1
|
Yu H, Peng C, Chen Z, Li J, Li Y, Zhu X, Huang Y, Jiang L, Sobrado P, Lan J, Guo Y, Han Q. Identification of a serine protease involved in spinosad degradation in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2025. [PMID: 40098590 DOI: 10.1111/imb.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Spinosad is a widely used insecticide effective in controlling Aedes aegypti populations, but the molecular mechanisms underlying resistance remain poorly understood. This study explores the role of a serine protease, AeaSP (AAEL002624), in the potential detoxification ability of spinosad. Our results showed the crude protein of Ae. aegypti degraded approximately 48% of spinosad in vitro within 1 h; based on our previous research, AeaSP was believed to be potentially involved in the degradation of spinosad. Subsequently, AeaSP was recombinantly expressed in vitro, and its enzymatic activity was tested using BAEE as a substrate, with a Michaelis constant (KM) of 0.88 mmol/L. Spatiotemporal expression profiles revealed that AeaSP expression peaked in third instar larvae and thoraxes. In vitro assays showed that AeaSP degraded approximately 63% of spinosad (500 ng/mL) within 6 h. RNAi knockdown of AeaSP significantly increased larval mortality under spinosad exposure and raised spinosad residue levels in larvae by 37% under 0.15 μg/mL spinosad. Our findings suggest AeaSP may play a critical role in detoxifying spinosad in Ae. aegypti and serve as a target for improving spinosad efficacy and mosquito control strategies.
Collapse
Affiliation(s)
- Hongxiao Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Caixia Peng
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Zhaohui Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Jie Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Yunqi Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Xiaojing Zhu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Yuqi Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Linlong Jiang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, USA
- Department of Chemistry, Missouri University of Science & Technology, Rolla, Missouri, USA
| | - Jianqiang Lan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Yingying Guo
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
- Hainan International One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
2
|
Shirozu T, Regilme MAF, Ote M, Sasaki M, Soga A, Bochimoto H, Kawabata H, Umemiya-Shirafuji R, Kanuka H, Fukumoto S. Wolbachia infection in Aedes aegypti does not affect its vectorial capacity for Dirofilaria immitis. Sci Rep 2024; 14:22528. [PMID: 39341970 PMCID: PMC11439018 DOI: 10.1038/s41598-024-73421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Mosquito-borne diseases such as dengue and filariasis are a growing public health concern in endemic countries. Biological approaches, such as the trans-infection of Wolbachia pipientis in mosquitoes, are an alternative vector control strategy, especially for arthropod-borne viruses such as dengue. In the present study, the effect of Wolbachia (wMel strain) on the vectorial capacity of Aedes aegypti for Dirofilaria immitis was studied. Our results showed that Wolbachia does not affect the phenotype of mosquito survival or the prevalence, number, and molting rate of third-stage larvae in both susceptible and resistant strains of Ae. aegypti. RNA-seq analysis of Malpighian tubules at 2 days post-infection with D. immitis showed the differentially expressed genes (DEGs) with and without wMel infection. No characteristic immune-related gene expression patterns were observed among the DEGs. No significant change in the amount of Wolbachia was observed in the Ae. aegypti after D. immitis infection. Our results suggest that infection of D. immitis in Ae. aegypti populations will not interfere with Wolbachia-based vector control strategies in dengue-endemic areas where cases of D. immitis are present. This study demonstrated the veterinary medical validity of a dengue control program using Wolbachia.
Collapse
Affiliation(s)
- Takahiro Shirozu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Maria Angenica F Regilme
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Manabu Ote
- Department of Tropical Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | - Mizuki Sasaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hiroki Bochimoto
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hidenobu Kawabata
- Health Care Administration Center, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Minato-ku, Tokyo, 105-8461, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
3
|
Moise IK, Huang Q, Mutebi JP, Petrie WD. Effects of Hurricane Irma on mosquito abundance and species composition in a metropolitan Gulf coastal city, 2016-2018. Sci Rep 2024; 14:21886. [PMID: 39300158 DOI: 10.1038/s41598-024-72734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Mosquitoes are the most common disease vectors worldwide. In coastal cities, the spread, activity, and longevity of vector mosquitoes are influenced by environmental factors such as temperature, humidity, and rainfall, which affect their geographic distribution, biting rates, and lifespan. We examined mosquito abundance and species composition before and after Hurricane Irma in Miami, Dade County, Florida, and identified which mosquito species predominated post-Hurricane Irma. Our results showed that mosquito populations increased post-Hurricane Irma: 7.3 and 8.0 times more mosquitoes were captured in 2017 than at baseline, 2016 and 2018 respectively. Warmer temperatures accelerated larval development, resulting in faster emergence of adult mosquitoes. In BG-Sentinel traps, primary species like Ae. tortills, Cx. nigripalpus, and Cx. quinquefasciatus dominated the post-Hurricane Irma period. Secondary vectors that dominated post-Hurricane Irma include An. atropos, An. crucians, An. quadrimaculatus, Cx. erraticus, and Ps. columbiae. After Hurricane Irma, the surge in mosquito populations in Miami, Florida heightened disease risk. To mitigate and prevent future risks, we must enhance surveillance, raise public awareness, and implement targeted vector control measures.
Collapse
Affiliation(s)
- Imelda K Moise
- Department of Geography, University of Miami, 1300 Campo Sano Ave, Coral Gables, FL, 33124, USA.
| | - Qian Huang
- Department of Geography, University of Miami, 1300 Campo Sano Ave, Coral Gables, FL, 33124, USA
| | | | | |
Collapse
|
4
|
Izquierdo-Suzán M, Zavala-Guerrero PB, Mendoza H, Portela Salomão R, Vázquez-Pichardo M, Von Thaden JJ, Medellín RA. Mosquito (Diptera: Culicidae) diversity and arbovirus detection across an urban and agricultural landscape. Acta Trop 2024; 257:107321. [PMID: 38972559 DOI: 10.1016/j.actatropica.2024.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Fragmented landscapes in Mexico, characterized by a mix of agricultural, urban, and native vegetation cover, presents unique ecological characteristics that shape the mosquito community composition and mosquito-borne diseases. The extent to which landscape influences mosquito populations and mosquito-borne diseases is still poorly understood. This work assessed the effect of landscape metrics -agriculture, urban, and native vegetation cover- on mosquito diversity and arbovirus presence in fragmented tropical deciduous forests in Central Mexico during 2021. Among the 21 mosquito species across six genera we identified, Culex quinquefasciatus was the most prevalent species, followed by Aedes aegypti, Ae. albopictus, and Ae. epactius. Notably, areas with denser native vegetation cover displayed higher mosquito species richness, which could have an impact on phenomena such as the dilution effect. Zika and dengue virus were detected in 85% of captured species, with first reports of DENV in several Aedes species and ZIKV in multiple Aedes and Culex species. These findings underscore the necessity of expanding arbovirus surveillance beyond Ae. aegypti and advocate for a deeper understanding of vector ecology in fragmented landscapes to adequately address public health strategies.
Collapse
Affiliation(s)
- Mónica Izquierdo-Suzán
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Ciudad Universitaria Coyoacán, CP 04510 CDMX, Mexico; Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria Coyoacán, 04510 Ciudad de México, Mexico.
| | - Paula B Zavala-Guerrero
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de México, Ciudad de México, Mexico
| | - Hugo Mendoza
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria Coyoacán, 04510 Ciudad de México, Mexico
| | - Renato Portela Salomão
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Mexico; Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brasil
| | - Mauricio Vázquez-Pichardo
- Laboratorios de Arbovirus y Virus Hemorrágicos, Instituto de Diagnóstico y Referencia Epidemiológicoos. Centro Colaborador de la OPS/OMS en arbovirus, Ciudad de México, Mexico
| | - Juan José Von Thaden
- Laboratorio de Planeación Ambiental, Universidad Autónoma Metropolitana- Xochimilco, Ciudad de México, Mexico
| | - Rodrigo A Medellín
- Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. Postal 70-275, Circuito Exterior, Ciudad Universitaria Coyoacán, 04510 Ciudad de México, Mexico
| |
Collapse
|
5
|
Ferraguti M. Mosquito species identity matters: unraveling the complex interplay in vector-borne diseases. Infect Dis (Lond) 2024; 56:685-696. [PMID: 38795138 DOI: 10.1080/23744235.2024.2357624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND Research on vector-borne diseases has traditionally centred on a limited number of vertebrate hosts and their associated pathogens, often neglecting the broader array of vectors within communities. Mosquitoes, with their vast species diversity, hold a central role in disease transmission, yet their capacity to transmit specific pathogens varies considerably among species. Quantitative modelling of mosquito-borne diseases is essential for understanding transmission dynamics and requires the necessity of incorporating the identity of vector species into these models. Consequently, understanding the role of different species of mosquitoes in modelling vector-borne diseases is crucial for comprehending pathogen amplification and spill-over into humans. This comprehensive overview highlights the importance of considering mosquito identity and emphasises the essential need for targeted research efforts to gain a complete understanding of vector-pathogen specificity. METHODS Leveraging the recently published book, 'Mosquitoes of the World', I identified 19 target mosquito species in Europe, highlighting the diverse transmission patterns exhibited by different vector species and the presence of 135 medically important pathogens. RESULTS The review delves into the complexities of vector-pathogen interactions, with a focus on specialist and generalist strategies. Furthermore, I discuss the importance of using appropriate diversity indices and the challenges associated with the identification of correct indices. CONCLUSIONS Given that the diversity and relative abundance of key species within a community significantly impact disease risk, comprehending the implications of mosquito diversity in pathogen transmission at a fine scale is crucial for advancing the management and surveillance of mosquito-borne diseases.
Collapse
Affiliation(s)
- Martina Ferraguti
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
6
|
Rocha VC, Martins GF. Midgut morphology of the predator mosquito Lutzia bigoti (Diptera: Culicidae) and its implications for feeding behavior. Acta Trop 2024; 257:107289. [PMID: 38878848 DOI: 10.1016/j.actatropica.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Lutzia mosquitoes (Theobald, 1903) are predaceous during their larval stages, but the adult feeding is not clearly understood, especially in relation to blood feeding. In case these mosquitoes are harmless to humans and related animals, they can be useful in biological control of mosquito vectors of pathogens. Investigating the midgut morphology is a good strategy to understand the feeding behavior of this species. The midgut in Lutzia bigoti Bellardi, 1862 displays two distinct portions, a thin anterior midgut and a more dilated posterior midgut. Digestive cells form a single epithelium in the midgut. These cells have long and packed microvilli at their apex and membrane infoldings at their basal portion, the basal labyrinth. The epithelium is supported by a basal lamina. Regarding their cytoplasm, it is noteworthy the abundance of mitochondria, distributed in an apical-basal fashion, and also a whirl-shaped endoplasmic reticulum in the posterior midgut. Basal cells are also found in the midgut of L. bigoti, resembling regenerative cells. The general organization of L. bigoti's midgut closely resembles that of numerous hematophagous mosquitoes previously documented. However, it diverges due to the presence of a peritrophic matrix even when exclusively fed on sugary solutions. Peculiar aspects of L. bigoti's midgut are discussed and compared to those of other mosquito species.
