1
|
Yang F, Zhai L, Yin K, Lin S, Yang J, Ye F, Chen Z, Shu S, Yu Y, Guo L, He B, Wang W, Ye H, Cao Y, Gao J, Lu G. Molecular basis of two broad-spectrum antibodies neutralizing rabies virus and other phylogroup-I lyssaviruses by blocking structural transition between the pleckstrin-homology and fusion domains in the glycoprotein. Int J Biol Macromol 2025; 308:142570. [PMID: 40154685 DOI: 10.1016/j.ijbiomac.2025.142570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Rabies virus (RABV), the prototype species of the Lyssavirus genus, causes the lethal disease of rabies. Rabies can be efficiently prevented with post-exposure prophylaxis. The RABV glycoprotein (RABV-G) is an essential factor mediating virus entry and the major target of neutralizing antibodies. Here, we report the crystal structures of two neutralizing monoclonal antibodies (NM57 and SOJB) in complex with RABV-G. The two antibodies recognize highly overlapped epitopes involving both the pleckstrin-homology domain (PHD) and the junction between PHD and the fusion domain (FD). Our pseudovirus neutralization assay further shows that both antibodies could neutralize a majority of the lyssaviruses in phylogroup-I. Via sequence comparison and structural characterization, we identify two residues located at positions 226 and 231 in PHD, as key determinants for antibody recognition, which is further corroborated by mutagenesis analyses. Finally, detailed structural analyses reveal that NM57 and SOJB would lock the PHD/FD local structure in the pre-fusion-like state, thereby inhibiting viral infection by blocking structural transitions of RABV-G essential for membrane fusion. Taken together, these results provide a mechanistic glimpse into the molecular basis for broad neutralization of phylogroup-I lyssaviruses by NM57 and SOJB, which should be able to facilitate the development of monoclonal antibodies and vaccines.
Collapse
Affiliation(s)
- Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lili Zhai
- NCPC New Drug Research and Development Co., Ltd., State Key Laboratory of Antibody Research & Development, Shijiazhuang 052165, Hebei, China
| | - Keqing Yin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Ye
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siqi Shu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yueru Yu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Wang
- WestVac Biopharma Co. Ltd., Chengdu, Sichuan 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Gao
- NCPC New Drug Research and Development Co., Ltd., State Key Laboratory of Antibody Research & Development, Shijiazhuang 052165, Hebei, China.
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Kulkarni R, Khwaja TA, Badgujar G, Patil V, Ambike D. Use of Rabies Monoclonal Antibodies in an Abandoned Newborn. Indian J Pediatr 2025; 92:557. [PMID: 39976751 DOI: 10.1007/s12098-025-05459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 04/18/2025]
Affiliation(s)
- Rajesh Kulkarni
- Department of Pediatrics, PCMC's Post Graduate Institute YCM Hospital, Pune, Maharashtra, India.
| | - Tanveer Ahmed Khwaja
- Department of Pediatrics, PCMC's Post Graduate Institute YCM Hospital, Pune, Maharashtra, India
| | - Girish Badgujar
- Department of Pediatrics, PCMC's Post Graduate Institute YCM Hospital, Pune, Maharashtra, India
| | - Vinay Patil
- Department of Pediatrics, PCMC's Post Graduate Institute YCM Hospital, Pune, Maharashtra, India
| | - Deepali Ambike
- Department of Pediatrics, PCMC's Post Graduate Institute YCM Hospital, Pune, Maharashtra, India
| |
Collapse
|
3
|
Fujisawa M, Onodera T, Kuroda D, Kewcharoenwong C, Sasaki M, Itakura Y, Yumoto K, Nithichanon A, Ito N, Takeoka S, Suzuki T, Sawa H, Lertmemongkolchai G, Takahashi Y. Molecular convergence of neutralizing antibodies in human revealed by repeated rabies vaccination. NPJ Vaccines 2025; 10:39. [PMID: 39988605 PMCID: PMC11847937 DOI: 10.1038/s41541-025-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Rabies vaccines require repeated immunization to robustly elicit neutralizing antibodies that prevent fatal diseases. Here, we analyzed rabies glycoprotein antibody repertoires at both polyclonal and monoclonal levels following repeated vaccination. Booster vaccination dramatically elevated the neutralizing activity of recalled antibodies, primarily targeting an immunodominant site III epitope with hydrophilic and rugged structures. Strikingly, the majority of site III-directed antibodies in the recall response used a convergent VH gene (IGHV3-30), and they exhibited more hydrophilic and shorter paratopes than non-site III antibodies, providing physicochemical advantages for binding to site III. Additionally, several amino acids on heavy chain CDR3 were identified as key sites for acquiring an ultrapotent neutralizing activity through site III binding. Our in-depth analysis of antibody repertoires revealed the molecular signatures of neutralizing antibodies generated by repeated rabies vaccination, possibly as a result of adaptive convergence.
Collapse
Affiliation(s)
- Mizuki Fujisawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control (IIZC), Hokkaido University, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
4
|
Aditham AK, Radford CE, Carr CR, Jasti N, King NP, Bloom JD. Deep mutational scanning of rabies glycoprotein defines mutational constraint and antibody-escape mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628970. [PMID: 39763725 PMCID: PMC11702696 DOI: 10.1101/2024.12.17.628970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Rabies virus causes nearly 60,000 human deaths annually. Antibodies that target the rabies glycoprotein (G) are being developed as post-exposure prophylactics, but mutations in G can render such antibodies ineffective. Here, we use pseudovirus deep mutational scanning to measure how all single amino-acid mutations to G affect cell entry and neutralization by a panel of antibodies. These measurements identify sites critical for rabies G's function, and define constrained regions that are attractive epitopes for clinical antibodies, including at the apex and base of the protein. We provide complete maps of escape mutations for eight monoclonal antibodies, including some in clinical use or development. Escape mutations for most antibodies are present in some natural rabies strains. Overall, this work provides comprehensive information on the functional and antigenic effects of G mutations that can help inform development of stabilized vaccine antigens and antibodies that are resilient to rabies genetic variation.
