1
|
Avci FG, Prasun T, Wendisch VF. Metabolic engineering for microbial production of sugar acids. BMC Biotechnol 2025; 25:36. [PMID: 40361067 PMCID: PMC12076931 DOI: 10.1186/s12896-025-00973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Carbohydrates including sugar acids are commonly used as carbon sources in microbial biotechnology. These sugar acids are themselves desirable and often overlooked targets for biobased production since they find applications in a broad range of industries, examples include food, construction, medical, textile, and polymer industries. Different stages of oxidation for natural sugar acids can be distinguished. Oxidation of the aldehyde group yields aldonic acids, oxidation of the primary hydroxy group leads to uronic acids, and both oxidations combined yield aldaric acids. While the chemical oxidation of sugars to their acid forms often is a one-pot reaction under harsh conditions, their biosynthesis is much more delicate. Bio-based production can involve enzymatic conversion, whole-cell biotransformation, and fermentation. Generally, the in vivo approaches are preferred because they are less resource-intensive than enzymatic conversion. Metabolic engineering plays a crucial role in optimizing microbial strains for efficient sugar acid production. Strategies include pathway engineering to overexpress key enzymes involved in sugar oxidation, deletion of competing pathways to enhance the precursor availability and eliminate the product consumption, cofactor balancing for efficient redox reactions, and transporter engineering to facilitate precursor import or sugar acid export. Synthetic biology tools, such as CRISPR-Cas and dynamic regulatory circuits, have further improved strain development by enabling precise genetic modifications and adaptive control of metabolic fluxes. The usage of plant biomass hydrolysates for bio-based production further adds to the environmental friendliness of the in vivo approaches. This review highlights the different approaches for the production of C5 and C6 sugar acids, their applications, and their catabolism in microbes.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Türkiye
| | - Tim Prasun
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Clausen AK, Junne S. Recent advances in yeast and bacteria co-cultivation for bioprocess applications. World J Microbiol Biotechnol 2025; 41:170. [PMID: 40341666 DOI: 10.1007/s11274-025-04385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
Yeast and bacteria co-cultures can be found in nature and have multiple advantages that can be exploited, nowadays also in a controlled bioproduction environment. Various types of co-cultivation have been used for food applications such as production of flavor compounds in dairy products and alcoholic beverages. Co-cultures can broaden the substrate spectrum for microbial food and feed production, they can increase productivity and efficiency, and the nutritional value. Workflows have been developed from plate to bioreactor scale to increase reproducibility and optimize benefits of individual co-cultivation strategies. Nonetheless, certain limitations need to be overcome for industrial application. Many interactions of microbes, in particular in suspension cultures, are not sufficiently understood or even explored. While more possibilities arose from on-line monitoring of individual populations or even single cells, off-line measurement techniques are still typically applied in order to assess growth and product formation. Promising advances have been achieved, however, by methods for single-cell at-line and on-line analysis in co-cultures which are accounted for to emphasize the current opportunities and challenges in monitoring and controlling co-cultures. This review aims to summarize the recent advances with a particular focus on cultivation procedures and process analysis in bacteria, yeast and bacteria-yeast co-cultures. The implementation of suitable monitoring methods to enable (remote) control and contribute to quality assurance will accelerate the development and optimization of industrial co-culture bioprocesses. This will support transferability and process standardization across world regions adding to the advancement of bioproduction. The applicability of some relevant technology is, however, in its infancy.
Collapse
Affiliation(s)
- Anne Kathrine Clausen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, Esbjerg, DK-6700, Denmark
| | - Stefan Junne
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, Esbjerg, DK-6700, Denmark.
| |
Collapse
|
3
|
Rovira-Alsina L, Romans-Casas M, Perona-Vico E, Ceballos-Escalera A, Balaguer MD, Bañeras L, Puig S. Microbial Electrochemical Technologies: Sustainable Solutions for Addressing Environmental Challenges. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39739109 DOI: 10.1007/10_2024_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Addressing global challenges of waste management demands innovative approaches to turn biowaste into valuable resources. This chapter explores the potential of microbial electrochemical technologies (METs) as an alternative opportunity for biowaste valorisation and resource recovery due to their potential to address limitations associated with traditional methods. METs leverage microbial-driven oxidation and reduction reactions, enabling the conversion of different feedstocks into energy or value-added products. Their versatility spans across gas, food, water and soil streams, offering multiple solutions at different technological readiness levels to advance several sustainable development goals (SDGs) set out in the 2030 Agenda. By critically examining recent studies, this chapter uncovers challenges, optimisation strategies, and future research directions for real-world MET implementations. The integration of economic perspectives with technological developments provides a comprehensive understanding of the opportunities and demands associated with METs in advancing the circular economy agenda, emphasising their pivotal role in waste minimisation, resource efficiency promotion, and closed-loop system renovation.