Collapse
Affiliation(s)
- Vinícius Cordeiro Rocha
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
7
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
8
|
Baril C, Cassone BJ. Metatranscriptomic analysis of common mosquito vector species in the Canadian Prairies. mSphere 2024; 9:e0020324. [PMID: 38912793 PMCID: PMC11288045 DOI: 10.1128/msphere.00203-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 06/25/2024] Open
Abstract
The microbiome plays vital roles in the life history of mosquitoes, including their development, immunity, longevity, and vector competence. Recent advances in sequencing technologies have allowed for detailed exploration into the diverse microorganisms harbored by these medically important insects. Although these meta-studies have cataloged the microbiomes of mosquitoes in several continents, much of the information currently available for North America is limited to the state of California. In this study, we collected >35,000 mosquitoes throughout Manitoba, Canada, over a 3-year period and then harnessed RNA sequencing and targeted reverse transcriptase-PCR to characterize the microbiomes of the eight most pervasive and important vector and pest species. The consensus microbiome of each species was overwhelmingly composed of viruses but also included fungi, bacteria, protozoa, and parasitic invertebrates. The microbial assemblages were heterogeneous between species, even within the same genus. We detected notable pathogens, including the causal agents of Cache Valley Fever, avian malaria, and canine heartworm. The remaining microbiome consisted largely of putatively insect-specific viruses that are not well characterized, including 17 newly discovered viruses from 10 different families. Future research should focus on evaluating the potential application of these viruses in biocontrol, as biomarkers, and/or in disrupting mosquito vectorial capacity. Interestingly, we also detected viruses that naturally infect honeybees and thrips, which were presumably acquired indirectly through nectar foraging behaviors. Overall, we provide the first comprehensive catalog of the microorganisms harbored by the most common and important mosquito vectors and pests in the Canadian Prairies. IMPORTANCE Mosquitoes are the most dangerous animals on the planet, responsible for over 800,000 deaths per year globally. This is because they carry and transmit a plethora of human disease-causing microorganisms, such as West Nile virus and the malaria parasite. Recent innovations in nucleic acid sequencing technologies have enabled researchers unparalleled opportunities to characterize the suite of microorganisms harbored by different mosquito species, including the causal agents of disease. In our study, we carried out 3 years of intensive mosquito surveillance in Canada. We collected and characterized the microorganisms harbored by >35,000 mosquitoes, including the identification of the agents of Cache Valley fever, avian malaria, and canine heartworm. We also detected insect-specific viruses and discovered 17 new viruses that have never been reported. This study, which is the first of its kind in Canada and one of only a handful globally, will greatly aid in future infectious disease research.
Collapse
Affiliation(s)
- Cole Baril
- Department of Biology, Brandon University, Brandon, Manitoba, Canada
| | - Bryan J. Cassone
- Department of Biology, Brandon University, Brandon, Manitoba, Canada
| |
Collapse
|
9
|
Muslihati A, Septiani NLW, Gumilar G, Nugraha N, Wasisto HS, Yuliarto B. Peptide-Based Flavivirus Biosensors: From Cell Structure to Virological and Serological Detection Methods. ACS Biomater Sci Eng 2024; 10:2041-2061. [PMID: 38526408 DOI: 10.1021/acsbiomaterials.3c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.
Collapse
Affiliation(s)
- Atqiya Muslihati
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanotechnology Systems, National Research and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| | - Nugraha Nugraha
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | | | - Brian Yuliarto
- Advanced Functional Material Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
10
|
Choi JW, Choi KS. Effect of salinity on the oviposition and growth of Ochlerotatus togoi. Ecol Evol 2024; 14:e11289. [PMID: 38660469 PMCID: PMC11040096 DOI: 10.1002/ece3.11289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
Ochlerotatus togoi is a salt-tolerant euryhaline mosquito that lays its eggs in rock pools. Although it is a pest that can transmit flaviviruses and filarial worms to humans, ecological studies have not been previously conducted because of its limited habitat. However, rising sea levels have created a more favorable environment for Oc. togoi, increasing the risk of Oc. togoi-borne diseases. We examined the oviposition and growth rates of Oc. togoi at 0-35 psu to obtain ecological data. It exhibited the highest oviposition preference at 0 psu; however, the hatching rate was highest at 10 psu, the pupation rate was highest at 25 psu, and the emergence rate was highest at 5 psu. Oc. togoi showed the highest rate of growth into adults at 25 psu. The results were assessed using Mann-Whitney U and Kruskal-Wallis H tests (post hoc test: Bonferroni), and a regression equation was generated for the incidence of adult Oc. togoi based on the change in salinity (y = -14.318 + 9.821x; y = adult incidence rate; x = salinity). The oviposition habits and developmental conditions of Oc. togoi were confirmed, and the incidence of Oc. togoi based on changes in sea level and ocean salinity was predicted. The results of this study will be useful for controlling salt-tolerant vectors and responding to vector-borne diseases.
Collapse
Affiliation(s)
- Jae Won Choi
- School of Life Science, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguSouth Korea
- Research Institute for Dok‐do and Ulleung‐do IslandKyungpook National UniversityDaeguSouth Korea
| | - Kwang Shik Choi
- School of Life Science, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguSouth Korea
- Research Institute for Dok‐do and Ulleung‐do IslandKyungpook National UniversityDaeguSouth Korea
- Research Institute for Phylogenomics and EvolutionKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
11
|
Subahar R, Huang A, Wijaya RS, Nur LSE, Susanto L, Firmansyah NE, Yulhasri Y, El Bayani GF, Dwira S. First report on evaluation of commercial eugenol and piperine against Aedes aegypti L (Diptera: Culicidae) larvae: Mortality, detoxifying enzyme, and histopathological changes in the midgut. Parasitol Int 2024; 98:102813. [PMID: 37793471 DOI: 10.1016/j.parint.2023.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Dengue fever is a worldwide public health problem, and efforts to eradicate it have focused on controlling the dengue vector, Aedes aegypti. This study aims to assess the toxicity and effect of commercial eugenol and piperine on Ae. aegypti larvae through enzyme detoxification and histopathological changes in the midgut. Laboratory-reared Ae. aegypti larvae were treated with various concentrations of commercial eugenol and piperine and observed after 24, 48, and 72 h. Biochemical methods were used to assess detoxification enzyme activity for acetylcholinesterase, glutathione S-transferase, and oxidase, and changes in the midgut were examined using routine histological examination. In terms of larvicidal activity, piperine exceeded eugenol. Piperine and eugenol had LC50 and LC90 values of 3.057 and 5.543 μM, respectively, and 6.421 and 44.722 μM at 24 h. Piperine and eugenol reduced oxidase activity significantly (p < 0.05), but increased acetylcholinesterase and glutathione S-transferase activity significantly (p < 0.05). After being exposed to piperine and eugenol, the food bolus and peritrophic membrane ruptured, the epithelial layer was interrupted and irregular, the epithelial cells shrank and formed irregularly, and the microvilli became irregular in shape. Commercial piperine and eugenol behave as potential larvicides, with processes involving altered detoxifying enzymes, specifically decreased oxidase function and increased GST activity, as well as midgut histological abnormalities.
Collapse
Affiliation(s)
- Rizal Subahar
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia.
| | - Ayleen Huang
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | | | - Lia Savitri Eka Nur
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Lisawati Susanto
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Nurhadi Eko Firmansyah
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Yulhasri Yulhasri
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Gulshan Fahmi El Bayani
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Surya Dwira
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| |
Collapse
|
12
|
Garrido M, Veiga J, Garrigós M, Morales-Yuste M, Recuero-Gil J, Martínez-de la Puente J. Aedes albopictus in a recently invaded area in Spain: effects of trap type, locality, and season on mosquito captures. Sci Rep 2024; 14:2131. [PMID: 38267495 PMCID: PMC10808092 DOI: 10.1038/s41598-024-52040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Mosquitoes are primary vectors of pathogens impacting humans, wildlife, and livestock. Among them, the Asian tiger mosquito, Aedes albopictus, stands out as an invasive species with a global distribution, having established populations on every continent except Antarctica. Recent findings incriminate Ae. albopictus in the local transmission of several pathogens causing human diseases, including dengue, chikungunya, and Zika viruses and worm parasites as Dirofilaria. In Spain, the establishment of Ae. albopictus occurred in 2004 and it rapidly expanded, currently reaching southern provinces and creating novel epidemiological scenarios in recently invaded areas. In this study, we conducted captures of Ae. albopictus from May to November 2022 in two provinces, Granada and Malaga, situated near the current edge of the species' expanding range in Spain. The objective was to identify the primary factors influencing their captures in these regions. Mosquitoes were captured using BG-Sentinel traps baited with CO2 and BG-Lure, and miniature CDC-UV traps in five different localities. Our findings underscore the influence of both extrinsic factors, such as locality, and intrinsic factors, including mosquito sex, on the abundance of captured Ae. albopictus. A higher abundance of Ae. albopictus was observed in the Malaga province compared to localities in the Granada province. Furthermore, similar numbers of Ae. albopictus mosquitoes were captured in more urbanized areas of Granada, while the lowest counts were recorded in the less urbanized area. These results were compared to captures of another common species in the area, specifically Culex pipiens. Overall, these results represent the first monitoring of invasive Ae. albopictus in the area and are discussed in the light of the potential importance of the species as a nuisance for humans and vectors of pathogens of public health relevance.
Collapse
Affiliation(s)
- Mario Garrido
- Department of Parasitology, University of Granada (UGR), Granada, Spain.
| | - Jesús Veiga
- Department of Parasitology, University of Granada (UGR), Granada, Spain
| | - Marta Garrigós
- Department of Parasitology, University of Granada (UGR), Granada, Spain
| | | | | | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada (UGR), Granada, Spain
- Doñana Biological Station (EBD, CSIC), Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
13
|
Martin-Martin I, Kojin BB, Aryan A, Williams AE, Molina-Cruz A, Valenzuela-Leon PC, Shrivastava G, Botello K, Minai M, Adelman ZN, Calvo E. Aedes aegypti D7 long salivary proteins modulate blood feeding and parasite infection. mBio 2023; 14:e0228923. [PMID: 37909749 PMCID: PMC10746281 DOI: 10.1128/mbio.02289-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE During blood feeding, mosquitoes inject saliva into the host skin, preventing hemostasis and inflammatory responses. D7 proteins are among the most abundant components of the saliva of blood-feeding arthropods. Aedes aegypti, the vector of yellow fever and dengue, expresses two D7 long-form salivary proteins: D7L1 and D7L2. These proteins bind and counteract hemostatic agonists such as biogenic amines and leukotrienes. D7L1 and D7L2 knockout mosquitoes showed prolonged probing times and carried significantly less Plasmodium gallinaceum oocysts per midgut than wild-type mosquitoes. We hypothesize that reingested D7s play a vital role in the midgut microenvironment with important consequences for pathogen infection and transmission.