Collapse
Affiliation(s)
- Arjun K. Aditham
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | | | - Caleb R. Carr
- Department of Genome Sciences, University of Washington, Seattle 98195
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Naveen Jasti
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle 98195
- Institute for Protein Design, University of Washington, Seattle 98195
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle 98195
- Institute for Protein Design, University of Washington, Seattle 98195
| | - Jesse D. Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Howard Hughes Medical Institute, Seattle, WA 98109
| |
Collapse
|
5
|
Kedari A, Iheozor-Ejiofor R, Salminen P, Uğurlu H, Mäkelä AR, Levanov L, Vapalahti O, Hytönen VP, Saksela K, Rissanen I. Structural insight into rabies virus neutralization revealed by an engineered antibody scaffold. Structure 2024; 32:2220-2230.e4. [PMID: 39471803 DOI: 10.1016/j.str.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Host-cell entry of the highly pathogenic rabies virus (RABV) is mediated by glycoprotein (G) spikes, which also comprise the primary target for the humoral immune response. RABV glycoprotein (RABV-G) displays several antigenic sites that are targeted by neutralizing monoclonal antibodies (mAbs). In this study, we determined the epitope of a potently neutralizing human mAb, CR57, which we engineered into a diabody format to facilitate crystallization. We report the crystal structure of the CR57 diabody alone at 2.38 Å resolution, and in complex with RABV-G domain III at 2.70 Å resolution. The CR57-RABV-G structure reveals critical interactions at the antigen interface, which target the conserved "KLCGVL" peptide and residues proximal to it on RABV-G. Structural analysis combined with a cell-cell fusion assay demonstrates that CR57 effectively inhibits RABV-G-mediated fusion by obstructing the fusogenic transitions of the spike protein. Altogether, this investigation provides a structural perspective on RABV inhibition by a potently neutralizing human antibody.
Collapse
MESH Headings
- Rabies virus/immunology
- Rabies virus/chemistry
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Humans
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Models, Molecular
- Crystallography, X-Ray
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Protein Engineering/methods
- Epitopes/chemistry
- Epitopes/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Protein Binding
- Antigens, Viral/chemistry
- Antigens, Viral/immunology
Collapse
Affiliation(s)
- Ashwini Kedari
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | - Petja Salminen
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Hasan Uğurlu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Anna R Mäkelä
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Lev Levanov
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland; HUS Diagnostic Centre, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - Kalle Saksela
- Department of Virology, University of Helsinki, Helsinki, Finland; HUS Diagnostic Centre, HUSLAB, Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
6
|
Long C, Wang W, Du J, Xu G, Yu C, Wang L. Developing a human monoclonal antibody combination CRM25 to prevent rabies after exposure. Int J Antimicrob Agents 2024; 64:107383. [PMID: 39542064 DOI: 10.1016/j.ijantimicag.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Immunization against rabies post-exposure prophylaxis requires passive immunization with either monoclonal antibody (mAb) or blood-derived rabies immunoglobin (RIG). Currently, replacing traditional RIG with emerging mAb or mAb combinations is highly recommended due to the limited supply and potential safety risks of RIG. METHODS We developed a mAb combination named CRM25 by combining two human mAbs, RM02 and RM05, at a 1:1 mass ratio. RESULTS RM02 and RM05 were non-competing and non-overlapping mAbs targeting epitopes I and III, respectively. K226 and G229 were found to be the critical amino acid sites for RM02 neutralization, but the mutant I338T displayed decreased susceptibility to RM05 neutralization. Notably, CRM25 was capable of cross-neutralizing rabies virus (RABV) strains containing K226M or I338T mutations. CRM25 additionally showed an inhibitory effect on the infection of all tested common RABVs and non-RABV phylogroup I lyssaviruses. CRM25 not only exhibited neutralizing activity but also exhibited antiviral effects via Fc-mediated effector functions. Importantly, CRM25 was comparable to human RIG in terms of its capacity to protect Syrian golden hamsters from lethal RABV challenges. CONCLUSIONS These findings promote more thorough research on CRM25's antiviral properties in cells and in vivo to enhance its clinical applicability and suggest that it may be a viable candidate medication for rabies post-exposure prophylaxis.
Collapse
Affiliation(s)
- Caifeng Long
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Wenbo Wang
- Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - Jialiang Du
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Gangling Xu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China.
| | - Lan Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control, State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China.
| |
Collapse
|
7
|
Wu M, Peng X, Xu W, Zhang H, Fang L, Liu X, Miao F, Liu Q, Mi S, Xiao Y, Yu X, Tu C, Ge L, Liu Y. Development of Human Monoclonal Antibodies With Broad Reactivity for Rabies Postexposure Prophylaxis. J Med Virol 2024; 96:e70068. [PMID: 39601104 PMCID: PMC11600393 DOI: 10.1002/jmv.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Rabies is an acute lethal disease causing by the neurotropic virus rabies virus (RABV). Rabies immune globulin (RIG) as an indispensable component of rabies postexposure prophylaxis (PEP) always faces with great challenges in terms of costs, stability and safety. Our objective is to develop a novel and potential fully human monoclonal antibodies (mAbs) cocktail for the improvement of rabies PEP. The neutralizing fully human mAbs were screened by using fully humanized antibody mice (CAMouseHG). Then, two mAbs 26-12 G and 5-7 G were selected with potential neutralizing activity to RABV by using fluorescent antibody virus neutralization test (FAVN), which specifically bind to antigenic sites I and III of RABV-glycoprotein (RABV-G), the key amino acid residues were further identified in position 336, 337 of 5-7 G and 226, 227, 228 of 26-12 G by using cross-linking and mass-spectrometry. Both mAbs are highly conserved across 8 RABV strains (distributing in 3 lineages: Asian, Cosmopolitan and Arctic-related) and 1 IRKV strain, and showed high neutralizing potential. Moreover, the in vivo experiment demonstrated that our cocktail can protect Kunming mice from a lethal RABV challenge. Collectively, we generate two noncompeting fully human mAbs (26-12 G, 5-7 G) and obtained cocktail CAM001 with their mixture. The high-potency and broad-spectrum neutralization of the cocktail supports its utility in human rabies PEP as an efficacious and affordable alternative to RIG products, particularly in endemic areas.
