1
|
Williams ME, Mann JK, Ndung'u T, Tincho MB, Tongo M, Ntusi NAB, Makhalanyane TP. To end the HIV-1 pandemic, concerted research efforts must focus on sub-Saharan Africa. Nat Rev Microbiol 2025; 23:403-404. [PMID: 40369114 DOI: 10.1038/s41579-025-01188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Affiliation(s)
- Monray E Williams
- Biomedical and Molecular Metabolism Research (BioMMet), North-West University, Potchefstroom, South Africa.
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Marius B Tincho
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Marcel Tongo
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | | | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Yaman M, Gülcen BS, Özgüler K, Köksal MO, Tekol SD, İlki A. Temporal Trends in HIV-1 Subtypes and Antiretroviral Drug Resistance Mutations in Istanbul, Türkiye (2021-2024): A Next-Generation Sequencing Study. Viruses 2025; 17:478. [PMID: 40284921 PMCID: PMC12031039 DOI: 10.3390/v17040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
HIV-1 genotyping and drug resistance tests are routinely performed in virology laboratories in some countries, aiding clinical management. In Istanbul, between January 2021 and March 2024, plasma samples from 1029 HIV-1-infected patients were analyzed using the NGS method, and mutation and drug resistance results were retrospectively evaluated alongside demographic data. Subtype B (54.4%) was most frequent in Turkish patients, while Subtype A1 (43.5%) was predominant among foreign nationals. The most common CRFs were CRF02_AG (3.8%) and CRF56_cpx (1.6%). According to the change in detection rates during the study period, Subtype B decreased, and Subtype A increased. The most frequent mutations detected were A62V (38.7%) and M184V (22.4%) for NRTIs; E138A (55.5%) and E138G (11.5%) for NNRTIs; M46I (33.3%) and M46L (25%) for PIs; and E92Q and G for INIs (total rate: 35.2%). Darunavir/ritonavir had the highest sensitivity rate, while resistance rates for NNRTIs and INIs increased over time. We anticipate that this study, in which we evaluate the routine use of an FDA-approved NGS kit alongside integrated bioinformatics data analysis and automated reporting software for the first time in Türkiye, will contribute to both national and international molecular epidemiological data and public health strategies by providing reliable results that align with international standarts.
Collapse
Affiliation(s)
- Murat Yaman
- Medical Microbiology, Marmara University Pendik Research and Training Hospital, Istanbul 34899, Türkiye;
| | - Begüm Saran Gülcen
- Medical Microbiology, Fatih Sultan Mehmet Research and Training Hospital, Istanbul 34752, Türkiye;
| | - Kübra Özgüler
- Medical Microbiology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul 34865, Türkiye; (K.Ö.); (S.D.T.)
| | - Muammer Osman Köksal
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye;
| | - Serap Demir Tekol
- Medical Microbiology, Kartal Dr. Lutfi Kirdar City Hospital, Istanbul 34865, Türkiye; (K.Ö.); (S.D.T.)
| | - Arzu İlki
- Medical Microbiology, Marmara University Pendik Research and Training Hospital, Istanbul 34899, Türkiye;
- Department of Medical Microbiology, Faculty of Medicine, Marmara University, Istanbul 3484, Türkiye
| |
Collapse
|
3
|
Naidu D, Oduro-Kwateng E, Soliman MES, Ndlovu SI, Mkhwanazi NP. Alternaria alternata (Fr) Keissl Crude Extract Inhibits HIV Subtypes and Integrase Drug-Resistant Strains at Different Stages of HIV Replication. Pharmaceuticals (Basel) 2025; 18:189. [PMID: 40006004 PMCID: PMC11859181 DOI: 10.3390/ph18020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The development of HIV drug resistance to current antiretrovirals, and the antiretrovirals' inability to cure HIV, provides the need of developing novel drugs that inhibit HIV-1 subtypes and drug-resistance strains. Fungal endophytes, including Alternaria alternata, stand out for their potentially antiviral secondary metabolites. Hence, this study investigates the anti-HIV activities and mechanism of action of the A. alternata crude extract against different HIV-1 subtypes and integrase-resistant mutant strains. Methods: Cytotoxicity of the A. alternata crude extract on TZM-bl cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed. The crude extract antiviral activity against subtypes A, B, C, and D and integrase drug-resistant strain T66K and S230R was determined using a luciferase-based antiviral assay. Luciferase and p24 ELISA-based time-of-addition assays were used to determine the mechanism of action of the crude extract. Docking scores and protein ligand interactions of integrase T66K and S230R strains against the identified bioactive compounds were determined. Results: The crude extract CC50 was 300 μg/mL and not cytotoxic to the TZM-bl cell lines. In HIV-1 subtypes A, B, C, and D, the crude extract exhibited 100% inhibition and therapeutic potential. The A. alternata crude extract had strong anti-HIV-1 activity against integrase strand transfer drug-resistant strains T66K and S230R, with a 0.7265- and 0. 8751-fold increase in susceptibility. The crude extract had antiviral activity during attachment, reverse transcription, integration, and proteolysis. In silico calculations showed compounds 2,3-2H-Benzofuran-2-one, 3,3,4,6-tetramethyl-, 3-Methyl-1,4-diazabicyclo[4.3.0]nonan-2,5-dione, N-acetyl, Coumarin, 3,4-dihydro-4,5,7-trimethyl-, Cyclopropanecarboxamide, N-cycloheptyl, Pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(2-methylpropyl)- crude extract bioactive compounds had strong docking scores and diverse binding mechanisms with integrase. Conclusions: The A. alternata crude extract demonstrates strong antiviral activity against different HIV-1 subtypes and integrase drug-resistance strains. The extract inhibited various stages of the HIV-1 life cycle. The bioactive compounds 2,3-2H-Benzofuran-2-one, 3,3,4,6-tetramethyl-, 3-Methyl-1,4-diazabicyclo[4.3.0]nonan-2,5-dione, N-acetyl, Coumarin, 3,4-dihydro-4,5,7-trimethyl-, Cyclopropanecarboxamide, N-cycloheptyl, Pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(2-methylpropyl)- may be responsible for the antiviral activity of A. alternata.
Collapse
Affiliation(s)
- Darian Naidu
- HIV Pathogenesis Programme, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Ernest Oduro-Kwateng
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Durban 4041, South Africa (M.E.S.S.)
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Durban 4041, South Africa (M.E.S.S.)
| | - Sizwe I. Ndlovu
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa;
| | - Nompumelelo P. Mkhwanazi
- HIV Pathogenesis Programme, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa;
| |
Collapse
|
4
|
Venkatachalam S, Krishnan SR, Sayed Y, Gromiha MM. Structural and Functional Studies on HIV Protease: Mechanism of Action, Subtypes, Inhibitors, and Drug Resistance. Methods Mol Biol 2025; 2867:185-200. [PMID: 39576582 DOI: 10.1007/978-1-0716-4196-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Human immunodeficiency virus (HIV) targets the host immune system causing acquired immunodeficiency syndrome (AIDS). Although significant advancements have been made on investigating HIV and related infections, eradicating the virus from the host immune system is still challenging. Nevertheless, the combination therapies using drugs targeting different stages in the viral life cycle are used for treatment in which HIV protease plays a vital role. Hence, it is essential to understand the structure and function of HIV protease. This review focuses on these aspects from different perspectives such as catalytic mechanism, subtypes and role of flaps in drug binding. Further, we highlight the factors affecting drug binding, evolution of drug resistance, and inhibitors reported in the literature using 3D QSAR studies.
Collapse
Affiliation(s)
- Sankaran Venkatachalam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sowmya Ramaswamy Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
5
|
Lv S, Lan Y, He Y, Li Q, Ling X, Li J, Li L, Guo P, Hu F, Cai W, Tang X, Chen J, Li L. Pretreatment drug resistance among people living with HIV from 2018 to 2022 in Guangzhou, China. J Med Virol 2024; 96:e29937. [PMID: 39323078 DOI: 10.1002/jmv.29937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The presence of pretreatment drug resistance (PDR) is posing an increasing threat to HIV control. Here we investigated drug resistance mutations (DRMs) and PDR among 6831 HIV-infected individuals from 2018 to 2022 in Guangzhou, China. DRMs were detected among 24.5% of the patients. The overall prevalence of PDR was 7.4%, with resistance rate to nucleotide reverse transcriptase inhibitor (NRTI) being 1.3%, nonnucleoside reverse transcriptase inhibitor (NNRTI) 4.8%, and protease inhibitor (PI) 1.4%. Abacavir (0.8%) resistance was the most common in NRTI, followed by resistance to emtricitabine (0.6%), lamivudine (0.6%), and tenofovir disoproxil fumarate (0.3%). In NNRTI, nevirapine (3.7%) resistance was the most common, followed by efavirenz (3.5%) and rilpivirine (3.4%). Among PI, resistance to tipranavir (0.8%), nelfinavir (0.6%), fosamprenavir (0.2%) and lopinavir (0.1%) was most frequent. Annual prevalence of PDR showed an increase trend from 2018 to 2022, although not significant. In the multivariable logistic regression model, hepatitis B surface antigen positivity, circulating recombinant form (CRF) 55_01B, CRF08_BC, CRF59_01B, and subtype B were demonstrated as associated risk factors for PDR. The overall prevalence of PDR in Guangzhou was moderate, with relatively severe NNRTI resistance. Therefore, it remains crucial to continue monitoring PDR among newly diagnosed HIV-infected individuals.
Collapse
Affiliation(s)
- Shiyun Lv
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun Lan
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yaozu He
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Quanmin Li
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuemei Ling
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Diagnosis and Treatment Quality Control Center of AIDS and Hepatitis C, Guangzhou, China
| | - Junbin Li
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Diagnosis and Treatment Quality Control Center of AIDS and Hepatitis C, Guangzhou, China
| | - Liya Li
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengle Guo
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fengyu Hu
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiping Cai
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingliang Chen
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linghua Li
- Guangzhou Medical Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
- Infectious Disease Center, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Gao W, Zhou G, Li M, Wang P, Li J, Deng R. HIV drug resistance: analysis of viral genotypes and mutation loci in people living with HIV in Chongqing, China (2016-2023). AIDS Res Ther 2024; 21:62. [PMID: 39272106 PMCID: PMC11396324 DOI: 10.1186/s12981-024-00646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Large-scale HIV genotype drug resistance study has not been conducted in Chongqing. METHODS A retrospective study was conducted on people living with HIV(PLWH) who received HIV-1 genotype resistance testing at Chongqing Public Health Medical Center from May 2016 to June 2023. The HIV-1pol gene was amplified through RT-PCR and analyzed in terms of genotypic drug resistance. RESULTS Of the 3015 PLWH tested for HIV-1 drug resistance, 1405 (46.6%) were resistant to at least one antiviral drug. Among non-nucleoside reverse transcriptase inhibitors (NNRTIs), 43.8% were resistant, compared to 29.5% for nucleoside reverse transcriptase inhibitors (NRTIs) and 3.4% for protease inhibitors (PIs). V179D/E and K103N/S were identified as the common mutation sites in the NNRTIs class of drugs, M184V/I and K65R/N were reported as the most common mutation sites in NRTIs, while thymidine analogue mutation (TAM) group was identified in 373 samples. L10FIV was the most common mutation in PIs. The dominant HIV-1 subtype was CRF07_BC. CONCLUSIONS The high prevalence of HIV-1 drug resistance in Chongqing underscores the imperative for rigorous surveillance of the local HIV epidemic. Furthermore, TAMs are associated with HIV-1 multidrug resistance, and timely detection of drug resistance is helpful to reduce the emergence and spread of such drug-resistant strains.
Collapse
Affiliation(s)
- Wenwan Gao
- Department of Medical Laboratory Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Gang Zhou
- Department of Medical Laboratory Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Mei Li
- Department of Medical Laboratory Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Pengsen Wang
- Department of Medical Laboratory Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Jungang Li
- Department of Medical Laboratory Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Renni Deng
- Department of Medical Laboratory Medicine, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
7
|
Egger M, Sauermann M, Loosli T, Hossmann S, Riedo S, Beerenwinkel N, Jaquet A, Minga A, Ross J, Giandhari J, Kouyos RD, Lessells R. HIV-1 subtype-specific drug resistance on dolutegravir-based antiretroviral therapy: protocol for a multicentre study (DTG RESIST). BMJ Open 2024; 14:e085819. [PMID: 39174068 PMCID: PMC11340720 DOI: 10.1136/bmjopen-2024-085819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
INTRODUCTION HIV drug resistance poses a challenge to the United Nation's goal of ending the HIV/AIDS epidemic. The integrase strand transfer inhibitor (InSTI) dolutegravir, which has a higher resistance barrier, was endorsed by the WHO in 2019 for first-line, second-line and third-line antiretroviral therapy (ART). This multiplicity of roles of dolutegravir in ART may facilitate the emergence of dolutegravir resistance. METHODS AND ANALYSIS Nested within the International epidemiology Databases to Evaluate AIDS (IeDEA), DTG RESIST is a multicentre study of adults and adolescents living with HIV in sub-Saharan Africa, Asia, and South and Central America who experienced virological failure on dolutegravir-based ART. At the time of virological failure, whole blood will be collected and processed to prepare plasma or dried blood spots. Laboratories in Durban, Mexico City and Bangkok will perform genotyping. Analyses will focus on (1) individuals who experienced virological failure on dolutegravir and (2) those who started or switched to such a regimen and were at risk of virological failure. For population (1), the outcome will be any InSTI drug resistance mutations, and for population (2) virological failure is defined as a viral load >1000 copies/mL. Phenotypic testing will focus on non-B subtype viruses with major InSTI resistance mutations. Bayesian evolutionary models will explore and predict treatment failure genotypes. The study will have intermediate statistical power to detect differences in resistance mutation prevalence between major HIV-1 subtypes; ample power to identify risk factors for virological failure and limited power for analysing factors associated with individual InSTI drug resistance mutations. ETHICS AND DISSEMINATION The research protocol was approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal, South Africa and the Ethics Committee of the Canton of Bern, Switzerland. All sites participate in International epidemiology Databases to Evaluate AIDS and have obtained ethics approval from their local ethics committee to collect additional data. TRIAL REGISTRATION NUMBER NCT06285110.