Collapse
Affiliation(s)
- Laura Rovira-Alsina
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain
| | | | - Elisabet Perona-Vico
- gEMM, Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | | | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain
| | - Lluís Bañeras
- gEMM, Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain.
| |
Collapse
|
4
|
He J, Tang M, Zhong F, Deng J, Li W, Zhang L, Lin Q, Xia X, Li J, Guo T. Current trends and possibilities of typical microbial protein production approaches: a review. Crit Rev Biotechnol 2024; 44:1515-1532. [PMID: 38566484 DOI: 10.1080/07388551.2024.2332927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
Global population growth and demographic restructuring are driving the food and agriculture sectors to provide greater quantities and varieties of food, of which protein resources are particularly important. Traditional animal-source proteins are becoming increasingly difficult to meet the demand of the current consumer market, and the search for alternative protein sources is urgent. Microbial proteins are biomass obtained from nonpathogenic single-celled organisms, such as bacteria, fungi, and microalgae. They contain large amounts of proteins and essential amino acids as well as a variety of other nutritive substances, which are considered to be promising sustainable alternatives to traditional proteins. In this review, typical approaches to microbial protein synthesis processes were highlighted and the characteristics and applications of different types of microbial proteins were described. Bacteria, fungi, and microalgae can be individually or co-cultured to obtain protein-rich biomass using starch-based raw materials, organic wastes, and one-carbon compounds as fermentation substrates. Microbial proteins have been gradually used in practical applications as foods, nutritional supplements, flavor modifiers, and animal feeds. However, further development and application of microbial proteins require more advanced biotechnological support, screening of good strains, and safety considerations. This review contributes to accelerating the practical application of microbial proteins as a promising alternative protein resource and provides a sustainable solution to the food crisis facing the world.
Collapse
Affiliation(s)
- JinTao He
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Min Tang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - FeiFei Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Changsha Institute for Food and Drug Control, Changsha, China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Lin Zhang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - QinLu Lin
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xu Xia
- Huaihua Academy of Agricultural Sciences, Huaihua, China
| | - Juan Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Ting Guo
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
5
|
Durkin A, Vinestock T, Guo M. Towards planetary boundary sustainability of food processing wastewater, by resource recovery & emission reduction: A process system engineering perspective. CARBON CAPTURE SCIENCE & TECHNOLOGY 2024; 13:None. [PMID: 39759871 PMCID: PMC11698304 DOI: 10.1016/j.ccst.2024.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 01/07/2025]
Abstract
Meeting the needs of a growing population calls for a change from linear production systems that exacerbate the depletion of finite natural resources and the emission of environmental pollutants. These linear production systems have resulted in the human-driven perturbation of the Earth's natural biogeochemical cycles and the transgression of environmentally safe operating limits. One solution that can help alleviate the environmental issues associated both with resource stress and harmful emissions is resource recovery from waste. In this review, we address the recovery of resources from food and beverage processing wastewater (FPWW), which offers a synergistic solution to some of the environmental issues with traditional food production. Research on resource recovery from FPWW typically focuses on technologies to recover specific resources without considering integrative process systems to recover multiple resources while simultaneously satisfying regulations on final effluent quality. Process Systems Engineering (PSE) offers methodologies able to address this holistic process design problem, including modelling the trade-offs between competing objectives. Optimisation of FPWW treatment and resource recovery has significant scope to reduce the environmental impacts of food production systems. There is significant potential to recover carbon, nitrogen, and phosphorus resources while respecting effluent quality limits, even when the significant uncertainties inherent to wastewater systems are considered. This review article gives an overview of the environmental challenges we face, discussed within the framework of the planetary boundary, and highlights the impacts caused by the agri-food sector. This paper also presents a comprehensive review of the characteristics of FPWW and available technologies to recover carbon and nutrient resources from wastewater streams with a particular focus on bioprocesses. PSE research and modelling advances are discussed in this review. Based on this discussion, we conclude the article with future research directions.