Collapse
Affiliation(s)
- Meng Wu
- College of Veterinary MedicineHunan Agricultural UniversityChangshaChina
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
- Institute of BioengineeringChongqing Academy of Animal SciencesChongqingChina
| | - Xinyu Peng
- Department of Hepatobiliary & Pancreas SurgeryThe First Hospital of Jilin UniversityChina
| | - Weidi Xu
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Hao Zhang
- R&D DepartmentChongqing CAMAB BIOTECH Ltd.ChongqingChina
| | - Lian Fang
- R&D DepartmentChongqing CAMAB BIOTECH Ltd.ChongqingChina
| | - Xueqin Liu
- Institute of BioengineeringChongqing Academy of Animal SciencesChongqingChina
- Biotechnology Research InstituteNational Center of Technology Innovation for PigsChongqingChina
| | - Faming Miao
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Quan Liu
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of EducationThe First Hospital of Jilin UniversityChangchunChina
| | - Shijiang Mi
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Yuewen Xiao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonoses Research of the Ministry of Education, College of Veterinary MedicineJilin UniversityChangchunChina
| | - Xinglong Yu
- College of Veterinary MedicineHunan Agricultural UniversityChangshaChina
| | - Changchun Tu
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Liangpeng Ge
- Institute of BioengineeringChongqing Academy of Animal SciencesChongqingChina
- Biotechnology Research InstituteNational Center of Technology Innovation for PigsChongqingChina
| | - Yan Liu
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| |
Collapse
|
8
|
Wang PH, Xing L. The roles of rabies virus structural proteins in immune evasion and implications for vaccine development. Can J Microbiol 2024; 70:461-469. [PMID: 39297428 DOI: 10.1139/cjm-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Rabies is a zoonotic infectious disease that targets the nervous system of human and animals and has about 100% fatality rate without treatment. Rabies virus is a bullet-like viral particle composed of five structural proteins, including nucleoprotein (N), phosphorylated protein (P), matrix protein (M), glycoprotein (G), and large subunit (L) of RNA-dependent RNA polymerase. These multifunctional viral proteins also play critical roles in the immune escape by inhibiting specific immune responses in the host, resulting in massive replication of the virus in the nervous system and abnormal behaviors of patients such as brain dysfunction and hydrophobia, which ultimately lead to the death of patients. Herein, the role of five structural proteins of rabies virus in the viral replication and immune escape and its implication for the development of vaccines were systemically reviewed, so as to shed light on the understanding of pathogenic mechanism of rabies virus.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, China
| |
Collapse
|
9
|
Fu D, Wang W, Zhang Y, Zhang F, Yang P, Yang C, Tian Y, Yao R, Jian J, Sun Z, Zhang N, Ni Z, Rao Z, Zhao L, Guo Y. Self-assembling nanoparticle engineered from the ferritinophagy complex as a rabies virus vaccine candidate. Nat Commun 2024; 15:8601. [PMID: 39366932 PMCID: PMC11452399 DOI: 10.1038/s41467-024-52908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Over the past decade, there has been a growing interest in ferritin-based vaccines due to their enhanced antigen immunogenicity and favorable safety profiles, with several vaccine candidates targeting various pathogens advancing to phase I clinical trials. Nevertheless, challenges associated with particle heterogeneity, improper assembly and unanticipated immunogenicity due to the bulky protein adaptor have impeded further advancement. To overcome these challenges, we devise a universal ferritin-adaptor delivery platform based on structural insights derived from the natural ferritinophagy complex of the human ferritin heavy chain (FTH1) and the nuclear receptor coactivator 4 (NCOA4). The engineered ferritinophagy (Fagy)-tag peptide demonstrate significantly enhanced binding affinity to the 24-mer ferritin nanoparticle, enabling efficient antigen presentation. Subsequently, we construct a self-assembling rabies virus (RABV) vaccine candidate by noncovalently conjugating the Fagy-tagged glycoprotein domain III (GDIII) of RABV to the ferritin nanoparticle, maintaining superior homogeneity, stability and immunogenicity. This vaccine candidate induces potent, rapid, and durable immune responses, and protects female mice against the authentic RABV challenge after single-dose administration. Furthermore, this universal, ferritin-based antigen conjugating strategy offers significant potential for developing vaccine against diverse pathogens and diseases.
Collapse
Affiliation(s)
- Dan Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
- College of Pharmacy, Nankai University, Tianjin, PR China
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, PR China
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin, PR China
| | - Fan Zhang
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China
- Department of Oncology, The Fifth Medical Center, PLA General Hospital, Beijing, PR China
| | - Pinyi Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
| | - Chun Yang
- College of Basic Medicine, Beihua University, Jilin, PR China
| | - Yufei Tian
- Changchun Veterinary Research Institute (CVRI), Chinese Academy of Agricultural Sciences (CAAS), Jingyue Economic Development Zone, Changchun, PR China
| | - Renqi Yao
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China
| | - Jingwu Jian
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
| | - Zixian Sun
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China
| | - Nan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, PR China
| | - Zhiyu Ni
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, Hebei, PR China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Lei Zhao
- National Facility for Translational Medicine (Beijing), Medical Innovation Research Division, PLA General Hospital, Beijing, PR China.
- Department of Oncology, The Fifth Medical Center, PLA General Hospital, Beijing, PR China.
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, PR China.
- Guangzhou Laboratory, Guangzhou, Guangdong, PR China.
| |
Collapse
|
10
|
Sullivan DJ. Convalescent Plasma and Other Antibody Therapies for Infectious Diseases-Lessons Learned from COVID-19 and Future Prospects. Curr Top Microbiol Immunol 2024. [PMID: 39117846 DOI: 10.1007/82_2024_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Antiviral passive antibody therapy includes convalescent plasma, hyperimmune globulin, and monoclonal antibodies. Passive antibodies have proven effective in reducing morbidity and mortality for SARS-CoV-2 and other infectious diseases when given early in the disease course with sufficiently high specific total and neutralizing antibody levels. Convalescent plasma can be delivered to patients before vaccination implementation or novel drug production. Carefully designed and executed randomized controlled trials near the pandemic outset are important for regulatory bodies, healthcare workers, guideline committees, the public, and the government. Unfortunately, many otherwise well-designed antibody-based clinical trials in COVID-19 were futile, either because they intervened too late in the disease or provided plasma with insufficient antibodies. The need for early treatment mandates outpatient clinical trials in parallel with inpatient trials. Early outpatient COVID-19 convalescent plasma transfusion with high antibody content within 9 days of symptom onset has proven effective in blunting disease progression and reducing hospitalization, thus reducing hospital overcrowding in a pandemic. Convalescent plasma offers the opportunity for hope by enabling community participation in outpatient curative therapy while monoclonal therapies, vaccines, and drugs are being developed. Maintaining the appropriate infrastructure for antibody infusion in both outpatient and inpatient facilities is critical for future pandemic readiness.