Collapse
Affiliation(s)
- Matthias Egger
- Institute of Social & Preventive Medicine, University of Bern, Bern, Switzerland
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| | - Mamatha Sauermann
- Institute of Social & Preventive Medicine, University of Bern, Bern, Switzerland
| | - Tom Loosli
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Stefanie Hossmann
- Institute of Social & Preventive Medicine, University of Bern, Bern, Switzerland
| | - Selma Riedo
- Institute of Social & Preventive Medicine, University of Bern, Bern, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Antoine Jaquet
- National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Centre, University of Bordeaux, Bordeaux, France
| | - Albert Minga
- Centre Médical de Suivi des Donneurs de Sang, Abidjan, Côte d'Ivoire
| | - Jeremy Ross
- TREAT Asia/amfAR – The Foundation for AIDS Research, Bangkok, Thailand
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
- Centre for the Aids Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
8
|
Gotora PT, Brown K, Martin DR, van der Sluis R, Cloete R, Williams ME. Impact of subtype C-specific amino acid variants on HIV-1 Tat-TAR interaction: insights from molecular modelling and dynamics. Virol J 2024; 21:144. [PMID: 38918875 PMCID: PMC11202254 DOI: 10.1186/s12985-024-02419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND HIV-1 produces Tat, a crucial protein for transcription, viral replication, and CNS neurotoxicity. Tat interacts with TAR, enhancing HIV reverse transcription. Subtype C Tat variants (C31S, R57S, Q63E) are associated with reduced transactivation and neurovirulence compared to subtype B. However, their precise impact on Tat-TAR binding is unclear. This study investigates how these substitutions affect Tat-TAR interaction. METHODS We utilized molecular modelling techniques, including MODELLER, to produce precise three-dimensional structures of HIV-1 Tat protein variants. We utilized Tat subtype B as the reference or wild type, and generated Tat variants to mirror those amino acid variants found in Tat subtype C. Subtype C-specific amino acid substitutions were selected based on their role in the neuropathogenesis of HIV-1. Subsequently, we conducted molecular docking of each Tat protein variant to TAR using HDOCK, followed by molecular dynamic simulations. RESULTS Molecular docking results indicated that Tat subtype B (TatWt) showed the highest affinity for the TAR element (-262.07), followed by TatC31S (-261.61), TatQ63E (-256.43), TatC31S/R57S/Q63E (-238.92), and TatR57S (-222.24). However, binding free energy analysis showed higher affinities for single variants TatQ63E (-349.2 ± 10.4 kcal/mol) and TatR57S (-290.0 ± 9.6 kcal/mol) compared to TatWt (-247.9 ± 27.7 kcal/mol), while TatC31S and TatC31S/R57SQ/63E showed lower values. Interactions over the protein trajectory were also higher for TatQ63E and TatR57S compared to TatWt, TatC31S, and TatC31S/R57SQ/63E, suggesting that modifying amino acids within the Arginine/Glutamine-rich region notably affects TAR interaction. Single amino acid mutations TatR57S and TatQ63E had a significant impact, while TatC31S had minimal effect. Introducing single amino acid variants from TatWt to a more representative Tat subtype C (TatC31S/R57SQ/63E) resulted in lower predicted binding affinity, consistent with previous findings. CONCLUSIONS These identified amino acid positions likely contribute significantly to Tat-TAR interaction and the differential pathogenesis and neuropathogenesis observed between subtype B and subtype C. Additional experimental investigations should prioritize exploring the influence of these amino acid signatures on TAR binding to gain a comprehensive understanding of their impact on viral transactivation, potentially identifying them as therapeutic targets.
Collapse
Affiliation(s)
- Piwai T Gotora
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Keaghan Brown
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Darius R Martin
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, University of the Western Cape, Bellville, South Africa
| | | | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Monray E Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
9
|
Egger M, Sauermann M, Loosli T, Hossmann S, Riedo S, Beerenwinkel N, Jaquet A, Minga A, Ross JL, Giandhari J, Kouyos R, Lessells R. HIV-1 subtype-specific drug resistance on dolutegravir-based antiretroviral therapy: protocol for a multicentre longitudinal study (DTG RESIST). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.23.24307850. [PMID: 38952780 PMCID: PMC11216534 DOI: 10.1101/2024.05.23.24307850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Introduction HIV drug resistance poses a challenge to the United Nation's goal of ending the HIV/AIDS epidemic. The integrase strand transfer inhibitor (InSTI) dolutegravir, which has a higher resistance barrier, was endorsed by the World Health Organization in 2019 for first-, second-, and third-line antiretroviral therapy (ART). This multiplicity of roles of dolutegravir in ART may facilitate the emergence of dolutegravir resistance. Methods and analysis DTG RESIST is a multicentre longitudinal study of adults and adolescents living with HIV in sub-Saharan Africa, Asia, and South and Central America who experienced virologic failure on dolutegravir-based ART. At the time of virologic failure whole blood will be collected and processed to prepare plasma or dried blood spots. Laboratories in Durban, Mexico City and Bangkok will perform genotyping. Analyses will focus on (i) individuals who experienced virologic failure on dolutegravir, and (ii) on those who started or switched to such a regimen and were at risk of virologic failure. For population (i), the outcome will be any InSTI drug resistance mutations, and for population (ii) virologic failure defined as a viral load >1000 copies/mL. Phenotypic testing will focus on non-B subtype viruses with major InSTI resistance mutations. Bayesian evolutionary models will explore and predict treatment failure genotypes. The study will have intermediate statistical power to detect differences in resistance mutation prevalence between major HIV-1 subtypes; ample power to identify risk factors for virologic failure and limited power for analysing factors associated with individual InSTI drug resistance mutations. Ethics and dissemination The research protocol was approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal, South Africa, and the Ethics Committee of the Canton of Bern, Switzerland. All sites participate in IeDEA and have obtained ethics approval from their local ethics committee to conduct the additional data collection. Registration NCT06285110. Strengths and limitations of this study - DTG RESIST is a large international study to prospectively examine emergent dolutegravir resistance in diverse settings characterised by different HIV-1 subtypes, provision of ART, and guidelines on resistance testing. - Embedded within the International epidemiology Databases to Evaluate AIDS (IeDEA), DTG RESIST will benefit from harmonized clinical data across participating sites and expertise in clinical, epidemiological, biological, and computational fields. - Procedures for sequencing and assembling genomes from different HIV-1 strains will be developed at the heart of the HIV epidemic, by the KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), in Durban, South Africa. Phenotypic testing, Genome Wide Association Study (GWAS) methods and Bayesian evolutionary models will explore and predict treatment failure genotypes. - A significant limitation is the absence of genotypic resistance data from participants before they started dolutegravir treatment, as collecting and bio-banking pre-treatment samples was not feasible at most IeDEA sites. Consistent and harmonized data on adherence to treatment are also lacking. - The distribution of HIV-1 subtypes across different sites is uncertain, which may limit the statistical power of the study in analysing patterns and risk factors for dolutegravir resistance. The results from GWAS and Bayesian modelling analyses will be preliminary and hypothesis-generating.
Collapse
|
10
|
Williams A, Menon S, Crowe M, Agarwal N, Biccler J, Bbosa N, Ssemwanga D, Adungo F, Moecklinghoff C, Macartney M, Oriol-Mathieu V. Geographic and Population Distributions of Human Immunodeficiency Virus (HIV)-1 and HIV-2 Circulating Subtypes: A Systematic Literature Review and Meta-analysis (2010-2021). J Infect Dis 2023; 228:1583-1591. [PMID: 37592824 PMCID: PMC10681860 DOI: 10.1093/infdis/jiad327] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND HIV poses significant challenges for vaccine development due to its high genetic mutation and recombination rates. Understanding the distribution of HIV subtypes (clades) across regions and populations is crucial. In this study, a systematic review of the past decade was conducted to characterize HIV-1/HIV-2 subtypes. METHODS A comprehensive search was performed in PubMed, EMBASE, and CABI Global Health, yielding 454 studies from 91 countries. RESULTS Globally, circulating recombinant forms (CRFs)/unique recombinant forms (URFs) accounted for 29% of HIV-1 strains, followed by subtype C (23%) and subtype A (17%). Among studies reporting subtype breakdowns in key populations, 62% of HIV infections among men who have sex with men (MSM) and 38% among people who inject drugs (PWIDs) were CRF/URFs. Latin America and the Caribbean exhibited a 25% increase in other CRFs (excluding CRF01_AE or CRF02_AG) prevalence between 2010-2015 and 2016-2021. CONCLUSIONS This review underscores the global distribution of HIV subtypes, with an increasing prevalence of CRFs and a lower prevalence of subtype C. Data on HIV-2 were limited. Understanding subtype diversity is crucial for vaccine development, which need to elicit immune responses capable of targeting various subtypes. Further research is needed to enhance our knowledge and address the challenges posed by HIV subtype diversity.
Collapse
Affiliation(s)
| | - Sonia Menon
- P95 Pharmacovigilance and Epidemiological Services, Leuven, Belgium
| | - Madeleine Crowe
- P95 Pharmacovigilance and Epidemiological Services, Leuven, Belgium
| | - Neha Agarwal
- P95 Pharmacovigilance and Epidemiological Services, Leuven, Belgium
| | - Jorne Biccler
- P95 Pharmacovigilance and Epidemiological Services, Leuven, Belgium
| | - Nicholas Bbosa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe
| | - Deogratius Ssemwanga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe
| | | | | | | | | |
Collapse
|
11
|
SeyedAlinaghi S, Afsahi AM, Moradi A, Parmoon Z, Habibi P, Mirzapour P, Dashti M, Ghasemzadeh A, Karimi E, Sanaati F, Hamedi Z, Molla A, Mehraeen E, Dadras O. Current ART, determinants for virologic failure and implications for HIV drug resistance: an umbrella review. AIDS Res Ther 2023; 20:74. [PMID: 37884997 PMCID: PMC10604802 DOI: 10.1186/s12981-023-00572-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE The purpose of this study is to investigate the incidence of determinants for virologic failure and to identify predisposing factors to enhance treatment efficacy. Tackling this global public health issue is the key to reducing the rate of virological failure and increasing the success of treatment for those living with HIV. METHODS This umbrella review delves into various aspects of current anti-retroviral therapy (ART) which is the primary treatment for human immunodeficiency virus (HIV) infection. Comprehensive searches were conducted in online databases including PubMed, Embase, Scopus, and Web of Science, up to May 26, 2023. Following the screening and selection of relevant articles, eligible articles were included in the data extraction. This study adhered to the PRISMA guideline to report the results and employed the NIH quality and bias risk assessment tool to ensure the quality of included studies. RESULTS In total, 40 review studies published from 2015 to 2023 were included. The bulk of these studies concurred on several major factors contributing to HIV drug resistance and virological failure. Key among these were medication adherence, baseline and therapeutic CD4 levels, the presence of co-infections, and the advanced clinical stage of the infection. CONCLUSION The resistance to HIV drugs and instances of determinants for virologic failure have a profound impact on the life quality of those infected with HIV. Primary contributors to this scenario include insufficient adherence to treatment, decreased CD4 T-cell count, elevated viral levels, and certain treatment regimens. Implementing appropriate interventions could address these issues. Sub-Saharan Africa exhibits elevated rates of determinants for virologic failure, attributed to the delay in HIV testing and diagnosis, and late initiation of antiretroviral therapy (ART). It is essential to undertake further research aimed at enhancing the detection of resistance in HIV patients and mitigating viral failure by addressing these underlying causes.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Masoud Afsahi
- Department of Radiology, School of Medicine, University of California, San Diego (UCSD), San Diego, CA, USA
| | - Ali Moradi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohal Parmoon
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Habibi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Mirzapour
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Dashti
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Ghasemzadeh
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Foziye Sanaati
- School of Nursing and Allied Medical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zahra Hamedi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayoob Molla
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, 5681761351, Iran.
| | - Omid Dadras
- Bergen Addiction Research, Department of Addiction Medicine, Haukland University Hospital, Bergen, Norway
| |
Collapse
|
12
|
Ghasabi F, Hashempour A, Khodadad N, Bemani S, Keshani P, Shekiba MJ, Hasanshahi Z. First report of computational protein-ligand docking to evaluate susceptibility to HIV integrase inhibitors in HIV-infected Iranian patients. Biochem Biophys Rep 2022; 30:101254. [PMID: 35368742 PMCID: PMC8968007 DOI: 10.1016/j.bbrep.2022.101254] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background Iran has recently included integrase (INT) inhibitors (INTIs) in the first-line treatment regimen in human immunodeficiency virus (HIV)-infected patients. However, there is no bioinformatics data to elaborate the impact of resistance-associated mutations (RAMs) and naturally occurring polymorphisms (NOPs) on INTIs treatment outcome in Iranian patients. Method In this cross-sectional survey, 850 HIV-1-infected patients enrolled; of them, 78 samples had successful sequencing results for INT gene. Several analyses were performed including docking screening, genotypic resistance, secondary/tertiary structures, post-translational modification (PTM), immune epitopes, etc. Result The average docking energy (E value) of different samples with elvitegravir (EVG) and raltegravir (RAL) was more than other INTIs. Phylogenetic tree analysis and Stanford HIV Subtyping program revealed HIV-1 CRF35-AD was the predominant subtype (94.9%) in our cases; in any event, online subtyping tools confirmed A1 as the most frequent subtype. For the first time, CRF-01B and BF were identified as new subtypes in Iran. Decreased CD4 count was associated with several factors: poor or unstable adherence, naïve treatment, and drug user status. Conclusion As the first bioinformatic report on HIV-integrase from Iran, this study indicates that EVG and RAL are the optimal INTIs in first-line antiretroviral therapy (ART) in Iranian patients. Some conserved motifs and specific amino acids in INT-protein binding sites have characterized that mutation(s) in them may disrupt INT-drugs interaction and cause a significant loss in susceptibility to INTIs. Good adherence, treatment of naïve patients, and monitoring injection drug users are fundamental factors to control HIV infection in Iran effectively.