Collapse
Affiliation(s)
- Alex Durkin
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | - Tom Vinestock
- Department of Engineering, King’s College London, WC2R 2LS, UK
| | - Miao Guo
- Department of Engineering, King’s College London, WC2R 2LS, UK
| |
Collapse
|
6
|
Liu L, Rong W, Du X, Yuan Q, Xu Z, Yu C, Lu H, Wang Y, Zhu Y, Liu Z, Wang G. Integrating Experimental and Computational Analyses of Yeast Protein Profiles for Optimizing the Production of High-Quality Microbial Proteins. Appl Biochem Biotechnol 2024; 196:8741-8762. [PMID: 38922492 DOI: 10.1007/s12010-024-04995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial proteins represent a promising solution to address the escalating global demand for protein, particularly in regions with limited arable land. Yeasts, such as Saccharomyces cerevisiae, are robust and safe protein-producing strains. However, the utilization of non-conventional yeast strains for microbial protein production has been hindered, partly due to a lack of comprehensive understanding of protein production traits. In this study, we conducted experimental analyses focusing on the growth, protein content, and amino acid composition of nine yeast strains, including one S. cerevisiae strain, three Yarrowia lipolytica strains, and five Pichia spp. strains. We identified that, though Y. lipolytica and Pichia spp. strains consumed glucose at a slower rate compared to S. cerevisiae, Pichia spp. strains showed a higher cellular protein content, and Y. lipolytica strains showed a higher glucose-to-biomass/protein yield and methionine content. We further applied computational approaches to explain that metabolism economy was the main underlying factor for the limited amount of scarce/carbon-inefficient amino acids (such as methionine) within yeast cell proteins. We additionally verified that the specialized metabolism was a key reason for the high methionine content in Y. lipolytica strains, and proposed Y. lipolytica strain as a potential producer of high-quality single-cell protein rich in scarce amino acids. Through experimental evaluation, we identified Pichia jadinii CICC 1258 as a potential strain for high-quality protein production under unfavorable pH/temperature conditions. Our work suggests a promising avenue for optimizing microbial protein production, identifying the factors influencing amino acid composition, and paving the way for the use of unconventional yeast strains to meet the growing protein demands.
Collapse
Affiliation(s)
- Lu Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Weihe Rong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiang Du
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qianqian Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Zhaoyu Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Chang Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yan Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guokun Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, China.
| |
Collapse
|
7
|
Pesante G, Tesoriero C, Cadoria E, Andreolli M, Lampis S, Vettori A, Frison N. Valorisation of agricultural residues into Thauera sp. Sel9 microbial proteins for aquaculture. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2024; 36:103772. [DOI: 10.1016/j.eti.2024.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Banks M, Taylor M, Guo M. High throughput parameter estimation and uncertainty analysis applied to the production of mycoprotein from synthetic lignocellulosic hydrolysates. Curr Res Food Sci 2024; 9:100908. [PMID: 39555020 PMCID: PMC11565039 DOI: 10.1016/j.crfs.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
The current global food system produces substantial waste and carbon emissions while exacerbating the effects of global hunger and protein deficiency. This study aims to address these challenges by exploring the use of lignocellulosic agricultural residues as feedstocks for microbial protein fermentation, focusing on Fusarium venenatum A3/5, a mycelial strain known for its high protein yield and nutritional quality. We propose a high throughput microlitre batch fermentation system paired with analytical chemistry to generate time series data of microbial growth and substrate utilisation. An unstructured biokinetic model was developed using a bootstrap sampling approach to quantify uncertainty in the parameter estimates. The model was validated against an independent data set of a different glucose-xylose composition to assess the predictive performance. Our results indicate a robust model fit with high coefficients of determination and low root mean squared errors for biomass, glucose, and xylose concentrations. Estimated parameter values provided insights into the resource utilisation strategies of Fusarium venenatum A3/5 in mixed substrate cultures, aligning well with previous research findings. Significant correlations between estimated parameters were observed, highlighting challenges in parameter identifiability. The high throughput workflow presents a novel, rapid methodology for biokinetic model development, enabling efficient exploration of microbial growth dynamics and substrate utilisation. This innovative method directly supports the development of a foundational model for optimising microbial protein production from lignocellulosic hydrolysates, contributing to a more sustainable global food system.
Collapse
Affiliation(s)
- Mason Banks
- Department of Engineering, Faculty of Natural Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, United Kingdom
| | - Mark Taylor
- Fermentation Lead, Marlow Ingredients, Nelson Ave, Billingham, North Yorkshire, TS23 4HA, United Kingdom
| | - Miao Guo
- Department of Engineering, Faculty of Natural Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, United Kingdom
| |
Collapse
|
9
|
Ye L, Bogicevic B, Bolten CJ, Wittmann C. Single-cell protein: overcoming technological and biological challenges towards improved industrialization. Curr Opin Biotechnol 2024; 88:103171. [PMID: 39024923 DOI: 10.1016/j.copbio.2024.103171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
The commercialization of single-cell protein (SCP) obtained from microbial fermentation in large-scale bioreactors emerged almost 50 years ago, with Pruteen marketed as animal feed in the 1970s and Quorn®, released for human nutrition in 1985. SCP holds great promises to feed the meanwhile doubled world population in a sustainable way, but its application is still limited by price and availability on scale. There is a need to optimize the underlying manufacturing processes with enhanced affordability and productivity. From the industrial perspective, it is crucial to identify key process components and prioritize innovations that best promote cost efficiency and large-scale production. Here, we present the state-of-art in SCP manufacturing and provide a comprehensive insight into recent techno-economic analyses and life-cycle assessments of different production scenarios. Thereby, we identified the most influential technical hotspots and challenges for each of the main production scenarios and evaluated the technological opportunities to overcome them.