Collapse
Affiliation(s)
- David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St Rm W4606, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Han A, Henderson DK. Postexposure prophylaxis for occupational exposure to selected pathogens for healthcare personnel. Curr Opin Infect Dis 2024; 37:296-303. [PMID: 38899948 PMCID: PMC11213494 DOI: 10.1097/qco.0000000000001029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
PURPOSE OF REVIEW Timely postexposure prophylaxis is important after an occupational exposure. Here we review select organisms, exposure opportunities in the healthcare setting, and postexposure prophylaxis regimens. RECENT FINDINGS Needlestick injuries pose a risk of exposure to bloodborne pathogens, such as HIV, Hepatitis B, and Hepatitis C. Risk mitigation strategies should be reexamined in light of newer vaccines and therapeutics. Increased vaccine hesitancy and vaccine denialisms may foster the re-emergence of some infections that have become extremely uncommon because of effective vaccines. With increasing occurrences of zoonotic infections and the ease of global spread as evidenced by COVID-19 and mpox, healthcare exposures must also consider risks related to emerging and re-emerging infectious diseases. SUMMARY Early recognition and reporting of occupational exposures to pathogens with available postexposure prophylaxis is key to mitigating the risk of transmission. Providers should be able to evaluate the exposure and associated risks to provide prompt and appropriate postexposure prophylaxis.
Collapse
Affiliation(s)
- Alison Han
- Hospital Epidemiology Service, Clinical Center, National Institutes of Health Service
| | - David K. Henderson
- Hospital Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Casadevall A, Paneth N. Monoclonal Antibody Therapies for Infectious Diseases. Curr Top Microbiol Immunol 2024. [PMID: 38869844 DOI: 10.1007/82_2024_265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In contrast to therapy in oncology and immune-related diseases, where dozens of monoclonal antibodies (mAbs) have been introduced, often in transformative fashion, the use of mAbs for infectious diseases is generally underdeveloped, with fewer than a dozen mAbs currently licensed for the treatment of microbial diseases. This situation is paradoxical given that antibodies are major products of the immune system for protecting against infectious diseases. The underdevelopment of mAbs for infectious diseases has several causes including the availability of effective therapy against many microbial diseases, the fact that many pathogenic microbes are antigenically diverse and thus all strains are not covered by a single mAb, and the high expense of mAb therapies. Despite these hurdles the number of mAbs licensed for infectious disease indications is slowly increasing and there are numerous opportunities for the development of mAbs in the prevention and treatment of microbial diseases.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Nigel Paneth
- Departments of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Zhao J, Luo M, Tan X, Zhu Z, Zhang M, Liu J, Lin W, Yang Y, Li X, Zeng W, Gong D, Rong Z, Huang Z, Zheng W, Guo H, Zeng S, Sun L, Xiao J. Spatial accessibility and inequality analysis of rabies-exposed patients to rabies post-exposure prophylaxis clinics in Guangzhou City, China. Int J Equity Health 2024; 23:122. [PMID: 38877457 PMCID: PMC11179278 DOI: 10.1186/s12939-024-02207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The incidence of rabies exposure is high and increasing in China, leading to an urgent demand of rabies post-exposure prophylaxis (PEP) clinics for the injured. However, the spatial accessibility and inequality of rabies-exposed patients to rabies PEP clinics is less known in China. METHODS Based on rabies exposure data, PEP clinic data, and resident travel origin-destination (OD) matrix data in Guangzhou City, China, we first described the incidence of rabies exposure in Guangzhou from 2020 to 2022. Then, the Gaussian two-step floating catchment area method (2SFCA) was used to analyze the spatial accessibility of rabies-exposed patients to rabies PEP clinics in Guangzhou, and the Gini coefficient and Moran's I statistics were utilized to evaluate the inequality and clustering of accessibility scores. RESULTS From 2020 to 2022, a total of 524,160 cases of rabies exposure were reported in Guangzhou, and the incidence showed a significant increasing trend, with an average annual incidence of 932.0/100,000. Spatial accessibility analysis revealed that the overall spatial accessibility scores for three scenarios (threshold of driving duration [d0] = 30 min, 45 min, and 60 min) were 0.30 (95% CI: 0.07, 0.87), 0.28 (95% CI: 0.11, 0.53) and 0.28 (95% CI: 0.14, 0.44), respectively. Conghua, Huangpu, Zengcheng and Nansha districts had the higher accessibility scores, while Haizhu, Liwan, and Yuexiu districts exhibited lower spatial accessibility scores. The Gini coefficient and Moran's I statistics showed that there were certain inequality and clustering in the accessibility to rabies PEP clinics in Guangzhou. CONCLUSIONS This study clarifies the heterogeneity of spatial accessibility to rabies PEP clinics, and provide valuable insights for resource allocation to achieve the WHO target of zero human dog-mediated rabies deaths by 2030.
Collapse
Affiliation(s)
- Jianguo Zhao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Min Luo
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xiaohua Tan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Zhihua Zhu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Meng Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jun Liu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Wenqing Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Yuwei Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Dexin Gong
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Zuhua Rong
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Zitong Huang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenyuan Zheng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
- Department of Public Health and Preventive Medicine, School of Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Huijie Guo
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Siqing Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Limei Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China.
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China.
| |
Collapse
|
14
|
Chen R, Li H, Zhu W, Cheng H, Li Y, Li X, Li F, Liu X, Hu S, Yan B, Zheng Y, Zuo Y, Dong G, Li X. Expert consensus on the clinical application of ormutivimab injection for use against the rabies virus. Expert Opin Drug Saf 2024; 23:755-762. [PMID: 37427985 DOI: 10.1080/14740338.2023.2233411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND There are no local or international guidelines or consensus on the use of mAbs against the rabies virus. RESEARCH DESIGN AND METHODS An expert group in the field of rabies prevention and control formulated the consensus presented in this paper. RESULTS Class III exposed persons to rabies for the first time; Identify type II exposed persons with immune deficiency; those who are first exposed to Class II and re-exposed to Class III within 7 days. They can use ormutivimab injection after completing the PEP wound treatment. In the case of injection restrictions or a wound that is difficult to detect, it is recommended that the entire Ormutivimab dose be infiltrated close to the wound. For severe multi-wound bites, the recommended dosage of ormutivimab is 20 IU/kg. If the recommended dose cannot meet all of the wound infiltration requirements, appropriate dilution can be conducted at a dilution ratio of 3 ~ 5 times. If the requirements for infiltration cannot be met after dilution, it is recommended that the dosage be increased with caution (maximum dosage, 40 IU/kg). The use of Ormutivimab is safe and effective without any contraindications by all age groups. CONCLUSIONS This consensus standardizes clinical use of Ormutivimab, improves post-exposure prophylaxis of rabies in China, reduces infection rate.