Collapse
Key Words
- Antiretroviral therapy, ART
- Behavioral Diseases Consultation Center, BDCC
- Bictegravir, BIC
- C-terminal domain, CTD
- CRF35-AD
- Cabotegravir, CBT
- Catalytic core domain, CCD
- Dolutegravir, DTG
- Drug resistance
- Elvitegravir, EVG
- Grand average hydropathy, GRAVY
- HIV
- Human immunodeficiency virus, HIV
- INT, Integrase
- INTIs, Integrase inhibitors (INTIs)
- Injecting drug users, IDUs
- Integrase
- Integrase inhibitors
- Molecular docking
- N-terminal domain, NTD
- Naturally occurring polymorphisms, NOPs
- Post-translational modification, PTM
- Raltegravir, RAL
- Resistance-associated mutations, RAMs
Collapse
Affiliation(s)
- Farzane Ghasabi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Khodadad
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soudabeh Bemani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Keshani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Javad Shekiba
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Mortier V, Debaisieux L, Dessilly G, Stoffels K, Vaira D, Vancutsem E, Van Laethem K, Vanroye F, Verhofstede C. Prevalence and evolution of transmitted HIV drug resistance in Belgium between 2013 and 2019. Open Forum Infect Dis 2022; 9:ofac195. [PMID: 35794938 PMCID: PMC9251670 DOI: 10.1093/ofid/ofac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/08/2022] [Indexed: 11/27/2022] Open
Abstract
Background To assess the prevalence and evolution of transmitted drug resistance (TDR) in Belgium, a total of 3708 baseline human immunodeficiency virus (HIV)-1 polymerase sequences from patients diagnosed between 2013 and 2019 were analyzed. Methods Protease and reverse-transcriptase HIV-1 sequences were collected from the 7 national Aids Reference Laboratories. Subtype determination and drug resistance scoring were performed using the Stanford HIV Drug Resistance Database. Trends over time were assessed using linear regression, and the maximum likelihood approach was used for phylogenetic analysis. Results A total of 17.9% of the patients showed evidence of TDR resulting in at least low-level resistance to 1 drug (Stanford score ≥15). If only the high-level mutations (Stanford score ≥60) were considered, TDR prevalence dropped to 6.3%. The majority of observed resistance mutations impacted the sensitivity for nonnucleoside reverse-transcriptase inhibitors (NNRTIs) (11.4%), followed by nucleoside reverse-transcriptase inhibitors (6.2%) and protease inhibitors (2.4%). Multiclass resistance was observed in 2.4%. Clustered onward transmission was evidenced for 257 of 635 patients (40.5%), spread over 25 phylogenetic clusters. Conclusions The TDR prevalence remained stable between 2013 and 2019 and is comparable to the prevalence in other Western European countries. The high frequency of NNRTI mutations requires special attention and follow-up. Phylogenetic analysis provided evidence for local clustered onward transmission of some frequently detected mutations.
Collapse
Affiliation(s)
- Virginie Mortier
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Laurent Debaisieux
- Aids Reference Laboratory, Université Libre de Bruxelles, CUB Hôpital Erasme, 1070 Brussels, Belgium
| | - Géraldine Dessilly
- Aids Reference Laboratory, Medical Microbiology Unit, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Karolien Stoffels
- Aids Reference Laboratory, Centre Hospitalier Universitaire St. Pierre, 1000 Brussels, Belgium
| | - Dolores Vaira
- Aids Reference Laboratory, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Ellen Vancutsem
- Aids Reference Laboratory, Vrije Universiteit Brussel VUB, 1090 Brussels, Belgium
| | - Kristel Van Laethem
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium Aids Reference Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Fien Vanroye
- Aids Reference Laboratory, Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Lan Y, Li F, Li L, Deng X, Li L, Li J, Cai X, Ling X, Hu F. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1960-1968. [PMID: 35484082 DOI: 10.1093/jac/dkac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yun Lan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China
| | - Xizi Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China
| | - Liya Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China
| | - Junbin Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China
- Guangdong Center for Diagnosis and Treatment of AIDS, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Xiaoli Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China
| | - Xuemei Ling
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China
- Guangdong Center for Diagnosis and Treatment of AIDS, 627 Dongfeng East Road, Yuexiu District, Guangzhou, 510060, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China
| |
Collapse
|
15
|
Xie YN, Zhu FX, Zhong YT, Chen YT, Gao Q, Lai XL, Liu JJ, Huang DD, Zhang YN, Chen X. Distribution characteristics of drug resistance mutations of HIV CRF01_AE, CRF07_BC and CRF08_BC from patients under ART in Ganzhou, China. J Antimicrob Chemother 2021; 76:2975-2982. [PMID: 34402512 DOI: 10.1093/jac/dkab296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Drug resistance mutation (DRM)-associated virological failure has become a critical issue for ART and the elimination of HIV. OBJECTIVES To investigate the distribution characteristics of DRMs of HIV CRF01_AE, CRF07_BC and CRF08_BC, the predominant subtypes in China. METHODS Patients receiving ART up to 31 August 2020 in Ganzhou in China were recruited. Full-length sequences of the HIV pol gene were amplified from patients with virological failure. DRMs and antiretroviral susceptibility were explored using the Stanford University HIV Drug Resistance Database HIVdb Program. RESULTS Overall, 279 of 2204 patients under ART were found to have virological failure. Nine HIV subtypes were identified among 211 sequences that were amplified successfully and CRF08_BC (37.0%), CRF01_AE (26.1%) and CRF07_BC (25.6%) were the most prevalent, with mutation frequencies of 44.9% (35/78), 52.7% (29/55) and 35.2% (19/54), respectively. The most common DRMs of these three subtypes were K103N and M184V, while the mutation frequencies of M41L, D67N, K70R, K101E, V106M, Y181C, K219E, H221Y and N348I were obviously different among subtypes. The resistance levels and frequencies for antiretroviral drugs for these three subtypes were similar and resistances to nevirapine, efavirenz, lamivudine and emtricitabine were the most frequently observed. Compared with CRF01_AE and CRF07_BC, CRF08_BC had higher proportions of DRMs for NRTIs and lower frequencies of resistance to NRTIs and NNRTIs. CONCLUSIONS The distribution characteristics of DRMs of HIV CRF01_AE, CRF07_BC and CRF08_BC were inconsistent and should be considered when selecting antiretroviral strategies, developing new drugs and controlling HIV strains containing DRMs.
Collapse
Affiliation(s)
- Ying-Na Xie
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Feng-Xiu Zhu
- Department of Laboratory, Ganzhou Centre for Disease Control and Prevention, Ganzhou, China
| | - You-Tian Zhong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Ya-Ting Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Qian Gao
- Department of Laboratory, Ganzhou Centre for Disease Control and Prevention, Ganzhou, China
| | - Xiao-Ling Lai
- Department of Laboratory, Ganzhou Centre for Disease Control and Prevention, Ganzhou, China
| | - Jun-Jie Liu
- Department of Laboratory, Ganzhou Centre for Disease Control and Prevention, Ganzhou, China
| | - Dan-Dan Huang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yu-Ning Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Xin Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Winichakoon P, Tongjai S. The Emerging of CRF01_AE: A Clinical Story and Future HIV/AIDS Situation in Thailand. Curr HIV Res 2021; 18:74-84. [PMID: 31995011 DOI: 10.2174/1570162x18666200129160723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
The HIV epidemic in Thailand in the 1980's compromised the country's socio-economic development. The epidemic first became evident in the community of men with male sexual partners (MSM), and subsequently spread to intravenous drug users (IVDU), female commercial sex workers (CSW) and their male clients, and, ultimately, to their partners and children. The HIV epidemic has devastated the country's working-age population. The extensive negative impact and social stigma associated with the disease do not only have an impact on the victims of HIV but also on their descendants and relatives. An epicenter of the HIV epidemic has been in the northern provinces of Thailand. An HIV-1 subtype CRF01_AE, a complex chimeric virus composed of both A and E subtypes, is prevalent in Northern Thailand. The virus has quickly become a predominant viral strain circulating in Thailand, other neighboring Southeast Asian countries, and China as well as some other countries throughout the world. The epidemiology, evolution, and biology of CRF01_AE offer a unique model for further scientific investigations which would advance the knowledge of and curative strategies against HIV. In addition, Thailand has developed suitable national guidelines on HIV/AIDS treatment and prevention in order to control the epidemic. Effective antiretroviral drugs are, therefore, able to be made available to those who live with HIV. The national surveillance system has also been effective. The great efforts and resources which Thailand has dedicated to the fight against the epidemic have eventually paid off. In 2010, a plan was proposed to eliminate mother-to-child HIV transmission and Thailand has become the first country to be effective in this objective. Thailand therefore has become recognized as being the global leader in HIV prevention and treatment. The experience which Thailand has gained from the past and the current research and management strategies of the HIV epidemic has prepared the country for emerging strains of HIV-1 in the future.
Collapse
Affiliation(s)
- Poramed Winichakoon
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Tambon Sriphum, Amphoe Muang, Thailand
| | - Siripong Tongjai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Tambon Sriphum, Amphoe Muang, Thailand
| |
Collapse
|
17
|
Lan Y, Xin R, Cai W, Deng X, Li L, Li F, Cai X, Tang X, Fan Q, Hu F. Characteristics of drug resistance in HIV-1 CRF55_01B from ART-experienced patients in Guangdong, China. J Antimicrob Chemother 2021; 75:1925-1931. [PMID: 32300784 DOI: 10.1093/jac/dkaa116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND HIV-1 acquired drug resistance (ADR) has become a critical clinical and public health issue. Recently, HIV-1 CRF55_01B has been found more frequently in the MSM population. OBJECTIVE To investigate the characteristics of HIV-1 drug resistance mutations (DRMs) and the extent of changes in drug susceptibility among ART-experienced CRF55_01B-infected adults of Guangdong. METHODS ADR was tested for immediately in CRF55_01B-infected patients with virological failure. Demographic and epidemiological information was collected. DRMs and antiretroviral susceptibility were interpreted using the Stanford University HIV Drug Resistance Database HIVdb program. RESULTS Overall, 162 (4.78%) CRF55_01B isolates were identified from 2013 to 2018. Among DRMs, M184V (43.83%) was the most frequent NRTI DRM, followed by K65R (23.46%), and V179E (98.77%) was the most frequent NNRTI DRM, followed by K103N (47.53%) and Y181C (14.81%). According to the HIVdb program, 79.01% of the CRF55_01B-infected patients carried mutations conferring low-level or higher drug resistance to any of the three classes of ART drugs. Among PI DRMs, only one mutation affording low-level resistance to nelfinavir was found (0.62%). Among NRTI DRMs, a high proportion of high-level resistance to lamivudine (58.64%) and emtricitabine (58.02%) was found. As regards NNRTIs, more than 75% of patients carried efavirenz and nevirapine DRMs. The percentages of high-level resistance were 70.99%, 63.58%, 22.22%, 17.90% and 4.32% for nevirapine, efavirenz, rilpivirine, doravirine and etravirine, respectively. CONCLUSIONS High frequencies of DRMs and resistance were observed among CRF55_01B-infected patients failing ART in Guangdong, and interventions may be considered to minimize ecological contributions to ART.
