing proteins and their interactions with geometrical cues.
Collapse
Affiliation(s)
- Joao Marcos Vensi Basso
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Ilya Yurchenko
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Marc Simon
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Daniel J Rizzo
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | - Cristian Staii
- Department of Physics and Astronomy, Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| |
Collapse
|
25
|
Han B, Yang N, Pu H, Wang T. Quantitative Proteomics and Cytology of Rice Pollen Sterol-Rich Membrane Domains Reveals Pre-established Cell Polarity Cues in Mature Pollen. J Proteome Res 2018; 17:1532-1546. [PMID: 29508613 DOI: 10.1021/acs.jproteome.7b00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bing Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Pu
- Bruker Daltonics Inc. (China), Beijing 100081, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Neural electrical activity and neural network growth. Neural Netw 2018; 101:15-24. [PMID: 29475142 DOI: 10.1016/j.neunet.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 01/19/2023]
Abstract
The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization.
Collapse
|
27
|
Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y. Excitable Signal Transduction Networks in Directed Cell Migration. Annu Rev Cell Dev Biol 2017; 33:103-125. [PMID: 28793794 DOI: 10.1146/annurev-cellbio-100616-060739] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although directed migration of eukaryotic cells may have evolved to escape nutrient depletion, it has been adopted for an extensive range of physiological events during development and in the adult organism. The subversion of these movements results in disease, such as cancer. Mechanisms of propulsion and sensing are extremely diverse, but most eukaryotic cells move by extending actin-filled protrusions termed macropinosomes, pseudopodia, or lamellipodia or by extension of blebs. In addition to motility, directed migration involves polarity and directional sensing. The hundreds of gene products involved in these processes are organized into networks of parallel and interconnected pathways. Many of these components are activated or inhibited coordinately with stimulation and on each spontaneously extended protrusion. Moreover, these networks display hallmarks of excitability, including all-or-nothing responsiveness and wave propagation. Cellular protrusions result from signal transduction waves that propagate outwardly from an origin and drive cytoskeletal activity. The range of the propagating waves and hence the size of the protrusions can be altered by lowering or raising the threshold for network activation, with larger and wider protrusions favoring gliding or oscillatory behavior over amoeboid migration. Here, we evaluate the variety of models of excitable networks controlling directed migration and outline critical tests. We also discuss the utility of this emerging view in producing cell migration and in integrating the various extrinsic cues that direct migration.
Collapse
Affiliation(s)
- Peter N Devreotes
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Sayak Bhattacharya
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marc Edwards
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Pablo A Iglesias
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205; .,Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | - Thomas Lampert
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| | - Yuchuan Miao
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205;
| |
Collapse
|
28
|
Benga A, Zor F, Korkmaz A, Marinescu B, Gorantla V. The neurochemistry of peripheral nerve regeneration. Indian J Plast Surg 2017; 50:5-15. [PMID: 28615804 PMCID: PMC5469235 DOI: 10.4103/ijps.ijps_14_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerve injuries (PNIs) can be most disabling, resulting in the loss of sensitivity, motor function and autonomic control in the involved anatomical segment. Although injured peripheral nerves are capable of regeneration, sub-optimal recovery of function is seen even with the best reconstruction. Distal axonal degeneration is an unavoidable consequence of PNI. There are currently few strategies aimed to maintain the distal pathway and/or target fidelity during regeneration across the zone of injury. The current state of the art approaches have been focussed on the site of nerve injury and not on their distal muscular targets or representative proximal cell bodies or central cortical regions. This is a comprehensive literature review of the neurochemistry of peripheral nerve regeneration and a state of the art analysis of experimental compounds (inorganic and organic agents) with demonstrated neurotherapeutic efficacy in improving cell body and neuron survival, reducing scar formation and maximising overall nerve regeneration.