Collapse
Affiliation(s)
- Ruifeng Chen
- Department of Emergency Medicine, The Sixth Medical Center of the General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Hu Li
- Department of Emergency Medicine, Beijing Luhe Hospital of China Capital Medical University, Beijing, China
| | - Wuyang Zhu
- Rabies Ward, Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Cheng
- Department of Emergency Medicine, The Forth Central Hospital of Tianjin, Tianjin, China
| | - Yu Li
- Institute of Immunization, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Xiaomei Li
- Department of Disease Control, The Fifth Affiliated Hospital of Zhengzhou University, Henan, China
| | - Faliang Li
- Vaccine Clinical Research Center of Yunnan Center for Disease Control and Prevention, Yunnan, China
| | - Xiaoqiang Liu
- Hunan Provincial Center for Disease Control and Prevention, Hunan, China
| | - Shixiong Hu
- Department of First Aid, The Third Affiliated Hospital of Chongqing Medical University, Sichuan, China
| | - Baigang Yan
- Department of Critical Care Medicine, Nanjing Second Hospital, Jangsu, China
| | - Yishan Zheng
- Department of Emergency Surgery, Emergency Physician Branch of Chinese Medical Doctor Association, Beijing Haidian Hospital, Beijing, China
| | - Yongbo Zuo
- National Institutes for Food and Drug Control, Beijing, China
| | - Guanmu Dong
- China Association for Vaccines, Beijing, China
| | - Xiangming Li
- Division of Infectious Diseases Management, China Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
15
|
Perraud V, Vanderhoydonck B, Bouvier G, Dias de Melo G, Kilonda A, Koukni M, Jochmans D, Rogée S, Ben Khalifa Y, Kergoat L, Lannoy J, Van Buyten T, Izadi-Pruneyre N, Chaltin P, Neyts J, Marchand A, Larrous F, Bourhy H. Mechanism of action of phthalazinone derivatives against rabies virus. Antiviral Res 2024; 224:105838. [PMID: 38373533 DOI: 10.1016/j.antiviral.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Rabies, a viral zoonosis, is responsible for almost 59,000 deaths each year, despite the existence of an effective post-exposure prophylaxis. Indeed, rabies causes acute encephalomyelitis, with a case-fatality rate of 100 % after the onset of neurological clinical signs. Therefore, the development of therapies to inhibit the rabies virus (RABV) is crucial. Here, we identified, from a 30,000 compound library screening, phthalazinone derivative compounds as potent inhibitors of RABV infection and more broadly of Lyssavirus and even Mononegavirales infections. Combining in vitro experiments, structural modelling, in silico docking and in vivo assays, we demonstrated that phthalazinone derivatives display a strong inhibition of lyssaviruses infection by acting directly on the replication complex of the virus, and with noticeable effects in delaying the onset of the clinical signs in our mouse model.
Collapse
Affiliation(s)
- Victoire Perraud
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Bart Vanderhoydonck
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Guillaume Bouvier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, F-75015, Paris, France
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Amuri Kilonda
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Mohamed Koukni
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | | | - Sophie Rogée
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Youcef Ben Khalifa
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | - Julien Lannoy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France
| | | | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015, Paris, France
| | - Patrick Chaltin
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium; Centre for Drug Design and Discovery (CD3), Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johan Neyts
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnaud Marchand
- Center for Innovation and Stimulation of Drug Discovery (Cistim) Leuven, Belgium
| | - Florence Larrous
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Unité Lyssavirus, Epidémiologie et Neuropathologie, WHO Collaborating Centre for Reference and Research on Rabies, F-75015, Paris, France.
| |
Collapse
|
16
|
Saurabh S, Zhang Q, Li Z, Seddon JM, Kalonia C, Lu JR, Bresme F. Mechanistic Insights into the Adsorption of Monoclonal Antibodies at the Water/Vapor Interface. Mol Pharm 2024; 21:704-717. [PMID: 38194618 PMCID: PMC10848294 DOI: 10.1021/acs.molpharmaceut.3c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/11/2024]
Abstract
Monoclonal antibodies (mAbs) are active components of therapeutic formulations that interact with the water-vapor interface during manufacturing, storage, and administration. Surface adsorption has been demonstrated to mediate antibody aggregation, which leads to a loss of therapeutic efficacy. Controlling mAb adsorption at interfaces requires a deep understanding of the microscopic processes that lead to adsorption and identification of the protein regions that drive mAb surface activity. Here, we report all-atom molecular dynamics (MD) simulations of the adsorption behavior of a full IgG1-type antibody at the water/vapor interface. We demonstrate that small local changes in the protein structure play a crucial role in promoting adsorption. Also, interfacial adsorption triggers structural changes in the antibody, potentially contributing to the further enhancement of surface activity. Moreover, we identify key amino acid sequences that determine the adsorption of antibodies at the water-air interface and outline strategies to control the surface activity of these important therapeutic proteins.
Collapse
Affiliation(s)
- Suman Saurabh
- Department
of Chemistry, Molecular Sciences Research
Hub Imperial College, London W12 0BZ, U.K.
| | - Qinkun Zhang
- Department
of Chemistry, Molecular Sciences Research
Hub Imperial College, London W12 0BZ, U.K.
| | - Zongyi Li
- Biological
Physics Group, School of Physics and Astronomy, Faculty of Science
and Engineering, the University of Manchester, Manchester M13 9PL, U.K.
| | - John M. Seddon
- Department
of Chemistry, Molecular Sciences Research
Hub Imperial College, London W12 0BZ, U.K.
| | - Cavan Kalonia
- Dosage
Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Jian R. Lu
- Biological
Physics Group, School of Physics and Astronomy, Faculty of Science
and Engineering, the University of Manchester, Manchester M13 9PL, U.K.
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research
Hub Imperial College, London W12 0BZ, U.K.
| |
Collapse
|
17
|
Wang PH, Shah PT, Xing L. Genetic characteristics and geographic distribution of rabies virus in China. Arch Virol 2023; 169:14. [PMID: 38157057 DOI: 10.1007/s00705-023-05947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
China is one of the largest countries with endemic rabies. In this study, we examined the full-length genome sequences of 87 rabies virus (RABV) strains identified in China from 1931 to 2019. Chinese RABV isolates were divided into two major clades, GI and GII. Clade GI consisted of viruses from the Asian clade, which was further divided into three subclades: Asian1, Asian2, and Asian3. Clade GII consisted of viruses from the Cosmopolitan, Arctic-related, and Indian clades. A phylogeographic network showed that the variation of rabies virus was more closely associated with geographic location than with the host species. Recombination appears to be one of the factors driving the emergence of new viral strains.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China
| | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China.