Collapse
Affiliation(s)
- Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- Laboratory of Medical Entomology, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Azadeh Aryan
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Adeline E. Williams
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Karina Botello
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
14
|
Bellver-Arnau J, Margheri A, Rebelo C. Dynamics of a Mosquito Egg-Larvae Model with Seasonality. Bull Math Biol 2023; 86:9. [PMID: 38108949 PMCID: PMC10728267 DOI: 10.1007/s11538-023-01238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
We propose a two stages mosquito egg-larvae model with seasonality as a simplification of a four stages one. For the simplified model we characterize the dynamics in terms of the vectorial reproduction number, [Formula: see text], obtaining extinction if [Formula: see text] and convergence to a unique positive periodic orbit if [Formula: see text]. We illustrate each case with an example, by providing general conditions on the periodic coefficients for its occurrence. These examples are further developed using numerical simulations where the periodic parameters satisfy the conditions obtained. In the [Formula: see text] case, real climatic data is used for inferring the parameter behaviour. For the four stage system, using alternative oviposition rate functions, we present a result which generalizes others given for models with delays and even with diffusion to the case in which competition between the larvae is introduced. The analytical study of our initial four stages system when [Formula: see text] remains open, since we were not able to prove that in this case the system is dissipative.
Collapse
Affiliation(s)
- Jesús Bellver-Arnau
- Laboratoire J.-L. Lions, CNRS, Inria, Université de Paris, Sorbonne Université, 75005, Paris, France
- Centre d'Estudis Avançats de Blanes (CEAB), Consejo Superior de Investigaciones Científicas (CSIC), Carrer d'Accés a la cala Sant Francesc 14, 17300, Blanes, Spain
| | - Alessandro Margheri
- Departamento de Matemática and CMAFcIO, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal
| | - Carlota Rebelo
- Departamento de Matemática and CEMAT-Ciências, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Campo Grande, Lisbon, Portugal.
| |
Collapse
|
15
|
Zhu Z, Hui Y, Hu L. The impact of predators of mosquito larvae on Wolbachia spreading dynamics. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2249024. [PMID: 37603352 DOI: 10.1080/17513758.2023.2249024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Dengue fever creates more than 390 million cases worldwide yearly. The most effective way to deal with this mosquito-borne disease is to control the vectors. In this work we consider two weapons, the endosymbiotic bacteria Wolbachia and predators of mosquito larvae, for combating the disease. As Wolbachia-infected mosquitoes are less able to transmit dengue virus, releasing infected mosquitoes to invade wild mosquito populations helps to reduce dengue transmission. Besides this measure, the introduction of predators of mosquito larvae can control mosquito population. To evaluate the impact of the predators on Wolbachia spreading dynamics, we develop a stage-structured five-dimensional model, which links the predator-prey dynamics with the Wolbachia spreading. By comparatively analysing the dynamics of the models without and with predators, we observe that the introduction of the predators augments the number of coexistence equilibria and impedes Wolbachia spreading. Some numerical simulations are presented to support and expand our theoretical results.
Collapse
Affiliation(s)
- Zhongcai Zhu
- Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou, People's Republic of China
- College of Mathematics and Information Sciences, Guangzhou University, Guangzhou, People's Republic of China
| | - Yuanxian Hui
- School of Mathematics and Statistics, Huanghuai University, Zhumadian, People's Republic of China
| | - Linchao Hu
- Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou, People's Republic of China
- College of Mathematics and Information Sciences, Guangzhou University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Mora-Rubio C, Ferraguti M, Magallanes S, Bravo-Barriga D, Hernandez-Caballero I, Marzal A, de Lope F. Unravelling the mosquito-haemosporidian parasite-bird host network in the southwestern Iberian Peninsula: insights into malaria infections, mosquito community and feeding preferences. Parasit Vectors 2023; 16:395. [PMID: 37915080 PMCID: PMC10619300 DOI: 10.1186/s13071-023-05964-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023] Open
Abstract
BAKGROUND Vector-borne diseases affecting humans, wildlife and livestock have significantly increased their incidence and distribution in the last decades. Because the interaction among vectors-parasite-vertebrate hosts plays a key role driving vector-borne disease transmission, the analyses of the diversity and structure of vector-parasite networks and host-feeding preference may help to assess disease risk. Also, the study of seasonal variations in the structure and composition of vector and parasite communities may elucidate the current patterns of parasite persistence and spread as well as facilitate prediction of how climate variations may impact vector-borne disease transmission. Avian malaria and related haemosporidian parasites constitute an exceptional model to understand the ecology and evolution of vector-borne diseases. However, the characterization of vector-haemosporidian parasite-bird host assemblages is largely unknown in many regions. METHODS Here, we analyzed 5859 female mosquitoes captured from May to November in five localities from southwestern Spain to explore the composition and seasonal variation of the vector-parasite-vertebrate host network. RESULTS We showed a gradual increase in mosquito abundance, peaking in July. A total of 16 different haemosporidian lineages were found infecting 13 mosquito species. Of these assemblages, more than 70% of these vector-parasite associations have not been described in previous studies. Moreover, three Haemoproteus lineages were reported for the first time in this study. The prevalence of avian malaria infections in mosquitoes varied significantly across the months, reaching a maximum in November. Mosquito blood-feeding preference was higher for mammals (62.5%), whereas 37.5% of vectors fed on birds, suggesting opportunistic feeding behavior. CONCLUSION These outcomes improve our understanding of disease transmission risk and help tovector control strategies.
Collapse
Affiliation(s)
- Carlos Mora-Rubio
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain.
| | - Martina Ferraguti
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain.
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, 41092, Seville, Spain.
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Sergio Magallanes
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, 41092, Seville, Spain
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Parasitología, Universidad de Extremadura, Facultad de Veterinaria, Avda. Universidad S/N, 10003, Cáceres, Spain
| | - Irene Hernandez-Caballero
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain
| | - Alfonso Marzal
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain
- Grupo de Investigaciones en Fauna Silvestre, Universidad Nacional de San Martín, Jr. Maynas 1777, 22021, Tarapoto, Perú
| | - Florentino de Lope
- Departamento de Anatomía, Biología Celular y Zoología, Universidad de Extremadura, Facultad de Ciencias, Avenida de Elvas S/N, 06006, Badajoz, Spain
| |
Collapse
|
17
|
Santhoshkumar T, Govindarajan RK, Kamaraj C, Alharbi NS, Manimaran K, Yanto DHY, Subramaniyan V, Baek KH. Biological synthesis of nickel nanoparticles using extracellular metabolites of Bacillus sphaericus: Characterization and vector-borne disease control applications. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 162:481-494. [DOI: 10.1016/j.sajb.2023.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
18
|
Bonney JHK, Sanders T, Pratt D, Agbodzi B, Laryea D, Agyeman NKF, Kumordjie S, Attiku K, Adams PL, Boateng GA, Ohene SA, Tamal C, Mawuli G, Yeboah C, Dadzie S, Kubio C, Asiedu-Bekoe F, Odoom JK. Molecular Characterization of Circulating Yellow Fever Viruses from Outbreak in Ghana, 2021-2022. Emerg Infect Dis 2023; 29:1818-1826. [PMID: 37610174 PMCID: PMC10461649 DOI: 10.3201/eid2909.221671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Yellow fever virus, transmitted by infected Aedes spp. mosquitoes, causes an acute viral hemorrhagic disease. During October 2021-February 2022, a yellow fever outbreak in some communities in Ghana resulted in 70 confirmed cases with 35 deaths (case-fatality rate 50%). The outbreak started in a predominantly unvaccinated nomadic community in the Savannah region, from which 65% of the cases came. The molecular amplification methods we used for diagnosis produced full-length DNA sequences from 3 confirmed cases. Phylogenetic analysis characterized the 3 sequences within West Africa genotype II; strains shared a close homology with sequences from Cote d'Ivoire and Senegal. We deployed more sensitive advanced molecular diagnostic techniques, which enabled earlier detection, helped control spread, and improved case management. We urge increased efforts from health authorities to vaccinate vulnerable groups in difficult-to-access areas and to educate the population about potential risks for yellow fever infections.
Collapse
|
19
|
Yüksel E, Yıldırım A, İmren M, Canhilal R, Dababat AA. Xenorhabdus and Photorhabdus Bacteria as Potential Candidates for the Control of Culex pipiens L. (Diptera: Culicidae), the Principal Vector of West Nile Virus and Lymphatic Filariasis. Pathogens 2023; 12:1095. [PMID: 37764903 PMCID: PMC10537861 DOI: 10.3390/pathogens12091095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 107 cells mL-1) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides.