Collapse
Affiliation(s)
- Andreea Benga
- Department of Plastic Surgery, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - Fatih Zor
- Department of Plastic and Reconstructive Surgery, School of Medicine, Gülhane Military Medical Academy, Ankara, Turkey
| | - Ahmet Korkmaz
- Department of Physiology, School of Medicine, Gülhane Military Medical Academy, Ankara, Turkey
| | - Bogdan Marinescu
- Department of Plastic Surgery, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - Vijay Gorantla
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Wen X, Jin T, Xu X. Imaging G Protein-coupled Receptor-mediated Chemotaxis and its Signaling Events in Neutrophil-like HL60 Cells. J Vis Exp 2016. [PMID: 27684322 PMCID: PMC5092018 DOI: 10.3791/54511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Eukaryotic cells sense and move towards a chemoattractant gradient, a cellular process referred as chemotaxis. Chemotaxis plays critical roles in many physiological processes, such as embryogenesis, neuron patterning, metastasis of cancer cells, recruitment of neutrophils to sites of inflammation, and the development of the model organism Dictyostelium discoideum. Eukaryotic cells sense chemo-attractants using G protein-coupled receptors. Visual chemotaxis assays are essential for a better understanding of how eukaryotic cells control chemoattractant-mediated directional cell migration. Here, we describe detailed methods for: 1) real-time, high-resolution monitoring of multiple chemotaxis assays, and 2) simultaneously visualizing the chemoattractant gradient and the spatiotemporal dynamics of signaling events in neutrophil-like HL60 cells.
Collapse
Affiliation(s)
- Xi Wen
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health;
| |
Collapse
|
30
|
Abstract
Membrane lipid rafts (i.e., cholesterol/sphingolipids domains) exhibit functional roles in both healthy and pathological states of the nervous system. However, due to their highly dynamic nature, it remains a challenge to characterize the fundamental aspects of lipid rafts that are important for specific neuronal processes. An experimental approach is presented here that allows for the interfacing of living neurons with an experimentally accessible model membrane where lipid order in cellular rafts can be reproducibly mimicked. It is demonstrated that coexisting lipid microdomains in model membranes can regulate axonal guidance and establish stable presynaptic contacts when interfaced with neurons in vitro. Experimental evidence is provided where specific functional groups and lateral organizations are favored by neurons in establishing synaptic connections. The model membrane platform presented in this work provides an accessible and direct means to investigate how lipid rafts regulate synapse formation. This experimental platform can similarly be extended to explore a variety of other cellular events where lipid lateral organization is believed to be important.
Collapse
Affiliation(s)
- C. Madwar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - G. Gopalakrishnan
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - R. Bruce Lennox
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
31
|
Taylor L, Arnér K, Kolewe M, Pritchard C, Hendy G, Langer R, Ghosh F. Seeing through the interface: poly(ε-Caprolactone) surface modification of poly(glycerol-co-sebacic acid) membranes in adult porcine retinal explants. J Tissue Eng Regen Med 2016; 11:2349-2358. [PMID: 27098673 DOI: 10.1002/term.2135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Linnéa Taylor
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Karin Arnér
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| | - Martin Kolewe
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher Pritchard
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gillian Hendy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fredrik Ghosh
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden
| |
Collapse
|
32
|
Turney SG, Ahmed M, Chandrasekar I, Wysolmerski RB, Goeckeler ZM, Rioux RM, Whitesides GM, Bridgman PC. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance. Mol Biol Cell 2016; 27:500-17. [PMID: 26631553 PMCID: PMC4751601 DOI: 10.1091/mbc.e15-09-0636] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/19/2023] Open
Abstract
Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion-cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation.
Collapse
Affiliation(s)
- Stephen G Turney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Mostafa Ahmed
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Indra Chandrasekar
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Robert B Wysolmerski
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Zoe M Goeckeler
- Department of Neurobiology and Anatomy, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Robert M Rioux
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Paul C Bridgman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
33
|
Kang DS, Yang YR, Lee C, Kim S, Ryu SH, Suh PG. Roles of phosphoinositide-specific phospholipase Cγ1 in brain development. Adv Biol Regul 2016; 60:167-173. [PMID: 26588873 DOI: 10.1016/j.jbior.2015.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Over the past decade, converging evidence suggests that PLCγ1 signaling has key roles in controlling neural development steps. PLCγ1 functions as a signal transducer that converts an extracellular stimulus into intracellular signals by generating second messengers such as DAG and IP3. DAG functions as an activator of either PKC or transient receptor potential cation channels (TRPCs), while IP3 induces the calcium release from intracellular calcium stores. These second messengers regulate the morphological change of neuron, such as neurite outgrowth, migration, axon pathfinding, and synapse formation. These morphological changes depend on finely tuned calcium signaling following receptor tyrosine kinase-mediated PLCγ1 signaling. Thus, deregulation of PLCγ1 signaling causes various abnormalities of neuronal development and it may be associated with diverse neurological disorders. Herein, we discuss the current understanding of the PLCγ1 signaling pathway in neural development and provide recent advances of how PLCγ1 signaling is involved in the formation of neuronal processes for functionally faithful brain development.