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China.
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi Province, China.
| |
Collapse
|
18
|
Hongtu Q, BoLi L, Jianguo C, Shusheng P, Ming M. Immunogenicity of rabies virus G mRNA formulated with lipid nanoparticles and nucleic acid immunostimulators in mice. Vaccine 2023; 41:7129-7137. [PMID: 37866995 DOI: 10.1016/j.vaccine.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Rabies is a preventable zoonotic disease caused by rabies virus (RABV) with high mortality. Messenger RNA (mRNA) vaccines have opened up new avenues for vaccine development and pandemic preparedness with potent scalability, which may overcome the only licensed rabies inactived vaccine' shortcoming of time and cost wasting. Here, we designed an RABV mRNA vaccines expressed RABV G protein and capsulated with lipid nanoparticle (LNP) and different nucleic acid immunostimulator (CPG 1018, CPG 2395 and Poly I:C) and then assessed the immunogenicity and protective capacity in mice. While RABV mRNA capsulated with LNP and CPG 1018 could induce more potent humoral response with highest and durable RABV-G specific IgG titers and virus neutralizing titers, but also induced stronger RABV G-specific cell-mediated immunity (CMI) responses, including the highest proportions of interferon-γ (IFN-γ) and tumor necrosis factor alpha (TNFα)- producing CD4+/CD8 + T cells according to a flow cytometry assay in mice. In addition, in the pre- and post-exposure challenge assays, LNP + CPG 1018 capsulated RABV G mRNA induced 100 % protection against 25 LD50 of RABV infection with highest inhibition efficacy of viral replication with the decreased virus genome detected by qRT-PCR. These results showed that RABV G mRNA capsulated with LNP immune-stimulating nucleic acids CPG 1018 showed promise as a safe and economical rabies vaccine candidate.
Collapse
Affiliation(s)
- Qiao Hongtu
- Scientific Research Department, Chengdu Qingbaijiang District People's Hospital, Chengdu, China.
| | - Liu BoLi
- Emergency Department, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| | - Chen Jianguo
- Medical Laboratory, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| | - Peng Shusheng
- Medical Laboratory, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| | - Min Ming
- Medical Laboratory, Chengdu Qingbaijiang District People's Hospital, Chengdu, China
| |
Collapse
|
19
|
Huaman C, Paskey AC, Clouse C, Feasley A, Rader M, Rice GK, Luquette AE, Fitzpatrick MC, Drumm HM, Yan L, Cer RZ, Donduashvili M, Buchukuri T, Nanava A, Hulseberg CE, Washington MA, Laing ED, Malagon F, Broder CC, Bishop-Lilly KA, Schaefer BC. Genomic Surveillance of Rabies Virus in Georgian Canines. Viruses 2023; 15:1797. [PMID: 37766204 PMCID: PMC10537093 DOI: 10.3390/v15091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Rabies is a fatal zoonosis that is considered a re-emerging infectious disease. Although rabies remains endemic in canines throughout much of the world, vaccination programs have essentially eliminated dog rabies in the Americas and much of Europe. However, despite the goal of eliminating dog rabies in the European Union by 2020, sporadic cases of dog rabies still occur in Eastern Europe, including Georgia. To assess the genetic diversity of the strains recently circulating in Georgia, we sequenced seventy-eight RABV-positive samples from the brain tissues of rabid dogs and jackals using Illumina short-read sequencing of total RNA shotgun libraries. Seventy-seven RABV genomes were successfully assembled and annotated, with seventy-four of them reaching the coding-complete status. Phylogenetic analyses of the nucleoprotein (N) and attachment glycoprotein (G) genes placed all the assembled genomes into the Cosmopolitan clade, consistent with the Georgian origin of the samples. An amino acid alignment of the G glycoprotein ectodomain identified twelve different sequences for this domain among the samples. Only one of the ectodomain groups contained a residue change in an antigenic site, an R264H change in the G5 antigenic site. Three isolates were cultured, and these were found to be efficiently neutralized by the human monoclonal antibody A6. Overall, our data show that recently circulating RABV isolates from Georgian canines are predominantly closely related phylogroup I viruses of the Cosmopolitan clade. Current human rabies vaccines should offer protection against infection by Georgian canine RABVs. The genomes have been deposited in GenBank (accessions: OQ603609-OQ603685).
Collapse
Affiliation(s)
- Celeste Huaman
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Adrian C. Paskey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Caitlyn Clouse
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Austin Feasley
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Madeline Rader
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Gregory K. Rice
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Andrea E. Luquette
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Maren C. Fitzpatrick
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Hannah M. Drumm
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | - Lianying Yan
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | | | - Tamar Buchukuri
- State Laboratory of Agriculture (SLA), Tbilisi 0159, Georgia
| | - Anna Nanava
- US Army Medical Research Directorate-Georgia (USAMRD-G), Tbilisi 0198, Georgia
| | | | | | - Eric D. Laing
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Francisco Malagon
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
- Leidos, Reston, VA 20190, USA
| | | | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Brian C. Schaefer
- Department of Microbiology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
20
|
Zorzan M, Castellan M, Gasparotto M, Dias de Melo G, Zecchin B, Leopardi S, Chen A, Rosato A, Angelini A, Bourhy H, Corti D, Cendron L, De Benedictis P. Antiviral mechanisms of two broad-spectrum monoclonal antibodies for rabies prophylaxis and therapy. Front Immunol 2023; 14:1186063. [PMID: 37638057 PMCID: PMC10449259 DOI: 10.3389/fimmu.2023.1186063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Rabies is an acute and lethal encephalomyelitis caused by lyssaviruses, among which rabies virus (RABV) is the most prevalent and important for public health. Although preventable through the post-exposure administration of rabies vaccine and immunoglobulins (RIGs), the disease is almost invariably fatal since the onset of clinical signs. Two human neutralizing monoclonal antibodies (mAbs), RVC20 and RVC58, have been shown to be effective in treating symptomatic rabies. To better understand how these mAbs work, we conducted structural modeling and in vitro assays to analyze their mechanisms of action, including their ability to mediate Fc-dependent effector functions. Our results indicate that both RVC20 and RVC58 recognize and lock the RABV-G protein in its pre-fusion conformation. RVC58 was shown to neutralize more potently the extra-cellular virus, while RVC20 mainly acts by reducing viral spreading from infected cells. Importantly, RVC20 was more effective in promoting effector functions compared to RVC58 and 17C7-RAB1 mAbs, the latter of which is approved for human rabies post-exposure treatment. These results provide valuable insights into the multiple mechanisms of action of RVC20 and RVC58 mAbs, offering relevant information for the development of these mAbs as treatment for human rabies.