Collapse
Affiliation(s)
- Lijuan Ye
- Nestlé Research, Lausanne, Switzerland.
| | | | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
10
|
Dalvie NC, Lorgeree TR, Yang Y, Rodriguez-Aponte SA, Whittaker CA, Hinckley JA, Clark JJ, Del Rosario AM, Love KR, Love JC. CRISPR-Cas9 knockout screen informs efficient reduction of the Komagataella phaffii secretome. Microb Cell Fact 2024; 23:217. [PMID: 39085844 PMCID: PMC11293167 DOI: 10.1186/s12934-024-02466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The yeast Komagataella phaffii is widely used for manufacturing recombinant proteins, but secreted titers of recombinant proteins could be improved by genetic engineering. In this study, we hypothesized that cellular resources could be redirected from production of endogenous proteins to production of recombinant proteins by deleting unneeded endogenous proteins. In non-model microorganisms such as K. phaffii, however, genetic engineering is limited by lack gene annotation and knowledge of gene essentiality. RESULTS We identified a set of endogenous secreted proteins in K. phaffii by mass spectrometry and signal peptide prediction. Our efforts to disrupt these genes were hindered by limited annotation of essential genes. To predict essential genes, therefore, we designed, transformed, and sequenced a pooled library of guide RNAs for CRISPR-Cas9-mediated knockout of all endogenous secreted proteins. We then used predicted gene essentiality to guide iterative disruptions of up to 11 non-essential genes. Engineered strains exhibited a ~20× increase in the production of human serum albumin and a twofold increase in the production of a monoclonal antibody. CONCLUSIONS We demonstrated that disruption of as few as six genes can increase production of recombinant proteins. Further reduction of the endogenous proteome of K. phaffii may further improve strain performance. The pooled library of secretome-targeted guides for CRISPR-Cas9 and knowledge of gene essentiality reported here will facilitate future efforts to engineer K. phaffii for production of other recombinant proteins and enzymes.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Timothy R Lorgeree
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Charles A Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Joshua A Hinckley
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - John J Clark
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Amanda M Del Rosario
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Kerry R Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA.
| |
Collapse
|
11
|
Kumar R, Guleria A, Padwad YS, Srivatsan V, Yadav SK. Smart proteins as a new paradigm for meeting dietary protein sufficiency of India: a critical review on the safety and sustainability of different protein sources. Crit Rev Food Sci Nutr 2024:1-50. [PMID: 39011754 DOI: 10.1080/10408398.2024.2367564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Aditi Guleria
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- Protein Processing Centre, Dietetics, and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Sudesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
12
|
Godfray HCJ, Poore J, Ritchie H. Opportunities to produce food from substantially less land. BMC Biol 2024; 22:138. [PMID: 38914996 PMCID: PMC11197333 DOI: 10.1186/s12915-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
The vast majority of the food we eat comes from land-based agriculture, but recent technological advances in agriculture and food technology offer the prospect of producing food using substantially less or even virtually no land. For example, indoor vertical farming can achieve very high yields of certain crops with a very small area footprint, and some foods can be synthesized from inorganic precursors in industrial facilities. Animal-based foods require substantial land per unit of protein or per calorie and switching to alternatives could reduce demand for some types of agricultural land. Plant-based meat substitutes and those produced through fermentation are widely available and becoming more sophisticated while in the future cellular agricultural may become technically and economical viable at scale. We review the state of play of these potentially disruptive technologies and explore how they may interact with other factors, both endogenous and exogenous to the food system, to affect future demand for land.
Collapse
Affiliation(s)
- H Charles J Godfray
- Oxford Martin School, Oxford University, 34 Broad St, Oxford, OX1 3BD, UK.