Collapse
Affiliation(s)
- Du-Seock Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Yong Ryoul Yang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Cheol Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - SaetByeol Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
34
|
Spedden E, Wiens MR, Demirel MC, Staii C. Effects of surface asymmetry on neuronal growth. PLoS One 2014; 9:e106709. [PMID: 25184796 PMCID: PMC4153665 DOI: 10.1371/journal.pone.0106709] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Detailed knowledge of how the surface physical properties, such as mechanics, topography and texture influence axonal outgrowth and guidance is essential for understanding the processes that control neuron development, the formation of functional neuronal connections and nerve regeneration. Here we synthesize asymmetric surfaces with well-controlled topography and texture and perform a systematic experimental and theoretical investigation of axonal outgrowth on these substrates. We demonstrate unidirectional axonal bias imparted by the surface ratchet-based topography and quantify the topographical guidance cues that control neuronal growth. We describe the growth cone dynamics using a general stochastic model (Fokker-Planck formalism) and use this model to extract two key dynamical parameters: diffusion (cell motility) coefficient and asymmetric drift coefficient. The drift coefficient is identified with the torque caused by the asymmetric ratchet topography. We relate the observed directional bias in axonal outgrowth to cellular contact guidance behavior, which results in an increase in the cell-surface coupling with increased surface anisotropy. We also demonstrate that the disruption of cytoskeletal dynamics through application of Taxol (stabilizer of microtubules) and Blebbistatin (inhibitor of myosin II activity) greatly reduces the directional bias imparted by these asymmetric surfaces. These results provide new insight into the role played by topographical cues in neuronal growth and could lead to new methods for stimulating neuronal regeneration and the engineering of artificial neuronal tissue.
Collapse
Affiliation(s)
- Elise Spedden
- Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Matthew R. Wiens
- Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
| | - Melik C. Demirel
- Materials Research Institute and Department of Engineering Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Cristian Staii
- Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
35
|
Calcium signaling in axon guidance. Trends Neurosci 2014; 37:424-32. [DOI: 10.1016/j.tins.2014.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 01/22/2023]
|
36
|
Treinys R, Kaselis A, Jover E, Bagnard D, Šatkauskas S. R-type calcium channels are crucial for semaphorin 3A-induced DRG axon growth cone collapse. PLoS One 2014; 9:e102357. [PMID: 25032951 PMCID: PMC4102519 DOI: 10.1371/journal.pone.0102357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/18/2014] [Indexed: 12/20/2022] Open
Abstract
Semaphorin 3A (Sema3A) is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels.