Collapse
Affiliation(s)
- Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | - Alparslan Yıldırım
- Department of Parasitology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Türkiye;
| | - Mustafa İmren
- Department of Plant Protection, Faculty of Agriculture, Abant Izzet Baysal University, Bolu 14030, Türkiye;
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Kayseri 38030, Türkiye;
| | | |
Collapse
|
20
|
Guterres A. Viral load: We need a new look at an old problem? J Med Virol 2023; 95:e29061. [PMID: 37638475 DOI: 10.1002/jmv.29061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
The concept of viral load was introduced in the 1980s to measure the amount of viral genetic material in a person's blood, primarily for human immunodeficiency virus (HIV). It has since become crucial for monitoring HIV infection progression and assessing the efficacy of antiretroviral therapy. However, during the coronavirus disease 2019 pandemic, the term "viral load" became widely popularized, not only for the scientific community but for the general population. Viral load plays a critical role in both clinical patient management and research, providing valuable insights for antiviral treatment strategies, vaccination efforts, and epidemiological control measures. As measuring viral load is so important, why don't researchers discuss the best way to do it? Is it simply acceptable to use raw Ct values? Relying solely on Ct values for viral load estimation can be problematic due to several reasons. First, Ct values can vary between different quantitative polymerase chain reaction assays, platforms, and laboratories, making it difficult to compare data across studies. Second, Ct values do not directly measure the quantity of viral particles in a sample and they can be influenced by various factors such as initial viral load, sample quality, and assay sensitivity. Moreover, variations in viral RNA extraction and reverse-transcription steps can further impact the accuracy of viral load estimation, emphasizing the need for careful interpretation of Ct values in viral load assessment. Interestingly, we did not observe scientific articles addressing different strategies to quantify viral load. The absence of standardized and validated methods impedes the implementation of viral load monitoring in clinical management. The variability in cell quantities within samples and the variation in viral particle numbers within infected cells further challenge accurate viral load measurement and interpretation. To advance the field and improve patient outcomes, there is an urgent need for the development and validation of tailored, standardized methods for precise viral load quantification.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Garrido M, Veiga J, Garrigós M, Martínez-de la Puente J. The interplay between vector microbial community and pathogen transmission on the invasive Asian tiger mosquito, Aedes albopictus: current knowledge and future directions. Front Microbiol 2023; 14:1208633. [PMID: 37577425 PMCID: PMC10413570 DOI: 10.3389/fmicb.2023.1208633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The invasive Asian tiger mosquito Aedes albopictus is nowadays broadly distributed with established populations in all continents except Antarctica. In the invaded areas, this species represents an important nuisance for humans and, more relevant, it is involved in the local transmission of pathogens relevant under a public health perspective. Aedes albopictus is a competent vector of parasites such as Dirofilaria and viruses including dengue virus, Zika virus, and chikungunya virus, among others. The mosquito microbiota has been identified as one of the major drivers of vector competence, acting upon relevant vector functions as development or immunity. Here, we review the available literature on the interaction between Ae. albopictus microbiota and pathogen transmission and identify the knowledge gaps on the topic. Most studies are strictly focused on the interplay between pathogens and Wolbachia endosymbiont while studies screening whole microbiota are still scarce but increasing in recent years, supported on Next-generation sequencing tools. Most experimental trials use lab-reared mosquitoes or cell lines, exploring the molecular mechanisms of the microbiota-pathogen interaction. Yet, correlational studies on wild populations are underrepresented. Consequently, we still lack sufficient evidence to reveal whether the microbiota of introduced populations of Ae. albopictus differ from those of native populations, or how microbiota is shaped by different environmental and anthropic factors, but especially, how these changes affect the ability of Ae. albopictus to transmit pathogens and favor the occurrence of outbreaks in the colonized areas. Finally, we propose future research directions on this research topic.
Collapse
Affiliation(s)
- Mario Garrido
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesús Veiga
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Marta Garrigós
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Josué Martínez-de la Puente
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
22
|
Séguin JC, Gagnon D, Bélanger S, Richard D, Fernandez X, Boudreau S, Voyer N. Chemical Composition and Antiplasmodial Activity of the Essential Oil of Rhododendron subarcticum Leaves from Nunavik, Québec, Canada. ACS OMEGA 2023; 8:16729-16737. [PMID: 37214733 PMCID: PMC10193425 DOI: 10.1021/acsomega.3c00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/17/2023] [Indexed: 05/24/2023]
Abstract
Dwarf Labrador tea, Rhododendron subarcticum Harmaja, is a popular medicinal plant in use by First Nations of Northern Canada, but its phytochemistry has remained largely unexplored. We have isolated and characterized the essential oil from a population of this species harvested near the treeline in Nunavik, Québec. Analyses by gas chromatography-mass spectrometry (GC-MS) and gas chromatography/flame-ionization detection (GC/FID) led to the identification of 53 compounds; the main secondary metabolites were ascaridole (64.7% of the total FID area) and p-cymene (21.1%). Such a composition resembles a chemotype observed for R. tomentosum, a close relative found mainly in Europe and Asia, but has never been attributed to R. subarcticum. Growth inhibition assays against different strains of Plasmodium falciparum (3D7, Dd2), the parasite responsible for the most severe form of malaria, were conducted with either the R. subarcticum's essential oil or the isolated ascaridole. Our results show that the essential oil's biological activity can be attributed to ascaridole as its IC50 is more than twice that of ascaridole [ascaridole's IC50 values are 147.3 nM (3D7) and 104.9 nM (Dd2)].
Collapse
Affiliation(s)
- Jean-Christophe Séguin
- Département
de chimie and PROTEO, Université
Laval, 1045 av. De la Médecine, G1V
0A6 Québec, Québec, Canada
- Centre
d’études nordiques, Université
Laval, 2405 rue de la Terrasse, G1V 0A6 Québec, Québec, Canada
| | - Dominic Gagnon
- Centre
de recherche du CHU de Québec, Université
Laval, 2705 boulevard
Laurier, G1V 4G2 Québec, Québec, Canada
| | - Sarah Bélanger
- Département
de chimie and PROTEO, Université
Laval, 1045 av. De la Médecine, G1V
0A6 Québec, Québec, Canada
| | - Dave Richard
- Département
de microbiologie-infectiologie et d’immunologie, Centre Hospitalier de l’Université Laval, 2705 boulevard Laurier, G1V 4G2 Québec, Québec, Canada
- Centre
de recherche du CHU de Québec, Université
Laval, 2705 boulevard
Laurier, G1V 4G2 Québec, Québec, Canada
| | - Xavier Fernandez
- Université
Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice 06108, France
| | - Stéphane Boudreau
- Centre
d’études nordiques, Université
Laval, 2405 rue de la Terrasse, G1V 0A6 Québec, Québec, Canada
- Département
de biologie, Université Laval, 1045 av. De la Médecine, G1V 0A6 Québec, Québec, Canada
| | - Normand Voyer
- Département
de chimie and PROTEO, Université
Laval, 1045 av. De la Médecine, G1V
0A6 Québec, Québec, Canada
- Centre
d’études nordiques, Université
Laval, 2405 rue de la Terrasse, G1V 0A6 Québec, Québec, Canada
| |
Collapse
|
23
|
Bhattacharjee S, Ghosh D, Saha R, Sarkar R, Kumar S, Khokhar M, Pandey RK. Mechanism of Immune Evasion in Mosquito-Borne Diseases. Pathogens 2023; 12:635. [PMID: 37242305 PMCID: PMC10222277 DOI: 10.3390/pathogens12050635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, mosquito-borne illnesses have emerged as a major health burden in many tropical regions. These diseases, such as malaria, dengue fever, chikungunya, yellow fever, Zika virus infection, Rift Valley fever, Japanese encephalitis, and West Nile virus infection, are transmitted through the bite of infected mosquitoes. These pathogens have been shown to interfere with the host's immune system through adaptive and innate immune mechanisms, as well as the human circulatory system. Crucial immune checkpoints such as antigen presentation, T cell activation, differentiation, and proinflammatory response play a vital role in the host cell's response to pathogenic infection. Furthermore, these immune evasions have the potential to stimulate the human immune system, resulting in other associated non-communicable diseases. This review aims to advance our understanding of mosquito-borne diseases and the immune evasion mechanisms by associated pathogens. Moreover, it highlights the adverse outcomes of mosquito-borne disease.
Collapse
Affiliation(s)
| | - Debanjan Ghosh
- Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Rounak Saha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014, India
| | - Rima Sarkar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Saurav Kumar
- DBT Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS, Jodhpur 342005, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Solna, Sweden
| |
Collapse
|
24
|
Seavey CE, Doshi M, Colamarino A, Kim BN, Dickerson AK, Willenberg BJ. Graded Atmospheres of Volatile Pyrethroid Overlaid on Host Cues Can Be Established and Quantified Within a Novel Flight Chamber for Mosquito Behavior Studies. ENVIRONMENTAL ENTOMOLOGY 2023; 52:197-209. [PMID: 36794837 DOI: 10.1093/ee/nvad007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 06/18/2023]
Abstract
Spatial repellents are emerging as a promising approach to reduce vector-disease burden; however, the evolution of genetically resistant mosquitoes decreases repellent efficacy. The development of flight chambers to investigate spatial repellent application techniques is vital for sustainable mosquito control. We present an air-dilution chamber as a novel bioassay to study mosquito flight behavior responses to chemical gradients of the volatile, pyrethroid transfluthrin (TF). Air dilution was used to simulate a larger environment of stable concentration gradients verified with carbon dioxide (CO2) which was homogenously delivered and measured across the chamber to achieve a 5× inlet/outlet [CO2] ratio with 0.17 m/s outlet velocity. Female Aedes (Ae.) aegypti (Diptera: Culicidae, Linnaeus, 1762) were exposed to volatilized TF paired with heat, CO2, and Biogents-Sweetscent host-cues. Tandem solvent extraction-gas chromatography-mass spectrometry (SE-GC-MS) was used to quantify air samples taken during TF emanations with a limit of detection (LOD) and quantification (LOQ) of 2 ± 1 and 5 ± 2 parts-per-trillion (ppt) TF, respectively. Homogenous air diluted emanation of the spatial repellent TF was at least twice that of the 5× CO2 gradient with the same air flow in the chamber. The airborne TF concentrations the mosquitoes were exposed to range from 1 to 170 ppt. Video recordings of mosquito behavior during host-cues exposure revealed increased inlet activity, while exposure to TF protected host resulted in decreased inlet activity over time with inlet-outlet mosquito positional variation. This novel flight chamber design can simulate 'long'-range exposure with simultaneous quantitation of airborne spatial repellent to understand dose-dependent effects on mosquito behavior.
Collapse
Affiliation(s)
- Corey E Seavey
- University of Central Florida, College of Medicine, Department of Internal Medicine, FL 32827, USA
| | - Mona Doshi
- University of Central Florida, College of Medicine, Department of Internal Medicine, FL 32827, USA
| | - Angelo Colamarino
- University of Central Florida, College of Medicine, Department of Internal Medicine, FL 32827, USA
| | - Brian N Kim
- University of Central Florida, College of Engineering and Computer Science, Department of Electrical and Computer Engineering, FL 32816, USA
| | - Andrew K Dickerson
- Tickle College of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, TN 37996, USA
| | - Bradley J Willenberg
- University of Central Florida, College of Medicine, Department of Internal Medicine, FL 32827, USA
| |
Collapse
|
25
|
Ebihara K, Niwa R. Compounds Inhibiting Noppera-bo, a Glutathione S-transferase Involved in Insect Ecdysteroid Biosynthesis: Novel Insect Growth Regulators. Biomolecules 2023; 13:biom13030461. [PMID: 36979396 PMCID: PMC10046418 DOI: 10.3390/biom13030461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Glutathione S-transferases (GSTs) are conserved in a wide range of organisms, including insects. In 2014, an epsilon GST, known as Noppera-bo (Nobo), was shown to regulate the biosynthesis of ecdysteroid, the principal steroid hormone in insects. Studies on fruit flies, Drosophila melanogaster, and silkworms, Bombyx mori, demonstrated that loss-of-function mutants of nobo fail to synthesize ecdysteroid and die during development, consistent with the essential function of ecdysteroids in insect molting and metamorphosis. This genetic evidence suggests that chemical compounds that inhibit activity of Nobo could be insect growth regulators (IGRs) that kill insects by disrupting their molting and metamorphosis. In addition, because nobo is conserved only in Diptera and Lepidoptera, a Nobo inhibitor could be used to target IGRs in a narrow spectrum of insect taxa. Dipterans include mosquitoes, some of which are vectors of diseases such as malaria and dengue fever. Given that mosquito control is essential to reduce mosquito-borne diseases, new IGRs that specifically kill mosquito vectors are always in demand. We have addressed this issue by identifying and characterizing several chemical compounds that inhibit Nobo protein in both D. melanogaster and the yellow fever mosquito, Aedes aegypti. In this review, we summarize our findings from the search for Nobo inhibitors.