Collapse
Affiliation(s)
- Yun Lan
- Infectious Disease Institute of Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruolei Xin
- Institute of AIDS/STD Prevention and Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Weiping Cai
- Infectious Disease Center of Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xizi Deng
- Infectious Disease Institute of Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Linghua Li
- Infectious Disease Center of Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Feng Li
- Infectious Disease Institute of Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoli Cai
- Infectious Disease Institute of Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoping Tang
- Infectious Disease Institute of Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinghong Fan
- Infectious Disease Institute of Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fengyu Hu
- Infectious Disease Institute of Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Sánchez D, Arazi Caillaud S, Zapiola I, Fernandez Giuliano S, Bologna R, Mangano A, Aulicino PC. Impact of genotypic diversity on selection of subtype-specific drug resistance profiles during raltegravir-based therapy in individuals infected with B and BF recombinant HIV-1 strains. J Antimicrob Chemother 2021; 75:1567-1574. [PMID: 32125378 DOI: 10.1093/jac/dkaa042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Current knowledge on HIV-1 resistance to integrase inhibitors (INIs) is based mostly on subtype B strains. This contrasts with the increasing use of INIs in low- and middle-income countries, where non-B subtypes predominate. MATERIALS AND METHODS HIV-1 drug resistance genotyping was performed in 30 HIV-1-infected individuals undergoing virological failure to raltegravir. Drug resistance mutations (DRMs) and HIV-1 subtype were characterized using Stanford HIVdb and phylogenetic analyses. RESULTS Of the 30 integrase (IN) sequences, 14 were characterized as subtype F (47%), 8 as subtype B (27%), 7 as BF recombinants (23%) and 1 as a putative CRF05_DF (3%). In 25 cases (83%), protease and reverse transcriptase (PR-RT) sequences from the same individuals confirmed the presence of different BF recombinants. Stanford HIVdb genotyping was concordant with phylogenetic inference in 70% of IN and 60% of PR-RT sequences. INI DRMs differed between B and F IN subtypes, with Q148K/R/H, G140S and E138K/A being more prevalent in subtype B (63% versus 0%, P = 0.0021; 50% versus 0%, P = 0.0096; and 50% versus 0%, P = 0.0096, respectively). These differences were independent of the time on raltegravir therapy or viral load at the time of genotyping. INI DRMs in subtype F IN genomes predicted a lower level of resistance to raltegravir and no cross-resistance to second-generation INIs. CONCLUSIONS Alternative resistance pathways to raltegravir develop in subtypes B and F IN genomes, with implications for clinical practice. Evaluating the role of HIV-1 subtype in development and persistence of mutations that confer resistance to INIs will be important to improve algorithms for resistance testing and optimize the use of INIs.
Collapse
Affiliation(s)
- Daniela Sánchez
- Laboratorio de Biología Celular y Retrovirus-CONICET, Unidad de Virología y Epidemiología Molecular, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina.,Centro Provincial VIH/SIDA y Hepatitis Virales de la Provincia de Buenos Aires, Instituto Biológico Dr Tomás Perón, La Plata, Argentina
| | - Solange Arazi Caillaud
- Servicio de Epidemiología e Infectología, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina
| | - Ines Zapiola
- Unidad de Virología, Hospital de Infecciosas "Francisco J. Muñiz", Buenos Aires, Argentina
| | | | - Rosa Bologna
- Servicio de Epidemiología e Infectología, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina
| | - Andrea Mangano
- Laboratorio de Biología Celular y Retrovirus-CONICET, Unidad de Virología y Epidemiología Molecular, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina
| | - Paula C Aulicino
- Laboratorio de Biología Celular y Retrovirus-CONICET, Unidad de Virología y Epidemiología Molecular, Hospital de Pediatría "Juan P. Garrahan", Buenos Aires, Argentina
| |
Collapse
|
19
|
Santos-Pereira A, Magalhães C, Araújo PMM, Osório NS. Evolutionary Genetics of Mycobacterium tuberculosis and HIV-1: "The Tortoise and the Hare". Microorganisms 2021; 9:147. [PMID: 33440808 PMCID: PMC7827287 DOI: 10.3390/microorganisms9010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
The already enormous burden caused by Mycobacterium tuberculosis and Human Immunodeficiency Virus type 1 (HIV-1) alone is aggravated by co-infection. Despite obvious differences in the rate of evolution comparing these two human pathogens, genetic diversity plays an important role in the success of both. The extreme evolutionary dynamics of HIV-1 is in the basis of a robust capacity to evade immune responses, to generate drug-resistance and to diversify the population-level reservoir of M group viral subtypes. Compared to HIV-1 and other retroviruses, M. tuberculosis generates minute levels of genetic diversity within the host. However, emerging whole-genome sequencing data show that the M. tuberculosis complex contains at least nine human-adapted phylogenetic lineages. This level of genetic diversity results in differences in M. tuberculosis interactions with the host immune system, virulence and drug resistance propensity. In co-infected individuals, HIV-1 and M. tuberculosis are likely to co-colonize host cells. However, the evolutionary impact of the interaction between the host, the slowly evolving M. tuberculosis bacteria and the HIV-1 viral "mutant cloud" is poorly understood. These evolutionary dynamics, at the cellular niche of monocytes/macrophages, are also discussed and proposed as a relevant future research topic in the context of single-cell sequencing.
Collapse
Affiliation(s)
- Ana Santos-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Pedro M. M. Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Lan Y, He X, Li L, Zhou P, Huang X, Deng X, Li J, Fan Q, Li F, Tang X, Cai W, Hu F. Complicated genotypes circulating among treatment naïve HIV-1 patients in Guangzhou, China. INFECTION GENETICS AND EVOLUTION 2020; 87:104673. [PMID: 33309773 DOI: 10.1016/j.meegid.2020.104673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/07/2023]
Abstract
Guangzhou city is the political, economic, and cultural center of the Guangdong Province, China. The molecular epidemiological characteristics of HIV-1 in Guangzhou are not widely known. The aim of this study was to explore the characteristics of HIV-1 genotypes among treatment naïve HIV/AIDS patients living in Guangzhou. HIV-1 RNA was extracted from serum specimens. The partial pol gene of the HIV-1 genome was amplified and sequenced. The genotypes were screened using the subtyping tool COMET and further confirmed by phylogenetic analysis, with the exception of the URFs that were analyzed by jpHMM and RIP. The distributions of HIV genotypes in different risk populations were analyzed. Subsequently, pol sequences were used to construct transmission networks and analyze drug resistance. Twelve HIV-1 genotypes including 3 subtypes and 9 CRFs, with several URFs were identified from 1388 HIV-1 sequences, which were derived from 1490 patients. The main genotypes circulating in Guangzhou were CRF07_BC (38.3%), CRF01_AE (32.3%), and CRF55_01B (10.7%). CRF01_AE was the secondary dominant strain and multiple lineages of CRF01_AE had been identified in Guangzhou. The 01B recombinant forms, including CRF55_01B, CRF59_01B and CRF68_01B, have circulated widely in Guangzhou. 42.22% (586/1388) of the study sequences fell into 143 transmission networks, and the three main clusters revealed that sequences from MSM and HET populations were intermixed. 5.40% (75/1388) of patients had pre-treatment drug resistance. The HIV-1 strains that were present in Guangzhou have demonstrated complex genotypes. Particular attention should be given on these genotypes for the further strategy of prevention and intervention of HIV transmission.
Collapse
Affiliation(s)
- Yun Lan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou 510030, China
| | - Xiang He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Panyu District, Guangzhou 511430, China
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou 510030, China
| | - Pingping Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Panyu District, Guangzhou 511430, China
| | - Xuhe Huang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Panyu District, Guangzhou 511430, China
| | - Xizi Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou 510030, China
| | - Junbin Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou 510030, China
| | - Qinghong Fan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou 510030, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou 510030, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou 510030, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou 510030, China.
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, 627 Dongfeng East Road, Yuexiu District, Guangzhou 510030, China.
| |
Collapse
|
21
|
Mabeya S, Nyamache A, Ngugi C, Nyerere A, Lihana R. Characterization of HIV-1 Integrase Gene and Resistance Associated Mutations Prior to Roll out of Integrase Inhibitors by Kenyan National HIV-Treatment Program in Kenya. Ethiop J Health Sci 2020; 30:37-44. [PMID: 32116431 PMCID: PMC7036466 DOI: 10.4314/ejhs.v30i1.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Antiretroviral therapy containing an integrase strand transfer inhibitor plus two Nucleoside Reverse Transcriptase inhibitors has now been recommended for treatment of HIV-1-infected patients. This thus determined possible pre-existing integrase resistance-associated mutations in the integrase gene prior to introduction of integrase inhibitors combination therapy in Kenya. Methods Drug experienced HIV patients were enrolled at Kisii Teaching and Referral in Kenya. Blood specimens from (33) patients were collected for direct sequencing of HIV-1 polintegrase genes. Drug resistance mutations were interpreted according to the Stanford algorithm and phylogenetically analysed using insilico tools. Results From pooled 188 Kenyan HIV integrase sequences that were analysed for drug resistance, no major mutations conferring resistance to integrase inhibitors were detected. However, polymorphic accessory mutations associated with reduced susceptibility of integrase inhibitors were observed in low frequency; M50I (12.2%), T97A (3.7%), S153YG, E92G (1.6%), G140S/A/C (1.1%) and E157Q (0.5%). Phylogenetic analysis (330 sequences revealed that HIV-1 subtype A1 accounted for majority of the infections, 26 (78.8%), followed by D, 5 (15.2%) and C, 2 (6%). Conclusion The integrase inhibitors will be effective in Kenya where HIV-1 subtype A1 is still the most predominant. However, occurring polymorphisms may warrant further investigation among drug experienced individuals on dolutegravir combination or integrase inhibitor treatment.
Collapse
Affiliation(s)
- Sepha Mabeya
- Department of Medical Microbiology, school of Biomedical Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Anthony Nyamache
- Department of Biochemistry Microbiology & Biotechnology, School of Pure & Applied Sciences, Kenyatta University, Nairobi, Kenya
| | - Caroline Ngugi
- Department of Medical Microbiology, school of Biomedical Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Andrew Nyerere
- Department of Medical Microbiology, school of Biomedical Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Raphael Lihana
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
22
|
Structural Comparison of Diverse HIV-1 Subtypes using Molecular Modelling and Docking Analyses of Integrase Inhibitors. Viruses 2020; 12:v12090936. [PMID: 32858802 PMCID: PMC7552036 DOI: 10.3390/v12090936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
The process of viral integration into the host genome is an essential step of the HIV-1 life cycle. The viral integrase (IN) enzyme catalyzes integration. IN is an ideal therapeutic enzyme targeted by several drugs; raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG), and bictegravir (BIC) having been approved by the USA Food and Drug Administration (FDA). Due to high HIV-1 diversity, it is not well understood how specific naturally occurring polymorphisms (NOPs) in IN may affect the structure/function and binding affinity of integrase strand transfer inhibitors (INSTIs). We applied computational methods of molecular modelling and docking to analyze the effect of NOPs on the full-length IN structure and INSTI binding. We identified 13 NOPs within the Cameroonian-derived CRF02_AG IN sequences and further identified 17 NOPs within HIV-1C South African sequences. The NOPs in the IN structures did not show any differences in INSTI binding affinity. However, linear regression analysis revealed a positive correlation between the Ki and EC50 values for DTG and BIC as strong inhibitors of HIV-1 IN subtypes. All INSTIs are clinically effective against diverse HIV-1 strains from INSTI treatment-naïve populations. This study supports the use of second-generation INSTIs such as DTG and BIC as part of first-line combination antiretroviral therapy (cART) regimens, due to a stronger genetic barrier to the emergence of drug resistance.
Collapse
|
23
|
Yendewa GA, Sahr F, Lakoh S, Ruiz M, Patiño L, Tabernilla A, Deen GF, Sesay M, Salata RA, Poveda E. Prevalence of drug resistance mutations among ART-naive and -experienced HIV-infected patients in Sierra Leone. J Antimicrob Chemother 2020; 74:2024-2029. [PMID: 30989237 PMCID: PMC6587425 DOI: 10.1093/jac/dkz134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 11/15/2022] Open
Abstract
Objectives The aim of this study was to assess the prevalence of HIV drug resistance (HIVDR) in HIV-infected ART-naive and -experienced patients in Sierra Leone. Patients and methods We conducted a cross-sectional study of HIV-positive adults aged ≥18 years at Connaught Hospital in Freetown, Sierra Leone in November 2017. Sequencing was performed in the reverse transcriptase, protease and integrase regions, and interpreted using the Stanford HIVDR database and WHO 2009 mutation list. Results Two hundred and fifteen HIV-infected patients were included (64 ART naive and 151 ART experienced). The majority (66%) were female, the median age was 36 years and the median ART exposure was 48 months. The majority (83%) were infected with HIV-1 subtype CRF02_AG. In the ART-naive group, the pretreatment drug resistance (PDR) prevalence was 36.7% (14.2% to NRTIs and 22.4% to NNRTIs). The most prevalent PDR mutations were K103N (14.3%), M184V (8.2%) and Y181C (4.1%). In the ART-experienced group, 64.4% harboured resistance-associated mutations (RAMs) and the overall prevalence of RAMs to NRTIs and NNRTIs was 85.2% (52/61) and 96.7% (59/61), respectively. The most prevalent RAMs were K103N (40.7%), M184V (28.8%), D67N (15.3%) and T215I/F/Y (15.3%). Based on the genotypic susceptibility score estimates, 22.4% of ART-naive patients and 56% of ART-experienced patients were not susceptible to first-line ART used in Sierra Leone. Conclusions A high prevalence of circulating NRTI- and NNRTI-resistant variants was observed in ART-naive and -experienced HIV-1-infected patients in Sierra Leone. This necessitates the implementation of HIVDR surveillance programmes to inform national ART guidelines for the treatment and monitoring of HIV-infected patients in Sierra Leone.
