1
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
2
|
Scarborough J, Weaver D, Scott J. Gene Signatures and Oncology Treatment Implications. Hematol Oncol Clin North Am 2025; 39:295-307. [PMID: 39694780 PMCID: PMC11867875 DOI: 10.1016/j.hoc.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Gene expression signatures (GES) are a powerful tool in oncology used for classification, prognostication, and therapeutic response prediction of malignancies. In this article, we review the disease site guidelines by the National Comprehensive Cancer Network that use GES for treatment planning and clinical use. We identified 4 cancer types for which treatment decisions are frequently influenced by GES. Future developments in the field of GES are likely to include expanded data sources to personalize radiation therapy dosing and predict response to immunotherapy. Ongoing challenges in GES may be addressed to ensure that all patients with cancer benefit from precision oncology.
Collapse
Affiliation(s)
- Jessica Scarborough
- Department of Medicine, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Davis Weaver
- Department of Translational Hematology and Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Systems Biology and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jacob Scott
- Department of Translational Hematology and Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Molecular Medicine, School of Medicine, Systems Biology and Bioinformatics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Liu J, Liu J, Wang Y, Chen F, He Y, Xie X, Zhong Y, Yang C. Bioactive mesoporous silica materials-assisted cancer immunotherapy. Biomaterials 2025; 315:122919. [PMID: 39481339 DOI: 10.1016/j.biomaterials.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Immunotherapy is initially envisioned as a powerful approach to train immune cells within the tumor microenvironment (TME) and lymphoid tissues to elicit strong anti-tumor responses. However, clinical cancer immunotherapy still faces challenges, such as limited immunogenicity and insufficient immune response. Leveraging the advantages of mesoporous silica (MS) materials in controllable drug and immunomodulator release, recent efforts have focused on engineering MS with intrinsic immunoregulatory functions to promote robust, systemic, and safe anti-tumor responses. This review discusses advances in bioactive MS materials that address the challenges of immunotherapy. Beyond their role in on-demand delivery and drug release in response to the TME, we highlight the intrinsic functions of bioactive MS in orchestrating localized immune responses by inducing immunogenic cell death in tumor cells, modulating immune cell activity, and facilitating tumor-immune cell interactions. Additionally, we emphasize the advantages of bioactive MS in recruiting and activating immune cells within lymphoid tissues to initiate anti-tumor vaccination. The review also covers the challenges of MS-assisted immunotherapy, potential solutions, and future outlooks. With a deeper understanding of material-bio interactions, the rational design of MS with sophisticated bioactivities and controllable responsiveness holds great promise for enhancing the outcomes of personalized immunotherapy.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yaxin Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Li R, Zhang H, Li Y, Yao X, Dong X, Xu Y, Li Y. Efficacy and safety of immunotherapy plus chemotherapy in advanced or metastatic pulmonary large-cell neuroendocrine carcinoma. Discov Oncol 2025; 16:316. [PMID: 40085398 PMCID: PMC11909377 DOI: 10.1007/s12672-025-02071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Patients with advanced pulmonary large-cell neuroendocrine carcinoma (LCNEC) have a progressive clinical course and poor prognosis, and effective treatment options remain limited. This study assessed the efficacy and safety of immunotherapy plus chemotherapy for advanced LCNEC. METHODS We retrospectively collected medical records of patients with advanced LCNEC who attended Shandong Cancer Hospital from January 2018 to December 2022. Patients were divided into two groups based on their previous treatment regimen: immunotherapy plus chemotherapy and chemotherapy alone. Kaplan-Meier survival curves and Cox regression models were used to evaluate the clinical efficacy of different treatment regimens. RESULTS The median follow-up was 29.33 months (95% confidence interval [CI]: 24.04-not reached). The median overall survival (OS) was 15.01 months (95% CI: 11.99-26.31) and 7.19 months (95% CI: 5.15-10.57) in the immunotherapy plus chemotherapy and chemotherapy groups, respectively (P = 0.001). Following propensity score matching, the median OS was 17.41 months (95% CI: 11.99-29.20) and 5.88 months (95% CI: 4.50-11.53) in the immunotherapy plus chemotherapy and chemotherapy groups, respectively. The median progression-free survival was 6.70 months (95% CI: 5.48-13.27) and 3.12 months (95% CI: 2.52-4.20) in the immunotherapy plus chemotherapy and chemotherapy groups, respectively. We also found that increasing age may contribute to poorer prognosis in patients with advanced LCNEC (P < 0.05). CONCLUSIONS Immunotherapy plus chemotherapy significantly improved OS compared with chemotherapy in LCNEC, with a tolerable safety profile without life-threatening adverse events. Immunotherapy plus chemotherapy may be an effective treatment option for patients with advanced LCNEC.