- Department of Biology, Oxford University, 11a Mansfield Rd, Oxford, OX1 3SZ, UK.
| | - Joseph Poore
- Department of Biology, Oxford University, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | - Hannah Ritchie
- Our World in Data, Oxford University, 34 Broad St, Oxford, OX1 3BD, UK
| |
Collapse
|
13
|
Camargo AF, Kubeneck S, Bonatto C, Bazoti SF, Nerling JP, Klein GH, Michelon W, Alves SL, Mossi AJ, Fongaro G, Treichel H. Trichoderma koningiopsis fermentation in airlift bioreactor for bioherbicide production. Bioprocess Biosyst Eng 2024; 47:651-663. [PMID: 38554182 DOI: 10.1007/s00449-024-02991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024]
Abstract
During scaling of fermentations, choosing a bioreactor is fundamental to ensure the product's quality. This study aims to produce bioherbicides using Trichoderma koningiopsis fermentation, evaluating process parameters in an Airlift bioreactor. As a response, we quantified the production of enzymes involved in the bioherbicide activity (amylase, cellulase, laccase, lipase, and peroxidase). In addition, it evaluated the agronomic efficiency of the fermented extract optimized through tests that promoted soybean growth and nodulation, soybean seed germination, and in vitro phytopathogen control. As a result of optimizing the scaling bioprocess, it was possible to obtain an adequate fermentation condition, which, when applied to soybean seeds, had beneficial effects on their growth. It allowed the production of an enzyme cocktail. These results add a crucial biotechnological potential factor for the success of the optimized formulation in the Airlift bioreactor, in addition to presenting relevant results for the scientific community.
Collapse
Affiliation(s)
- Aline Frumi Camargo
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Suzana Fátima Bazoti
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Júlia Pieper Nerling
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Gabriel Henrique Klein
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - William Michelon
- University of Contestado, Concórdia, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Sérgio L Alves
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó, SC, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Altemir José Mossi
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó, SC, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | - Helen Treichel
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil.
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil.
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil.
| |
Collapse
|
14
|
Lee D, Pan JH, Kim D, Heo W, Shin EC, Kim YJ, Shim YY, Reaney MJT, Ko SG, Hong SB, Cho HT, Kim TG, Lee K, Kim JK. Mycoproteins and their health-promoting properties: Fusarium species and beyond. Compr Rev Food Sci Food Saf 2024; 23:e13365. [PMID: 38767863 DOI: 10.1111/1541-4337.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Filamentous fungal mycoproteins have gained increasing attention as sustainable alternatives to animal and plant-based proteins. This comprehensive review summarizes the nutritional characteristics, toxicological aspects, and health-promoting effects of mycoproteins, focusing on those derived from filamentous fungi, notably Fusarium venenatum. Mycoproteins are characterized by their high protein content, and they have a superior essential amino acid profile compared to soybeans indicating excellent protein quality and benefits for human nutrition. Additionally, mycoproteins offer enhanced digestibility, further highlighting their suitability as a protein source. Furthermore, mycoproteins are rich in dietary fibers, which have been associated with health benefits, including protection against metabolic diseases. Moreover, their fatty acids profile, with significant proportions of polyunsaturated fatty acids and absence of cholesterol, distinguishes them from animal-derived proteins. In conclusion, the future of mycoproteins as a health-promoting protein alternative and the development of functional foods relies on several key aspects. These include improving the acceptance of mycoproteins, conducting further research into their mechanisms of action, addressing consumer preferences and perceptions, and ensuring safety and regulatory compliance. To fully unlock the potential of mycoproteins and meet the evolving needs of a health-conscious society, continuous interdisciplinary research, collaboration among stakeholders, and proactive engagement with consumers will be vital.
Collapse
Affiliation(s)
- Daseul Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jeong Hoon Pan
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Wan Heo
- Department of Food Science and Engineering, Seowon University, Cheongju, Republic of Korea
| | - Eui Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Youn Young Shim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Hyung Taek Cho
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Tae Gyun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
15
|
Javourez U, Matassa S, Vlaeminck SE, Verstraete W. Ruminations on sustainable and safe food: Championing for open symbiotic cultures ensuring resource efficiency, eco-sustainability and affordability. Microb Biotechnol 2024; 17:e14436. [PMID: 38465733 PMCID: PMC10926176 DOI: 10.1111/1751-7915.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Microbes are powerful upgraders, able to convert simple substrates to nutritional metabolites at rates and yields surpassing those of higher organisms by a factor of 2 to 10. A summary table highlights the superior efficiencies of a whole array of microbes compared to conventionally farmed animals and insects, converting nitrogen and organics to food and feed. Aiming at the most resource-efficient class of microbial proteins, deploying the power of open microbial communities, coined here as 'symbiotic microbiomes' is promising. For instance, a production train of interest is to develop rumen-inspired technologies to upgrade fibre-rich substrates, increasingly available as residues from emerging bioeconomy initiatives. Such advancements offer promising perspectives, as currently only 5%-25% of the available cellulose is recovered by ruminant livestock systems. While safely producing food and feed with open cultures has a long-standing tradition, novel symbiotic fermentation routes are currently facing much higher market entrance barriers compared to axenic fermentation. Our global society is at a pivotal juncture, requiring a shift towards food production systems that not only embrace the environmental and economic sustainability but also uphold ethical standards. In this context, we propose to re-examine the place of spontaneous or natural microbial consortia for safe future food and feed biotech developments, and advocate for intelligent regulatory practices. We stress that reconsidering symbiotic microbiomes is key to achieve sustainable development goals and defend the need for microbial biotechnology literacy education.
