1
|
Tao M, Zhang Y, Li Q, Feng X, Ping C. Association of lipids and lipid-lowering drugs with peripheral arterial disease: A Mendelian randomization study. J Clin Lipidol 2024; 18:e968-e976. [PMID: 39304430 DOI: 10.1016/j.jacl.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND It remains unclear whether lipid profiles and lipid-lowering medications are causally related to peripheral arterial disease (PAD). OBJECTIVE Explain whether there is a causal relationship between lipid status and lipid-lowering drugs and PAD. METHODS In this two-sample Mendelian randomization (MR) analysis, we assessed the causal relationship between lipid traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), total cholesterol (TC), and LDL-associated genetic variants (HMGCR, NPC1L1, PCSK9, APOB), and the risk of PAD using genetic variants associated with these lipid markers. The study analyzed data from 1,654,960 individuals derived from the Global Lipid Genetics Consortium and the UK Biobank, ensuring a robust and comprehensive genetic insight into the effects of lipid dysfunction on PAD. RESULTS We found genetically predicted associations between HDL-C (OR: 0.83, 95% CI: 0.83-0.77), LDL-C (OR: 1.29, 95% CI: 1.12-1.50), TC (OR: 1.14, 95% CI: 1.01- 1.29), TG (OR: 1.16, 95% CI: 1.04-1.24), APOB (OR: 1.31, 95% CI: 1.16-1.48), and APOA1 (OR: 0.84, 95% CI: 0.77-0.97), and the risk of PAD. In addition, inhibition of PCSK9 was associated with a reduced risk of PAD (OR: 0.68, 95% CI: 0.57-0.79, P<0.001), while no association between the other three gene proxies of LDL inhibition including HMGCR (OR: 1.21, 95% CI: 0.87-1.69, P=0.250), NPC1L1 (OR: 0.77, 95% CI: 0.44-1.33, P=0.344), and APOB (OR: 1.01, 95% CI: 0.87-1.26, P=0.890), and the risk of PAD were found. CONCLUSIONS Based on genetic evidence, dyslipidemia is an important risk factor for PAD. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors may be an effective strategy for the treatment of PAD.
Collapse
Affiliation(s)
- Mengjun Tao
- Department of Health Management Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China (Dr Tao)
| | - Yuanxiang Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, 241001, China (Dr Zhang)
| | - Qi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 241001, China (Dr Li, Feng)
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 241001, China (Dr Li, Feng)
| | - Cheng Ping
- Security Department, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China (Dr Ping).
| |
Collapse
|
2
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell B, Pradhan K, Yi Z, Hou J, Xu F, Chen X, Li L. Monocytes reprogrammed by 4-PBA potently contribute to the resolution of inflammation and atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563200. [PMID: 37961551 PMCID: PMC10634693 DOI: 10.1101/2023.10.19.563200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. Methods Systems analyses integrating single-cell RNA-sequencing and complementary immunological approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming was assessed by integrated biochemical and genetic approaches. The inter-cellular propagation of homeostasis resolution was evaluated by co-culture assays with donor monocytes trained by 4-PBA and recipient naïve monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high fat diet-fed ApoE -/- mouse model with i.p. 4-PBA administration. Furthermore, the selective efficacy of 4-PBA trained monocytes were examined by i.v. transfusion of ex vivo trained monocytes by 4-PBA into recipient high fat diet-fed ApoE -/- mice. Results In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 via reducing peroxisome stress and attenuating SYK-mTOR signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ neddylation mediated by TOLLIP. 4-PBA trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo . Conclusion Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision-therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.
Collapse
|
4
|
Monocyte-Derived miRNA-1914-5p Attenuates IL-1β-Induced Monocyte Adhesion and Transmigration. Int J Mol Sci 2023; 24:ijms24032829. [PMID: 36769149 PMCID: PMC9917334 DOI: 10.3390/ijms24032829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis can lead to cardiovascular and cerebrovascular diseases. Atherosclerotic plaque formation is promoted by the accumulation of inflammatory cells. Therefore, modulating monocyte recruitment represents a potential therapeutic strategy. In an inflammatory state, the expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) is upregulated in endothelial cells. We previously reported that miR-1914-5p in endothelial cells suppresses interleukin (IL)-1β-induced ICAM-1 expression and monocyte adhesion to endothelial cells. However, whether monocyte miR-1914-5p affects monocyte recruitment is unclear. In this study, IL-1β decreased miR-1914-5p expression in a human monocyte cell line. Moreover, miR-1914-5p inhibition enhanced adhesion to endothelial cells with the upregulation of macrophage-1 antigen (Mac-1), a counter-ligand to ICAM-1. Transmigration through the endothelial layer was also promoted with the upregulation of monocyte chemotactic protein-1 (MCP-1). Furthermore, a miR-1914-5p mimic suppressed IL-1β-induced monocyte adhesion and transmigration in monocytes with Mac-1 and MCP-1 downregulation. Further investigation of miR-1914-5p in monocytes could lead to the development of novel diagnostic markers and therapeutic strategies for atherosclerosis.
Collapse
|
5
|
Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 2022; 9:845942. [PMID: 35498045 PMCID: PMC9043520 DOI: 10.3389/fcvm.2022.845942] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Foam cells play a vital role in the initiation and development of atherosclerosis. This review aims to summarize the novel insights into the origins, consequences, and molecular mechanisms of foam cells in atherosclerotic plaques. Foam cells are originated from monocytes as well as from vascular smooth muscle cells (VSMC), stem/progenitor cells, and endothelium cells. Novel technologies including lineage tracing and single-cell RNA sequencing (scRNA-seq) have revolutionized our understanding of subtypes of monocyte- and VSMC-derived foam cells. By using scRNA-seq, three main clusters including resident-like, inflammatory, and triggering receptor expressed on myeloid cells-2 (Trem2 hi ) are identified as the major subtypes of monocyte-derived foam cells in atherosclerotic plaques. Foam cells undergo diverse pathways of programmed cell death including apoptosis, autophagy, necroptosis, and pyroptosis, contributing to the necrotic cores of atherosclerotic plaques. The formation of foam cells is affected by cholesterol uptake, efflux, and esterification. Novel mechanisms including nuclear receptors, non-coding RNAs, and gut microbiota have been discovered and investigated. Although the heterogeneity of monocytes and the complexity of non-coding RNAs make obstacles for targeting foam cells, further in-depth research and therapeutic exploration are needed for the better management of atherosclerosis.
Collapse
Affiliation(s)
- Yuzhou Gui
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Richard Y. Cao
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ngcobo SR, Nkambule BB, Nyambuya TM, Mokgalaboni K, Ntsethe A, Mxinwa V, Ziqubu K, Ntamo Y, Nyawo TA, Dludla PV. Activated monocytes as a therapeutic target to attenuate vascular inflammation and lower cardiovascular disease-risk in patients with type 2 diabetes: A systematic review of preclinical and clinical studies. Biomed Pharmacother 2022; 146:112579. [PMID: 35062054 DOI: 10.1016/j.biopha.2021.112579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Low grade inflammation is associated with the progression of atherosclerosis. Patients with type 2 diabetes (T2D) have altered cholesterol levels, which are targeted by free radicals to promote lipid peroxidation. Elevated levels of monocyte-associated cytokines such as interleukin (IL)-6, monocyte chemoattractant protein 1 (MCP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and tumor necrosis factor-alpha (TNF-α), subsequently drive endothelial tissue injury. In fact, the levels of circulating platelet-monocyte aggregates in patients with T2D is a robust marker for atherosclerosis and a cardiovascular disease (CVD)-risk factor. To identify eligible studies, we searched the major online databases using PubMed and Google Scholar. The cumulative evidence synthesized in the current review suggests that, traditional therapies which include thiazolidinediones, statins and some calcium channel blockers can be useful in the primary prevention of atherosclerosis by inhibiting the formation of monocyte-derived microparticles, and pro-inflammatory cytokines such as IL-6, TNF-α, MCP-1, and NF-κB in patients with T2D. Future studies are needed to ascertain whether the combination of dietary interventions and glucose or lipid lowering agents can provide an enhanced cardioprotection in patients with T2D.
Collapse
Affiliation(s)
- Siphamandla R Ngcobo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Aviwe Ntsethe
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Thembeka A Nyawo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
7
|
Zhang Y, Hu M, Tang YY, Zhang B, Han YY, Huang ZY, Chen C, Li G. Levetiracetam inhibits THP-1 monocyte chemotaxis and adhesion via the synaptic vesicle 2A. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30329-6. [PMID: 32067739 DOI: 10.1016/j.bbrc.2020.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/09/2020] [Indexed: 11/25/2022]
Abstract
Long-term therapy with older antiepileptic drugs (AEDs), but not levetiracetam (LEV), may increase the risk of atherosclerosis (AS), suggesting that LEV may have a potential anti-AS effect. The synaptic vesicle 2A (SV2A) is known to the specific binding site of LEV. Numerous studies have documented that SV2A is a membrane protein specifically expressed in nervous system. Interestingly, our previous research showed that SV2A also existed in human CD8+ T lymphocytes. Therefore, we hypothesized that LEV was associated with decreased risk of AS by regulating monocytes chemotaxis and adhesion. We showed that SV2A protein were detected in THP-1 human monocytic leukemia cells. LEV (300 μM) inhibited the chemotaxis and adhesion of THP-1 cells after transfection with plasmids expressing SV2AWT, but not SV2AR383Q which was a known functional mutation site of human SV2A. Furthermore, RT-PCR and western blot analysis demonstrated that LEV (300 μM) decreased the expression level of chemokine-related receptors (CX3CL1, CCR1, CCR2, and CCR5),and reduced levels of phosphorylated AKT (p-AKT) in THP-1 cells with SV2AWT expressing plasmids. Taken together, these findings indicated that LEV has an inhibitory effect on THP-1 monocyte adhesion and chemotaxis, suggesting that SV2A may serve as a novel therapeutic target to prevent AS.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Min Hu
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Yue-Yu Tang
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Bei Zhang
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Yin-Yin Han
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Zheng-Yu Huang
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Chen Chen
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Gang Li
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China.
| |
Collapse
|
8
|
Taghizadeh E, Taheri F, Renani PG, Reiner Ž, Navashenaq JG, Sahebkar A. Macrophage: A Key Therapeutic Target in Atherosclerosis? Curr Pharm Des 2019; 25:3165-3174. [DOI: 10.2174/1381612825666190830153056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
Background:
Atherosclerosis is a chronic inflammatory disease and a leading cause of coronary artery
disease, peripheral vascular disease and stroke. Lipid-laden macrophages are derived from circulating monocytes
and form fatty streaks as the first step of atherogenesis.