Collapse
Affiliation(s)
- Ruyue Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Huanle Zhang
- Department of Radiotherapy, Suzhou Ninth People's Hospital, Suzhou, China
| | - Ying Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Xiujing Yao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Xue Dong
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yali Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, 250000, China.
| | - Yintao Li
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, and Shandong Academy of Medical Sciences, Jinan, 250000, China.
| |
Collapse
|
5
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
6
|
Shyanti RK, Haque M, Singh R, Mishra M. Optimizing iNKT-driven immune responses against cancer by modulating CD1d in tumor and antigen presenting cells. Clin Immunol 2024; 269:110402. [PMID: 39561929 DOI: 10.1016/j.clim.2024.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Two major antigen processing pathways represent protein Ags through major histocompatibility complexes (MHC class I and II) or lipid Ags through CD1 molecules influence the tumor immune response. Invariant Natural Killer T cells (iNKT) manage a significant role in cancer immunotherapy. CD1d, found on antigen-presenting cells (APCs), presents lipid Ags to iNKT cells. In many cancers, the number and function of iNKT cell are compromised, leading to immune evasion. Additionally impaired motility of iNKT cells may contribute to poor tumor prognosis. Emerging evidences suggest that CD1d, itself also influences cancer progression. Patient databases further highlight the importance of CD1d expression in different cancers and its correlation with patient survival outcomes. The ability of iNKT cells to activate and enhance the immune response renders them an attractive target for cancer immunotherapy. This review discusses all the possible ways of cancer immune evasion and restoration of immune responses mediated by CD1d-iNKT interactions.
Collapse
Affiliation(s)
- Ritis Kumar Shyanti
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Mazharul Haque
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Rajesh Singh
- Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
7
|
Kuang QX, Huang YQ, Ruan YQ, Lai HZ, Long J, Yan CY, Lei HR, Guo DL, Deng Y, You FM, Jiang YF. New benzophenone analogs from Nigrospora sphaerica and their inhibitory activity against PD-1/PD-L1 interactions. Bioorg Chem 2024; 153:107899. [PMID: 39454494 DOI: 10.1016/j.bioorg.2024.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Four newly identified benzophenone analogs [nigrophenone A-D (1-4)] and a pyrrolidinone analog [nigropyrrolidinone (5)], alongside thirteen known congeners (6-18), were isolated from Nigrospora sphaerica. Transcriptome analysis revealed that 6 might have the potential to modulate T-cell immunity. Quantitative measurements of the binding affinities between eighteen natural molecules and the immunological checkpoint receptors PD-1 and PD-L1 were performed using Surface Plasmon Resonance (SPR). The results of SPR analysis showed that 1-18 have KD values ranging from 1.8 to 99.5 μM for PD-1 and from 10.6 to 99.5 μM for PD-L1. Competitive inhibition studies, employing SPR and ELISA assays, have indicated that compounds 6, 10, 15, and 18 are capable of inhibiting the PD-1/PD-L1 interaction. Additionally, compound 6 exhibited notable in vitro anticancer potency through the augmentation of activating signals and the upregulation of PD-1 expression on CD8+ T cells, concurrently elevating the secretion of IFN-γ and IL-2, thereby inhibiting the proliferation of LLC and MC38 cells and promoting MC38 apoptosis. Moreover, compound 6 modulates the PI3K/Akt pathway, which is a key downstream effector of the PD-1/PD-L1 axis. These compounds are considered promising candidates for more in-depth exploration because they could significantly inhibit PD-1/PD-L1 interactions in tumor immunotherapy.
Collapse
Affiliation(s)
- Qi-Xuan Kuang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China
| | - Yu-Qing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China
| | - Yan-Qiu Ruan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Heng-Zhou Lai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China
| | - Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China
| | - Chen-Yi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Hao-Ran Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Da-Le Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China.
| | - Feng-Ming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China.
| | - Yi-Fang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China.