Collapse
Affiliation(s)
- Maira Zorzan
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Martina Castellan
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Barbara Zecchin
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Stefania Leopardi
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alex Chen
- Vir Biotechnology, San Francisco, CA, United States
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology, Padua, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Mestre, Italy
- European Centre for Living Technology (ECLT), Venice, Italy
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Paris, France
| | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padua, Padova, Italy
| | - Paola De Benedictis
- Laboratory for Emerging Viral Zoonoses, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| |
Collapse
|
21
|
Coertse J, Viljoen N, Weyer J, Markotter W. Comparative Neutralization Activity of Commercial Rabies Immunoglobulin against Diverse Lyssaviruses. Vaccines (Basel) 2023; 11:1255. [PMID: 37515070 PMCID: PMC10383743 DOI: 10.3390/vaccines11071255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Novel lyssaviruses, the causative agents of rabies, continue to be described mostly due to increased surveillance in bat hosts. Biologicals for the prevention of rabies in humans have, however, remained largely unchanged for decades. This study aimed to determine if commercial rabies immunoglobulin (RIG) could neutralize diverse lyssaviruses. Two commercial preparations, of human or equine origin, were evaluated against a panel consisting of 13 lyssavirus species. Reduced neutralization was observed for the majority of lyssaviruses compared to rabies virus and was more evident for lyssaviruses outside of phylogroup I. Neutralization of more diverse lyssaviruses only occurred at very high doses, except for Ikoma lyssavirus, which could not be neutralized by the RIG evaluated in this study. The use of RIG is a crucial component of rabies post-exposure prophylaxis and the data generated here indicate that RIG, in its current form, will not protect against all lyssaviruses. In addition, higher doses of RIG may be required for neutralization as the genetic distance from vaccine strains increases. Given the limitations of current RIG preparations, alternative passive immunization options should be investigated.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Natalie Viljoen
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
22
|
Struble EB, Rawson JMO, Stantchev T, Scott D, Shapiro MA. Uses and Challenges of Antiviral Polyclonal and Monoclonal Antibody Therapies. Pharmaceutics 2023; 15:pharmaceutics15051538. [PMID: 37242780 DOI: 10.3390/pharmaceutics15051538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents. We will describe the methods of antibody characterization and potency assessment throughout development, highlighting similarities and differences between polyclonal and monoclonal products as appropriate. In addition, we will consider the benefits and challenges of antiviral antibodies when used in combination with other antibodies or other types of antiviral therapeutics. Lastly, we will discuss novel approaches to the characterization and development of antiviral antibodies and identify areas that would benefit from additional research.
Collapse
Affiliation(s)
- Evi B Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jonathan M O Rawson
- Division of Antivirals, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marjorie A Shapiro
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
23
|
Rupprecht CE, Mshelbwala PP, Reeves RG, Kuzmin IV. Rabies in a postpandemic world: resilient reservoirs, redoubtable riposte, recurrent roadblocks, and resolute recidivism. ANIMAL DISEASES 2023; 3:15. [PMID: 37252063 PMCID: PMC10195671 DOI: 10.1186/s44149-023-00078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/02/2023] [Indexed: 05/31/2023] Open
Abstract
Rabies is an ancient disease. Two centuries since Pasteur, fundamental progress occurred in virology, vaccinology, and diagnostics-and an understanding of pathobiology and epizootiology of rabies in testament to One Health-before common terminological coinage. Prevention, control, selective elimination, and even the unthinkable-occasional treatment-of this zoonosis dawned by the twenty-first century. However, in contrast to smallpox and rinderpest, eradication is a wishful misnomer applied to rabies, particularly post-COVID-19 pandemic. Reasons are minion. Polyhostality encompasses bats and mesocarnivores, but other mammals represent a diverse spectrum of potential hosts. While rabies virus is the classical member of the genus, other species of lyssaviruses also cause the disease. Some reservoirs remain cryptic. Although global, this viral encephalitis is untreatable and often ignored. As with other neglected diseases, laboratory-based surveillance falls short of the notifiable ideal, especially in lower- and middle-income countries. Calculation of actual burden defaults to a flux within broad health economic models. Competing priorities, lack of defined, long-term international donors, and shrinking local champions challenge human prophylaxis and mass dog vaccination toward targets of 2030 for even canine rabies impacts. For prevention, all licensed vaccines are delivered to the individual, whether parenteral or oral-essentially 'one and done'. Exploiting mammalian social behaviors, future 'spreadable vaccines' might increase the proportion of immunized hosts per unit effort. However, the release of replication-competent, genetically modified organisms selectively engineered to spread intentionally throughout a population raises significant biological, ethical, and regulatory issues in need of broader, transdisciplinary discourse. How this rather curious idea will evolve toward actual unconventional prevention, control, or elimination in the near term remains debatable. In the interim, more precise terminology and realistic expectations serve as the norm for diverse, collective constituents to maintain progress in the field.