Methods:
An electronic search in major databases was performed to review new therapeutic opportunities for
influencing the inflammatory component of atherosclerosis based on monocytes/macrophages targeting.
Results:
In the past two decades, macrophages have been recognized as the main players in atherogenesis but also
in its thrombotic complications. There is a growing interest in immunometabolism and recent studies on metabolism
of macrophages have created new therapeutic options to treat atherosclerosis. Targeting recruitment, polarization,
cytokine profile extracellular matrix remodeling, cholesterol metabolism, oxidative stress, inflammatory
activity and non-coding RNAs of monocyte/macrophage have been proposed as potential therapeutic approaches
against atherosclerosis.
Conclusion:
Monocytes/macrophages have a crucial role in progression and pathogenesis of atherosclerosis.
Therefore, targeting monocyte/macrophage therapy in order to achieve anti-inflammatory effects might be a good
option for prevention of atherosclerosis.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Forough Taheri
- Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | | | - Željko Reiner
- University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Department of Internal Medicine, Zagreb, Croatia
| | - Jamshid G. Navashenaq
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
9
|
Torres M, Wang J, Yannie PJ, Ghosh S, Segal RA, Reynolds AM. Identifying important parameters in the inflammatory process with a mathematical model of immune cell influx and macrophage polarization. PLoS Comput Biol 2019; 15:e1007172. [PMID: 31365522 PMCID: PMC6690555 DOI: 10.1371/journal.pcbi.1007172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 08/12/2019] [Accepted: 06/07/2019] [Indexed: 02/08/2023] Open
Abstract
In an inflammatory setting, macrophages can be polarized to an inflammatory M1 phenotype or to an anti-inflammatory M2 phenotype, as well as existing on a spectrum between these two extremes. Dysfunction of this phenotypic switch can result in a population imbalance that leads to chronic wounds or disease due to unresolved inflammation. Therapeutic interventions that target macrophages have therefore been proposed and implemented in diseases that feature chronic inflammation such as diabetes mellitus and atherosclerosis. We have developed a model for the sequential influx of immune cells in the peritoneal cavity in response to a bacterial stimulus that includes macrophage polarization, with the simplifying assumption that macrophages can be classified as M1 or M2. With this model, we were able to reproduce the expected timing of sequential influx of immune cells and mediators in a general inflammatory setting. We then fit this model to in vivo experimental data obtained from a mouse peritonitis model of inflammation, which is widely used to evaluate endogenous processes in response to an inflammatory stimulus. Model robustness is explored with local structural and practical identifiability of the proposed model a posteriori. Additionally, we perform sensitivity analysis that identifies the population of apoptotic neutrophils as a key driver of the inflammatory process. Finally, we simulate a selection of proposed therapies including points of intervention in the case of delayed neutrophil apoptosis, which our model predicts will result in a sustained inflammatory response. Our model can therefore provide hypothesis testing for therapeutic interventions that target macrophage phenotype and predict outcomes to be validated by subsequent experimentation. Using experimental data and mathematical analysis, we develop a model for the inflammatory response that includes macrophage polarization between M1 and M2 phenotypes. Dysfunction of this phenotypic switch can disrupt the timely influx and egress of immune cells during the healing process and lead to chronic wounds or disease. The modulation of macrophage population has been suggested as a strategy to dampen inflammation in diseases that feature chronic inflammation, such as diabetes and atherosclerosis. It is therefore important that we learn more about which components of the system drive the population level switch in phenotype. Our model is able to reproduce the expected timing of sequential influx of neutrophils and macrophages in response to an inflammatory stimulus. Model parameters were estimated with weighted least squares fitting to in vivo experimental data from a mouse model of peritonitis while considering identifiability of parameter sets. We perform sensitivity analysis that identifies primary drivers of the system, and predict the effects of variations in these key parameters on immune cell populations.
Collapse
Affiliation(s)
- Marcella Torres
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul J. Yannie
- Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, United States of America
| | - Rebecca A. Segal
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Angela M. Reynolds
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Victoria Johnson Center for Lung Disease Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
10
|
Lee SJ, Baek SE, Jang MA, Kim CD. SIRT1 inhibits monocyte adhesion to the vascular endothelium by suppressing Mac-1 expression on monocytes. Exp Mol Med 2019; 51:1-12. [PMID: 31023999 PMCID: PMC6483987 DOI: 10.1038/s12276-019-0239-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 01/16/2023] Open
Abstract
SIRT1 signaling pathways modulate vascular inflammation; however, the precise role of SIRT1 in monocyte adhesion to the vascular endothelium, a key event initiating vascular inflammation, is unclear. Thus, this study investigated the roles and molecular interaction of SIRT1 and TLR2 in regulating monocyte adhesion to the vascular endothelium. In vitro, both Mac-1 expression and the endothelial adhesion of THP-1 cells stimulated with Pam3CSK4, a TLR2 ligand, were markedly increased in association with a decreased expression of SIRT1. In THP-1 cells stimulated with Pam3CSK4, the promoter activity and expression of SIRT1 were decreased. The TLR2-dependent suppression of SIRT1 expression in THP-1 cells was mediated by the transcription factors NF-κB and CREB, suggesting that the TLR2-mediated NF-κB and CREB signaling downregulated SIRT1 expression in monocytes. In peripheral blood monocytes (PBMCs) isolated from SIRT1 transgenic (TG) mice and THP-1 cells treated with recombinant SIRT1, both the increased Mac-1 expression and endothelial adhesion induced by Pam3CSK4 were significantly attenuated. In addition, the en face immunohistochemical study showed a marked increase in monocyte adhesion to the aortic endothelium of WT mice treated with Pam3CSK4, which was significantly attenuated in Pam3CSK4-treated SIRT1 TG mice. Moreover, a greater number of atherosclerotic plaques formed in WT mice fed a high-fat diet than in SIRT1 TG mice, indicating a pivotal role for SIRT1 in preventing vascular inflammation. Based on these results, SIRT1 might be a potential target for researchers aiming to develop therapeutic interventions for vascular inflammation, including atherosclerosis.
Collapse
Affiliation(s)
- Seung Jin Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung Eun Baek
- Department of Pharmacology, School of Medicine and Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, 50612, Republic of Korea
| | - Min A Jang
- Department of Pharmacology, School of Medicine and Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, 50612, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine and Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
11
|
Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage Death as a Pharmacological Target in Atherosclerosis. Front Pharmacol 2019; 10:306. [PMID: 31019462 PMCID: PMC6458279 DOI: 10.3389/fphar.2019.00306] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual build-up of plaques within the vessel wall of middle-sized and large arteries. Over the past decades, treatment of atherosclerosis mainly focused on lowering lipid levels, which can be accomplished by the use of statins. However, some patients do not respond sufficiently to statin therapy and therefore still have a residual cardiovascular risk. This issue highlights the need for novel therapeutic strategies. As macrophages are implicated in all stages of atherosclerotic lesion development, they represent an important alternative drug target. A variety of anti-inflammatory strategies have recently emerged to treat or prevent atherosclerosis. Here, we review the canonical mechanisms of macrophage death and their impact on atherogenesis and plaque stability. Macrophage death is a prominent feature of advanced plaques and is a major contributor to necrotic core formation and plaque destabilization. Mechanisms of macrophage death in atherosclerosis include apoptosis, passive or accidental necrosis as well as secondary necrosis, a type of death that typically occurs when apoptotic cells are insufficiently cleared by neighboring cells via a phagocytic process termed efferocytosis. In addition, less-well characterized types of regulated necrosis in macrophages such as necroptosis, pyroptosis, ferroptosis, and parthanatos may occur in advanced plaques and are also discussed. Autophagy in plaque macrophages is an important survival pathway that protects against cell death, yet massive stimulation of autophagy promotes another type of death, usually referred to as autosis. Multiple lines of evidence indicate that a better insight into the different mechanisms of macrophage death, and how they mutually interact, will provide novel pharmacological strategies to resolve atherosclerosis and stabilize vulnerable, rupture-prone plaques.