Collapse
Affiliation(s)
- George A Yendewa
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Foday Sahr
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Sulaiman Lakoh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Marta Ruiz
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, Vigo, Spain
| | - Lucia Patiño
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, Vigo, Spain
| | - Andrés Tabernilla
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, Vigo, Spain
| | - Gibrilla F Deen
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Momodu Sesay
- National HIV/AIDS Secretariat, Freetown, Sierra Leone
| | - Robert A Salata
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Division of Infectious Diseases and HIV Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Eva Poveda
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, Vigo, Spain
| |
Collapse
|
24
|
Characterization of HIV-1 subtypes and drug resistance mutations in Henan Province, China (2017-2019). Arch Virol 2020; 165:1453-1461. [PMID: 32279138 PMCID: PMC7222071 DOI: 10.1007/s00705-020-04606-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/04/2020] [Indexed: 11/05/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection remains a severe public health problem worldwide. In this study, we investigated the distribution of HIV-1 subtypes and the prevalence of drug resistance mutations (DRMs) among patients with HIV-1 infection in Henan Province, China. HIV-1 strains in blood samples taken from inpatients and outpatients visiting the Sixth People’s Hospital of Zhengzhou from August 2017 to July 2019 with a viral load (VL) greater than 1000 copies/ml were subjected to subtype and DRMs analysis. Out of a total of 769 samples, subtype and DRM data were obtained from 657 (85.43%) samples. Phylogenetic analysis based on partial pol gene sequences indicated that the most commonly found genotype was subtype B (45.51%, 299/657), followed by CRF01_AE (28.61%, 188/657), CRF07_BC (15.68%, 103/657), CRF08_BC (0.76%, 5/657), C (0.61%, 4/657), A (0.30%, 2/657), and others (8.52%, 56/657). Circulating recombinant forms (CRFs) were most commonly found in patients who were naïve to antiretroviral treatment (ART) (68.67%, 160/233). The percentage of patients with one or more major drug-resistance mutations was 50.99% (335/657), and it was 6.44% (15/233) in ART-naive patients that were primarily infected with subtype B (17.74%). Resistance mutations were most common at codons 65, 103, 106, 184, and 190 of the reverse transcriptase gene and codon 46 of the protease gene. Our study provides detailed information about the distribution of HIV-1 subtypes and the incidence of drug resistance mutations of different subtypes in ART-experienced and naïve patients. This can guide policymakers in making decisions about treatment strategies against HIV-1.
Collapse
|
25
|
Taylor Salisbury T, Kinyanda E, Levin J, Foster A, Mpango R, Patel V, Gadow KD. Clinical correlates and adverse outcomes of ADHD, disruptive behavior disorder and their co-occurrence among children and adolescents with HIV in Uganda. AIDS Care 2020; 32:1429-1437. [PMID: 32192358 DOI: 10.1080/09540121.2020.1742860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD) are important mental health concerns among children and adolescents living with HIV (CA-HIV). This study examines clinical correlates and adverse outcomes associated with ADHD, ODD/CD and ADHD + ODD/CD among (N = 1,336) CA-HIV living in Uganda. Being male, higher socio-economic status, emotional disorder, greater caregiver distress and youth-caregiver conflict were associated with a greater risk of behavioral disorders, particularly ADHD + ODD/CD. This group was also five-times more likely to have engaged in sex than their peers and report greater disciplinary problems at school than those without a behavioral disorder. These findings highlight the distinct clinical presentation and adverse outcomes associated with ADHD + ODD/CD among CA-HIV. As more CA-HIV are surviving into adulthood, screening and treatment of mental disorders is needed to ensure they are given the chance to thrive. In addition to youth, interventions should target caregivers due to their impact on youth outcomes.
Collapse
Affiliation(s)
| | - Eugene Kinyanda
- Mental Health Project, MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda.,Department of Psychiatry, Makerere College of Health Sciences, Kampala, Uganda
| | - Jonathan Levin
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Alexander Foster
- Health Service and Population Research Department, King's College London, London, UK
| | - Richard Mpango
- Mental Health Project, MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda.,Department of Mental Health, School of Health Sciences, Soroti University, Soroti, Uganda
| | - Vikram Patel
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Kenneth D Gadow
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
26
|
High HIV-1 diversity in immigrants resident in Italy (2008-2017). Sci Rep 2020; 10:3226. [PMID: 32094387 PMCID: PMC7039940 DOI: 10.1038/s41598-020-59084-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
The proportion of new diagnoses of HIV infection in immigrants residing in Italy raised from 11% in 1992 to 29.7% in 2018. To investigate the HIV clades circulating in this community a retrospective study was performed in 557 HIV-infected immigrants living in 12 Italian cities. Immigrants originated from East-Europe and Central-Asia (11.7%), North Africa and Middle East (7.3%), South and South-East Asia (7.2%), Latin America and the Caribbean (14.4%), and sub-Saharan Africa (59.4%). More than 87% of immigrants were on antiretroviral therapy (ART), although 26.6% of them were viremic. A 22.0% of immigrants had hepatitis (HBV and/or HCV) and/or tuberculosis. HIV phylogenetic analysis on sequences from 192 immigrants showed the presence of clades B (23.4%), G (16.1%), C (10.4%), A1 (9.4%), F1 (5.2%), D (1.6%) and Circulating Recombinant Forms (CRFs) (33.9%). CRF02_AG represented 72.3% of the total CRFs. Clusters between immigrants and Italian natives were also present. Drug resistance mutations to NRTI, NNRTI, and PI drug classes occurred in 29.1% of ART-treated and in 12.9% of ART-naïve individuals. These data highlight the need for tailored public health interventions in immigrants to avoid spreading in Italy of HIV genetic forms and ART-resistant variants, as well as HIV co-morbidities.
Collapse
|
27
|
Meriki HD, Tufon KA, Anong DN, Atanga PN, Anyangwe IA, Cho-Ngwa F, Nkuo-Akenji T. Genetic diversity and antiretroviral resistance-associated mutation profile of treated and naive HIV-1 infected patients from the Northwest and Southwest regions of Cameroon. PLoS One 2019; 14:e0225575. [PMID: 31751428 PMCID: PMC6874083 DOI: 10.1371/journal.pone.0225575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Antiretroviral therapy (ART) has improved the survival of HIV infected persons. However, rapid scale-up of ART and the high HIV-1 genetic variability, has greatly influenced the emergence of drug-resistant strains. This constitutes a potential threat to achieving the UNAIDS' 90-90-90 goals by 2020. We investigated the prevalent HIV-1 genotypes, drug resistance-associated mutations and assessed some predictors of the occurrence of these mutations. METHODS This was a hospital-based cross-sectional study conducted between October 2010 and June 2012. Participants were consecutively enrolled from selected HIV treatment centers of the Southwest and Northwest regions of Cameroon. Viral load was determined with the automated Abbott Real-time HIV-1 m2000rt System. HIV genotyping and antiretroviral resistance mutations analysis were performed using Bayer's HIV-1 TRUGENE™ Genotyping Kit and OpenGene DNA Sequencing system. The drug resistance mutation was interpreted with the Stanford HIV database. Epidemiological data were obtained using pre-tested semi-structured questionnaires. RESULTS Of the 387 participants, 239 were successfully genotyped. The median age of these participants was 33 years (interquartile range, IQR: 28-40 years), and a majority (65.7%) were female. A total of 29.3% of the participants were receiving ART. The median duration of ART was 10.5 months (IQR: 4-17.25 months). The median CD4 count and log10 viral load of study participants were 353.5 cells/ml (IQR:145-471) and 4.89 copies/ml (IQR: 3.91-5.55) respectively. CRF02 (A/G) (69%) was the most prevalent subtype followed by G (8.2%) and F (6.7%). Overall, resistance mutations were present in 37.1% of ART-experienced and 10.7% of ART-naive patients. Nucleoside reverse transcriptase inhibitors (NRTI) mutations occurred in 30% of ART-experienced and 2.4% of ART-naïve patients, while non-nucleoside reverse transcriptase inhibitors (NNRTI) mutations occurred in 34.2% of ART-experienced and 10.1% of -naïve patients. M184V (8.4%, 20/239) and K103N (5.4%, 13/239) were the most prevalent mutations. Major protease inhibitor mutations occurred in 3 (1.3%) out of the 239 sequences. The duration of ART independently predicted the occurrence of resistance mutation among ART-experienced patients. CONCLUSION The high resistance to NNRTIs, which are the main support to the backbone (NRTIs) first-line antiretroviral regimen in Cameroon, has prompted the need to rollout an integrase strand transfer inhibitor regimen (containing Dolutegravir) with a higher genetic barrier to resistance as the preferred first line regimen.
Collapse
Affiliation(s)
- Henry Dilonga Meriki
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
- BioCollections Worldwide Inc., Regional Office, Buea, SW Region, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, SW Region, Cameroon
| | - Kukwah Anthony Tufon
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, SW Region, Cameroon
| | - Damian Nota Anong
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
| | - Pascal Nji Atanga
- Cameroon Baptist Convention Health Service, Mutengene, South West Region, Cameroon
| | - Irene Ane Anyangwe
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
| | - Fidelis Cho-Ngwa
- Laboratory Department, Buea Regional Hospital, Buea, SW Region, Cameroon
| | - Theresa Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
| |
Collapse
|
28
|
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:4-37. [PMID: 31468033 PMCID: PMC6714987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| |
Collapse
|
29
|
Singh K, Sarafianos SG, Sönnerborg A. Long-Acting Anti-HIV Drugs Targeting HIV-1 Reverse Transcriptase and Integrase. Pharmaceuticals (Basel) 2019; 12:E62. [PMID: 31010004 PMCID: PMC6631967 DOI: 10.3390/ph12020062] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the major factors contributing to HIV-1 drug resistance is suboptimal adherence to combination antiretroviral therapy (cART). Currently, recommended cART for HIV-1 treatment is a three-drug combination, whereas the pre-exposure prophylaxis (PrEP) regimens consist of one or two antivirals. Treatment regimens require adherence to a once or twice (in a subset of patients) daily dose. Long-acting formulations such as injections administered monthly could improve adherence and convenience, and thereby have potential to enhance the chances of expected outcomes, although long-lasting drug concentrations can also contribute to clinical issues like adverse events and development of drug resistance. Globally, two long-acting antivirals have been approved, and fifteen are in clinical trials. More than half of investigational long-acting antivirals target HIV-1 reverse transcriptase (HIV-1 RT) and/or integrase (HIV-1 IN). Here, we discuss the status and potential of long-acting inhibitors, including rilpivirine (RPV), dapivirine (DPV), and 4-ethynyl-2-fluoro-2-deoxyadenosine (EFdA; also known as MK-8591), which target RT, and cabotegravir (CAB), which targets IN. The outcomes of various clinical trials appear quite satisfactory, and the future of long-acting HIV-1 regimens appears bright.
Collapse
Affiliation(s)
- Kamal Singh
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA.
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge 14186, Stockholm, Sweden.
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Anders Sönnerborg
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA.
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge 14186, Stockholm, Sweden.
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Huddinge 14186, Stockholm, Sweden.
| |
Collapse
|
30
|
Indriati DW, Kotaki T, Khairunisa SQ, Witaningrum AM, Matondang MQY, Ueda S, Nasronudin, Purnama A, Kurniawan D, Kameoka M. Appearance of Drug Resistance Mutations Among the Dominant HIV-1 Subtype, CRF01_AE in Maumere, Indonesia. Curr HIV Res 2019; 16:158-166. [PMID: 29732988 DOI: 10.2174/1570162x16666180502114344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Human Immunodeficiency Virus (HIV) is still a major health issue in Indonesia. In recent years, the appearance of drug resistance-associated mutations has reduced the effectiveness of Antiretroviral Therapy (ART). We conducted genotypic studies, including the detection of drug resistance-associated mutations (from first-line regimen drugs), on HIV-1 genes derived from infected individuals in Maumere, West Nusa Tenggara. Maumere, a transit city in West Nusa Tenggara, which has a high HIV-1 transmission rate. METHOD We collected 60 peripheral blood samples from 53 ART-experienced and 7 ART-naive individuals at TC Hillers Hospital, Maumere between 2014 and 2015. The amplification and a sequencing analysis of pol genes encoding protease (the PR gene) and reverse transcriptase (the RT gene) as well as the viral env and gag genes were performed. HIV-1 subtyping and the detection of drug resistance-associated mutations were then conducted. RESULTS Among 60 samples, 46 PR, 31 RT, 30 env, and 20 gag genes were successfully sequenced. The dominant HIV-1 subtype circulating in Maumere was CRF01_AE. Subtype B and recombinant viruses containing gene fragments of CRF01_AE, subtypes A, B, C, and/or G were also identified as minor populations. The major drug resistance-associated mutations, M184V, K103N, Y188L, and M230I, were found in the RT genes. However, no major drug resistance-associated mutations were detected in the PR genes. CONCLUSION CRF01_AE was the major HIV-1 subtype prevalent in Maumere. The appearance of drug resistance-associated mutations found in the present study supports the necessity of monitoring the effectiveness of ART in Maumere.