Collapse
Affiliation(s)
- Kana Ebihara
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8577, Ibaraki, Japan
- Correspondence:
| |
Collapse
|
26
|
Synthesis and evaluation of anti-yellow fever virus activity of new 6-aryl-3-R-amino-1,2,4-triazin-5(4H)-ones. Eur J Med Chem 2023; 248:115117. [PMID: 36657300 DOI: 10.1016/j.ejmech.2023.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Yellow fever disease is one of public health concerns in the tropics. Despite its significant medicinal and economic impact among large groups of the population, there is a lack of effective treatment against yellow fever. In this regard, here we describe the synthesis of a series of new 6-aryl-3-R-amino-1,2,4-triazin-5(4H)-ones and evaluation of their in vitro inhibitory activity against yellow fever virus. Among all tested compounds 4 derivatives possessing strong inhibitory activity at μM concentrations were identified. All the active compounds revealed a good toxicity profile. These facts make the compounds interesting candidates for further evaluation of their efficacy in the treatment of yellow fever virus infection in vivo.
Collapse
|
27
|
Siriyasatien P, Intayot P, Sawaswong V, Preativatanyou K, Wacharapluesadee S, Boonserm R, Sor-suwan S, Ayuyoe P, Cantos-Barreda A, Phumee A. Description of potential vectors of zoonotic filarial nematodes, Brugia pahangi, Setaria digitata, and Setaria labiatopapillosa in Thai mosquitoes. Heliyon 2023; 9:e13255. [PMID: 36846682 PMCID: PMC9950834 DOI: 10.1016/j.heliyon.2023.e13255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Filariasis is classified as a vector-borne zoonotic disease caused by several filarial nematodes. The disease is widely distributed in tropical and subtropical regions. Understanding the relationship between mosquito vectors, filarial parasites, and vertebrate hosts is therefore essential for determining the probability of disease transmission and, correspondingly, developing effective strategies for prevention and control of diseases. In this study, we aimed to investigate the infection of zoonotic filarial nematodes in field-caught mosquitoes, observe the potential vectors of filaria parasites in Thailand using a molecular-based survey, conduct a study of host-parasite relationship, and propose possible coevolution of the parasites and their hosts. Mosquitoes were collected around cattle farms in Bangkok, Nakhon Si Thammarat, Ratchaburi, and Lampang provinces from May to December 2021 using a CDC Backpack aspirator for 20-30 minutes in each area (intra-, peri-, and wild environment). All mosquitoes were identified and morphologically dissected to demonstrate the live larvae of the filarial nematode. Furthermore, all samples were tested for filarial infections using PCR and sequencing. A total of 1,273 adult female mosquitoes consisted of five species: 37.78% Culex quinquefasciatus, 22.47% Armigeres subalbatus, 4.71% Cx. tritaeniorhynchus, 19.72% Anopheles peditaeniatus, and 15.32% An. dirus. Larvae of Brugia pahangi and Setaria labiatopapillosa were found in Ar. subalbatus and An. dirus mosquitoes, respectively. All mosquito samples were processed by PCR of ITS1 and COXI genes for filaria nematode species identification. Both genes showed that B. pahangi was found in four mosquitoes of Ar. subalbatus from Nakhon Si Thammarat, S. digitata was detected in three samples of An. peditaeniatus from Lampang, and S. labiatopapillosa was detected in one of An. dirus from Ratchaburi. However, filarial nematodes were not found in all Culex species. This study infers that this is the first data regarding the circulation of Setaria parasites in Anopheles spp. from Thailand. The phylogenetic trees of the hosts and parasites are congruent. Moreover, the data could be used to develop more effective prevention and control strategies for zoonotic filarial nematodes before they spread in Thailand.
Collapse
Affiliation(s)
- Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Proawpilart Intayot
- Pharmaceutical Ingredient Research Group, Research and Development Institute, The Government Pharmaceutical Organization, Bangkok, Thailand
| | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kanok Preativatanyou
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rungfar Boonserm
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sriwatapron Sor-suwan
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattama Ayuyoe
- Department of Parasitology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Ana Cantos-Barreda
- Department of Biochemistry and Molecular Biology-A, Faculty of Veterinary Medicine, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, Murcia, Spain
| | - Atchara Phumee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand,Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, Thailand,Corresponding author. Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
28
|
Liu S, Zhou J, Kong L, Cai Y, Liu H, Xie Z, Xiao X, James AA, Chen XG. Clock genes regulate mating activity rhythms in the vector mosquitoes, Aedes albopictus and Culex quinquefasciatus. PLoS Negl Trop Dis 2022; 16:e0010965. [PMID: 36455055 DOI: 10.1371/journal.pntd.0010965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/13/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Endogenous circadian rhythms result from genetically-encoded molecular clocks, whose components and downstream output factors cooperate to generate cyclic changes in activity. Mating is an important activity of mosquitoes, however, the key aspects of mating rhythm patterns and their regulatory mechanisms in two vector mosquito species, Aedes albopictus and Culex quinquefasciatus, remain unclear. METHODOLOGY/PRINCIPAL FINDINGS We determined and compared the diel mating activity rhythms of these two mosquito species and discovered that Ae. albopictus had mating peaks in the light/dark transition periods (ZT0-3 and ZT9-12), while Cx. quinquefasciatus only had a mating peak at ZT12-15. Knockouts of the clock (clk) orthologous genes (Aalclk and Cxqclk) resulted in phase delay or phase reversal of the mating peaks in Ae. albopictus and Cx. quinquefasciatus, respectively. In addition, the temporal expression pattern of the desaturase orthologous genes, desat1, in both mosquito species was also different in respective wild-type strains and showed phase changes similar to the mating rhythms in clk mutant strains. Inhibition of desat1 expression resulted in decreased mating activity in male mosquitoes of both species but not females. In addition, desat1 regulated cuticular hydrocarbons' synthesis in both species. Silencing desat1 in male Ae. albopictus resulted in decreases of nonadecane and tricosane, which promoted mating, with concomitant increases of heptacosane, which inhibited mating. Silencing desat1 in male Cx. quinquefasciatus also resulted in decreases of tricosane, which promoted mating. CONCLUSIONS/SIGNIFICANCE These results suggest that Aalclk and Cxqclk have significant roles in the mating activity rhythms in both Ae. albopictus and Cx. quinquefasciatus by regulating the temporal expression of the desat1 gene under LD cycles, which affects sex pheromone synthesis and mating. This work provides insights into the molecular regulatory mechanism of distinct mating rhythm of Ae. albopictus and Cx. quinquefasciatus and may provide a basis for the control of these two important vector mosquitoes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiquan Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine California, United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine California, United States of America
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Huynh LN, Tran LB, Nguyen HS, Ho VH, Parola P, Nguyen XQ. Mosquitoes and Mosquito-Borne Diseases in Vietnam. INSECTS 2022; 13:1076. [PMID: 36554986 PMCID: PMC9781666 DOI: 10.3390/insects13121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mosquito-borne diseases pose a significant threat to humans in almost every part of the world. Key factors such as global warming, climatic conditions, rapid urbanisation, frequent human relocation, and widespread deforestation significantly increase the number of mosquitoes and mosquito-borne diseases in Vietnam, and elsewhere around the world. In southeast Asia, and notably in Vietnam, national mosquito control programmes contribute to reducing the risk of mosquito-borne disease transmission, however, malaria and dengue remain a threat to public health. The aim of our review is to provide a complete checklist of all Vietnamese mosquitoes that have been recognised, as well as an overview of mosquito-borne diseases in Vietnam. A total of 281 mosquito species of 42 subgenera and 22 genera exist in Vietnam. Of those, Anopheles, Aedes, and Culex are found to be potential vectors for mosquito-borne diseases. Major mosquito-borne diseases in high-incidence areas of Vietnam include malaria, dengue, and Japanese encephalitis. This review may be useful to entomological researchers for future surveys of Vietnamese mosquitoes and to decision-makers responsible for vector control tactics.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Long Bien Tran
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Hong Sang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| |
Collapse
|
30
|
Wu W, Yang Y, Feng Y, Ren X, Li Y, Li W, Huang J, Kong L, Chen X, Lin Z, Hou X, Zhang L, Chen Y, Sheng Z, Hong W. Study of the Repellent Activity of 60 Essential Oils and Their Main Constituents against Aedes albopictus, and Nano-Formulation Development. INSECTS 2022; 13:1077. [PMID: 36554987 PMCID: PMC9782114 DOI: 10.3390/insects13121077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mosquitoes are one of the most important disease vectors from a medical viewpoint in that they transmit several diseases such as malaria, filariasis, yellow and Dengue fever. Mosquito vector control and personal protection from mosquito bites are currently the most efficient ways to prevent these diseases. Several synthetic repellents such as DEET, ethyl butylacetylaminopropionate (IR3535) and 1-(1-methylpropoxycarbonyl)-2-(2-hydroxyethyl)piperidine) (Picaridin), have been widely used to prevent humans from receiving mosquito bites. However, the use of synthetic repellents has raised several environment and health concerns. Therefore, essential oils (EOs) as natural alternatives receive our attention. In order to discover highly effective mosquito repellents from natural sources, the repellent activity of 60 commercial EOs against Ae. albopictus was screened in this study. Eight EOs including cinnamon, marjoram, lemongrass, bay, chamomile, jasmine, peppermint2, and thyme, showed a suitable repellent rate (>40%) at the tested dose of 10 μg/cm2. Then, their main constituents were analyzed by GC-MS, and the active constituents were identified. The most active compounds including cinnamaldehyde, citral and terpinen-4-ol, exhibited an 82%, 65% and 60% repellent rate, respectively. Moreover, the nanoemulsions of the three active compounds were prepared and characterized. In the arm-in-cage assay, the protection times of the nanoemulsions of cinnamaldehyde and citral were significantly extended compared with their normal solutions. This study provides several lead compounds to develop new mosquito repellents, and it suggests that nanoemulsification is an effective method for improving the duration of the activity of natural repellents.