Collapse
Affiliation(s)
- Rimantas Treinys
- Biophysical Research Group, Biology department, Vytautas Magnus University, Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Andrius Kaselis
- Biophysical Research Group, Biology department, Vytautas Magnus University, Kaunas, Lithuania
| | - Emmanuel Jover
- INCI – UPR-CNRS 3212, Neurotransmission et sécrétion neuroendocrine, Strasbourg, France
| | - Dominique Bagnard
- INSERM U1109, MN3t lab, Labex Medalis, University of Strasbourg, Strasbourg, France
| | - Saulius Šatkauskas
- Biophysical Research Group, Biology department, Vytautas Magnus University, Kaunas, Lithuania
- * E-mail:
| |
Collapse
|
37
|
Su Y, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) promotes cell migration and adhesion via focal adhesion kinase. J Surg Res 2014; 189:222-31. [PMID: 24703506 DOI: 10.1016/j.jss.2014.02.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/29/2013] [Accepted: 02/27/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell migration and adhesion are essential in intestinal epithelial wound healing and recovery from injury. Focal adhesion kinase (FAK) plays an important role in cell-extracellular matrix signal transduction. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) promotes intestinal epithelial cell (IEC) migration and adhesion in vitro. The present study was designed to determine whether FAK is involved in HB-EGF-induced IEC migration and adhesion. MATERIALS AND METHODS A scrape wound healing model of rat IECs was used to examine the effect of HB-EGF on FAK-dependent cell migration in vitro. Immunofluorescence and Western blot analyses were performed to evaluate the effect of HB-EGF on the expression of phosphorylated FAK (p-FAK). Cell adhesion assays were performed to determine the role of FAK in HB-EGF-induced cell adhesion on fibronectin (FN). RESULTS HB-EGF significantly increased healing after scrape wounding, an effect that was reversed in the presence of an FAK inhibitor 14 (both with P < 0.05). HB-EGF increased p-FAK expression and induced p-FAK redistribution and actin reorganization in migrating rat IECs. Cell adhesion and spreading on FN were significantly increased by HB-EGF (P < 0.05). FAK inhibitor 14 significantly inhibited both intrinsic and HB-EGF-induced cell adhesion and spreading on FN (both with P < 0.05). CONCLUSIONS FAK phosphorylation and FAK-mediated signal transduction play essential roles in HB-EGF-mediated IEC migration and adhesion.
Collapse
Affiliation(s)
- Yanwei Su
- Department of Cardiovascular and Respiratory Medicine, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Pediatric Surgery, Nationwide Children's Hospital, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Gail E Besner
- Department of Pediatric Surgery, Nationwide Children's Hospital, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
38
|
Elsayed M, Merkel OM. Nanoimprinting of topographical and 3D cell culture scaffolds. Nanomedicine (Lond) 2014; 9:349-66. [DOI: 10.2217/nnm.13.200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extracellular matrix exhibits several nanostructures such as fibers, filaments, nanopores and ridges that can be mimicked by topographical and 3D substrates for cell and tissue cultures for an environment closer to in vivo conditions. This review summarizes and discusses a growing number of reports employing nanoimprint lithography to obtain such scaffolds. The different nanoimprint lithography methods as well as their advantages and disadvantages are described and special attention is paid to cell culture applications. We discuss the impact of materials, nanotopography, size, geometry, fabrication method, and cell type on growth guidance and differentiation. We present examples of cell guidance, inhibition of cell growth, cell pinning and engineering of 3D cell sheets or spheroids. As current applications are limited and not systematically compared for various cell types, this review only suggests promising substrates for particular applications. Future possible directions are also proposed in which this field may proceed.
Collapse
Affiliation(s)
- Maha Elsayed
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Olivia M Merkel
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
39
|
Jang Y, Lee MH, Lee J, Jung J, Lee SH, Yang DJ, Kim BW, Son H, Lee B, Chang S, Mori Y, Oh U. TRPM2 mediates the lysophosphatidic acid-induced neurite retraction in the developing brain. Pflugers Arch 2014; 466:1987-98. [PMID: 24413888 DOI: 10.1007/s00424-013-1436-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 01/12/2023]
Abstract
Intracellular Ca(2+) signal is a key regulator of axonal growth during brain development. As transient receptor potential (TRP) channels are permeable to Ca(2+) and mediate numerous brain functions, it is conceivable that many TRP channels would regulate neuronal differentiation. We therefore screened TRP channels that are involved in the regulation of neurite growth. Among the TRP channels, the Trpm2 level was inversely associated with neurite growth. TRPM2 was highly expressed in embryonic brain. Pharmacological perturbation or knockdown of TRPM2 markedly increased the axonal growth, whereas its overexpression inhibited the axonal growth. Addition of ADP ribose, an endogenous activator of TRPM2, to PC12 cells significantly repressed the axonal growth. TRPM2 was actively involved in the neuronal retraction induced by cerebrospinal fluid-rich lysophosphatidic acid (LPA). More importantly, neurons isolated from the brain of Trpm2-deficient mice have significantly longer neurites with a greater number of spines than those obtained from the brain of wild-type mice. Therefore, we conclude that TRPM2 mediates the LPA-induced suppression of axonal growth, which provides a long-sought mechanism underlying the effect of LPA on neuronal development.