Collapse
Affiliation(s)
- Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabelle Coornaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Du P, Gao K, Cao Y, Yang S, Wang Y, Guo R, Zhao M, Jia S. RFX1 downregulation contributes to TLR4 overexpression in CD14 + monocytes via epigenetic mechanisms in coronary artery disease. Clin Epigenetics 2019; 11:44. [PMID: 30857550 PMCID: PMC6413463 DOI: 10.1186/s13148-019-0646-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background Toll-like receptor 4 (TLR4) expression is increased in activated monocytes, which play a critical role in the pathogenesis of coronary artery disease (CAD). However, the mechanism remains unclear. Regulatory factor X1 (RFX1) is a critical transcription factor regulating epigenetic modifications. In this study, we investigated whether RFX1 and epigenetic modifications mediated by RFX1 contributed to the overexpression of TLR4 in activated monocytes. Results Compared with those of the controls, the mRNA and protein expression of RFX1 were downregulated and the mRNA expression of TLR4 was upregulated in CD14+ monocytes obtained from CAD patients and CD14+ monocytes obtained from healthy controls treated with low-density lipoprotein (LDL). The mRNA expression of RFX1 was negatively correlated with the mRNA expression of TLR4 in CD14+ monocytes. RFX1 knockdown led to the overexpression of TLR4 and the activation of CD14+ monocytes. In contrast, the overexpression of RFX1 inhibited TLR4 expression and the activation of CD14+ monocytes stimulated with LDL. Moreover, TLR4 was identified as a target gene of RFX1. The results indicated that RFX1 downregulation contributed to the decreased DNA methylation and histone H3 lysine 9 trimethylation and the increased H3 and H4 acetylation in the TLR4 promoter via the lack of recruitments of DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), and histone-lysine N-methyltransferase SUV39H1 (SUV39H1), which were observed in CD14+ monocytes of CAD patients. Conclusions Our results show that RFX1 expression deficiency leads to the overexpression of TLR4 and the activation of CD14+ monocytes in CAD patients by regulating DNA methylation and histone modifications, which highlights the vital role of RFX1 in the pathogenesis of CAD. Electronic supplementary material The online version of this article (10.1186/s13148-019-0646-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei Du
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Keqin Gao
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Weifang People's Hospital, Weifang, China
| | - Yu Cao
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Yang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China. .,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul Pharmacol 2018; 112:54-71. [PMID: 30115528 DOI: 10.1016/j.vph.2018.08.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 12/23/2022]
Abstract
During atherosclerosis, the gradual accumulation of lipids into the subendothelial space of damaged arteries results in several lipid modification processes followed by macrophage uptake in the arterial wall. The way in which these modified lipoproteins are dealt with determines the likelihood of cholesterol accumulation within the monocyte-derived macrophage and thus its transformation into the foam cell that makes up the characteristic fatty streak observed in the early stages of atherosclerosis. The unique expression of chemokine receptors and cellular adhesion molecules expressed on the cell surface of monocytes points to a particular extravasation route that they can take to gain entry into atherosclerotic site, in order to undergo differentiation into the phagocytic macrophage. Indeed several GWAS and animal studies have identified key genes and proteins required for monocyte recruitment as well cholesterol handling involving lipid uptake, cholesterol esterification and cholesterol efflux. A re-examination of the previously accepted paradigm of macrophage foam cell origin has been called into question by recent studies demonstrating shared expression of scavenger receptors, cholesterol transporters and pro-inflammatory cytokine release by alternative cell types present in the neointima, namely; endothelial cells, vascular smooth muscle cells and stem/progenitor cells. Thus, therapeutic targets aimed at a more heterogeneous foam cell population with shared functions, such as enhanced protease activity, and signalling pathways, mediated by non-coding RNA molecules, may provide greater therapeutic outcome in patients. Finally, studies targeting each aspect of foam cell formation and death using both genetic knock down and pharmacological inhibition have provided researchers with a clearer understanding of the cellular processes at play, as well as helped researchers to identify key molecular targets, which may hold significant therapeutic potential in the future.
Collapse
Affiliation(s)
- Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Stuart W A Pearce
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
14
|
Terasaki M, Hiromura M, Mori Y, Kohashi K, Kushima H, Koshibu M, Saito T, Yashima H, Watanabe T, Hirano T. A Dipeptidyl Peptidase-4 Inhibitor Suppresses Macrophage Foam Cell Formation in Diabetic db/db Mice and Type 2 Diabetes Patients. Int J Endocrinol 2018; 2018:8458304. [PMID: 30627161 PMCID: PMC6304851 DOI: 10.1155/2018/8458304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/04/2018] [Indexed: 11/24/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors could have antiatherosclerotic action, in addition to antihyperglycemic roles. Because macrophage foam cells are key components of atherosclerosis, we investigated the effect of the DPP-4 inhibitor teneligliptin on foam cell formation and its related gene expression levels in macrophages extracted from diabetic db/db (C57BLKS/J Iar -+Leprdb/+Leprdb ) mice and type 2 diabetes (T2D) patients ex vivo. We incubated mouse peritoneal macrophages and human monocyte-derived macrophages differentiated by 7-day culture with oxidized low-density lipoprotein in the presence/absence of teneligliptin (10 nmol/L) for 18 hours. We observed remarkable suppression of foam cell formation by teneligliptin treatment ex vivo in macrophages isolated from diabetic db/db mice (32%) and T2D patients (38%); this effect was accompanied by a reduction of CD36 (db/db mice, 43%; T2D patients, 46%) and acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) gene expression levels (db/db mice, 47%; T2D patients, 45%). Molecular mechanisms underlying this effect are associated with downregulation of CD36 and ACAT-1 by teneligliptin. The suppressive effect of a DPP-4 inhibitor on foam cell formation in T2D is conserved across species and is worth studying to elucidate its potential as an intervention for antiatherogenesis in T2D patients.
Collapse
Affiliation(s)
- Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Kyoko Kohashi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Masakazu Koshibu
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Tomomi Saito
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Hironori Yashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Hachioji City, Tokyo, Japan
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One 2017; 12:e0185406. [PMID: 28945793 PMCID: PMC5612752 DOI: 10.1371/journal.pone.0185406] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/12/2017] [Indexed: 01/17/2023] Open
Abstract
Atherosclerosis is universally recognized as a chronic lipid-induced inflammation of the vessel wall. Oxidized low density lipoprotein (oxLDL) drives the onset of atherogenesis involving macrophages and endothelial cells (ECs). Our earlier work showed that expression of long noncoding RNA-growth arrest-specific 5 (lncRNA GAS5) was significantly increased in the plaque of atherosclerosis collected from patients and animal models. In this study, we found that knockdown of lncRNA GAS5 reduced the apoptosis of THP-1 cells treated with oxLDL. On the contrary, overexpression of lncRNA GAS5 significantly elevated the apoptosis of THP-1 cells after oxLDL stimulation. The expressions of apoptotic factors including Caspases were changed with lncRNA GAS5 levels. Moreover, lncRNA GAS5 was found in THP-1 derived-exosomes after oxLDL stimulation. Exosomes derived from lncRNA GAS5-overexpressing THP-1 cells enhanced the apoptosis of vascular endothelial cells after taking up these exosomes. However, exosomes shed by lncRNA GAS5 knocked-down THP-1 cells inhibited the apoptosis of endothelial cells. These findings reveal the function of lncRNA GAS5 in atherogenesis which regulates the apoptosis of macrophages and endothelial cells via exosomes and suggest that suppressing the lncRNA GAS5 might be an effective way for the therapy of atherosclerosis.
Collapse
|
16
|
Jia SJ, Gao KQ, Zhao M. Epigenetic regulation in monocyte/macrophage: A key player during atherosclerosis. Cardiovasc Ther 2017; 35. [PMID: 28371472 DOI: 10.1111/1755-5922.12262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/23/2017] [Accepted: 03/26/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Su-Jie Jia
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ke-Qin Gao
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
| |
Collapse
|
17
|
Digested protein isolate from fresh and stored Carioca beans reduced markers of atherosclerosis in oxidized LDL-induced THP-1 macrophages. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Takeda Y, Suzuki M, Jin Y, Tachibana I. Preventive Role of Tetraspanin CD9 in Systemic Inflammation of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2016; 53:751-60. [PMID: 26378766 DOI: 10.1165/rcmb.2015-0122tr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently associated with extrapulmonary complications, including cardiovascular disease, diabetes, and osteoporosis. Persistent, low-grade, systemic inflammation underlies these comorbid disorders. Tetraspanins, which have a characteristic structure spanning the membrane four times, facilitate lateral organization of molecular complexes and thereby form tetraspanin-enriched microdomains that are distinct from lipid rafts. Recent basic research has suggested a preventive role of tetraspanin CD9 in COPD. CD9-enriched microdomains negatively regulate LPS-induced receptor formation by preventing CD14 from accumulating into the rafts, and decreased CD9 in macrophages enhances inflammation in mice. Mice doubly deficient in CD9 and a related tetraspanin, CD81, show pulmonary emphysema, weight loss, and osteopenia, a phenotype akin to human COPD. A therapeutic approach to up-regulating CD9 in macrophages might improve the clinical course of patients with COPD with comorbidities.