| |
Collapse
|
8
|
Malicki S, Czarna A, Żyła E, Pucelik B, Gałan W, Chruścicka B, Kamińska M, Sochaj-Gregorczyk A, Magiera-Mularz K, Wang J, Winiarski M, Benedyk-Machaczka M, Kozieł J, Dubin G, Mydel P. Development of selective ssDNA micro-probe for PD1 detection as a novel strategy for cancer imaging. Sci Rep 2024; 14:28652. [PMID: 39562585 PMCID: PMC11576874 DOI: 10.1038/s41598-024-74891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Programmed death receptor 1, PD1, modulates the function of immune cells by providing inhibitory signals and constitutes the marker of immune exhaustion. Monitoring the level of PD1 promises a useful diagnostic approach in autoimmune diseases and cancer. Here we describe the development of an ssDNA aptamer-based molecular probe capable of specific recognition of human PD1 receptor. The aptamer was selected using SELEX, its sequence was further optimized, and the affinity and specificity were determined in biochemical assays. The aptamer was converted into a fluorescent probe and its potential in molecular imaging was demonstrated in a culture of human cells overexpressing PD1 and murine pancreatic organoids / immune cells mixed co-culture model. We conclude that the provided aptamers are suitable probes for imaging of PD1 expressing immune cells even in complex cellular models and may find future utility as diagnostic tools.
Collapse
Affiliation(s)
- Stanisław Malicki
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland.
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| | - Anna Czarna
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
| | - Edyta Żyła
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Barbara Pucelik
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- 5Łukasiewicz Research Network, Krakow Institute of Technology, ul. Zakopiańska 73, Kraków, 30-418, Poland
| | - Wojciech Gałan
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Barbara Chruścicka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Marta Kamińska
- Broegelmann Research Laboratory, University of Bergen, Haukeland universitetssykehus Laboratoriebygget, Bergen, 5009, Norway
| | - Alicja Sochaj-Gregorczyk
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Katarzyna Magiera-Mularz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Laboratory of protein NMR, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30- 387, Poland
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, People's Republic of China
| | - Marek Winiarski
- 2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, 31-008, Poland
| | - Małgorzata Benedyk-Machaczka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Joanna Kozieł
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Grzegorz Dubin
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland.
| | - Piotr Mydel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
- Broegelmann Research Laboratory, University of Bergen, Haukeland universitetssykehus Laboratoriebygget, Bergen, 5009, Norway.
| |
Collapse
|
9
|
Zhao Q, Wang L, Fu H, Zhang Y, Xie Q. Effect of peripheral blood lymphocyte count on the efficacy of immunotherapy combined with TKI in the treatment of advanced liver cancer. Front Immunol 2024; 15:1467429. [PMID: 39512348 PMCID: PMC11540664 DOI: 10.3389/fimmu.2024.1467429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Background and aims Compared with tyrosine kinase inhibitor (TKI) monotherapy, TKI combined with PD1 can improve the therapeutic effect of liver cancer and has been widely used in clinical practice. However, there is a lack of effective biomarkers to identify patients who would benefit more from this combination therapy. Therefore, this study aimed to evaluate whether baseline lymphocyte counts can identify patients with liver cancer who would benefit from targeted immune combination therapy. Methods Data from patients with hepatocellular carcinoma (HCC) who received TKIs or TKIs in combination with PD1 between June 2018 and June 2020 were retrospectively collected. The patients were divided into high and low groups based on the median absolute count of peripheral lymphocytes before systemic therapy and differences in overall survival (OS) and progression-free survival (PFS) between TKI and TKI+PD1 were compared between the two groups. Results In total, 72 patients were included in this study, with a median follow-up of 1.5 years. Both PFS and OS in the TKI+PD1 group showed a good prognostic trend (p = 0.058 and p = 0.077, respectively). Subgroup analyses based on peripheral blood lymphocyte counts showed that the combination regimen had a significant PFS and OS advantage only in patients with high peripheral blood lymphocyte counts (p = 0.036 and p = 0.031, respectively), but not in patients with low absolute peripheral blood lymphocyte counts (p = 0.819 and p = 0.913, respectively). Conclusions Peripheral blood lymphocyte count is a simple and effective biomarker that can be used to identify patients with liver cancer who will benefit more from TKI+PD-1 combination therapy.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Department of Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huilan Fu
- Department of Gastroenterology, Guangzhou Development District Hospital, Guangzhou, China
| | - Yuqin Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiankun Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Samantaray A, Pradhan D, Nayak NR, Chawla S, Behera B, Mohanty L, Bisoyi SK, Gandhi S. Nanoquercetin based nanoformulations for triple negative breast cancer therapy and its role in overcoming drug resistance. Discov Oncol 2024; 15:452. [PMID: 39287822 PMCID: PMC11408462 DOI: 10.1007/s12672-024-01239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is a highly aggressive and treatment-resistant subtype of breast cancer, lacking the expression of estrogen, progesterone, and HER2 receptors. Conventional chemotherapy remains the primary treatment option, but its efficacy is often compromised by the development of drug resistance. Nanoquercetin has garnered the attention of researchers due to its potential in combating cancer. This antioxidant exhibits significant efficacy against various types of cancer, including blood, breast, pancreatic, prostate, colon, and oral cancers. Functioning as a potential anti-cancer agent, nanoquercetin impedes the development and proliferation of cancer cells, induces apoptosis and autophagy, and prevents cancer cell invasion and metastasis. Numerous processes, such as the inhibition of pathways linked to angiogenesis, inflammation, and cell survival, are responsible for these anticancer actions. Moreover, it shields DNA from degradation caused by radiation and other carcinogens. The cost-effectiveness of current cancer treatments remains a significant challenge in healthcare, imposing a substantial economic burden on societies worldwide. Preclinical studies and early-phase clinical trials indicate that nanoquercetin-based therapies could offer a significant advancement in the management of TNBC, providing a foundation for future research and clinical application in overcoming drug resistance and improving patient outcomes. This article examines the latest data on nanoquercetin's potent anti-cancer properties and interprets the accumulated research findings within the framework of preventive, predictive, and personalized (3P) medicine.