Collapse
Affiliation(s)
- Ugo Javourez
- TBI, Université de Toulouse, CNRS, INRAE, INSAToulouseFrance
| | - Silvio Matassa
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | - Siegfried E. Vlaeminck
- Department of Bioscience Engineering, Faculty of ScienceUniversity of AntwerpAntwerpenBelgium
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGentBelgium
| |
Collapse
|
16
|
Bernal P. How are microbes helping end hunger? Microb Biotechnol 2024; 17:e14432. [PMID: 38465536 PMCID: PMC10926054 DOI: 10.1111/1751-7915.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
This article explores the potential of microbiology to positively impact all aspects of the food supply chain, improving the quantity, quality, safety, and nutritional value of food products by providing innovative ways of growing, processing, and preserving food and thus contributing to Zero Hunger, one of the Sustainable Development Goals (SDGs) of the United Nations.
Collapse
Affiliation(s)
- Patricia Bernal
- Departamento de Microbiología, Facultad de BiologíaUniversidad de SevillaSevilleSpain
| |
Collapse
|
17
|
Tome D, Xipsiti M, Shertukde SP, Calvez J, Vasilopoulou D, Wijesinha-Bettoni R, Owino VO. Context and Perspectives for Establishing a Novel Database for Protein Quality of Human Foods, as Proposed by a Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Expert Technical Meeting in October 2022. J Nutr 2024; 154:294-299. [PMID: 38160807 DOI: 10.1016/j.tjnut.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
United Nations agencies have a long history of leading work on establishing global human nutrient requirements. Dietary protein contributes to metabolism and homeostasis and plays an essential role in human health for growth, maintenance, reproduction, and immune function (or immunity). Accurately defining the quantity and quality of protein provided by foods and diets required to meet human nutritional needs is essential to achieving global environmental and nutrition goals. There have been many scientific developments related to protein quality over the past decades, with the preferred method being the scoring approach that relates the capacity of protein sources to provide an adequate amount and proportion of nitrogen and indispensable amino acids (IAAs) in a bioavailable form (often referred to as digestibility). Questions surrounding the scoring approach and IAA metabolic availability have been discussed during past and recent expert consultations. Recently, an Food and Agriculture Organization of the United Nations/International Atomic Energy Agency technical meeting, held in Vienna, 10-13 October, 2022, reviewed and updated evidence and related methods on protein requirements and protein quality assessment and designed a framework for the development of a Protein Digestibility Database to aid dialog on the evaluation of protein quality and protein sufficiency in different populations. The database should be a living document and align with national food compositional databases.
Collapse
Affiliation(s)
- Daniel Tome
- Université Paris-Saclay, AgroParisTech, France.
| | - Maria Xipsiti
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Shruti P Shertukde
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Juliane Calvez
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Dafni Vasilopoulou
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Ramani Wijesinha-Bettoni
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Victor O Owino
- Nutritional and Health Related Environmental Studies Section, Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
18
|
Ortiz-Sanchez M, Solarte-Toro JC, Inocencio-García PJ, Cardona Alzate CA. Sustainability analysis of orange peel biorefineries. Enzyme Microb Technol 2024; 172:110327. [PMID: 37804740 DOI: 10.1016/j.enzmictec.2023.110327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
Biorefineries are constantly evolving since new technological advances in enzyme and microbial processes are boosting research for producing new bio-based products. Nevertheless, the step towards real process implementation must overcome a series of stages based on process sustainability in the early design stages. Orange peel (OP) has been profiled as a potential raw material for producing different products. Few studies have estimated the sustainability of OP-based biorefineries considering the upstream influence on the final process performance. This research aims to perform the sustainability assessment of several OP valorization pathways based on experimental data applying the biorefinery concept. Steam distillation and polyphenolic compound extraction prior to saccharification and anaerobic digestion increase the process performance. A glucose concentration and biogas yield of 21.43 g/L (0.44 g/g OP, db) and 415 mL/g SV were obtained, respectively. An essential oil extraction yield of 1.17 g/100 g OP (db) with a d-limonene content of 91.62% was produced. Moreover, hesperidin, apigenin, and naringenin yields of 7.88 mg/g, 0.475 mg/g, and 0.675 mg/g were obtained. An OP-based biorefinery addressed to produce essential oil, polyphenolic compounds, and biogas with a processing 25 tons/day (wb) has a sustainability index of 66.88%, higher than the values obtained with lesser upstream stages. In conclusion, an integral OP upgrading leads to better enzymatic and anaerobic digestion performances, as well as, a high process sustainability.