Collapse
Affiliation(s)
- Yoshito Takeda
- 1 Department of Respiratory Medicine, Allergy, and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan, and
| | - Mayumi Suzuki
- 2 Department of Medicine, Nissay Hospital, Nippon Life Saiseikai Public Interest Incorporated Foundation, Nishi-ku, Osaka, Japan
| | - Yingji Jin
- 1 Department of Respiratory Medicine, Allergy, and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan, and
| | - Isao Tachibana
- 2 Department of Medicine, Nissay Hospital, Nippon Life Saiseikai Public Interest Incorporated Foundation, Nishi-ku, Osaka, Japan
| |
Collapse
|
19
|
Lewis DR, Petersen LK, York AW, Ahuja S, Chae H, Joseph LB, Rahimi S, Uhrich KE, Haser PB, Moghe PV. Nanotherapeutics for inhibition of atherogenesis and modulation of inflammation in atherosclerotic plaques. Cardiovasc Res 2015; 109:283-93. [PMID: 26472131 DOI: 10.1093/cvr/cvv237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 10/02/2015] [Indexed: 12/29/2022] Open
Abstract
AIMS Atherosclerotic development is exacerbated by two coupled pathophysiological phenomena in plaque-resident cells: modified lipid trafficking and inflammation. To address this therapeutic challenge, we designed and investigated the efficacy in vitro and ex vivo of a novel 'composite' nanotherapeutic formulation with dual activity, wherein the nanoparticle core comprises the antioxidant α-tocopherol and the shell is based on sugar-derived amphiphilic polymers that exhibit scavenger receptor binding and counteract atherogenesis. METHODS AND RESULTS Amphiphilic macromolecules were kinetically fabricated into serum-stable nanoparticles (NPs) using a core/shell configuration. The core of the NPs comprised either of a hydrophobe derived from mucic acid, M12, or the antioxidant α-tocopherol (α-T), while an amphiphile based on PEG-terminated M12 served as the shell. These composite NPs were then tested and validated for inhibition of oxidized lipid accumulation and inflammatory signalling in cultures of primary human macrophages, smooth muscle cells, and endothelial cells. Next, the NPs were evaluated for their athero-inflammatory effects in a novel ex vivo carotid plaque model and showed similar effects within human tissue. Incorporation of α-T into the hydrophobic core of the NPs caused a pronounced reduction in the inflammatory response, while maintaining high levels of anti-atherogenic efficacy. CONCLUSIONS Sugar-based amphiphilic macromolecules can be complexed with α-T to establish new anti-athero-inflammatory nanotherapeutics. These dual efficacy NPs effectively inhibited key features of atherosclerosis (modified lipid uptake and the formation of foam cells) while demonstrating reduction in inflammatory markers based on a disease-mimetic model of human atherosclerotic plaques.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Latrisha K Petersen
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Adam W York
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Sonali Ahuja
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Hoonbyung Chae
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Laurie B Joseph
- Department of Pharmacology, Rutgers University, Piscataway, NJ, USA
| | - Saum Rahimi
- Division of Vascular Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Paul B Haser
- Division of Vascular Surgery, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Prabhas V Moghe
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Gaitas A, Kim G. Inductive heating kills cells that contribute to plaque: a proof-of-concept. PeerJ 2015; 3:e929. [PMID: 25945318 PMCID: PMC4419522 DOI: 10.7717/peerj.929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/13/2015] [Indexed: 11/20/2022] Open
Abstract
Inducing cell death by heating targeted particles shows promise in cancer treatment. Here, we aim to demonstrate the feasibility of extending the use of this technique to treat and remove vascular deposits and thrombosis. We used induction heating of macrophages, which are key contributors to atherosclerosis and have demonstrated clear feasibility for heating and destroying these cells using ferromagnetic and pure iron particles. Specifically, iron particles achieved maximum temperatures of 51 ± 0.5 °C and spherical particles achieved a maximum temperature of 43.9 ± 0.2 °C (N = 6) after 30 min of inductive heating. Two days of subsequent observation demonstrated that inductive heating led to a significant reduction in cell number. Prior to induction heating, cell density was 105,000 ± 20,820 cells/ml (N = 3). This number was reduced to 6,666 ± 4,410 cells/ml for the spherical particles and 16,666 ± 9,280 cells/ml for the iron particles 24 h after inductive heating. Though cell density increased on the second day following inductive heating, the growth was minimal. Cells grew to 26,667 ± 6,670 cells/ml and 30,000 ± 15,280 cells/ml respectively. Compared to cell cultures with iron and spherical particles that were not subjected to induction heating, we observed a 97% reduction in cell count for the spherical particles and a 91% reduction for the iron particles after the first 24 h. After 48 h we observed a 95% reduction in cell growth for both spherical and iron particles. Induction heating of microparticles was thus highly effective in reducing the macrophage population and preventing their growth. These results demonstrate the feasibility of targeting cells involved in atherosclerosis and warrant further research into potential clinical applications.
Collapse
|
21
|
Chymase inhibition improves vascular dysfunction and survival in stroke-prone spontaneously hypertensive rats. J Hypertens 2015; 32:1637-48; discussion 1649. [PMID: 24886822 DOI: 10.1097/hjh.0000000000000231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To clarify the role of chymase in hypertension, we evaluated the effect of a chymase inhibitor, TY-51469, on vascular dysfunction and survival in stroke-prone spontaneously hypertensive rats (SHR-SP). METHODS SHR-SP were treated with TY-51469 (1 mg/kg per day) or placebo from 4 to 12 weeks old or until death. Wistar-Kyoto rats were used as a normal group. RESULTS SBP was significantly higher in both the placebo and TY-51469 groups than in the normal group, but there was no significant difference between the two treatment groups. Plasma renin, angiotensin-converting enzyme activity and angiotensin II levels were not different between the placebo and TY-51469 groups. In contrast, vascular chymase-like activity was significantly higher in the placebo than in the normal group, but it was reduced by TY-51469. Acetylcholine-induced vascular relaxation was significantly higher in the TY-51469 group than in the placebo group. There was significant augmentation of the number of monocytes/macrophages and matrix metalloproteinase-9 activity in aortic tissue from the placebo group compared with the normal group, and these changes were attenuated by TY-51469. There were also significant increases in mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the placebo group that were attenuated by TY-51469. Cumulative survival was significantly prolonged in the TY-51469 group compared with the placebo group. CONCLUSION Chymase might play an important role in vascular dysfunction via augmentation both of matrix metalloproteinase-9 activity and monocyte/macrophage accumulation in SHR-SP, and its inhibition may be useful for preventing vascular remodeling and prolonging survival.
Collapse
|
22
|
|
23
|
Yu M, Chen Z, Guo W, Wang J, Feng Y, Kong X, Hong Z. Specifically targeted delivery of protein to phagocytic macrophages. Int J Nanomedicine 2015; 10:1743-57. [PMID: 25784802 PMCID: PMC4356666 DOI: 10.2147/ijn.s75950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Macrophages play important roles in the pathogenesis of various diseases, and are important potential therapeutic targets. Furthermore, macrophages are key antigen-presenting cells and important in vaccine design. In this study, we report on the novel formulation (bovine serum albumin [BSA]-loaded glucan particles [GMP-BSA]) based on β-glucan particles from cell walls of baker’s yeast for the targeted delivery of protein to macrophages. Using this formulation, chitosan, tripolyphosphate, and alginate were used to fabricate colloidal particles with the model protein BSA via electrostatic interactions, which were caged and incorporated BSA very tightly within the β-glucan particle shells. The prepared GMP-BSA exhibited good protein-release behavior and avoided protein leakage. The particles were also highly specific to phagocytic macrophages, such as Raw 264.7 cells, primary bone marrow-derived macrophages, and peritoneal exudate macrophages, whereas the particles were not taken up by nonphagocytic cells, including NIH3T3, AD293, HeLa, and Caco-2. We hypothesize that these tightly encapsulated protein-loaded glucan particles deliver various types of proteins to macrophages with notably high selectivity, and may have broad applications in targeted drug delivery or vaccine design against macrophages.
Collapse
Affiliation(s)
- Min Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zeming Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Wenjun Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Jin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yupeng Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Xiuqi Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
24
|
Tang L, Sakai Y, Ueda Y, Katsuda S. Effects of oral administration of tripeptides derived from type I collagen (collagen tripeptide) on atherosclerosis development in hypercholesterolemic rabbits. J Biosci Bioeng 2014; 119:558-63. [PMID: 25468425 DOI: 10.1016/j.jbiosc.2014.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/19/2014] [Accepted: 10/17/2014] [Indexed: 01/26/2023]
Abstract
Digestion of type I collagen with a collagenase-type protease yields a collagen tripeptide (Ctp) fraction comprising Gly-X-Y sequences that exhibit diverse biological activities. We previously demonstrated that Ctp inhibits the proliferation and migration of cultured aortic smooth muscle cells (SMCs) in vitro. These cells contribute to the pathogenesis of atherosclerosis and other cardiovascular diseases. In order to evaluate the effects of Ctp on atherosclerosis development in vivo, here we used the Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbit model of familial hypercholesterolemia to determine the effects of oral administration of Ctp for three months. Ctp induced a significant decrease in the area occupied by atherosclerotic plaques in the aorta and in the level of total serum cholesterol. The components of atherosclerotic plaques underwent distinct changes, including reduction in the populations of macrophages and SMCs and a significant decrease in the proportion of macrophages to SMCs. Ctp administration decreased the number of cells in plaques that expressed proliferating cell nuclear antigen and the number of cells with oxidative damage to DNA as indicated by 8-hydroxy-2'-deoxyguanine detection. These findings are the first to define the mechanism underlying the inhibitory effects of Ctp on atherosclerosis development in hypercholesterolemic rabbits, and suggest that Ctp provides an effective therapy for treating atherosclerosis.