Collapse
Affiliation(s)
- Yongwoo Jang
- Channel Research Center, CRI, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li L, Fothergill T, Hutchins BI, Dent EW, Kalil K. Wnt5a evokes cortical axon outgrowth and repulsive guidance by tau mediated reorganization of dynamic microtubules. Dev Neurobiol 2013; 74:797-817. [PMID: 23818454 PMCID: PMC4087151 DOI: 10.1002/dneu.22102] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/24/2013] [Accepted: 06/20/2013] [Indexed: 01/08/2023]
Abstract
Wnt5a guides cortical axons in vivo by repulsion and in vitro evokes cortical axon outgrowth and repulsion by calcium signaling pathways. Here we examined the role of microtubule (MT) reorganization and dynamics in mediating effects of Wnt5a. Inhibiting MT dynamics with nocodazole and taxol abolished Wnt5a evoked axon outgrowth and repulsion of cultured hamster cortical neurons. EGFP-EB3 labeled dynamic MTs visualized in live cell imaging revealed that growth cone MTs align with the nascent axon. Wnt5a increased axon outgrowth by reorganization of dynamic MTs from a splayed to a bundled array oriented in the direction of axon extension, and Wnt5a gradients induced asymmetric redistribution of dynamic MTs toward the far side of the growth cone. Wnt5a gradients also evoked calcium transients that were highest on the far side of the growth cone. Calcium signaling and the reorganization of dynamic MTs could be linked by tau, a MT associated protein that stabilizes MTs. Tau is phosphorylated at the Ser 262 MT binding site by CaMKII, and is required for Wnt5a induced axon outgrowth and repulsive turning. Phosphorylation of tau at Ser262 is known to detach tau from MTs to increase their dynamics. Using transfection with tau constructs mutated at Ser262, we found that this site is required for the growth and guidance effects of Wnt5a by mediating reorganization of dynamic MTs in cortical growth cones. Moreover, CaMKII inhibition also prevents MT reorganization required for Wnt5a induced axon outgrowth, thus linking Wnt/calcium signaling to tau mediated MT reorganization during growth cone behaviors. © 2013 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.Develop Neurobiol 74: 797–817, 2014
Collapse
Affiliation(s)
- Li Li
- Neuroscience Training Program, University of Wisconsin-Madison, Wisconsin, 53706
| | | | | | | | | |
Collapse
|
41
|
Lien TL, Ban J, Tormen M, Migliorini E, Grenci G, Pozzato A, Torre V. Can hippocampal neurites and growth cones climb over obstacles? PLoS One 2013; 8:e73966. [PMID: 24040128 PMCID: PMC3765352 DOI: 10.1371/journal.pone.0073966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons plated on polydimethylsiloxane (PDMS) surfaces patterned with lines 2 µm wide, with 4 µm period and with a height varying from 100 to 600 nm. GC turning experiments performed 24 hours after plating showed that filopodia crawl over these lines within minutes. These filopodia do not show staining for the adhesion marker Paxillin. GCs and neurites crawl over lines 100 nm high, but less frequently and on a longer time scale over lines higher than 300 nm; neurites never crawl over lines 600 nm high. When neurons are grown for 3 days over patterned surfaces, also neurites can cross lines 300 nm and 600 nm high, grow parallel to and on top of these lines and express Paxillin. Axons - selectively stained with SMI 312 - do not differ from dendrites in their ability to cross these lines. Our results show that highly motile structures such as filopodia climb over high obstacle in response to chemical cues, but larger neuronal structures are less prompt and require hours or days to climb similar obstacles.