Collapse
Affiliation(s)
- Mariana Ortiz-Sanchez
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Juan Camilo Solarte-Toro
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Pablo José Inocencio-García
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| | - Carlos Ariel Cardona Alzate
- Universidad Nacional de Colombia sede Manizales, Instituto de Biotecnología y Agroindustria, Departamento de Ingeniería Química, Km 07 vía al Magdalena, Manizales, Colombia.
| |
Collapse
|
19
|
Areniello M, Matassa S, Esposito G, Lens PNL. Microbial protein production from sulfide-rich biogas through an enrichment of methane- and sulfur-oxidizing bacteria. BIORESOURCE TECHNOLOGY 2023:129237. [PMID: 37244308 DOI: 10.1016/j.biortech.2023.129237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
This study evaluated the possibility of combining methane oxidizing bacteria (MOB) with sulfur oxidizing bacteria (SOB) to enable the utilization of sulfide-rich biogas for microbial protein production. For this purpose, a MOB-SOB mixed-culture enriched by feeding both methane and sulfide was benchmarked against an enrichment of solely MOB. Different CH4:O2 ratios, starting pH values, sulfide levels and nitrogen sources were tested and evaluated for the two enrichments. The MOB-SOB culture gave promising results in terms of both biomass yield (up to 0.07±0.01 g VSS/g CH4-COD) and protein content (up to 73±5% of VSS) at 1500 ppm of equivalent H2S. The latter enrichment was able to grow also under acidic pH (5.8-7.0), but as inhibited outside the optimal CH4:O2 ratio of 2:3. The obtained results show the capability of MOB-SOB mixed-cultures to directly upcycle sulfide-rich biogas into microbial protein potentially suited for feed, food or biobased product applications.
Collapse
Affiliation(s)
- Marica Areniello
- Department of Microbiology and Ryan Institute, School of Natural Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland.
| | - Silvio Matassa
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio, Naples, 80125, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio, Naples, 80125, Italy
| | - Piet N L Lens
- Department of Microbiology and Ryan Institute, School of Natural Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
20
|
Abstract
Our current food system relies on unsustainable practices, which often fail to provide healthy diets to a growing population. Therefore, there is an urgent demand for new sustainable nutrition sources and processes. Microorganisms have gained attention as a new food source solution, due to their low carbon footprint, low reliance on land, water and seasonal variations coupled with a favourable nutritional profile. Furthermore, with the emergence and use of new tools, specifically in synthetic biology, the uses of microorganisms have expanded showing great potential to fulfil many of our dietary needs. In this review, we look at the different applications of microorganisms in food, and examine the history, state-of-the-art and potential to disrupt current foods systems. We cover both the use of microbes to produce whole foods out of their biomass and as cell factories to make highly functional and nutritional ingredients. The technical, economical, and societal limitations are also discussed together with the current and future perspectives.
Collapse
Affiliation(s)
- Alicia E Graham
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
21
|
Balfany C, Gutierrez J, Moncada M, Komarnytsky S. Current Status and Nutritional Value of Green Leaf Protein. Nutrients 2023; 15:nu15061327. [PMID: 36986057 PMCID: PMC10056349 DOI: 10.3390/nu15061327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Green leaf biomass is one of the largest underutilized sources of nutrients worldwide. Whether it is purposely cultivated (forage crops, duckweed) or upcycled as a waste stream from the mass-produced agricultural crops (discarded leaves, offcuts, tops, peels, or pulp), the green biomass can be established as a viable alternative source of plant proteins in food and feed processing formulations. Rubisco is a major component of all green leaves, comprising up to 50% of soluble leaf protein, and offers many advantageous functional features in terms of essential amino acid profile, reduced allergenicity, enhanced gelation, foaming, emulsification, and textural properties. Nutrient profiles of green leaf biomass differ considerably from those of plant seeds in protein quality, vitamin and mineral concentration, and omega 6/3 fatty acid profiles. Emerging technological improvements in processing fractions, protein quality, and organoleptic profiles will enhance the nutritional quality of green leaf proteins as well as address scaling and sustainability challenges associated with the growing global demand for high quality nutrition.