Collapse
Affiliation(s)
- Lihua Tang
- Department of Pathophysiological and Experimental Pathology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| | - Yasuo Sakai
- Central Research Institute, Jellice Co., Ltd., 4-4-1 Sakae, Tagajo-shi, Miyagi 985-0833, Japan.
| | - Yoshimichi Ueda
- Department of Pathophysiological and Experimental Pathology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| | - Shogo Katsuda
- Department of Pathophysiological and Experimental Pathology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa 920-0293, Japan
| |
Collapse
|
25
|
Pignatelli P, Pastori D, Carnevale R, Farcomeni A, Cangemi R, Nocella C, Bartimoccia S, Vicario T, Saliola M, Lip GYH, Violi F. Serum NOX2 and urinary isoprostanes predict vascular events in patients with atrial fibrillation. Thromb Haemost 2014; 113:617-24. [PMID: 25392853 DOI: 10.1160/th14-07-0571] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/03/2014] [Indexed: 12/17/2022]
Abstract
There are limited prospective data evaluating the role of urinary F2-IsoP and NOX2 as predictive markers in atrial fibrillation (AF). The aim of this study was to analyse the role of urinary prostaglandin PGF2alpha (8-iso-PGF2α) and NOX2, markers of systemic oxidative stress, in predicting cardiovascular (CV) events and mortality in anticoagulated non-valvular AF patients. This was a prospective study including 1,002 anticoagulated AF patients, followed for a median time of 25.7 months (interquartile range: 14.8-50.9). All major CV events, CV deaths and all-cause deaths were considered as primary outcomes of the study. CV events included fatal/nonfatal ischaemic stroke, fatal/nonfatal myocardial infarction (MI), cardiac revascularisation and transient ischaemic attack (TIA). Oxidative stress biomarkers, such as urinary 8-iso-PGF2α and serum sNOX2-dp, a marker of NOX2 activation, were measured. A CV event occurred in 125 patients (12.5 %); 78 CV deaths and 31 non-CV deaths were registered. 8-iso-PGF2α and sNOX2-dp were correlated (Rs=0.765 p< 0.001). A significant increased cumulative incidence of CV events and CV deaths was observed across tertiles for 8-iso-PGF2α and sNOX2-dp. An increased rate of all-cause death was observed across tertiles of urinary 8-iso-PGF2α. In Cox or Fine and Gray models, 8-iso-PGF2α predicted CV events and CV and non-CV deaths. The addition of tertiles of 8-iso-PGF2α to CHA2DS2-VASc score improved ROC curves for each outcome and NRI for CV events (0.24 [0.06-0.53] p=0.0067). The study shows that in AF patients 8-iso-PGF2α and NOX2 levels are predictive of CV events and total mortality. F2-IsoP may complement conventional risk factors in prediction of CV events.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesco Violi
- Prof. Francesco Violi, I Clinica Medica, Viale del Policlinico 155, Roma, 00161, Italy, Tel.: +39 064461933, Fax: +39 0649970103, E-mail:
| |
Collapse
|
26
|
Faig A, Petersen L, Moghe PV, Uhrich KE. Impact of hydrophobic chain composition on amphiphilic macromolecule antiatherogenic bioactivity. Biomacromolecules 2014; 15:3328-37. [PMID: 25070717 PMCID: PMC4157764 DOI: 10.1021/bm500809f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/24/2014] [Indexed: 01/08/2023]
Abstract
Amphiphilic macromolecules (AMs) composed of sugar backbones modified with branched aliphatic chains and a poly(ethylene glycol) (PEG) tail can inhibit macrophage uptake of oxidized low-density lipoproteins (oxLDL), a major event underlying atherosclerosis development. Previous studies indicate that AM hydrophobic domains influence this bioactivity through interacting with macrophage scavenger receptors, which can contain basic and/or hydrophobic residues within their binding pockets. In this study, we compare two classes of AMs to investigate their ability to promote athero-protective potency via hydrogen-bonding or hydrophobic interactions with scavenger receptors. A series of ether-AMs, containing methoxy-terminated aliphatic arms capable of hydrogen-bonding, was synthesized. Compared to analogous AMs containing no ether moieties (alkyl-AMs), ether-AMs showed improved cytotoxicity profiles. Increasing AM hydrophobicity via incorporation of longer and/or alkyl-terminated hydrophobic chains yielded macromolecules with enhanced oxLDL uptake inhibition. These findings indicate that hydrophobic interactions and the length of AM aliphatic arms more significantly influence AM bioactivity than hydrogen-bonding.
Collapse
Affiliation(s)
- Allison Faig
- Department of Chemistry and Chemical Biology, Department
of Biomedical Engineering, and Department of Chemical and Biochemical
Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Latrisha
K. Petersen
- Department of Chemistry and Chemical Biology, Department
of Biomedical Engineering, and Department of Chemical and Biochemical
Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Prabhas V. Moghe
- Department of Chemistry and Chemical Biology, Department
of Biomedical Engineering, and Department of Chemical and Biochemical
Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Department
of Biomedical Engineering, and Department of Chemical and Biochemical
Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
27
|
Lee SJ, Choi EK, Seo KW, Bae JU, Park SY, Kim CD. TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role in monocyte adhesion to vascular endothelium. PLoS One 2014; 9:e104588. [PMID: 25116953 PMCID: PMC4130585 DOI: 10.1371/journal.pone.0104588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA), a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO) inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT) mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.
Collapse
Affiliation(s)
- Seung Jin Lee
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Eun Kyoung Choi
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Kyo Won Seo
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Jin Ung Bae
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, and MRC for Ischemic Tissue Regeneration, Pusan National University, Yangsan, Gyeongnam, Republic of Korea
- * E-mail:
| |
Collapse
|
28
|
Jin SY, Kim EK, Ha JM, Lee DH, Kim JS, Kim IY, Song SH, Shin HK, Kim CD, Bae SS. Insulin regulates monocyte trans-endothelial migration through surface expression of macrophage-1 antigen. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1539-48. [PMID: 24915517 DOI: 10.1016/j.bbadis.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/16/2022]
Abstract
During the pathogenesis of atherosclerosis, adhesion of monocytes to vascular endothelium and subsequent migration across the endothelium has been recognized as a key process in the chronic inflammatory response in atherosclerosis. As type 2 diabetes is closely associated with the pathogenesis of atherosclerosis, we investigated whether monocyte adhesion and migration were affected by insulin. We found that insulin activated Akt and induced subsequent migration in THP-1. However, glucose and insulin-like growth factor-1, which is a growth factor that is structurally similar to insulin, were not effective. Insulin-dependent migration of THP-1 was blocked by inhibition of PI3K or Akt and by silencing of Akt1. Insulin-dependent migration of bone marrow-derived monocytic cells (BDMCs) was attenuated by inhibition of PI3K and Akt. In addition, BDMCs from Akt1(-/-) mice showed defects in insulin-dependent migration. Stimulation of THP-1 with insulin caused adhesion with human vein endothelial cells (HUVECs) that was blocked by silencing of Akt1. However, stimulation of HUVECs did not cause adhesion with THP-1. Moreover, BDMCs from Akt1(-/-) mice showed defects in insulin-dependent adhesion with HUVECs. Insulin induced surface expression of Mac-1, and neutralization of Mac-1 blocked insulin-induced adhesion of THP-1 as well as BDMCs. Surface expression of Mac-1 was blocked in THP-1 with silenced Akt1, and in BDMCs isolated from mice lacking Akt1. Finally, trans-endothelial migration of THP-1 and BDMCs was blocked by Mac-1-neutralizing antibody, in THP-1 with silenced Akt1 and in BDMCs from Akt1(-/-) mice. These results suggest that insulin stimulates monocyte trans-endothelial migration through Akt-dependent surface expression of Mac-1, which may be part of the atherogenesis in type 2 diabetes.
Collapse
Affiliation(s)
- Seo Yeon Jin
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Eun Kyoung Kim
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jung Min Ha
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Dong Hyung Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jeong Su Kim
- Cardiovascular Disease Center, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Il Young Kim
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Anatomy, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Chi Dae Kim
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
29
|
Maiseyeu A, Bagalkot V. In vitro uptake of apoptotic body mimicking phosphatidylserine-quantum dot micelles by monocytic cell line. NANOSCALE RESEARCH LETTERS 2014; 9:176. [PMID: 24725273 PMCID: PMC4022335 DOI: 10.1186/1556-276x-9-176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/31/2014] [Indexed: 05/05/2023]
Abstract
A new quantum dot (QD) PEGylated micelle laced with phosphatidylserine (PS) for specific scavenger receptor-mediated uptake by macrophages is reported. The size and surface chemistry of PS-QD micelles were characterized by standard methods and the effects of their physicochemical properties on specific targeting and uptake were comprehensively studied in a monocytic cell line (J774A.1).
Collapse
Affiliation(s)
- Andrei Maiseyeu
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, 20 Penn St., HSFII, S012D, Baltimore, MD 21201, USA
| | - Vaishali Bagalkot
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, 20 Penn St., HSFII, S012D, Baltimore, MD 21201, USA ; Department of Internal Medicine/Cardiology, University of Texas Health Science Center (UTHSC), 1881 East Road, South Campus Research Building 3, Center for Advanced Biomedical Imaging Research, 3SCR6.4610, Houston, TX 77054, USA
| |
Collapse
|
30
|
Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog Lipid Res 2013; 52:446-64. [DOI: 10.1016/j.plipres.2013.06.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/17/2022]
|
31
|
Lewis DR, Kholodovych V, Tomasini MD, Abdelhamid D, Petersen LK, Welsh WJ, Uhrich KE, Moghe PV. In silico design of anti-atherogenic biomaterials. Biomaterials 2013; 34:7950-9. [PMID: 23891521 DOI: 10.1016/j.biomaterials.2013.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/01/2013] [Indexed: 01/10/2023]
Abstract
Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties.