Collapse
Affiliation(s)
- Thuy Linh Lien
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Jelena Ban
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Massimo Tormen
- Istituto Officina dei Materiali (IOM-CNR), Basovizza, Trieste, Italy
| | - Elisa Migliorini
- Istituto Officina dei Materiali (IOM-CNR), Basovizza, Trieste, Italy
| | - Gianluca Grenci
- Istituto Officina dei Materiali (IOM-CNR), Basovizza, Trieste, Italy
| | | | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| |
Collapse
|
42
|
Barreiro-Iglesias A, Laramore C, Shifman MI. The sea lamprey UNC5 receptors: cDNA cloning, phylogenetic analysis and expression in reticulospinal neurons at larval and adult stages of development. J Comp Neurol 2013; 520:4141-56. [PMID: 22592960 DOI: 10.1002/cne.23143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
UNC5 receptors mediate repulsive signaling of netrin on neurons. Although only one UNC5 receptor has been identified in invertebrates, four members of the UNC5 family have been identified in gnathostomes. Lampreys, together with mixynes, belong to the oldest branch of extant vertebrates, and their phylogenetic position near to the vertebrate root makes them an interesting model for understanding molecular evolution. Here, we cloned three sea lamprey UNC5 (UNC5L) receptors, and phylogenetic analyses indicated that the first two duplications of the ancestral UNC5 gene occurred before the separation of jawless and jawed vertebrates. UNC5 receptors play important roles during early development, but expression studies have also suggested that UNC5 receptors play roles in the mature nervous system. Here, we report the expression of the different UNC5L receptor transcripts in identified reticulospinal neurons of mature larval or adult sea lampreys detected by in situ hybridization in wholemounted brain preparations. In addition, an extensive expression of the UNC5 receptors was also observed in most brain regions of the adult lamprey. An increase in the types of identifiable reticulospinal neurons expressing the UNC5L receptors was observed in adults compared with larvae. Expression of UNC5 receptors at late developmental stages appears to be a shared characteristic of lampreys and mammals. In larvae, expression of UNC5L receptors was observed in reticulospinal neurons that when axotomized are known to be "bad regenerators." Results in lampreys and mammals suggest that the UNC5-Netrin axonal guidance system may play a role in limiting axonal regeneration after spinal cord injury.
Collapse
Affiliation(s)
- Antón Barreiro-Iglesias
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
43
|
Beighley R, Spedden E, Sekeroglu K, Atherton T, Demirel MC, Staii C. Neuronal alignment on asymmetric textured surfaces. APPLIED PHYSICS LETTERS 2012; 101:143701. [PMID: 23112350 PMCID: PMC3477179 DOI: 10.1063/1.4755837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/13/2012] [Indexed: 05/26/2023]
Abstract
Axonal growth and the formation of synaptic connections are key steps in the development of the nervous system. Here, we present experimental and theoretical results on axonal growth and interconnectivity in order to elucidate some of the basic rules that neuronal cells use for functional connections with one another. We demonstrate that a unidirectional nanotextured surface can bias axonal growth. We perform a systematic investigation of neuronal processes on asymmetric surfaces and quantify the role that biomechanical surface cues play in neuronal growth. These results represent an important step towards engineering directed axonal growth for neuro-regeneration studies.
Collapse
Affiliation(s)
- Ross Beighley
- Department of Physics and Astronomy and Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | | | |
Collapse
|
44
|
Li PP, Zhou JJ, Meng M, Madhavan R, Peng HB. Reciprocal regulation of axonal Filopodia and outgrowth during neuromuscular junction development. PLoS One 2012; 7:e44759. [PMID: 22957106 PMCID: PMC3434160 DOI: 10.1371/journal.pone.0044759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/06/2012] [Indexed: 01/01/2023] Open
Abstract
Background The assembly of the vertebrate neuromuscular junction (NMJ) is initiated when nerve and muscle first contact each other by filopodial processes which are thought to enable close interactions between the synaptic partners and facilitate synaptogenesis. We recently reported that embryonic Xenopus spinal neurons preferentially extended filopodia towards cocultured muscle cells and that basic fibroblast growth factor (bFGF) produced by muscle activated neuronal FGF receptor 1 (FGFR1) to induce filopodia and favor synaptogenesis. Intriguingly, in an earlier study we found that neurotrophins (NTs), a different set of target-derived factors that act through Trk receptor tyrosine kinases, promoted neuronal growth but hindered presynaptic differentiation and NMJ formation. Thus, here we investigated how bFGF- and NT-signals in neurons jointly elicit presynaptic changes during the earliest stages of NMJ development. Methodology/Principal Findings Whereas forced expression of wild-type TrkB in neurons reduced filopodial extension and triggered axonal outgrowth, expression of a mutant TrkB lacking the intracellular kinase domain enhanced filopodial growth and slowed axonal advance. Neurons overexpressing wild-type FGFR1 also displayed more filopodia than control neurons, in accord with our previous findings, and, notably, this elevation in filopodial density was suppressed when neurons were chronically treated from the beginning of the culture period with BDNF, the NT that specifically activates TrkB. Conversely, inhibition by BDNF of NMJ formation in nerve-muscle cocultures was partly reversed by the overexpression of bFGF in muscle. Conclusions Our results suggest that the balance between neuronal FGFR1- and TrkB-dependent filopodial assembly and axonal outgrowth regulates the establishment of incipient NMJs.