Collapse
Affiliation(s)
- Dwi Wahyu Indriati
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Disease, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Tomohiro Kotaki
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Disease, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of International Health, Kobe University Graduate School of Health Sciences, Hyogo, Japan
| | - Siti Qamariyah Khairunisa
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Disease, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Adiana Mutamsari Witaningrum
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Disease, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Qushai Yunifiar Matondang
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Disease, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Shuhei Ueda
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Disease, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of International Health, Kobe University Graduate School of Health Sciences, Hyogo, Japan
| | - Nasronudin
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Disease, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Hyogo, Japan.,Center for Infectious Diseases, Kobe University, Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
31
|
Poon AFY, Ndashimye E, Avino M, Gibson R, Kityo C, Kyeyune F, Nankya I, Quiñones-Mateu ME, ARTS EJ. First-line HIV treatment failures in non-B subtypes and recombinants: a cross-sectional analysis of multiple populations in Uganda. AIDS Res Ther 2019; 16:3. [PMID: 30670037 PMCID: PMC6343277 DOI: 10.1186/s12981-019-0218-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022] Open
Abstract
Background Our understanding of HIV-1 and antiretroviral treatment (ART) is strongly biased towards subtype B, the predominant subtype in North America and western Europe. Efforts to characterize the response to first-line treatments in other HIV-1 subtypes have been hindered by the availability of large study cohorts in resource-limited settings. To maximize our statistical power, we combined HIV-1 sequence and clinical data from every available study population associated with the Joint Clinical Research Centre (JCRC) in Uganda. These records were combined with contemporaneous ART-naive records from Uganda in the Stanford HIVdb database. Methods Treatment failures were defined by the presence of HIV genotype records with sample collection dates after the ART start dates in the JCRC database. Drug resistances were predicted by the Stanford HIVdb algorithm, and HIV subtype classification and recombination detection was performed with SCUEAL. We used Bayesian network analysis to evaluate associations between drug exposures and subtypes, and binomial regression for associations with recombination. Results This is the largest database of first-line treatment failures (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n=1724$$\end{document}n=1724) in Uganda to date, with a predicted statistical power of 80% to detect subtype associations at an odds ratio of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge 1.2$$\end{document}≥1.2. In the subset where drug regimen data were available, we observed that use of 3TC was associated with a higher rate of first line treatment failure, whereas regimens containing AZT and TDF were associated with reduced rates of failure. In the complete database, we found limited evidence of associations between HIV-1 subtypes and treatment failure, with the exception of a significantly lower frequency of failures among A/D recombinants that comprised about 7% of the population. First-line treatment failure was significantly associated with reduced numbers of recombination breakpoints across subtypes. Conclusions Expanding access to first-line ART should confer the anticipated public health benefits in Uganda, despite known differences in the pathogenesis of HIV-1 subtypes. Furthermore, the impact of ART may actually be enhanced by frequent inter-subtype recombination in this region. Electronic supplementary material The online version of this article (10.1186/s12981-019-0218-2) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Fedonin GG, Fantin YS, Favorov AV, Shipulin GA, Neverov AD. VirGenA: a reference-based assembler for variable viral genomes. Brief Bioinform 2019; 20:15-25. [PMID: 28968771 PMCID: PMC6488938 DOI: 10.1093/bib/bbx079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Characterization of the within-host genetic diversity of viral pathogens is required for selection of effective treatment of some important viral infections, e.g. HIV, HBV and HCV. Despite the technical ability of detection, there are conflicting data regarding the clinical significance of low-frequency variants, partially because of the difficulty of their distinguishing from experimental artifacts. The issue of cross-contamination is relevant for all highly sensitive techniques, including deep sequencing: even trace contamination leads to a significant increase of false positives in identified SNVs. Determination of infections by multiple genotypes of some viruses, the incidence of which can be considerable, especially in risk groups, is also clinically significant in some cases. We developed a new viral reference-guided assembler, VirGenA, that can separate mixtures of strains of different intraspecies genetic groups (genotypes, subtypes, clades, etc.) and assemble a separate consensus sequence for each group in a mixture. It produced long assemblies for mixture components of extremely low frequencies (<1%) allowing detection of cross-contamination of samples by divergent genotypes. We tested VirGenA on both clinical and simulated data. On both types of data, VirGenA shows better or similar results than the existing de novo assemblers. Cross-platform implementation (including source code) is freely available at https://github.com/gFedonin/VirGenA/releases.
Collapse
Affiliation(s)
- Gennady G Fedonin
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| | - Yury S Fantin
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| | - Alexnader V Favorov
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University
| | - German A Shipulin
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| | - Alexey D Neverov
- Department of Molecular Diagnostics, Central Research Institute for Epidemiology
| |
Collapse
|
33
|
Bobkova MR. [Genetic diversity of human immunodeficiency viruses and antiretroviral therapy]. TERAPEVT ARKH 2018; 88:103-111. [PMID: 28005040 DOI: 10.17116/terarkh20168811103-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lecture is devoted to the analysis of the state-of-the-art of the impact of genetic diversity of human immunodeficiency (HIV) viruses on the pattern of infection and the efficiency of antiretroviral therapy (ART). It provides brief information on the origin and evolution of HIV and on the current classification of their genetic variants. The molecular epidemiological situation of HIV infection in Russia and nearby states and the major molecular HIV variants that are dominant in these countries, as well as their origin and prevalence trends are characterized. How the diversity of HIV can affect the efficiency of diagnosis, the transmission of the virus, and the pattern of HIV pathogenesis are briefly reviewed. The comparative data available in the world's scientific literature on these topics are given. More detailed attention is given to the possible causes of varying therapeutic effects against different HIV subtypes, as well as to the specific features of the formation and phenotyping manifestation of ART drug resistance mutations. There is evidence for the necessity of forming a unified follow-up system for treated HIV-infected patients during ART scaling, including in an effort to evaluate the impact of the specific features of the HIV genome on the efficiency of treatment regimens used in Russia.
Collapse
Affiliation(s)
- M R Bobkova
- D.I. Ivanovsky Institute of Virology, Honorary Acad. N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
34
|
Comparative Evaluation of Subtyping Tools for Surveillance of Newly Emerging HIV-1 Strains. J Clin Microbiol 2017; 55:2827-2837. [PMID: 28701420 DOI: 10.1128/jcm.00656-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 01/16/2023] Open
Abstract
HIV-1 non-B subtypes/circulating recombinant forms (CRFs) are increasing worldwide. Since subtype identification can be clinically relevant, we assessed the added value in HIV-1 subtyping using updated molecular phylogeny (Mphy) and the performance of routinely used automated tools. Updated Mphy (2015 updated reference sequences), used as a gold standard, was performed to subtype 13,116 HIV-1 protease/reverse transcriptase sequences and then compared with previous Mphy (reference sequences until 2014) and with COMET, REGA, SCUEAL, and Stanford subtyping tools. Updated Mphy classified subtype B as the most prevalent (73.4%), followed by CRF02_AG (7.9%), C (4.6%), F1 (3.4%), A1 (2.2%), G (1.6%), CRF12_BF (1.2%), and other subtypes (5.7%). A 2.3% proportion of sequences were reassigned as different subtypes or CRFs because of misclassification by previous Mphy. Overall, the tool most concordant with updated Mphy was Stanford-v8.1 (95.4%), followed by COMET (93.8%), REGA-v3 (92.5%), Stanford-old (91.1%), and SCUEAL (85.9%). All the tools had a high sensitivity (≥98.0%) and specificity (≥95.7%) for subtype B. Regarding non-B subtypes, Stanford-v8.1 was the best tool for C, D, and F subtypes and for CRFs 01, 02, 06, 11, and 36 (sensitivity, ≥92.6%; specificity, ≥99.1%). A1 and G subtypes were better classified by COMET (92.3%) and REGA-v3 (98.6%), respectively. Our findings confirm Mphy as the gold standard for accurate HIV-1 subtyping, although Stanford-v8.1, occasionally combined with COMET or REGA-v3, represents an effective subtyping approach in clinical settings. Periodic updating of HIV-1 reference sequences is fundamental to improving subtype characterization in the context of an effective epidemiological surveillance of non-B strains.
Collapse
|
35
|
Sensitive Next-Generation Sequencing Method Reveals Deep Genetic Diversity of HIV-1 in the Democratic Republic of the Congo. J Virol 2017; 91:JVI.01841-16. [PMID: 28077647 PMCID: PMC5331799 DOI: 10.1128/jvi.01841-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023] Open
Abstract
As the epidemiological epicenter of the human immunodeficiency virus (HIV) pandemic, the Democratic Republic of the Congo (DRC) is a reservoir of circulating HIV strains exhibiting high levels of diversity and recombination. In this study, we characterized HIV specimens collected in two rural areas of the DRC between 2001 and 2003 to identify rare strains of HIV. The env gp41 region was sequenced and characterized for 172 HIV-positive specimens. The env sequences were predominantly subtype A (43.02%), but 7 other subtypes (33.14%), 20 circulating recombinant forms (CRFs; 11.63%), and 20 unclassified (11.63%) sequences were also found. Of the rare and unclassified subtypes, 18 specimens were selected for next-generation sequencing (NGS) by a modified HIV-switching mechanism at the 5' end of the RNA template (SMART) method to obtain full-genome sequences. NGS produced 14 new complete genomes, which included pure subtype C (n = 2), D (n = 1), F1 (n = 1), H (n = 3), and J (n = 1) genomes. The two subtype C genomes and one of the subtype H genomes branched basal to their respective subtype branches but had no evidence of recombination. The remaining 6 genomes were complex recombinants of 2 or more subtypes, including subtypes A1, F, G, H, J, and K and unclassified fragments, including one subtype CRF25 isolate, which branched basal to all CRF25 references. Notably, all recombinant subtype H fragments branched basal to the H clade. Spatial-geographical analysis indicated that the diverse sequences identified here did not expand globally. The full-genome and subgenomic sequences identified in our study population significantly increase the documented diversity of the strains involved in the continually evolving HIV-1 pandemic.IMPORTANCE Very little is known about the ancestral HIV-1 strains that founded the global pandemic, and very few complete genome sequences are available from patients in the Congo Basin, where HIV-1 expanded early in the global pandemic. By sequencing a subgenomic fragment of the HIV-1 envelope from study participants in the DRC, we identified rare variants for complete genome sequencing. The basal branching of some of the complete genome sequences that we recovered suggests that these strains are more closely related to ancestral HIV-1 strains than to previously reported strains and is evidence that the local diversification of HIV in the DRC continues to outpace the diversity of global strains decades after the emergence of the pandemic.
Collapse
|
36
|
Lam EP, Moore CL, Gotuzzo E, Nwizu C, Kamarulzaman A, Chetchotisakd P, van Wyk J, Teppler H, Kumarasamy N, Molina JM, Emery S, Cooper DA, Boyd MA. Antiretroviral Resistance After First-Line Antiretroviral Therapy Failure in Diverse HIV-1 Subtypes in the SECOND-LINE Study. AIDS Res Hum Retroviruses 2016; 32:841-50. [PMID: 27346600 DOI: 10.1089/aid.2015.0331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigate mutations and correlates according to HIV-1 subtype after virological failure (VF) of standard first-line antiretroviral therapy (ART) (non-nucleoside/nucleotide reverse transcriptase inhibitor [NNRTI] +2 nucleoside/nucleotide reverse transcriptase inhibitor [N(t)RTI]). SECOND-LINE study participants were assessed at baseline for HIV-1 subtype, demographics, HIV-1 history, ART exposure, viral load (VL), CD4(+) count, and genotypic ART resistance. We used backward stepwise multivariate regression (MVR) to assess associations between baseline variables and presence of ≥3 N(t)RTI mutations, ≥1 NNRTI mutation, ≥3 thymidine analog-N(t)RTI [ta-N(t)RTI] mutations (TAMs), the K65/K70 mutation, and predicted etravirine (ETV)/rilpivirine (RPV) activity. The inclusion p-value for MVR was p < .2. The exclusion p-value from stepwise elimination was p > .05. Of 541 participants, 491 (91%) had successfully characterized baseline viral isolates. Subtype distribution: B (n = 123, 25%), C (n = 202, 41%), CRF01_AE (n = 109, 22%), G (n = 25, 5%), and CRF02_AG (n = 27, 5%). Baseline CD4(+) 200-394 cells/mm(3) were associated with <3 N(t)RTI mutations (OR = 0.47; 95% CI 0.29-0.77; p = .003), absence of the K65/K70 mutation (OR = 0.43; 95% CI 0.26-0.73; p = .002), and higher ETV sensitivity (OR = 0.52; 95% CI 0.35-0.78; p = .002). Recent tenofovir (TDF) use was associated with K65/K70 mutations (OR = 8.91; 95% CI 5.00-15.85; p < .001). Subtype CRF01_AE was associated with ≥3 N(t)RTI mutations (OR = 2.34; 95% CI 1.31-4.17; p = .004) and higher RPV resistance (OR = 2.13; 95% CI 1.30-3.49; p = .003), and subtype C was associated with <3 TAMs (OR = 0.45; 95% CI 0.21-0.99; p = .015). Subtypes CRF01_AE (OR = 2.46; 95% CI 1.26-4.78; p = .008) and G (OR = 4.77; 95% CI 1.44-15.76; p = .01) were associated with K65/K70 mutations. Higher VL at confirmed first-line VF was associated with ≥3 N(t)RTI mutations (OR = 1.39; 95% CI 1.07-1.78; p = .013) and ≥3 TAMs (OR = 1.62; 95% CI 1.15-2.29; p = .006). The associations of first-line resistance mutations across the HIV-1 subtypes in this study are consistent with knowledge derived from subtype B, with some exceptions. Patterns of resistance after failure of a first-line ta-N(t)RTI regimen support using TDF in N(t)RTI-containing second-line regimens, or using N(t)RTI-sparing regimens.