Collapse
Affiliation(s)
- Daniel R Lewis
- Department of Chemical and Biochemical Engineering, Rutgers University, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
The Expression of CD14(+)CD16(+) Monocyte Subpopulation in Coronary Heart Disease Patients with Blood Stasis Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:416932. [PMID: 23878597 PMCID: PMC3712231 DOI: 10.1155/2013/416932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/31/2013] [Accepted: 06/09/2013] [Indexed: 12/11/2022]
Abstract
Blood stasis syndrome (BSS), a comprehensive pathological state, is one of the traditional Chinese medicine syndromes of coronary heart disease (CHD). In our previous study, we investigated that Fc γ RIIIA (also called CD14(+)CD16(+) monocyte subpopulation) is one of the differentially expressed genes related to CHD patients and its possible role in the atherosclerotic formation and plaque rupture. However, whether or not the deregulation of CD14(+)CD16(+) monocyte subpopulation expression is implicated in the pathogenesis of CHD patients with BSS has not yet been elucidated. In this study, we found that there was no significant difference between CHD patients with BSS and non-BSS in CD14(+)CD16(+) monocyte subpopulation at gene level. Moreover, the protein level of CD14(+)CD16(+) monocyte subpopulation in CHD patients with BSS was increased significantly when compared to the CHD patients with non-BSS. Additionally, the level of inflammatory cytokines downstream of CD14(+)CD16(+) monocyte subpopulation such as TNF- α and IL-1 in sera was much higher in CHD patients with BSS than that in CHD patients with non-BSS. Taken together, these results indicated that CD14(+)CD16(+) monocyte subpopulation was implicated in the pathogenesis of CHD patients with BSS, which may be one of the bases of the essence of BSS investigation.
Collapse
|
33
|
Lee SJ, Choi EK, Seo KW, Bae JU, Kim YH, Park SY, Oh SO, Kim CD. 5-Lipoxygenase plays a pivotal role in endothelial adhesion of monocytes via an increased expression of Mac-1. Cardiovasc Res 2013; 99:724-33. [DOI: 10.1093/cvr/cvt135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
34
|
Feeney ER, McAuley N, O'Halloran JA, Rock C, Low J, Satchell CS, Lambert JS, Sheehan GJ, Mallon PWG. The expression of cholesterol metabolism genes in monocytes from HIV-infected subjects suggests intracellular cholesterol accumulation. J Infect Dis 2012. [PMID: 23204179 DOI: 10.1093/infdis/jis723] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection is associated with increased cardiovascular risk and reduced high-density lipoprotein cholesterol (HDL-c). In vitro, HIV impairs monocyte-macrophage cholesterol efflux, a major determinant of circulating HDL-c, by increasing ABCA1 degradation, with compensatory upregulation of ABCA1 messenger RNA (mRNA). METHODS We examined expression of genes involved in cholesterol uptake, metabolism, and efflux in monocytes from 22 HIV-positive subjects on antiretroviral therapy (ART-Treated), 30 untreated HIV-positive subjects (ART-Naive), and 22 HIV-negative controls (HIV-Neg). RESULTS HDL-c was lower and expression of ABCA1 mRNA was higher in ART-Naive subjects than in both ART-Treated and HIV-Neg subjects (both P < .01), with HDL-c inversely correlated with HIV RNA (ρ = -0.52; P < .01). Expression of genes involved in cholesterol uptake (LDLR, CD36), synthesis (HMGCR), and regulation (SREBP2, LXRA) was significantly lower in both ART-Treated and ART-Naive subjects than in HIV-Neg controls. CONCLUSIONS In vivo, increased monocyte ABCA1 expression in untreated HIV-infected patients and normalization of ABCA1 expression with virological suppression by ART supports direct HIV-induced impairment of cholesterol efflux previously demonstrated in vitro. However, decreased expression of cholesterol sensing, uptake, and synthesis genes in both untreated and treated HIV infection suggests that both HIV and ART affect monocyte cholesterol metabolism in a pattern consistent with accumulation of intramonocyte cholesterol.
Collapse
Affiliation(s)
- Eoin R Feeney
- HIV Molecular Research Group, School of Medicine and Medical Science, University College Dublin, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Adenosine A(2A) receptor activation supports an atheroprotective cholesterol balance in human macrophages and endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:407-16. [PMID: 23168167 DOI: 10.1016/j.bbalip.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/22/2022]
Abstract
The adenosine A(2A) receptor (A(2A)R) plays an important role in the regulation of inflammatory and immune responses. Our previous work has demonstrated that A(2A)R agonists exhibit atheroprotective effects by increasing expression of reverse cholesterol transport proteins in cultured human macrophages. This study explores the impact of pharmacologic activation/inhibition and gene silencing of A(2A)R on cholesterol homeostasis in both THP-1 human monocytes/macrophages and primary human aortic endothelial cells (HAEC). THP-1 human monocytes/macrophages and HAEC exposed to the A(2A)R-specific agonist ATL313 exhibited upregulation of proteins responsible for cholesterol efflux: the ABCA1 and G1 transporters. Further, activation of A(2A)R led to upregulation of the cholesterol metabolizing enzyme P450 27-hydroxylase, accompanied by intracellular changes in level of oxysterols. We demonstrate that anti-atherogenic properties of A(2A)R activation are not limited to the regulation of lipid efflux in vasculature, but include protection from lipid overload in macrophages, particularly via suppression of the CD36 scavenger receptor. The reduced lipid accumulation manifests directly as a diminution in foam cell transformation. In THP-1 macrophages, either A(2A)R pharmacological blockade or gene silencing promote lipid accumulation and enhance foam cell transformation. Our pre-clinical data provides evidence suggesting that A(2A)R stimulation by ATL313 has the potential to be a viable therapeutic strategy for cardiovascular disease prevention, particularly in patients with elevated risk due to immune/inflammatory disorders.
Collapse
|
36
|
1,25-Dihydroxyvitamin D3 promotes a sustained LPS-induced NF-κB-dependent expression of CD55 in human monocytic THP-1 cells. PLoS One 2012; 7:e49318. [PMID: 23152895 PMCID: PMC3495912 DOI: 10.1371/journal.pone.0049318] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/10/2012] [Indexed: 01/05/2023] Open
Abstract
The vitamin D3 system imposes immunosuppressive effects on monocytic cells, in part, by inhibiting NF-κB-dependent expression of proinflammatory mediators. CD55, a cell surface complement regulatory protein that promotes protective and anti-inflammatory properties, is reportedly an NF-κB target gene transiently induced in monocytic cells by the bacterial endotoxin LPS. CD55 is elevated on white cells in women experiencing preterm labor (a pathophysiology commonly associated with bacterial infection) and failure to maintain CD55 was associated with subsequent preterm delivery. We examined the influence of vitamin D3 signaling on LPS-induced expression of CD55 in human monocytic THP-1 cells using quantitative PCR, immunoblot, immunohistochemistry, and NF-κB activation pathway inhibitors. Non-NF-κB targets CD14 and CD11b, which modulate bacterial surveillance and eradication, respectively, were also examined. LPS produced a rapid transient 1.6-fold increase in CD55 mRNA. 1,25-D3 alone did not affect CD55 mRNA expression within the first 48 h. However, in 1,25-D3 pretreated cells, LPS produced a >4-fold immediate and sustained increase in CD55 mRNA and protein expression, which was blocked by NF-κB inhibitors. Our results unexpectedly suggest that vitamin D3 signaling may promote an anti-inflammatory response through an NF-κB-dependent increase in CD55 expression. As expected, LPS or 1,25-D3 alone led to sustained increases in CD14 and CD11b expression. In 1,25-D3 pretreated cells, LPS differentially regulated protein expression - CD14 (21-fold increase) and CD11b (a transient 2-fold decrease) - principally at the posttranscriptional level. The coordinated temporal expression of CD55, CD14 and CD11b would contribute to an anti-inflammatory response by providing protection against complement-mediated cell lysis during pathogen recognition and eradication. Overall, the vitamin D3 system may play a role coordinating an anti-inflammatory response pattern of the host complement immune system. This may be particularly important when considering the high rates of preterm births in blacks, a population that exhibits reduced circulating vitamin D3 levels.
Collapse
|
37
|
Su T, Zhao L, Ruan X, Zuo G, Gong J. Synergistic effect of scavenger receptor A and low-density lipoprotein receptor on macrophage foam cell formation under inflammatory stress. Mol Med Rep 2012; 7:37-42. [PMID: 23139052 DOI: 10.3892/mmr.2012.1170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/19/2012] [Indexed: 11/06/2022] Open
Abstract
To provide experimental evidence for the effect of inflammation on cholesterol accumulation in macrophages, we investigated the expression of low-density lipoprotein receptor (LDL-R) and scavenger receptor A (SR-A) genes and proteins in the lipopolysaccharide (LPS)-stimulated macrophage-like RAW264.7 cell line. RAW264.7 cells were incubated in serum-free medium in the absence or presence of LDL alone, LDL+LPS and LPS alone. Intracellular cholesterol content, tumor necrosis factor α levels in the supernatants, mRNA and protein expression of LDL-R and SR-A in the treated cells were assessed by Oil Red O staining cholesterol enzymatic assay, enzyme-linked immunosorbent assay, semi-quantitative polymerase chain reaction and western blot analysis, respectively. Our results demonstrated that LPS was able to upregulate SR-A mRNA and protein expression, override LDL-R suppression induced by a high dose of LDL and increase LDL uptake by enhancing receptor expression, leading to foam cell formation in RAW264.7 cells. These findings suggest that the synergy of the upregulation of SR-A and dysregulation of LDL-R under inflammatory stress may contribute to macrophage-derived foam cell formation.