Collapse
Affiliation(s)
- Pan P. Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jie J. Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Min Meng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Raghavan Madhavan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - H. Benjamin Peng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- * E-mail:
| |
Collapse
|
45
|
Spedden E, White J, Naumova E, Kaplan D, Staii C. Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys J 2012; 103:868-77. [PMID: 23009836 PMCID: PMC3433610 DOI: 10.1016/j.bpj.2012.08.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/27/2012] [Accepted: 08/01/2012] [Indexed: 11/26/2022] Open
Abstract
Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here, we combine atomic force microscopy-based force spectroscopy with fluorescence microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1-2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 kPa (cortical). In contrast, dorsal root ganglion neurons are stiffer than P-19 and cortical cells, yielding elastic moduli in the range 0.1-8 kPa, with typical average values of 0.9 kPa. Finally, we report no measurable influence of substrate protein coating on cell body elasticity for the three types of neurons.
Collapse
Affiliation(s)
- Elise Spedden
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts
- Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts
| | - James D. White
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts
- Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts
- Department of Biomedical Engineering, Department of Chemical Engineering, Tufts University, Medford, Massachusetts
| | - Elena N. Naumova
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts
| | - David L. Kaplan
- Department of Biomedical Engineering, Department of Chemical Engineering, Tufts University, Medford, Massachusetts
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts
- Center for Nanoscopic Physics, Tufts University, Medford, Massachusetts
| |
Collapse
|
46
|
Chang YJ, Tsai CJ, Tseng FG, Chen TJ, Wang TW. Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 9:345-55. [PMID: 22922570 DOI: 10.1016/j.nano.2012.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/16/2012] [Accepted: 07/29/2012] [Indexed: 11/15/2022]
Abstract
UNLABELLED In this study, we developed a feasible and reliable stretching platform combined with photolithography and microfluidic techniques to investigate the effect of directional tensile force and guiding microchannel on neural stem cell (NSC) behavior. Different stretching modes and culture conditions were conducted to investigate the mechanoresponse of NSCs on micropatterned substrate and to verify the effects of tension on NSCs maturation, axon sprouting, neurite outgrowth and orientation. From the results, we found that neurite extension and axon elongation were significantly enhanced and neurites were more directional orientated to parallel direction as stretching was experienced. The mechanical tension apparently influenced NSCs differentiation toward neuronal cells under stretching condition. The neuronal maturity also showed a significant difference when compared with parallel and vertical micropatterned channels. It is suggested that mechanical tension not only can guide neurites orientation and direction, but also promote their elongation length and trigger neural stem cells differentiation into mature neuronal cells. FROM THE CLINICAL EDITOR This group of investigators report the development of a feasible and reliable stretching platform combined with photolithography and microfluidic techniques to investigate the effects of directional tensile force and guiding microchannel on neural stem cell behavior. They demonstrate that neurite extension and axon elongation could be significantly enhanced, and neuronal maturity can also be improved.