Collapse
Affiliation(s)
- Edward P. Lam
- The Kirby Institute UNSW Australia, Sydney, Australia
| | | | - Eduardo Gotuzzo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano, Heredia, Lima, Peru
| | - Chidi Nwizu
- Center for Clinical Care and Clinical Research in Nigeria, Abuja, Nigeria
| | - Adeeba Kamarulzaman
- Clinical Investigations Centre, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | - Jean-Michel Molina
- Department of Clinical Infectious Diseases, Hôpital Saint-Louis, Paris, France
| | - Sean Emery
- The Kirby Institute UNSW Australia, Sydney, Australia
| | | | - Mark A. Boyd
- The Kirby Institute UNSW Australia, Sydney, Australia
- University of Adelaide, Lyell McEwin Hospital, Adelaide, South Australia, Australia
| | | |
Collapse
|
37
|
Le Douce V, Ait-Amar A, Forouzan Far F, Fahmi F, Quiel J, El Mekdad H, Daouad F, Marban C, Rohr O, Schwartz C. Improving combination antiretroviral therapy by targeting HIV-1 gene transcription. Expert Opin Ther Targets 2016; 20:1311-1324. [PMID: 27266557 DOI: 10.1080/14728222.2016.1198777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Combination Antiretroviral Therapy (cART) has not allowed the cure of HIV. The main obstacle to HIV eradication is the existence of quiescent reservoirs. Several other limitations of cART have been described, such as strict life-long treatment and high costs, restricting it to Western countries, as well as the development of multidrug resistance. Given these limitations and the impetus to find a cure, the development of new treatments is necessary. Areas covered: In this review, we discuss the current status of several efficient molecules able to suppress HIV gene transcription, including NF-kB and Tat inhibitors. We also assess the potential of new proteins belonging to the intriguing DING family, which have been reported to have potential anti-HIV-1 activity by inhibiting HIV gene transcription. Expert opinion: Targeting HIV-1 gene transcription is an alternative approach, which could overcome cART-related issues, such as the emergence of multidrug resistance. Improving cART will rely on the identification and characterization of new actors inhibiting HIV-1 transcription. Combining such efforts with the use of new technologies, the development of new models for preclinical studies, and improvement in drug delivery will considerably reduce drug toxicity and thus increase patient adherence.
Collapse
Affiliation(s)
- Valentin Le Douce
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,c UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science , University College Dublin , Dublin 4 , Ireland
| | - Amina Ait-Amar
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faezeh Forouzan Far
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Jose Quiel
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Fadoua Daouad
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France
| | - Céline Marban
- d Faculté de Chirurgie Dentaire , Inserm UMR 1121 , Strasbourg , France
| | - Olivier Rohr
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France.,e Institut Universitaire de France , Paris , France
| | - Christian Schwartz
- a Institut de Parasitologie et de Pathologie Tropicale, EA7292 , Université de Strasbourg , Strasbourg , France.,b IUT de Schiltigheim , Schiltigheim , France
| |
Collapse
|
38
|
Sagoe KWC, Duedu KO, Ziga F, Agyei AA, Adiku TK, Lartey M, Mingle JAA, Arens M. Short-term treatment outcomes in human immunodeficiency virus type-1 and hepatitis B virus co-infections. Ann Clin Microbiol Antimicrob 2016; 15:38. [PMID: 27251610 PMCID: PMC4890471 DOI: 10.1186/s12941-016-0152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Co-infection of HIV with HBV is common in West Africa but little information is available on the effects of HBV on short-term therapy for HIV patients. A 28 day longitudinal study was conducted to examine short-term antiretroviral therapy (ART) outcomes in HIV infected individuals with HBV co-infection. METHODS Plasma from 18 HIV infected individuals co-infected with HBV and matched controls with only HIV infection were obtained at initiation, and 7 and 28 days after ART. HIV-1 viral load changes were monitored. Clinical and demographic data were also obtained from patient folders, and HIV-1 drug resistance mutation and subtype analysis performed. RESULTS The presence of HBV co-infection did not significantly affect HIV-1 viral load changes within 7 or 28 days. The CD4(+) counts on the other hand of patients significantly affected the magnitude of HIV-1 viral load decline after 7 days (ρ = -0.441, p = 0.040), while the pre-ART HIV-1 VL (ρ = 0.844, p = <0.001) and sex (U = 19.0, p = 0.020) also determined HIV-1 viral load outcomes after 28 days of ART. Even though the geometric sensitivity score of HIV-1 strains were influenced by the HIV-1 subtypes (U = 56.00; p = 0.036), it was not a confounder for ART outcomes. CONCLUSIONS There may be the need to consider the confounder effects of sex, pre-ART CD4(+), and pre-ART HIV-1 viral load in the discourse on HIV and HBV co-infection.
Collapse
Affiliation(s)
- Kwamena William Coleman Sagoe
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, P. O. Box KB173, Accra, Ghana.
| | - Kwabena Obeng Duedu
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, P. O. Box KB173, Accra, Ghana.,Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health & Allied Sciences, Ho, Ghana
| | - Francesca Ziga
- Pharmacy Department, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Afrakoma Adjoa Agyei
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, University of Ghana, Accra, Ghana
| | - Theophilus Korku Adiku
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, P. O. Box KB173, Accra, Ghana
| | - Margaret Lartey
- Department of Medicine and Therapeutics, School of Medicine and Dentistry, University of Ghana, Accra, Ghana
| | - Julius Abraham Addo Mingle
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, P. O. Box KB173, Accra, Ghana
| | - Max Arens
- Retrovirus Laboratory, Department of Pediatrics, Washington University Medical School, St. Louis, MO, USA
| |
Collapse
|
39
|
Phylogeny and drug resistance of HIV PR gene among HIV patients receiving RT inhibitors in Iran. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Mendoza Y, Castillo Mewa J, Martínez AA, Zaldívar Y, Sosa N, Arteaga G, Armién B, Bautista CT, García-Morales C, Tapia-Trejo D, Ávila-Ríos S, Reyes-Terán G, Bello G, Pascale JM. HIV-1 Antiretroviral Drug Resistance Mutations in Treatment Naïve and Experienced Panamanian Subjects: Impact on National Use of EFV-Based Schemes. PLoS One 2016; 11:e0154317. [PMID: 27119150 PMCID: PMC4847863 DOI: 10.1371/journal.pone.0154317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022] Open
Abstract
The use of antiretroviral therapy in HIV infected subjects prevents AIDS-related illness and delayed occurrence of death. In Panama, rollout of ART started in 1999 and national coverage has reached 62.8% since then. The objective of this study was to determine the level and patterns of acquired drug resistance mutations of clinical relevance (ADR-CRM) and surveillance drug resistance mutations (SDRMs) from 717 HIV-1 pol gene sequences obtained from 467 ARV drug-experienced and 250 ARV drug-naïve HIV-1 subtypes B infected subjects during 2007–2013, respectively. The overall prevalence of SDRM and of ADR-CRM during the study period was 9.2% and 87.6%, respectively. The majority of subjects with ADR-CRM had a pattern of mutations that confer resistance to at least two classes of ARV inhibitors. The non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations K103N and P225H were more prevalent in both ARV drug-naïve and ARV drug-experienced subjects. The nucleoside reverse transcriptase inhibitor (NRTI) mutation M184V was more frequent in ARV drug-experienced individuals, while T215YFrev and M41L were more frequent in ARV drug-naïve subjects. Prevalence of mutations associated to protease inhibitors (PI) was lower than 4.1% in both types of subjects. Therefore, there is a high level of resistance (>73%) to Efavirenz/Nevirapine, Lamivudine and Azidothymidine in ARV drug-experienced subjects, and an intermediate to high level of resistance (5–10%) to Efavirenz/Nevirapine in ARV drug-naïve subjects. During the study period, we observed an increasing trend in the prevalence of ADR-CRM in subjects under first-line schemes, but not significant changes in the prevalence of SDRM. These results reinforce the paramount importance of a national surveillance system of ADR-CRM and SDRM for national management policies of subjects living with HIV.
Collapse
Affiliation(s)
- Yaxelis Mendoza
- Direction of Research and Technological Development, Gorgas Memorial Institute for Health Studies, Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur City, India
- Department of Genetics and Molecular Biology, School of Biology, University of Panama, Panama City, Panama
- Institute for Scientific Research and High Technology Services of Panama, Panama City, Panama
| | - Juan Castillo Mewa
- Direction of Research and Technological Development, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Alexander A. Martínez
- Direction of Research and Technological Development, Gorgas Memorial Institute for Health Studies, Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur City, India
- Institute for Scientific Research and High Technology Services of Panama, Panama City, Panama
| | - Yamitzel Zaldívar
- Direction of Research and Technological Development, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Néstor Sosa
- Direction of Research and Technological Development, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Griselda Arteaga
- Department of Microbiology, School of Medicine, University of Panama, Panama City, Panama
| | - Blas Armién
- Direction of Research and Technological Development, Gorgas Memorial Institute for Health Studies, Panama City, Panama
- Facultad de Ciencias de la Salud, Universidad Interamericana de Panamá, Panama City, Panama
| | - Christian T. Bautista
- Direction of Research and Technological Development, Gorgas Memorial Institute for Health Studies, Panama City, Panama
| | - Claudia García-Morales
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases (Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias), Mexico City, Mexico
| | - Daniela Tapia-Trejo
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases (Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias), Mexico City, Mexico
| | - Santiago Ávila-Ríos
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases (Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias), Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases (Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias), Mexico City, Mexico
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Juan M. Pascale
- Direction of Research and Technological Development, Gorgas Memorial Institute for Health Studies, Panama City, Panama
- Department of Microbiology, School of Medicine, University of Panama, Panama City, Panama
- * E-mail:
| |
Collapse
|
41
|
Lockhat HA, Silva JRA, Alves CN, Govender T, Lameira J, Maguire GEM, Sayed Y, Kruger HG. Binding Free Energy Calculations of Nine FDA-approved Protease Inhibitors Against HIV-1 Subtype C I36T↑T Containing 100 Amino Acids Per Monomer. Chem Biol Drug Des 2016; 87:487-98. [PMID: 26613568 DOI: 10.1111/cbdd.12690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/28/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022]
Abstract
In this work, have investigated the binding affinities of nine FDA-approved protease inhibitor drugs against a new HIV-1 subtype C mutated protease, I36T↑T. Without an X-ray crystal structure, homology modelling was used to generate a three-dimensional model of the protease. This and the inhibitor models were employed to generate the inhibitor/I36T↑T complexes, with the relative positions of the inhibitors being superimposed and aligned using the X-ray crystal structures of the inhibitors/HIV-1 subtype B complexes as a reference. Molecular dynamics simulations were carried out on the complexes to calculate the average binding free energies for each inhibitor using the molecular mechanics generalized Born surface area (MM-GBSA) method. When compared to the binding free energies of the HIV-1 subtype B and subtype C proteases (calculated previously by our group using the same method), it was clear that the I36T↑T proteases mutations and insertion had a significant negative effect on the binding energies of the non-pepditic inhibitors nelfinavir, darunavir and tipranavir. On the other hand, ritonavir, amprenavir and indinavir show improved calculated binding energies in comparison with the corresponding data for wild-type C-SA protease. The computational model used in this study can be used to investigate new mutations of the HIV protease and help in establishing effective HIV drug regimes and may also aid in future protease drug design.
Collapse
Affiliation(s)
- Husain A Lockhat
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - José R A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, Belém, PA, 66075-110, Brazil
| | - Cláudio N Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, Belém, PA, 66075-110, Brazil
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 11101, Belém, PA, 66075-110, Brazil
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Wits, 2050, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| |
Collapse
|
42
|
The Genetic Diversity and Evolution of HIV-1 Subtype B Epidemic in Puerto Rico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010055. [PMID: 26703695 PMCID: PMC4730446 DOI: 10.3390/ijerph13010055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 11/28/2022]
Abstract
HIV-1 epidemics in Caribbean countries, including Puerto Rico, have been reported to be almost exclusively associated with the subtype B virus (HIV-1B). However, while HIV infections associated with other clades have been only sporadically reported, no organized data exist to accurately assess the prevalence of non-subtype B HIV-1 infection. We analyzed the nucleotide sequence data of the HIV pol gene associated with HIV isolates from Puerto Rican patients. The sequences (n = 945) were obtained from our “HIV Genotyping” test file, which has been generated over a period of 14 years (2001–2014). REGA subtyping tool found the following subtypes: B (90%), B-like (3%), B/D recombinant (6%), and D/B recombinant (0.6%). Though there were fewer cases, the following subtypes were also found (in the given proportions): A1B (0.3%), BF1 (0.2%), subtype A (01-AE) (0.1%), subtype A (A2) (0.1%), subtype F (12BF) (0.1%), CRF-39 BF-like (0.1%), and others (0.1%). Some of the recombinants were identified as early as 2001. Although the HIV epidemic in Puerto Rico is primarily associated with HIV-1B virus, our analysis uncovered the presence of other subtypes. There was no indication of subtype C, which has been predominantly associated with heterosexual transmission in other parts of the world.
Collapse
|
43
|
Avi R, Pauskar M, Karki T, Kallas E, Jõgeda EL, Margus T, Huik K, Lutsar I. Prevalence of drug resistance mutations in HAART patients infected with HIV-1 CRF06_cpx in Estonia. J Med Virol 2015; 88:448-54. [PMID: 26291050 DOI: 10.1002/jmv.24361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 11/08/2022]
Abstract
HIV-1 drug resistance mutations (DRMs) and substitutions were assessed after the failure of the first line non-nucleoside reverse transcriptase inhibitors (NNRTIs) + 2 nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) treatment regimens (efavirenz [EFV] + lamivudine[3TC] + zidovudine [ZDV] vs. EFV + 3TC + ddI) among the HIV-1 CRF06_cpx infected subjects in Estonia. HIV-1 genomic RNA was sequenced; DRMs and amino acid substitutions were compared in 44 treatment naïve and 45 first-line NNRTI + 2 NRTI treatment failed patients consisting of EFV + 3TC + ZDV (n = 17) and EFV + 3TC + didanosine[ddI] (n = 21) therapy failed sub-populations. At least one DRM was found in 78% of treatment experienced patients. The most common NRTI mutations were M184V (80%), L74V (31%), L74I (17%), K219E (9%), and M184I (9%), NNRTI mutations were K103N (83%), P225H (14%), L100I (11%), and Y188L (11%), reflecting generally the similar pattern of DRMs to that seen in treatment failed subtype B viruses. Sub-population analysis revealed that EFV + 3TC + ddI failed patients had more DRMs compared to EFV + 3TC + ZDV failed patients, especially the ddI DRM L74IV and several additional NNRTI DRMs. Additionally, CRF06_cpx specific mutation E179V and substitutions R32K, K122E, and V200AE were also detected in treatment experienced population. After the failure of the first-line EFV + 3TC + ddI therapy HIV-1 CRF06_cpx viruses develop additional NRTI and NNRTI mutations compared to EFV + 3TC + ZDV regimen. Therefore the usage of EFV + 3TC + ddI in this subtype decreases the options for next regimens containing abacavir, and NNRTI class agents.