Collapse
Affiliation(s)
- Weifeng Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yu Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yingmiao Feng
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Faculty of Southern Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China
| | - Xiaofei Ren
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yuling Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wenjiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Jietong Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Lingjia Kong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiaole Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Zhongze Lin
- Faculty of Southern Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China
| | - Xiaohui Hou
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563003, China
| | - Longlai Zhang
- MHOME (Guangzhou) Industrial Co., Ltd., Guangzhou 510700, China
| | - Yajie Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Weiqian Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| |
Collapse
|
31
|
Nebbak A, Almeras L, Parola P, Bitam I. Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa. INSECTS 2022; 13:962. [PMID: 36292910 PMCID: PMC9604161 DOI: 10.3390/insects13100962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world's most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases' (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures.
Collapse
Affiliation(s)
- Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), BP 384, Zone Industrielle, Bou-Ismail 42004, Algeria
| | - Lionel Almeras
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Idir Bitam
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- École Supérieure en Sciences de l’Aliment et des Industries Agroalimentaire d’Alger, Oued Smar 16059, Algeria
| |
Collapse
|
32
|
Makate N, Ramatlho P, Kgoroebutswe TK, Laycock K, Paganotti GM. Mosquito vector diversity and abundance in southern Botswana, in a global context of emerging pathogen transmission. J Public Health Afr 2022; 13:2029. [PMID: 36277950 PMCID: PMC9585606 DOI: 10.4081/jphia.2022.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background The continued spread of infectious diseases by mosquitoes remains a formidable obstacle to the well-being of the people all over the world. Arboviruses are spread from one vertebrate host to another by vectors through intricate transmission cycles that involve the virus, the vertebrate host, and the vector. It is essential to acquire a better understanding of the current abundance and distribution of major vectors in order to adequately prepare for the possibility of arbovirus outbreaks. This is because the abundance and distribution of these major vectors determines the human populations that are at risk for the diseases that they transmit. The effects of climate change on the amount of mosquitoes and their ability to survive the seasons have had a substantial impact on the spread of diseases that are transmitted by vectors in many different parts of Botswana. Methods The purpose was to collect mosquito samples in Gaborone and the neighboring areas in southern Botswana, including border stations. We collected different stages of the mosquito from each place, raised them to maturity, and then identified them. Both morphological and genetic studies were utilized in order to successfully identify the organism. The species of Culex mosquitoes accounted for 88.3% of the 5177 mosquitoes that were collected and identified, whereas the species of Aedes aegypti and Anopheles mosquitoes accounted for 11.5% and 0.2% respectively. Conclusions These findings give entomological baseline data that will aid in the study of vectorial patterns and the estimation of future arboviral hazards provided by mosquitoes. Additionally, these findings document the diversity and abundance of mosquito species.
Collapse
|
33
|
Velo E, Balestrino F, Kadriaj P, Carvalho DO, Dicko A, Bellini R, Puggioli A, Petrić D, Michaelakis A, Schaffner F, Almenar D, Pajovic I, Beqirllari A, Ali M, Sino G, Rogozi E, Jani V, Nikolla A, Porja T, Goga T, Fălcuă E, Kavran M, Pudar D, Mikov O, Ivanova-Aleksandrova N, Cvetkovikj A, Akıner MM, Mikovic R, Tafaj L, Bino S, Bouyer J, Mamai W. A Mark-Release-Recapture Study to Estimate Field Performance of Imported Radio-Sterilized Male Aedes albopictus in Albania. Front Bioeng Biotechnol 2022; 10:833698. [PMID: 36051578 PMCID: PMC9424856 DOI: 10.3389/fbioe.2022.833698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
The pathogen transmitting Aedes albopictus mosquito is spreading rapidly in Europe, putting millions of humans and animals at risk. This species is well-established in Albania since its first detection in 1979. The sterile insect technique (SIT) is increasingly gaining momentum worldwide as a component of area-wide-integrated pest management. However, estimating how the sterile males will perform in the field and the size of target populations is crucial for better decision-making, designing and elaborating appropriate SIT pilot trials, and subsequent large-scale release strategies. A mark-release-recapture (MRR) experiment was carried out in Albania within a highly urbanized area in the city of Tirana. The radio-sterilized adults of Ae. albopictus Albania strain males were transported by plane from Centro Agricoltura Ambiente (CAA) mass-production facility (Bologna, Italy), where they were reared. In Albania, sterile males were sugar-fed, marked with fluorescent powder, and released. The aim of this study was to estimate, under field conditions, their dispersal capacity, probability of daily survival and competitiveness, and the size of the target population. In addition, two adult mosquito collection methods were also evaluated: BG-Sentinel traps baited with BG-Lure and CO2, (BGS) versus human landing catch (HLC). The overall recapture rates did not differ significantly between the two methods (2.36% and 1.57% of the total male released were recaptured respectively by BGS and HLC), suggesting a similar trapping efficiency under these conditions. Sterile males traveled a mean distance of 93.85 ± 42.58 m and dispersed up to 258 m. Moreover, they were observed living in the field up to 15 days after release with an average life expectancy of 4.26 ± 0.80 days. Whether mosquitoes were marked with green, blue, yellow, or pink, released at 3.00 p.m. or 6.00 p.m., there was no significant difference in the recapture, dispersal, and survival rates in the field. The Fried competitiveness index was estimated at 0.28. This mark-release-recapture study provided important data for better decision-making and planning before moving to pilot SIT trials in Albania. Moreover, it also showed that both BG-traps and HLC were successful in monitoring adult mosquitoes and provided similar estimations of the main entomological parameters needed.
Collapse
Affiliation(s)
- Enkelejda Velo
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
- *Correspondence: Enkelejda Velo, ; Wadaka Mamai,
| | - Fabrizio Balestrino
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Centro Agricoltura Ambiente (Italy), Crevalcore, Italy
| | - Përparim Kadriaj
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | | | - Ahmadou Dicko
- Statistics for Development–STATS4D, Sacre Coeur III, Dakar, Senegal
| | - Romeo Bellini
- Centro Agricoltura Ambiente (Italy), Crevalcore, Italy
| | | | - Dusan Petrić
- Faculty of Agriculture, University of Novi Sad, Vojvodina, Serbia
| | - Antonios Michaelakis
- Scient.Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - David Almenar
- Empresa de Transformación Agraria S.A., S.M.E, M.P. (TRAGSA), Paterna, Spain
| | - Igor Pajovic
- Biotechnical Faculty, University of Montenegro, Podgorica, Montenegro
| | | | | | - Gjergji Sino
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Elton Rogozi
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Vjola Jani
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | | | - Tanja Porja
- Department of Physics, Faculty of Natural Sciences, “MeteoAlb” Politechnic University of Tirana, Tirana, Albania
| | - Thanas Goga
- Aide to the Prime Minister, Albania Department of Risk Communication and Community Engagement, WHE Balkan Hub, WHO Regional Office for Europe, Belgrade, Serbia
| | - Elena Fălcuă
- “Cantacuzino” National Military-Medical Institute for Research and Development, Bucharest, Romania
| | - Mihaela Kavran
- Faculty of Agriculture, University of Novi Sad, Vojvodina, Serbia
| | - Dubravka Pudar
- Faculty of Agriculture, University of Novi Sad, Vojvodina, Serbia
| | - Ognyan Mikov
- National Centre of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Aleksandar Cvetkovikj
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Muhammet Mustafa Akıner
- Department of Biology, Faculty of Arts and Sciences Department of Biology, Recep Tayyip Erdogan University, Rize, Turkey
| | - Rados Mikovic
- Veterinary Diagnostics Laboratory, Podgorica, Montenegro
| | - Lindita Tafaj
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Silva Bino
- Department of Epidemiology and Control of Infectious Diseases, Institute of Public Health, Tirana, Albania
| | - Jeremy Bouyer
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Wadaka Mamai
- Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Institute for Agricultural Research for Development (IRAD), Yaounde, Cameroon
- *Correspondence: Enkelejda Velo, ; Wadaka Mamai,
| |
Collapse
|
34
|
Sakata MK, Sato M, Sato MO, Watanabe T, Mitsuishi H, Hikitsuchi T, Kobayashi J, Minamoto T. Detection and persistence of environmental DNA (eDNA) of the different developmental stages of a vector mosquito, Culex pipiens pallens. PLoS One 2022; 17:e0272653. [PMID: 35947597 PMCID: PMC9365122 DOI: 10.1371/journal.pone.0272653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Preventing mosquito-borne infectious diseases requires that vector mosquitoes are monitored and controlled. Targeting immature mosquitoes (eggs, larvae, and pupae), which have less mobility than adults, is an effective management approach. However, conducting these surveys is often difficult due to the limitations of morphological classification and survey costs. The application of environmental DNA (eDNA) analysis can solve these issues because it allows easy estimation of species distribution and morphology-independent species identification. Although a few previous studies have reported mosquito eDNA detection, there is a gap in knowledge regarding the dynamics related to the persistence of immature mosquito eDNA. We used Culex pipiens pallens, a vector of West Nile fever, as a model species. First, we developed a species-specific detection assay and confirmed its specificity using in silico and in vitro tests. Next, we conducted laboratory experiments using breeding tanks. Water samples were collected at each developmental stage. In addition, water samples were collected daily until the seventh day after emergence from the pupae. We quantified eDNA using real-time PCR with the developed assay to investigate the dynamics of mosquito eDNA. The specificity of the developed assay was confirmed by in silico and in vitro tests. Mosquito eDNA was detected at all developmental stages and detected up to seven days after emergence of pupae. In particular, high concentrations of eDNA were detected immediately after hatching from eggs and after emergence from pupae. Highly frequent positive eDNA signals were continuously detected between egg hatching and pupa hatching. Mosquito eDNA was detected immediately after the eggs were introduced, and eDNA-positive detections continued until pupae emergence, suggesting that eDNA analysis is useful for monitoring mosquito larvae. In the future, monitoring immature mosquitoes using eDNA analysis will contribute to prevent mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Masayuki K. Sakata
- Graduate School of Human Development and Environment, Kobe University, Kobe City, Japan
- Kobe University Innovation, Co., Ltd, Kobe City, Japan
- * E-mail:
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Marcello Otake Sato
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Tochigi, Japan
| | - Tomoe Watanabe
- Dainihon Jochugiku Co., Ltd Research & Development Laboratory Biological Research Section 1–11, Osaka, Japan
| | - Honami Mitsuishi
- Dainihon Jochugiku Co., Ltd Research & Development Laboratory Biological Research Section 1–11, Osaka, Japan
| | - Tomoyuki Hikitsuchi
- Dainihon Jochugiku Co., Ltd Research & Development Laboratory Biological Research Section 1–11, Osaka, Japan
| | - Jun Kobayashi
- Graduate School of Health Sciences, University of the Ryukyus, Okinawa, Japan
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University, Kobe City, Japan
| |
Collapse
|
35
|
Deletion of the Serotonin Receptor 7 Gene Changed the Development and Behavior of the Mosquito, Aedes aegypti. INSECTS 2022; 13:insects13080671. [PMID: 35893026 PMCID: PMC9332693 DOI: 10.3390/insects13080671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022]
Abstract
Serotonin (5-HT) plays a vital role in many physiological processes in insects, regulating physiological activities such as growth and movement through multiple 5-HT receptors (5-HTRs), which were potential targets for some new insecticides. However, the specific function of individual 5-HTRs in Ae. aegypti is still unclear. In this study, we investigated the function of the 5-HT7A receptor during Ae. aegypti development. 5-HTR7A transcripts were detected at all stages of development by real-time PCR. The results indicated that the gene expression was highest in the limbs (p < 0.01). We also generated 5-HTR7A mutant mosquitoes using CRISPR-mediated gene editing. The mutants had an abnormal phenotype at the larval stage, including an aberrant head-to-chest ratio and decreased motor activity. The mutant pupae developed abnormally, and most died (56.67%) (p < 0.0001). Using external stimuli to larvae and pupae with abnormal phenotypes, we found the mutant G1 and G2 generations responded to external stimuli in a longer time than the wild-type (WT) mosquitoes, and most of the mutants were 2 to 3 s slower than the WTs to respond to external stimuli (p < 0.01). Due to higher mortality, mutant larvae and pupae had fewer numbers than the WTs. The egg hatching rate of mutant G1 and G2 generations was lower than that of the WTs (p < 0.01). The expression level of 5-HTR7A in the mutants decreased by about 65% compared with the control group using real-time PCR (p < 0.05). In all, the 5-HT7A receptor plays an important role in the metamorphosis, development and motor function of Aedes aegypti.