Collapse
Affiliation(s)
- Yu-Ju Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
47
|
Li PP, Peng HB. Regulation of axonal growth and neuromuscular junction formation by neuronal phosphatase and tensin homologue signaling. Mol Biol Cell 2012; 23:4109-17. [PMID: 22918949 PMCID: PMC3469524 DOI: 10.1091/mbc.e12-05-0367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Axonal growth and synaptogenesis are sequential events of neuronal development. Phosphatase and tensin homologue (PTEN) is expressed in motor neurons, and its disruption leads to continued axonal extension, even upon muscle contact, leading to synaptogenic suppression. Thus PTEN is involved in target-mediated cessation of axonal growth and subsequent synaptic differentiation. During the development of the vertebrate neuromuscular junction (NMJ), motor axon tips stop growing after contacting muscle and transform into presynaptic terminals that secrete the neurotransmitter acetylcholine and activate postsynaptic ACh receptors (AChRs) to trigger muscle contraction. The neuron-intrinsic signaling that retards axonal growth to facilitate stable nerve–muscle interaction and synaptogenesis is poorly understood. In this paper, we report a novel function of presynaptic signaling by phosphatase and tensin homologue (PTEN) in mediating a growth-to-synaptogenesis transition in neurons. In Xenopus nerve–muscle cocultures, axonal growth speed was halved after contact with muscle, when compared with before contact, but when cultures were exposed to the PTEN blocker bisperoxo (1,10-phenanthroline) oxovanadate, axons touching muscle grew ∼50% faster than their counterparts in control cultures. Suppression of neuronal PTEN expression using morpholinos or the forced expression of catalytically inactive PTEN in neurons also resulted in faster than normal axonal advance after contact with muscle cells. Significantly, interference with PTEN by each of these methods also led to reduced AChR clustering at innervation sites in muscle, indicating that disruption of neuronal PTEN signaling inhibited NMJ assembly. We thus propose that PTEN-dependent slowing of axonal growth enables the establishment of stable nerve–muscle contacts that develop into NMJs.
Collapse
Affiliation(s)
- Pan P Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
48
|
Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 2012; 98:16-37. [PMID: 22609046 DOI: 10.1016/j.pneurobio.2012.05.005] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs.
Collapse
|
49
|
Vitriol EA, Zheng JQ. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 2012; 73:1068-81. [PMID: 22445336 DOI: 10.1016/j.neuron.2012.03.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones.
Collapse
Affiliation(s)
- Eric A Vitriol
- Department of Cell Biology and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
50
|
Hutchins BI, Li L, Kalil K. Wnt/calcium signaling mediates axon growth and guidance in the developing corpus callosum. Dev Neurobiol 2012; 71:269-83. [PMID: 20936661 PMCID: PMC3099647 DOI: 10.1002/dneu.20846] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has been shown in vivo that Wnt5a gradients surround the corpus callosum and guide callosal axons after the midline (postcrossing) by Wnt5a-induced repulsion via Ryk receptors. In dissociated cortical cultures we showed that Wnt5a simultaneously promotes axon outgrowth and repulsion by calcium signaling. Here to test the role of Wnt5a/calcium signaling in a complex in vivo environment we used sensorimotor cortical slices containing the developing corpus callosum. Plasmids encoding the cytoplasmic marker DsRed and the genetically encoded calcium indicator GCaMP2 were electroporated into one cortical hemisphere. Postcrossing callosal axons grew 50% faster than pre-crossing axons and higher frequencies of calcium transients in axons and growth cones correlated well with outgrowth. Application of pharmacological inhibitors to the slices showed that signaling pathways involving calcium release through IP3 receptors and calcium entry through TRP channels regulate post-crossing axon outgrowth and guidance. Co-electroporation of Ryk siRNA and DsRed revealed that knock down of the Ryk receptor reduced outgrowth rates of postcrossing but not precrossing axons by 50% and caused axon misrouting. Guidance errors in axons with Ryk knockdown resulted from reduced calcium activity. In the corpus callosum CaMKII inhibition reduced the outgrowth rate of postcrossing (but not precrossing) axons and caused severe guidance errors which resulted from reduced CaMKII-dependent repulsion downstream of Wnt/calcium. We show for the first time that Wnt/Ryk calcium signaling mechanisms regulating axon outgrowth and repulsion in cortical cultures are also essential for the proper growth and guidance of postcrossing callosal axons which involve axon repulsion through CaMKII.
Collapse
|