Collapse
Affiliation(s)
- Tianyi Su
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital to Chongqing Medical University, Chongqing, PR China
| | | | | | | | | |
Collapse
|
38
|
Tang Z, Jiang L, Peng J, Ren Z, Wei D, Wu C, Pan L, Jiang Z, Liu L. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-κB activation in THP-1-derived macrophages. Int J Mol Med 2012; 30:931-8. [PMID: 22825241 DOI: 10.3892/ijmm.2012.1072] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/29/2012] [Indexed: 01/17/2023] Open
Abstract
Proprotein convertase subtilisin/kexin 9 (PCSK9), a member of the protein-converting enzyme family, is highly expressed in adult hepatocytes and small intestinal enterocytes. To our knowledge, in this study, we demonstrate for the first time that PCSK9 is upregulated in a dose-dependent manner via oxidized low-density lipoprotein (oxLDL) stimulation in THP-1-derived macrophages. PCSK9 small interfering RNA (siRNA) suppresses the oxLDL-induced inflammatory cytokine expression in THP-1-derived macrophages. The exposure of macrophages to oxLDL markedly increased the expression of NF-κB protein in the nucleus. However, this effect was significantly attenuated by PCSK9 siRNA. These findings indicate that PCSK9 expression is induced by oxLDL, and that PCSK9 siRNA protects against inflammation via the inhibition of NF-κB activation in oxLDL-stimulated THP-1-derived macrophages. Our results suggest that PCSK9 may be used as a therapeutic target for the treatment of atherosclerosis since PCSK9 siRNA suppresses oxLDL-induced IκB-α degradation and NF-κB nuclear translocation into THP-1-derived macrophages.
Collapse
Affiliation(s)
- Zhihan Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Szuchman-Sapir A, Etzman M, Tamir S. Human atherosclerotic plaque lipid extract impairs the antioxidant defense capacity of monocytes. Biochem Biophys Res Commun 2012; 423:884-8. [PMID: 22728042 DOI: 10.1016/j.bbrc.2012.06.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Oxidative stress, induced by reactive oxygen species (ROS), is implicated in the pathogenesis of plaque formation and instability. During this ongoing oxidative process, cells in the vasculature are exposed to the atherogenicity of the plaque; previous studies have suggested that the arterial plaque, apart from being a consequence of the development of atherosclerosis, is also a cause of its progression. OBJECTIVE In this study, we challenged this idea by investigating the effect of carotid plaque lipid extract on the human monocyte antioxidant system. METHODS AND RESULTS Exposure of monocytes to carotid plaque lipid extract (LE) for up to 72 h resulted in a significant increase in the ROS level (170%), with a simultaneous rise of 177% in glutathione oxidation. Experiments revealed a significant decrease, in the intracellular antioxidant enzyme activity of CAT, GPx and TRxR, (by 17, 33 and 43%, respectively). Although the activity of these enzymes subsequently returned to those of the controls, the levels of ROS did not decrease but rather continued increasing with extended LE exposure. Intriguingly, intracellular SOD activity rose significantly and remained high (176%), implying that endogenously produced H(2)O(2), and not O(2)·¯ < is the factor that promotes the oxidative stress resulting from the presence of LE. CONCLUSION Lipids from the atherosclerotic plaque may contribute to the progression of atherogenic conditions in adjacent regions by weakening the cellular antioxidant system and promoting oxidative stress, mainly through H(2)O(2) production.
Collapse
Affiliation(s)
- Andrea Szuchman-Sapir
- Laboratory of Human Health and Nutrition Sciences, MIGAL- Galilee Technology Center, P O Box 831, Kiryat Shmona 11016, Israel.
| | | | | |
Collapse
|
40
|
Abstract
Accumulating evidences have documented that angiogenesis is closely linked to inflammation and regulators of angiogenesis play key roles in various inflammatory conditions. PlGF is an angiogenic protein belonging to the VEGF family and is upregulated mainly in pathologic conditions. Recently, PlGF was discovered having a proinflammatory role in inflammatory arthritis and its serum level drew attention not only as a useful surrogate biomarker but also a potential therapeutic target in atherosclerosis and various cancers. Particularly, PlGF has attractive clinical values because endogenous PlGF is redundant for vascular development and physiological vessel maintenance in healthy adults. However, there have been conflicting results about the efficacy of PlGF inhibition depending on the experimental and clinical settings. Further close investigations for resolving the puzzle of PlGF biology are required.
Collapse
Affiliation(s)
- Ki Jo Kim
- Research Institute of Immunobiology, Catholic Research Institute of Medical Science, Seoul, Korea
| | | | | |
Collapse
|
41
|
Michael DR, Ashlin TG, Buckley ML, Ramji DP. Macrophages, lipid metabolism and gene expression in atherogenesis: a therapeutic target of the future? ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.11.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Xu JM, Shi GP. Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev 2012; 33:71-108. [PMID: 22240242 PMCID: PMC3365842 DOI: 10.1210/er.2011-0013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 09/12/2011] [Indexed: 12/11/2022]
Abstract
Mast cells are essential in allergic immune responses. Recent discoveries have revealed their direct participation in cardiovascular diseases and metabolic disorders. Although more sophisticated mechanisms are still unknown, data from animal studies suggest that mast cells act similarly to macrophages and other inflammatory cells and contribute to human diseases through cell-cell interactions and the release of proinflammatory cytokines, chemokines, and proteases to induce inflammatory cell recruitment, cell apoptosis, angiogenesis, and matrix protein remodeling. Reduced cardiovascular complications and improved metabolic symptoms in animals receiving over-the-counter antiallergy medications that stabilize mast cells open another era of mast cell biology and bring new hope to human patients suffering from these conditions.
Collapse
Affiliation(s)
- Jia-Ming Xu
- Department of Medicine, Nanfang Hospital and Southern Medical University, Guangzhou 510515, China
| | | |
Collapse
|
43
|
Bai W, Zheng X, Zhou L, Li H. Prostaglandin E1 dose-dependently promotes stability of atherosclerotic plaque in a rabbit model. Can J Physiol Pharmacol 2012; 90:131-9. [PMID: 22309388 DOI: 10.1139/y11-115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study evaluated the effect of prostaglandin E1 (PGE1) on the stability of atherosclerotic plaque. A vulnerable plaque model was established in rabbits, using balloon injury combined with a high-cholesterol diet. The rabbits were distributed into a control group, a low-dose PGE1 treatment group, a moderate-dose PGE1 treatment group, a high-dose PGE1 treatment group, and a simvastatin treatment group, with treatments lasting for 4 weeks. At week 13 (at the end of the experiments), atherosclerotic plaque was triggered by injection of Russell's viper venom (Chinese) and histamine. Serological, pathological, immunohistochemical, and gene-expression studies were subsequently performed. PGE1 treatment did not alter serum lipid levels; however, PGE1 dose-dependently increased the thickness of the fibrous caps, and decreased the plaque vulnerability index. The plaque contents of macrophage- and the mRNA levels of monocyte-chemotactic protein-1, matrix metalloproteinase-1, and matrix metalloproteinase-9 were markedly reduced in all of the PGE1 treatment groups, with the high-dose of PGE1 being more effective than the simvastatin treatment. These findings suggest that PGE1 dose-dependently enhances the stability of atherosclerotic plaque. The high-dose of PGE1 presented more protection in terms of inhibiting macrophage accumulation and inflammatory expression in plaque. Our findings suggest a novel drug for the treatment of atherosclerosis.
Collapse
MESH Headings
- Alprostadil/pharmacology
- Angioplasty, Balloon
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Diseases/drug therapy
- Aortic Diseases/etiology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cardiovascular Agents/pharmacology
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Cholesterol, Dietary
- Cytokines/metabolism
- Disease Models, Animal
- Disease Progression
- Dose-Response Relationship, Drug
- Down-Regulation
- Fibrosis
- Histamine
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Inflammation Mediators/metabolism
- Lipid Metabolism/drug effects
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Matrix Metalloproteinase 1/genetics
- Matrix Metalloproteinase 1/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- RNA, Messenger/metabolism
- Rabbits
- Daboia
- Simvastatin/pharmacology
- Viper Venoms
Collapse
Affiliation(s)
- Wanjun Bai
- Department of Clinical Pharmacy, School of Pharmacy, Shandong University, Jinan, Shandong 250012, P.R. China
| | | | | | | |
Collapse
|
44
|
Bentley C, Hathaway N, Widdows J, Bejta F, De Pascale C, Avella M, Wheeler-Jones C, Botham K, Lawson C. Influence of chylomicron remnants on human monocyte activation in vitro. Nutr Metab Cardiovasc Dis 2011; 21:871-878. [PMID: 20674313 PMCID: PMC3212651 DOI: 10.1016/j.numecd.2010.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/14/2010] [Accepted: 02/12/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is known to be an inflammatory disease and there is increasing evidence that chylomicron remnants (CMR), the lipoproteins which carry dietary fats in the blood, cause macrophage foam cell formation and inflammation. In early atherosclerosis the frequency of activated monocytes in the peripheral circulation is increased, and clearance of CMR from blood may be delayed, however, whether CMR contribute directly to monocyte activation and subsequent egress into the arterial wall has not been established. Here, the contribution of CMR to activation of monocyte pro-inflammatory pathways was assessed using an in vitro model. METHODS AND RESULTS Primary human monocytes and CMR-like particles (CRLP) were used to measure several endpoints of monocyte activation. Treatment with CRLP caused rapid and prolonged generation of reactive oxygen species by monocytes. The pro-inflammatory chemokines MCP-1 and IL-8 were secreted in nanogram quantities by the cells in the absence of CRLP. IL-8 secretion was transiently increased after CRLP treatment, and CRLP maintained secretion in the presence of pharmacological inhibitors of IL-8 production. In contrast, exposure to CRLP significantly reduced MCP-1 secretion. Chemotaxis towards MCP-1 was increased in monocytes pre-exposed to CRLP and was reversed by addition of exogenous MCP-1. CONCLUSION Our findings indicate that CRLP activate human monocytes and augment their migration in vitro by reducing cellular MCP-1 expression. Our data support the current hypothesis that CMR contribute to the inflammatory milieu of the arterial wall in early atherosclerosis, and suggest that this may reflect direct interaction with circulating blood monocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - C. Lawson
- Corresponding author. Tel.: +44 20 7468 1216; fax: +44 20 7468 5204.