Collapse
Affiliation(s)
- Charles E. Rupprecht
- College of Forestry, Wildlife & Environment, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Philip P. Mshelbwala
- School of Veterinary Science, University of Queensland, Gatton, Australia
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - R. Guy Reeves
- Max Planck Institut Für Evolutionsbiologie, 24306 Plön, Germany
| | - Ivan V. Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
24
|
Wang X, Terrie L, Wu G, Van Damme EJM, Thorrez L, Fooks AR, Banyard AC, Jochmans D, Neyts J. Urtica dioica Agglutinin Prevents Rabies Virus Infection in a Muscle Explant Model. Pharmaceutics 2023; 15:pharmaceutics15051353. [PMID: 37242595 DOI: 10.3390/pharmaceutics15051353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Infection with the rabies virus (RABV) results in a 100% lethal neurological disease once symptoms develop. Post-exposure prophylaxis (PEP) consists of a combination of vaccination and anti-rabies immunoglobulins (RIGs); it is 100% effective if administered early after exposure. Because of its limited availability, alternatives for RIGs are needed. To that end, we evaluated a panel of 33 different lectins for their effect on RABV infection in cell culture. Several lectins, with either mannose or GlcNAc specificity, elicited anti-RABV activity, of which the GlcNAc-specific Urtica dioica agglutinin (UDA) was selected for further studies. UDA was found to prevent the entry of the virus into the host cell. To further assess the potential of UDA, a physiologically relevant RABV infection muscle explant model was developed. Strips of dissected swine skeletal muscle that were kept in a culture medium could be productively infected with the RABV. When the infection of the muscle strips was carried out in the presence of UDA, RABV replication was completely prevented. Thus, we developed a physiologically relevant RABV muscle infection model. UDA (i) may serve as a reference for further studies and (ii) holds promise as a cheap and simple-to-produce alternative for RIGs in PEP.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisanne Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, Campus Kulak, KU Leuven, 8500 Kortrijk, Belgium
| | - Guanghui Wu
- Animal and Plant Health Agency (APHA), Woodham Lane, Weybridge KT15 3NB, UK
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - Lieven Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, Campus Kulak, KU Leuven, 8500 Kortrijk, Belgium
| | - Anthony R Fooks
- Animal and Plant Health Agency (APHA), Woodham Lane, Weybridge KT15 3NB, UK
| | - Ashley C Banyard
- Animal and Plant Health Agency (APHA), Woodham Lane, Weybridge KT15 3NB, UK
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Al-Eitan L, Alnemri M, Alkhawaldeh M, Mihyar A. Rodent-borne viruses in the region of Middle East. Rev Med Virol 2023:e2440. [PMID: 36924105 DOI: 10.1002/rmv.2440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Rodents are one of the most abundant mammal species in the world. They form more than two-fifth of all mammal species and there are approximately 4600 existing rodent species. Rodents are capable of transmitting deadly diseases, especially those that are caused by viruses. Viruses and their consequences have plagued the world for the last two centuries, three pandemics occurred during the last century only. The Middle East is situated at the crossroads of Africa and Asia, along with the Mediterranean Sea and the Indian Ocean, its geographic importance is gained through the diversity of topographies, biosphere, as well as climate aspects that make the region vulnerable to host emerging diseases. Refugee crises also play a major role in expected epidemic outbreaks in the region. Public health has always been the most important priority, and our aim in this review is to raise awareness among public health organisations across the Middle East about the dangers of rodent borne diseases that have been reported or are suspected to be found in the region.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Malek Alnemri
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Mishael Alkhawaldeh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad Mihyar
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
26
|
Wang W, Yu C, Cui Y, Liu C, Yang Y, Xu G, Wu G, Du J, Fu Z, Guo L, Long C, Xia X, Li Y, Wang L, Wang Y. Development of a reporter gene assay for antibody dependent cellular cytotoxicity activity determination of anti-rabies virus glycoprotein antibodies. Microbiol Immunol 2023; 67:69-78. [PMID: 36346082 DOI: 10.1111/1348-0421.13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Rabies is a viral disease that is nearly 100% fatal once clinical signs and symptoms develop. Post-exposure prophylaxis can efficiently prevent rabies, and antibody (Ab) induction by vaccination or passive immunization of human rabies immunoglobulin (HRIG) or monoclonal antibodies (mAbs) play an integral role in prevention against rabies. In addition to their capacity to neutralize viruses, antibodies exert their antiviral effects by antibody-dependent cellular cytotoxicity (ADCC), which plays an important role in antiviral immunity and clearance of viral infections. For antibodies against rabies virus (RABV), evaluation of ADCC activity was neglected. Here, we developed a robust cell-based reporter gene assay (RGA) for the determination of the ADCC activity of anti-RABV antibodies using CVS-N2c-293 cells, which stably express the glycoprotein (G) of RABV strain CVS-N2c as target cells, and Jurkat cells, which stably express FcγRⅢa and nuclear factor of activated T cells (NFAT) reporter gene as effector cells (Jurkat/NFAT-luc/FcγRⅢa cells). The experimental parameters were carefully optimized, and the established ADCC assay was systematically validated according to the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2 guideline. We also evaluated the ADCC activity of anti-RABV antibodies, including mAbs, HRIG, and vaccine induced antisera, and found that all test antibodies exhibited ADCC activity with varied strengths. The established RGA provides a novel method for evaluating the ADCC of anti-RABV antibodies.
Collapse
Affiliation(s)
- Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chuanfei Yu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yongfei Cui
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Chunyu Liu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Yalan Yang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gangling Xu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Gang Wu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Jialiang Du
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Zhihao Fu
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Luyong Guo
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Caifeng Long
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Xijie Xia
- China Pharmaceutical University, Nanjing, China
| | - Yuhua Li
- Division of Arboviral Vaccine, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Lan Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
27
|
Ling Z, Yi C, Sun X, Yang Z, Sun B. Broad strategies for neutralizing SARS-CoV-2 and other human coronaviruses with monoclonal antibodies. SCIENCE CHINA. LIFE SCIENCES 2022; 66:658-678. [PMID: 36443513 PMCID: PMC9707277 DOI: 10.1007/s11427-022-2215-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022]
Abstract
Antibody therapeutics and vaccines for coronavirus disease 2019 (COVID-19) have been approved in many countries, with most being developed based on the original strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 has an exceptional ability to mutate under the pressure of host immunity, especially the immune-dominant spike protein of the virus, which is the target of both antibody drugs and vaccines. Given the continuous evolution of the virus and the identification of critical mutation sites, the World Health Organization (WHO) has named 5 variants of concern (VOCs): 4 are previously circulating VOCs, and 1 is currently circulating (Omicron). Due to multiple mutations in the spike protein, the recently emerged Omicron and descendent lineages have been shown to have the strongest ability to evade the neutralizing antibody (NAb) effects of current antibody drugs and vaccines. The development and characterization of broadly neutralizing antibodies (bNAbs) will provide broad strategies for the control of the sophisticated virus SARS-CoV-2. In this review, we describe how the virus evolves to escape NAbs and the potential neutralization mechanisms that associated with bNAbs. We also summarize progress in the development of bNAbs against SARS-CoV-2, human coronaviruses (CoVs) and other emerging pathogens and highlight their scientific and clinical significance.
Collapse
Affiliation(s)
- Zhiyang Ling
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
28
|
Wang Q, Huang Z. Editorial overview: Anti-viral strategies: Human antibody immune response and antibody-based therapy against viruses. Curr Opin Virol 2022; 55:101247. [PMID: 35803202 PMCID: PMC9256202 DOI: 10.1016/j.coviro.2022.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhong Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|