Collapse
Affiliation(s)
- Radko Avi
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Merit Pauskar
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Tõnis Karki
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Eveli Kallas
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Ene-Ly Jõgeda
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Tõnu Margus
- Department of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kristi Huik
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Irja Lutsar
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
44
|
Tongo M, Dorfman JR, Abrahams MR, Mpoudi-Ngole E, Burgers WA, Martin DP. Near full-length HIV type 1M genomic sequences from Cameroon : Evidence of early diverging under-sampled lineages in the country. EVOLUTION MEDICINE AND PUBLIC HEALTH 2015; 2015:254-65. [PMID: 26354000 PMCID: PMC4600344 DOI: 10.1093/emph/eov022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Background: Cameroon is the country in which HIV-1 group M (HIV-1M) likely originated and is today a major hotspot of HIV-1M genetic diversity. It remains unclear, however, whether the highly divergent HIV-1M lineages found in this country arose during the earliest phases of the global HIV-1M epidemic, or whether they arose more recently as a result of recombination events between globally circulating HIV-1M lineages. Methodology: To differentiate between these two possibilities, we performed phylogenetic analyses of the near full genome sequences of nine newly sequenced divergent HIV-1M isolates and 15 previously identified, apparently unique recombinant forms (URFs) from Cameroon. Results: Although two of the new genome sequences were clearly classifiable within subtype G, the remaining seven were highly divergent and phylogenetically branched either outside of, or very near the bases of clades containing the well characterised globally circulating viral lineages that they were most closely related to. Recombination analyses further revealed that these divergent viruses were likely complex URFs. We show, however that substantial portions (>1 Kb) of three of the new genome sequences and 15 of the previously characterised Cameroonian URFs have apparently been derived from divergent parental viruses that branch phylogenetically near the bases of the major HIV-1M clades. Conclusions and implications: Our analyses indicate the presence in Cameroon of contemporary descendants of numerous early-diverging HIV-1M lineages. Further efforts to sample and sequence viruses from such lineages could be crucial both for retracing the earliest evolutionary steps during the emergence of HIV-1M in humans, and accurately reconstructing the ancestral sequences of the major globally circulating HIV-1M lineages.
Collapse
Affiliation(s)
- Marcel Tongo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology and Institute of Medical Research and Study of Medicinal plants (IMPM), Yaoundé, Cameroon
| | - Jeffrey R Dorfman
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Eitel Mpoudi-Ngole
- Institute of Medical Research and Study of Medicinal plants (IMPM), Yaoundé, Cameroon
| | | | - Darren P Martin
- Division of Computational Biology, Department of Integrated Biology Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; and
| |
Collapse
|
45
|
Bruzzone B, Saladini F, Sticchi L, Mayinda Mboungou FA, Barresi R, Caligiuri P, Calzi A, Zazzi M, Icardi G, Viscoli C, Bisio F. Prevalence of HIV-1 Subtypes and Drug Resistance-Associated Mutations in HIV-1-Positive Treatment-Naive Pregnant Women in Pointe Noire, Republic of the Congo (Kento-Mwana Project). AIDS Res Hum Retroviruses 2015; 31:837-40. [PMID: 25970260 DOI: 10.1089/aid.2015.0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Kento-Mwana project was carried out in Pointe Noire, Republic of the Congo, to prevent mother-to-child HIV-1 transmission. To determine the prevalence of different subtypes and transmitted drug resistance-associated mutations, 95 plasma samples were collected at baseline from HIV-1-positive naive pregnant women enrolled in the project during the years 2005-2008. Full protease and partial reverse transcriptase sequencing was performed and 68/95 (71.6%) samples were successfully sequenced. Major mutations to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 4/68 (5.9%), 3/68 (4.4%), and 2/68 (2.9%) samples, respectively. Phylogenetic analysis of HIV-1 isolates showed a high prevalence of unique recombinant forms (24/68, 35%), followed by CRF45_cpx (7/68, 10.3%) and subsubtype A3 and subtype G (6/68 each, 8.8%). Although the prevalence of transmitted drug resistance mutations appears to be currently limited, baseline HIV-1 genotyping is highly advisable in conjunction with antiretroviral therapy scale-up in resource-limited settings to optimize treatment and prevent perinatal transmission.
Collapse
Affiliation(s)
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Laura Sticchi
- Hygiene Unit, IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | - Anna Calzi
- Infectious Diseases Unit, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giancarlo Icardi
- Hygiene Unit, IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Claudio Viscoli
- Infectious Diseases Unit, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Francesca Bisio
- Infectious Diseases Unit, University of Genoa and IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
46
|
Musyoki AM, Rakgole JN, Selabe G, Mphahlele J. Identification and genetic characterization of unique HIV-1 A1/C recombinant strain in South Africa. AIDS Res Hum Retroviruses 2015; 31:347-52. [PMID: 25517728 DOI: 10.1089/aid.2014.0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
HIV isolates from South Africa are predominantly subtype C. Sporadic isolation of non-C strains has been reported mainly in cosmopolitan cities. HIV isolate j51 was recovered from a rural South African heterosexual female aged 51 years. Near full length amplification of the genome was attempted using PCR with primers targeting overlapping segments of the HIV genome. Analysis of 5593 bp (gag to vpu) at a bootstrap value greater than 70% found that all but the vpu gene was HIV-1 subtype A1. The vpu gene was assigned HIV-1 subtype C. The recombination breaking point was estimated at position 6035+/- 15 bp with reference to the beginning of the HXB2 reference strain. Isolate j51 revealed a unique genome constellation to previously reported recombinant strains with parental A/C backbones from South Africa though a common recombination with subtype C within the vpu gene. Identification of recombinant strains supports continued surveillance of HIV genetic diversity.
Collapse
Affiliation(s)
- Andrew M. Musyoki
- HIV and Hepatitis Research Unit, Department of Virology, University of Limpopo (Medunsa Campus) and National Health Laboratory Service, Pretoria, South Africa
| | - Johnny N. Rakgole
- HIV and Hepatitis Research Unit, Department of Virology, University of Limpopo (Medunsa Campus) and National Health Laboratory Service, Pretoria, South Africa
| | - Gloria Selabe
- HIV and Hepatitis Research Unit, Department of Virology, University of Limpopo (Medunsa Campus) and National Health Laboratory Service, Pretoria, South Africa
| | - Jeffrey Mphahlele
- HIV and Hepatitis Research Unit, Department of Virology, University of Limpopo (Medunsa Campus) and National Health Laboratory Service, Pretoria, South Africa
| |
Collapse
|
47
|
Jiamsakul A, Sirivichayakul S, Ditangco R, Wong KH, Li P, Praparattanapan J, Phanuphak P, Segubre-Mercado E, Yam WC, Sirisanthana T, Singtoroj T, Law M. Transmitted drug resistance in recently infected HIV-positive Individuals from four urban locations across Asia (2007-2010) - TASER-S. AIDS Res Ther 2015; 12:3. [PMID: 25685169 PMCID: PMC4326480 DOI: 10.1186/s12981-015-0043-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of HIV antiretroviral therapy (ART) has been associated with the development of transmitted drug resistance-associated mutations (TDRM). TDRM can compromise treatment effectiveness in patients initiating ART and the prevalence can vary in different clinical settings. In this study, we investigated the proportion of TDRM in treatment-naïve, recently infected HIV-positive individuals sampled from four urban locations across Asia between 2007-2010. METHODS Patients enrolled in the TREAT Asia Studies to Evaluate Resistance - Surveillance Study (TASER-S) were genotyped prior to ART initiation, with resulting resistance mutations analysed according to the WHO 2009 list. RESULTS Proportions of TDRM from recently infected individuals from TASER-S ranged from 0% to 8.7% - Hong Kong: 3/88 (3.4%, 95% CI (0.71%-9.64%)); Thailand: Bangkok: 13/277 (4.7%, 95% CI (2.5%-7.9%)), Chiang Mai: 0/17 (0%, 97.5% CI (0%-19.5%)); and the Philippines: 6/69 (8.7%, 95% CI (3.3%-18.0%)). There was no significant increase in TDRM over time across all four clinical settings. CONCLUSIONS The observed proportion of TDRM in TASER-S patients from Hong Kong, Thailand and the Philippines was low to moderate during the study period. Regular monitoring of TDRM should be encouraged, especially with the scale-up of ART at higher CD4 levels.
Collapse
|
48
|
Selective acquisition of G190S in HIV-1 subtype A from Russia leading to efavirenz and nevirapine treatment failure. AIDS 2014; 28:2619-21. [PMID: 25574962 DOI: 10.1097/qad.0000000000000404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Costa MGS, Benetti-Barbosa TG, Desdouits N, Blondel A, Bisch PM, Pascutti PG, Batista PR. Impact of M36I polymorphism on the interaction of HIV-1 protease with its substrates: insights from molecular dynamics. BMC Genomics 2014; 15 Suppl 7:S5. [PMID: 25573486 PMCID: PMC4243740 DOI: 10.1186/1471-2164-15-s7-s5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Over the last decades, a vast structural knowledge has been gathered on the HIV-1 protease (PR). Noticeably, most of the studies focused the B-subtype, which has the highest prevalence in developed countries. Accordingly, currently available anti-HIV drugs target this subtype, with considerable benefits for the corresponding patients. However, in developing countries, there is a wide variety of HIV-1 subtypes carrying PR polymorphisms related to reduced drug susceptibility. The non-active site mutation, M36I, is the most frequent polymorphism, and is considered as a non-B subtype marker. Yet, the structural impact of this substitution on the PR structure and on the interaction with natural substrates remains poorly documented. Results Herein, we used molecular dynamics simulations to investigate the role of this polymorphism on the interaction of PR with six of its natural cleavage-sites substrates. Free energy analyses by MMPB/SA calculations showed an affinity decrease of M36I-PR for the majority of its substrates. The only exceptions were the RT-RH, with equivalent affinity, and the RH-IN, for which an increased affinity was found. Furthermore, molecular simulations suggest that, unlike other peptides, RH-IN induced larger structural fluctuations in the wild-type enzyme than in the M36I variant. Conclusions With multiple approaches and analyses we identified structural and dynamical determinants associated with the changes found in the binding affinity of the M36I variant. This mutation influences the flexibility of both PR and its complexed substrate. The observed impact of M36I, suggest that combination with other non-B subtype polymorphisms, could lead to major effects on the interaction with the 12 known cleavage sites, which should impact the virion maturation.
Collapse
|
50
|
Baesi K, Moallemi S, Farrokhi M, Alinaghi SAS, Truong HM. Subtype classification of Iranian HIV-1 sequences registered in the HIV databases, 2006-2013. PLoS One 2014; 9:e105098. [PMID: 25188443 PMCID: PMC4154867 DOI: 10.1371/journal.pone.0105098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/17/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The rate of human immunodeficiency virus type 1 (HIV-1) infection in Iran has increased dramatically in the past few years. While the earliest cases were among hemophiliacs, injection drug users (IDUs) fuel the current epidemic. Previous molecular epidemiological analysis found that subtype A was most common among IDUs but more recent studies suggest CRF_35AD may be more prevalent now. To gain a better understanding of the molecular epidemiology of HIV-1 infection in Iran, we analyzed all Iranian HIV sequence data from the Los Alamos National Laboratory. METHODS All Iranian HIV sequences from subtyping studies with pol, gag, env and full-length HIV-1 genome sequences registered in the HIV databases (www.hiv.lanl.gov) between 2006 and 2013 were downloaded. Phylogenetic trees of each region were constructed using Neighbor-Joining (NJ) and Maximum Parsimony methods. RESULTS A total of 475 HIV sequences were analyzed. Overall, 78% of sequences were CRF_35AD. By gene region, CRF_35AD comprised 83% of HIV-1 pol, 62% of env, 78% of gag, and 90% of full-length genome sequences analyzed. There were 240 sequences re-categorized as CRF_AD. The proportion of CRF_35AD sequences categorized by the present study is nearly double the proportion of what had been reported. CONCLUSIONS Phylogenetic analysis indicates HIV-1 subtype CRF_35AD is the predominant circulating strain in Iran. This result differed from previous studies that reported subtype A as most prevalent in HIV- infected patients but confirmed other studies which reported CRF_35AD as predominant among IDUs. The observed epidemiological connection between HIV strains circulating in Iran and Afghanistan may be due to drug trafficking and/or immigration between the two countries. This finding suggests the possible origins and transmission dynamics of HIV/AIDS within Iran and provides useful information for designing control and intervention strategies.
Collapse
Affiliation(s)
- Kazem Baesi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Moallemi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Molood Farrokhi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Seyed Alinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Hong–Ha M. Truong
- University of California, San Francisco, CA, United States of America
- Gladstone Institute of Virology and Immunology, San Francisco, CA, United States of America
| |
Collapse
|