| |
Collapse
|
45
|
Nagashima M, Watanabe T, Terasaki M, Tomoyasu M, Nohtomi K, Kim-Kaneyama J, Miyazaki A, Hirano T. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia 2011; 54:2649-59. [PMID: 21786155 PMCID: PMC3168747 DOI: 10.1007/s00125-011-2241-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/31/2011] [Indexed: 01/15/2023]
Abstract
AIMS/HYPOTHESIS Several lines of evidence suggest that incretin-based therapies suppress the development of cardiovascular disease in type 2 diabetes. We investigated the possibility that glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) can prevent the development of atherosclerosis in Apoe (-/-) mice. METHODS Apoe (-/-) mice (17 weeks old) were administered GLP-1(7-36)amide, GLP-1(9-36)amide, GIP(1-42) or GIP(3-42) for 4 weeks. Aortic atherosclerosis, oxidised LDL-induced foam cell formation and related gene expression in exudate peritoneal macrophages were determined. RESULTS Administration of GLP-1(7-36)amide or GIP(1-42) significantly suppressed atherosclerotic lesions and macrophage infiltration in the aortic wall, compared with vehicle controls. These effects were cancelled by co-infusion with specific antagonists for GLP-1 and GIP receptors, namely exendin(9-39) or Pro(3)(GIP). The anti-atherosclerotic effects of GLP-1(7-36)amide and GIP(1-42) were associated with significant decreases in foam cell formation and downregulation of CD36 and acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) in macrophages. GLP-1 and GIP receptors were both detected in Apoe (-/-) mouse macrophages. Ex vivo incubation of macrophages with GLP-1(7-36)amide or GIP(1-42) for 48 h significantly suppressed foam cell formation. This effect was wholly abolished in macrophages pretreated with exendin(9-39) or (Pro(3))GIP, or with an adenylate cyclase inhibitor, MDL12,330A, and was mimicked by incubation with an adenylate cyclase activator, forskolin. The inactive forms, GLP-1(9-36)amide and GIP(3-42), had no effects on atherosclerosis and macrophage foam cell formation. CONCLUSIONS/INTERPRETATION Our study is the first to demonstrate that active forms of GLP-1 and GIP exert anti-atherogenic effects by suppressing macrophage foam cell formation via their own receptors, followed by cAMP activation. Molecular mechanisms underlying these effects are associated with the downregulation of CD36 and ACAT-1 by incretins.
Collapse
Affiliation(s)
- M. Nagashima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666 Japan
| | - T. Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - M. Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666 Japan
| | - M. Tomoyasu
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666 Japan
| | - K. Nohtomi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666 Japan
| | - J. Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - A. Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - T. Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666 Japan
| |
Collapse
|
46
|
Yehuda H, Szuchman-Sapir A, Khatib S, Musa R, Tamir S. Human atherosclerotic plaque lipid extract promotes expression of proinflammatory factors in human monocytes and macrophage-like cells. Atherosclerosis 2011; 218:339-43. [DOI: 10.1016/j.atherosclerosis.2011.07.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 07/12/2011] [Accepted: 07/28/2011] [Indexed: 02/07/2023]
|
47
|
The oxidative state of chylomicron remnants influences their modulation of human monocyte activation. Int J Vasc Med 2011; 2012:942512. [PMID: 21961069 PMCID: PMC3180828 DOI: 10.1155/2012/942512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 12/30/2022] Open
Abstract
Chylomicron remnants (CMRs) contribute directly to human monocyte activation in vitro, by increasing reactive oxygen species (ROS) production and cell migration. In this study, the effects of the oxidative state of CMR on the degree of monocyte activation was investigated. CMR-like particles (CRLPs) were prepared in three different oxidative states, normal (CRLPs), protected from oxidation by incorporation of the antioxidant, probucol (pCRLPs), or oxidised with CuSO(4) (oxCRLPs). Lipid accumulation and ROS production were significantly increased in primary human monocytes incubated with CRLPs, whilst secretion on monocyte chemoattractant protein-1 was reduced, but oxCRLPs had no additional effect. In contrast, pCRLPs were taken up by monocytes to a lesser extent and had no significant effect on ROS or MCP-1 secretion. These studies suggest that the oxidative state of CMRs modulates their stimulation of the activation of peripheral blood human monocytes and that dietary antioxidants may provide some protection against these atherogenic effects.
Collapse
|
48
|
Booz GW. Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic Biol Med 2011; 51:1054-61. [PMID: 21238581 PMCID: PMC3085542 DOI: 10.1016/j.freeradbiomed.2011.01.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 12/24/2022]
Abstract
Oxidative stress with reactive oxygen species generation is a key weapon in the arsenal of the immune system for fighting invading pathogens and initiating tissue repair. If excessive or unresolved, however, immune-related oxidative stress can initiate further increasing levels of oxidative stress that cause organ damage and dysfunction. Targeting oxidative stress in various diseases therapeutically has proven more problematic than first anticipated given the complexities and perversity of both the underlying disease and the immune response. However, growing evidence suggests that the endocannabinoid system, which includes the CB₁ and CB₂ G-protein-coupled receptors and their endogenous lipid ligands, may be an area that is ripe for therapeutic exploitation. In this context, the related nonpsychotropic cannabinoid cannabidiol, which may interact with the endocannabinoid system but has actions that are distinct, offers promise as a prototype for anti-inflammatory drug development. This review discusses recent studies suggesting that cannabidiol may have utility in treating a number of human diseases and disorders now known to involve activation of the immune system and associated oxidative stress, as a contributor to their etiology and progression. These include rheumatoid arthritis, types 1 and 2 diabetes, atherosclerosis, Alzheimer disease, hypertension, the metabolic syndrome, ischemia-reperfusion injury, depression, and neuropathic pain.
Collapse
Affiliation(s)
- George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, and Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
49
|
Silvola JM, Laitinen I, Sipilä HJ, Laine VJO, Leppänen P, Ylä-Herttuala S, Knuuti J, Roivainen A. Uptake of 68gallium in atherosclerotic plaques in LDLR-/-ApoB100/100 mice. EJNMMI Res 2011; 1:14. [PMID: 22214258 PMCID: PMC3251160 DOI: 10.1186/2191-219x-1-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/17/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease of artery wall characterized by infiltration of monocytes into subendothelial space and their differentiation into macrophages. Since rupture-prone plaques commonly contain high amounts of activated macrophages, imaging of the macrophage content may provide a useful tool for the evaluation of plaque vulnerability. The purpose of this study was to explore the uptake of 68gallium (68Ga) in atherosclerotic plaques in mice. METHODS Uptake of ionic 68Ga was investigated in atherosclerotic LDLR-/-ApoB100/100 and C57BL/6N control mice at 3 h after injection. The ex vivo biodistribution of the 68Ga was assessed and autoradiography of aortic cryosections was defined. In vivo imaging of 68Ga was performed using a small animal positron emission tomography PET/CT scanner. RESULTS Our results revealed that the uptake of 68Ga-radioactivity was higher in atherosclerotic plaques than in healthy vessel wall (ratio 1.8 ± 0.2, p = 0.0002) and adventitia (ratio 1.3 ± 0.2, p = 0.0011). The autoradiography signal co-localized with macrophages prominently as demonstrated by Mac-3 staining. In both mice strains, the highest level of radioactivity was found in the blood. CONCLUSIONS We observed a moderate but significantly elevated 68Ga-radioactivity uptake in the aortic plaques of atherosclerotic mice, especially at the sites rich in macrophages. While the uptake of 68Ga was promising in this animal model, the slow blood clearance may limit the usability of 68Ga as a PET tracer for clinical imaging of atherosclerotic plaques.
Collapse
Affiliation(s)
- Johanna Mu Silvola
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Noda Y, Yamagishi SI, Matsui T, Ueda S, Ueda SI, Jinnouchi Y, Hirai Y, Imaizumi T. The p66shc gene expression in peripheral blood monocytes is increased in patients with coronary artery disease. Clin Cardiol 2011; 33:548-52. [PMID: 20842738 DOI: 10.1002/clc.20761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The p66(shc) protein has been shown to control cellular responses to oxidative stress, being involved in atherosclerosis in animal models. However, the relationship between the p66(shc) gene expression levels and coronary artery disease (CAD) in humans remains unknown. In this study, we examined whether the p66(shc) gene expression in peripheral blood monocytes (PBMs) was increased in patients with CAD, compared with age- and sex-matched subjects without CAD. HYPOTHESIS We hypothesize that the p66(shc) gene expression level in PBMs is increased in patients with CAD. METHODS Forty consecutive Japanese subjects who underwent coronary angiography for suspected CAD were enrolled in this study. The p66(shc) gene expression levels in PBMs were quantitatively measured by real-time reverse transcription-polymerase chain reactions. Uni- and multivariate analyses were applied for the correlates of CAD. CAD was diagnosed if there was > 75% obstruction of at least 1 major coronary artery or a history of percutaneous coronary intervention. RESULTS There were no significant differences of blood chemistries and clinical characteristics between the patients with and without CAD, except the number of subjects who were on hypertension medication. The p66(shc) gene expression levels in PBMs were significantly higher in CAD patients compared with non-CAD subjects. Multiple stepwise regression analysis revealed that the p66(shc) gene expression levels and hypertension medication were independently related to CAD (R(2)=0.287). Further, the p66(shc) gene expres- sion levels were significantly increased (P < 0.05) in proportion to the number of diseased vessels. CONCLUSIONS The present study is the first demonstration that increased the p66(shc) gene expression in PBMs is independently associated with CAD in Japanese subjects. The p66(shc) gene expression level in PBMs may be a novel biomarker of CAD in humans.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Internal Medicine, Division of Cardio-Vascular Medicine, Kurume, Japan
| | | | | | | | | | | | | | | |
Collapse
|