Collapse
Affiliation(s)
- Connor Balfany
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Janelle Gutierrez
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Marvin Moncada
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
22
|
Matassa S, Boeckx P, Boere J, Erisman JW, Guo M, Manzo R, Meerburg F, Papirio S, Pikaar I, Rabaey K, Rousseau D, Schnoor J, Smith P, Smolders E, Wuertz S, Verstraete W. How can we possibly resolve the planet's nitrogen dilemma? Microb Biotechnol 2022; 16:15-27. [PMID: 36378579 PMCID: PMC9803332 DOI: 10.1111/1751-7915.14159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrogen is the most crucial element in the production of nutritious feeds and foods. The production of reactive nitrogen by means of fossil fuel has thus far been able to guarantee the protein supply for the world population. Yet, the production and massive use of fertilizer nitrogen constitute a major threat in terms of environmental health and sustainability. It is crucial to promote consumer acceptance and awareness towards proteins produced by highly effective microorganisms, and their potential to replace proteins obtained with poor nitrogen efficiencies from plants and animals. The fact that reactive fertilizer nitrogen, produced by the Haber Bosch process, consumes a significant amount of fossil fuel worldwide is of concern. Moreover, recently, the prices of fossil fuels have increased the cost of reactive nitrogen by a factor of 3 to 5 times, while international policies are fostering the transition towards a more sustainable agro-ecology by reducing mineral fertilizers inputs and increasing organic farming. The combination of these pressures and challenges opens opportunities to use the reactive nitrogen nutrient more carefully. Time has come to effectively recover used nitrogen from secondary resources and to upgrade it to a legal status of fertilizer. Organic nitrogen is a slow-release fertilizer, it has a factor of 2.5 or higher economic value per unit nitrogen as fertilizer and thus adequate technologies to produce it, for instance by implementing photobiological processes, are promising. Finally, it appears wise to start the integration in our overall feed and food supply chains of the exceptional potential of biological nitrogen fixation. Nitrogen produced by the nitrogenase enzyme, either in the soil or in novel biotechnology reactor systems, deserves to have a 'renaissance' in the context of planetary governance in general and the increasing number of people who desire to be fed in a sustainable way in particular.
Collapse
Affiliation(s)
- Silvio Matassa
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Jos Boere
- Allied Waters B.V.NieuwegeinThe Netherlands
| | - Jan Willem Erisman
- Institute of Environmental SciencesLeiden UniversityLeidenThe Netherlands
| | - Miao Guo
- Department of Engineering, Faculty of Natural, Mathematical and Engineering SciencesKing's College LondonLondonUK
| | - Raffaele Manzo
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | | | - Stefano Papirio
- Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
| | - Ilje Pikaar
- School of Civil EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Diederik Rousseau
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Jerald Schnoor
- Department of Civil and Environmental EngineeringUniversity of IowaIowa CityIowaUSA
| | - Peter Smith
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Erik Smolders
- Division Soil and Water ManagementKatholieke Universiteit LeuvenLeuvenBelgium
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological UniversitySingaporeSingapore,School of Civil and Environmental Engineering, Nanyang Technological UniversitySingaporeSingapore
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
23
|
Llorente B, Williams TC, Goold HD, Pretorius IS, Paulsen IT. Harnessing bioengineered microbes as a versatile platform for space nutrition. Nat Commun 2022; 13:6177. [PMID: 36261466 PMCID: PMC9582011 DOI: 10.1038/s41467-022-33974-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Human enterprises through the solar system will entail long-duration voyages and habitation creating challenges in maintaining healthy diets. We discuss consolidating multiple sensory and nutritional attributes into microorganisms to develop customizable food production systems with minimal inputs, physical footprint, and waste. We envisage that a yeast collection bioengineered for one-carbon metabolism, optimal nutrition, and diverse textures, tastes, aromas, and colors could serve as a flexible food-production platform. Beyond its potential for supporting humans in space, bioengineered microbial-based food could lead to a new paradigm for Earth's food manufacturing that provides greater self-sufficiency and removes pressure from natural ecosystems.
Collapse
Affiliation(s)
- Briardo Llorente
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia.
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Thomas C Williams
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hugh D Goold
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- New South Wales Department of Primary Industries, Orange, NSW, 2800, Australia
| | - Isak S Pretorius
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian T Paulsen
- ARC Center of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
24
|
Can closed-loop microbial protein provide sustainable protein security against the hunger pandemic? CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|