Collapse
|
36
|
Dynamic Behavior of an Interactive Mosquito Model under Stochastic Interference. MATHEMATICS 2022. [DOI: 10.3390/math10132284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For decades, mosquito-borne diseases such as dengue fever and Zika have posed serious threats to human health. Diverse mosquito vector control strategies with different advantages have been proposed by the researchers to solve the problem. However, due to the extremely complex living environment of mosquitoes, environmental changes bring significant differences to the mortality of mosquitoes. This dynamic behavior requires stochastic differential equations to characterize the fate of mosquitoes, which has rarely been considered before. Therefore, in this article, we establish a stochastic interactive wild and sterile mosquito model by introducing the white noise to represent the interference of the environment on the survival of mosquitoes. After obtaining the existence and uniqueness of the global positive solution and the stochastically ultimate boundedness of the stochastic system, we study the dynamic behavior of the stochastic model by constructing a series of suitable Lyapunov functions. Our results show that appropriate stochastic environmental fluctuations can effectively inhibit the reproduction of wild mosquitoes. Numerical simulations are provided to numerically verify our conclusions: the intensity of the white noise has an effect on the extinction and persistence of both wild and sterile mosquitoes.
Collapse
|
37
|
Sibataev AK, Wasserlauf IE, Usov KE, Alekseeva SS, Abylkassymova GM, Stegniy VN. Geographic Variability of Inversion Polymorphism of the Malaria Mosquito Anopheles messeae Fall. (Diptera: Culicidae) in Tomsk Oblast. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Ghakanyuy BM, Teboh-Ewungkem MI, Schneider KA, Ngwa GA. Investigating the impact of multiple feeding attempts on mosquito dynamics via mathematical models. Math Biosci 2022; 350:108832. [PMID: 35718220 DOI: 10.1016/j.mbs.2022.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
A deterministic differential equation model for the dynamics of terrestrial forms of mosquito populations is studied. The model assesses the impact of multiple probing attempts by mosquitoes that quest for blood within human populations by including a waiting class for mosquitoes that failed a blood feeding attempt. The equations are derived based on the idea that the reproductive cycle of the mosquito can be viewed as a set of alternating egg laying and blood feeding outcomes realized on a directed path called the gonotrophic cycle pathway. There exists a threshold parameter, the basic offspring number for mosquitoes, whose nature is affected by the way we interpret the transitions involving the different classes on the gonotrophic cycle path. The trivial steady state for the system, which always exists, can be globally asymptomatically stable whenever the threshold parameter is less than unity. The non-trivial steady state, when it exists, is stable for a range of values of the threshold parameter but can also be driven to instability via a Hopf bifurcation. The model's output reveals that the waiting class mosquitoes do contribute positively to sustain mosquito populations as well as increase their interactions with humans via increased frequency and initial amplitude of oscillations. We conclude that to understand human-mosquito interactions, it is informative to consider multiple probing attempts; known to occur when mosquitoes quest for blood meals within human populations.
Collapse
Affiliation(s)
- Bime M Ghakanyuy
- Department of Mathematics, University of Buea, P.O. Box 63, Buea, Cameroon
| | | | - Kristan A Schneider
- Department of Applied Computer and Bio-Sciences, University of Applied Sciences, Mittweida, Technikumplatz 17, 09648 Mittweida, Germany
| | - Gideon A Ngwa
- Department of Mathematics, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
39
|
Arokiyaraj C, Parthiban E, Ramanibai R, Janarthanan S. Facile green approach for solar energy assisted biogenic nanoparticles synthesis mediated by seed kernel aqueous extract of Trichosanthes tricupsidata and its potential biomedical applications. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2069121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Fracasso G, Heylen D, Van Dongen S, Elst J, Matthysen E. Predictors of individual performance and evolutionary potential of life-history traits in a hematophagous ectoparasite. Evolution 2022; 76:799-816. [PMID: 35238032 PMCID: PMC9314103 DOI: 10.1111/evo.14463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 01/22/2023]
Abstract
Little is known about the intraspecific variation of parasite life-history traits and how this variation may affect parasite fitness and evolution. We investigated how life-history traits predict success of individual tree-hole ticks Ixodes arboricola and estimated their evolutionary potential, as well as genetic correlations within stages and phenotypic correlations within and across stages. Ticks were followed individually over two generations while allowed to feed on great tits Parus major. After accounting for host and tick maternal effects, we found that short feeding times and high engorgement weights strongly increased molting success. Molting time was also positively correlated with feeding success in adults. In larvae and nymphs, we found negative phenotypic correlations between engorgement weight and both feeding and molting time, the latter supported by a negative genetic correlation. We found sex-related differences in feeding time (longer in male nymphs) and molting time (longer in male larvae but shorter in male nymphs). Also, time since the last feeding event (set experimentally) reduced larval and nymphal fitness, whereas it increased adult female fitness. Furthermore, we found significant heritability and evolvability, that is, the potential to respond to selection, for engorgement weight and molting time across all stages but no significant heritability for feeding time. Our findings suggest that variation in tick fitness is shaped by consistent individual differences in tick quality, for which engorgement weight is a good proxy, rather than by life-history trade-offs.
Collapse
Affiliation(s)
- Gerardo Fracasso
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkB‐2610Belgium
| | - Dieter Heylen
- Interuniversity Institute for Biostatistics and statistical BioinformaticsHasselt UniversityDiepenbeekB‐3590Belgium
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew Jersey08544
- Eco‐Epidemiology Group, Department of Biomedical SciencesInstitute of Tropical MedicineAntwerpB‐2000Belgium
| | - Stefan Van Dongen
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkB‐2610Belgium
| | - Joris Elst
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkB‐2610Belgium
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpWilrijkB‐2610Belgium
| |
Collapse
|
41
|
Mosquito flight: Escaping attacks in dim light. Curr Biol 2022; 32:R279-R281. [PMID: 35349815 DOI: 10.1016/j.cub.2022.01.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To avoid fast attackers, animals must move somewhere their pursuer cannot follow or does not expect. A new study shows that female mosquitoes of either a diurnal or a nocturnal species each exhibit a distinct escape strategy matched to the light level they experience as they hunt for blood.
Collapse
|
42
|
Sahrawat TR, Talwar D, Patial R. Identification of novel-vector control target proteins of Aedes sp.: A Systems Network Biology Approach. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aedes is an important vector for various viruses that cause dengue, chikungunya and zika, which affect human health globally. Due to regular outbreaks of these diseases worldwide, there is a need to identify essential vector proteins that are critical for the survival of the vector, which may be targeted to control the spread of vector-borne disease (VBD). In silico computational methods involving comparative proteomics, analysis of orthologous proteins common amongst members of Aedes genus and protein-protein interaction (PPI) pathway were used to identify essential proteins that could act as novel therapeutic candidates. Twenty-three conserved proteins between A. aegypti and A. albopictus were identified from a BLASTP search with an e-value threshold of 0.005, and their PPI networks were constructed in the STRING database. The merged network was analyzed using various Cytoscape plugins viz. ClusterONE, Cytohubba and MCODE. Thirty-one hub proteins were identified from the system's network biology analysis, and detailed data and literature mining were carried out. Twelve novel vector-control target proteins of A. aegypti, having no human homologs, were determined in the present study that can effectively act as potential therapeutic candidates for drug design and vaccine development.
Collapse
Affiliation(s)
- Tammanna R. Sahrawat
- Centre for Systems Biology and Bioinformatics, UIEAST, Panjab University, Chandigarh, India
| | - Devika Talwar
- Centre for Systems Biology and Bioinformatics, UIEAST, Panjab University, Chandigarh, India
| | - Ritika Patial
- Centre for Systems Biology and Bioinformatics, UIEAST, Panjab University, Chandigarh, India
| |
Collapse
|
43
|
Derouiche S, Li T, Sakai Y, Uta D, Aoyagi S, Tominaga M. Inhibition of transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 by mosquito and mouse saliva. Pain 2022; 163:299-307. [PMID: 33990108 PMCID: PMC8756345 DOI: 10.1097/j.pain.0000000000002337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
ABSTRACT Arthropods are the largest group of living organisms, and among them, mosquitoes spread parasites and viruses causing deadly diseases. They can easily spread these pathogens because of their painless skin piercing. Although the lack of pain is mainly due to the thinness of their fascicle, it is possible that mosquito saliva, which is discharged during their piercing, might also contribute to it. If mosquito saliva contains antinociceptive substances, it should act on the sensory neurons innervating the epidermis where there are several ion channels that can detect noxious stimuli, such as the transient receptor potential (TRP) channels. We found that mosquito head homogenates and mouse saliva inhibit TRP vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) channels, either heterologously expressed in HEK293T cells or endogenously expressed in native mouse sensory neurons. Among the different substances contained in mosquito head homogenates or mouse saliva, we have also identified sialorphin as a candidate antinociceptive peptide because it showed similar inhibition effects on TRPV1 and TRPA1. Finally, we confirmed the antinociceptive effects of mosquito head homogenates, mouse saliva, and sialorphin in vivo by observing decreased pain-related behaviors in mice coinjected with these substances. Similar inhibitory effects of mosquito head homogenates and mouse saliva on TRPV1 and TRPA1 suggest that the antinociceptive effects of saliva are universal, which could explain why many animals including humans often lick their wounds. These findings would lead to the development of novel and safe antinociceptive agents.
Collapse
Affiliation(s)
- Sandra Derouiche
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences (NIPS), Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tianbang Li
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences (NIPS), Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Yuya Sakai
- Faculty of Engineering Science, Kansai University, Osaka, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Seiji Aoyagi
- Faculty of Engineering Science, Kansai University, Osaka, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences (NIPS), Okazaki, Japan
- Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
44
|
Release of Sterile Mosquitoes with Drones in Urban and Rural Environments under the European Drone Regulation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, several countries have developed the use of sterile insect techniques (SIT) to fight against mosquitoes that transmit diseases. From a technical and economic point of view, the use of drones in the aerial release of sterile mosquitoes leads to important improvements in aerial coverage and savings in operational costs due to the requirement of fewer release sites and field staff. However, these operations are under the European drone regulation, one of the most advanced in the world. The main contribution and novelty of this paper with respect to previous work is the analysis of the SIT application with drones under the European risk-based regulation in two scenarios: urban and rural areas. The specific operations risk assessment (SORA) methodology has been applied to assess the risk of drone operations in these scenarios. The paper presents the operational requirements for aerial release of mosquitoes with drones along with the regulatory considerations that must be applied. Finally, an overview of the conditions in operation that could relax risks and mitigation measures is also discussed.
Collapse
|
45
|
Derua YA, Tungu PK, Malima RC, Mwingira V, Kimambo AG, Batengana BM, Machafuko P, Sambu EZ, Mgaya YD, Kisinza WN. Laboratory and semi-field evaluation of the efficacy of Bacillus thuringiensis var. israelensis (Bactivec®) and Bacillus sphaericus (Griselesf®) for control of mosquito vectors in northeastern Tanzania. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100089. [PMID: 35664894 PMCID: PMC9157456 DOI: 10.1016/j.crpvbd.2022.100089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 10/25/2022]
|
46
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
47
|
Chakraborti S, Chhibber-Goel J, Sharma A. Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue. Parasit Vectors 2021; 14:605. [PMID: 34895309 PMCID: PMC8665550 DOI: 10.1186/s13071-021-05106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. METHODS We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. RESULTS Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%. CONCLUSIONS Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.
Collapse
Affiliation(s)
| | - Jyoti Chhibber-Goel
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, National Institute of Malaria Research, New Delhi, India
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
48
|
Zhao S, Lou J, Cao L, Zheng H, Chong MKC, Chen Z, Chan RWY, Zee BCY, Chan PKS, Wang MH. Real-time quantification of the transmission advantage associated with a single mutation in pathogen genomes: a case study on the D614G substitution of SARS-CoV-2. BMC Infect Dis 2021; 21:1039. [PMID: 34620109 PMCID: PMC8495436 DOI: 10.1186/s12879-021-06729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic poses serious threats to global health, and the emerging mutation in SARS-CoV-2 genomes, e.g., the D614G substitution, is one of the major challenges of disease control. Characterizing the role of the mutation activities is of importance to understand how the evolution of pathogen shapes the epidemiological outcomes at population scale. METHODS We developed a statistical framework to reconstruct variant-specific reproduction numbers and estimate transmission advantage associated with the mutation activities marked by single substitution empirically. Using likelihood-based approach, the model is exemplified with the COVID-19 surveillance data from January 1 to June 30, 2020 in California, USA. We explore the potential of this framework to generate early warning signals for detecting transmission advantage on a real-time basis. RESULTS The modelling framework in this study links together the mutation activity at molecular scale and COVID-19 transmissibility at population scale. We find a significant transmission advantage of COVID-19 associated with the D614G substitution, which increases the infectivity by 54% (95%CI: 36, 72). For the early alarming potentials, the analytical framework is demonstrated to detect this transmission advantage, before the mutation reaches dominance, on a real-time basis. CONCLUSIONS We reported an evidence of transmission advantage associated with D614G substitution, and highlighted the real-time estimating potentials of modelling framework.
Collapse
Affiliation(s)
- Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Jingzhi Lou
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Lirong Cao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hong Zheng
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Marc K. C. Chong
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Zigui Chen
- Department of Microbiology, Chinese University of Hong Kong, Hong Kong, China
| | - Renee W. Y. Chan
- Department of Paediatrics, Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Pediatric Excellence, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- CUHK-UMCU Joint Research Laboratory of Respiratory Virus & Immunobiology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Benny C. Y. Zee
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Paul K. S. Chan
- Department of Microbiology, Chinese University of Hong Kong, Hong Kong, China
| | - Maggie H. Wang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
49
|
Development of the indirect flight muscles of Aedes aegypti, a main arbovirus vector. BMC DEVELOPMENTAL BIOLOGY 2021; 21:11. [PMID: 34445959 PMCID: PMC8394598 DOI: 10.1186/s12861-021-00242-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
Background Flying is an essential function for mosquitoes, required for mating and, in the case of females, to get a blood meal and consequently function as a vector. Flight depends on the action of the indirect flight muscles (IFMs), which power the wings beat. No description of the development of IFMs in mosquitoes, including Aedes aegypti, is available.
Methods A. aegypti thoraces of larvae 3 and larvae 4 (L3 and L4) instars were analyzed using histochemistry and bright field microscopy. IFM primordia from L3 and L4 and IFMs from pupal and adult stages were dissected and processed to detect F-actin labelling with phalloidin-rhodamine or TRITC, or to immunodetection of myosin and tubulin using specific antibodies, these samples were analyzed by confocal microscopy. Other samples were studied using transmission electron microscopy. Results At L3–L4, IFM primordia for dorsal-longitudinal muscles (DLM) and dorsal–ventral muscles (DVM) were identified in the expected locations in the thoracic region: three primordia per hemithorax corresponding to DLM with anterior to posterior orientation were present. Other three primordia per hemithorax, corresponding to DVM, had lateral position and dorsal to ventral orientation. During L3 to L4 myoblast fusion led to syncytial myotubes formation, followed by myotendon junctions (MTJ) creation, myofibrils assembly and sarcomere maturation. The formation of Z-discs and M-line during sarcomere maturation was observed in pupal stage and, the structure reached in teneral insects a classical myosin thick, and actin thin filaments arranged in a hexagonal lattice structure. Conclusions A general description of A. aegypti IFM development is presented, from the myoblast fusion at L3 to form myotubes, to sarcomere maturation at adult stage. Several differences during IFM development were observed between A. aegypti (Nematoceran) and Drosophila melanogaster (Brachyceran) and, similitudes with Chironomus sp. were observed as this insect is a Nematoceran, which is taxonomically closer to A. aegypti and share the same number of larval stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00242-8.
Collapse
|
50
|
Dutra HLC, Ford SA, Allen SL, Bordenstein SR, Chenoweth SF, Bordenstein SR, McGraw EA. The impact of artificial selection for Wolbachia-mediated dengue virus blocking on phage WO. PLoS Negl Trop Dis 2021; 15:e0009637. [PMID: 34314434 PMCID: PMC8345842 DOI: 10.1371/journal.pntd.0009637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/06/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022] Open
Abstract
Wolbachia is currently at the forefront of global efforts to control arbovirus transmission from the vector Aedes aegypti. The use of Wolbachia relies on two phenotypes—cytoplasmic incompatibility (CI), conferred by cifA and cifB genes in prophage WO, and Wolbachia-mediated pathogen blocking (WMPB). These traits allow for local, self-sustaining reductions in transmission of dengue (DENV) following release of Wolbachia-infected A. aegypti. Here, aided by previous artificial selection experiment that generated Low and High pathogen blocking lines, we examined the potential link between WMPB and phage WO. We found no evidence that Wolbachia or phage WO relative densities predict DENV blocking strength across selected lines. However, selection resulted in reduced phage WO relative density for the Low WMPB line. The Low blocking line was previously shown to have reduced fitness as a result of selection. Through subsequent genomic analyses, we demonstrate that SNP variation underpinning selection for low blocking led to elevated frequency of potential deleterious SNPs on chromosome 1. The key region on chromosome 1 contains genes relating to cell cycle regulation, oxidative stress, transcriptional pausing, among others, that may have cascading effects on Wolbachia intracellular environment. We hypothesize that reduction in phage WO may be driven by changes in the loci directly under selection for blocking, or by the accumulation of predicted deleterious alleles in linkage disequilibrium with blocking loci resulting from hitchhiking. For the Low line with fewer phage WO, we also detected reduced expression of cifA and cifB CI genes, with patterns of expression varying between somatic and reproductive tissues. In conclusion, we propose that artificial selection for WMPB trait had corresponding impacts on phage WO densities, and also the transcription of CI-causing genes. Future studies may include a more detailed analysis of the regions the A. aegypti chromosome 1’s ability to affect WMPB and other Wolbachia-associated intrinsic factors such as phage WO. Wolbachia are widespread endosymbiotic bacteria of insects that cause Wolbachia-mediated pathogen blocking (WMPB) and cytoplasmic incompatibility (CI). The latter mediated by cif genes localized in the prophage WO region. Because of that, Wolbachia-infected mosquitoes are currently being used in field to fight the transmission of vector-borne viruses such as Dengue (DENV) to human populations. Aided by a previous artificial selection experiment that generated lines with variable (High and Low) DENV blocking strength, we tested for a potential link between WMPB and phage WO. There was no evidence that Wolbachia nor phage WO densities predict DENV blocking strength. However, we found that the Low blocking line had reduced phage WO density, and lower expression of the cif genes in a tissue-specific manner. We demonstrate that in addition to previous report of reduced fitness, the Low blocking line also exhibited increased frequency of potential deleterious SNPs on chromosome 1. Our hypotheses are that reduction in phage WO may have resulted from changes in the loci directly under selection for blocking, or by linkage disequilibrium events linked to the accumulation of mosquito predicted deleterious alleles. Our results highlight the importance of chromosome 1 for WMPB and its potential impact for other Wolbachia-associated factors like phage WO.
Collapse
Affiliation(s)
- Heverton L. C. Dutra
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Suzanne A. Ford
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Scott L. Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Elizabeth A. McGraw
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|