Collapse
Affiliation(s)
- Adyasa Samantaray
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Debasish Pradhan
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India.
| | - Nalini Ranjan Nayak
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Khurda, Odisha, India
| | - Bandana Behera
- Faculty of Pharmacy, C.V.Raman Global University, Bhubaneswar, India
| | - Lalatendu Mohanty
- Department of Pharmaceutical Sciences, HNB Garhwal University, Uttarakhand, India
| | - Saroj Kanta Bisoyi
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Sabnam Gandhi
- University Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Wang M, Guo H, Sun BB, Jie XL, Shi XY, Liu YQ, Shi XL, Ding LQ, Xue PH, Qiu F, Cao W, Wang GZ, Zhou GB. Centipeda minima and 6-O-angeloylplenolin enhance the efficacy of immune checkpoint inhibitors in non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155825. [PMID: 38968790 DOI: 10.1016/j.phymed.2024.155825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Chemotherapeutic agents including cisplatin, gemcitabine, and pemetrexed, significantly enhance the efficacy of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) by increasing PD-L1 expression and potentiating T cell cytotoxicity. However, the low response rate and adverse effects limit the application of chemotherapy/ICI combinations in patients. METHODS We screened for medicinal herbs that could perturb PD-L1 expression and enhance T cell cytotoxicity in the presence of anti-PD-L1 antibody, and investigated the underlying mechanisms. RESULTS We found that the aqueous extracts of Centipeda minima (CM) significantly enhanced the cancer cell-killing activity and granzyme B expression level of CD8+ T cells, in the presence of anti-PD-L1 antibody. Both CM and its active component 6-O-angeloylplenolin (6-OAP) upregulated PD-L1 expression by suppressing GSK-3β-β-TRCP-mediated ubiquitination and degradation. CM and 6-OAP significantly enhanced ICI-induced reduction of tumor burden and prolongation of overall survival of mice bearing NSCLC cells, accompanied by upregulation of PD-L1 and increase of CD8+ T cell infiltration. CM also exhibited anti-NSCLC activity in cells and in a patient-derived xenograft mouse model. CONCLUSIONS These data demonstrated that the induced expression of PD-L1 and enhancement of CD8+ T cell cytotoxicity underlay the beneficial effects of 6-OAP-rich CM in NSCLCs, providing a clinically available and safe medicinal herb for combined use with ICIs to treat this deadly disease.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou 450008, China
| | - Hua Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bei-Bei Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Liang Jie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xue-Yan Shi
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Qiang Liu
- Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xu-Liu Shi
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li-Qin Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peng-Hui Xue
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Cao
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
12
|
Zhou X, Wang F, Yu L, Yang F, Kang J, Cao D, Xing Z. Prediction of PD-L1 and Ki-67 status in primary central nervous system diffuse large B-cell lymphoma by diffusion and perfusion MRI: a preliminary study. BMC Med Imaging 2024; 24:222. [PMID: 39187807 PMCID: PMC11348779 DOI: 10.1186/s12880-024-01409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVE To assess whether diffusion and perfusion MRI derived parameters could non-invasively predict PD-L1 and Ki-67 status in primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL). METHODS We retrospectively analyzed DWI, DSC-PWI, and morphological MRI (mMRI) in 88 patients with PCNS-DLBCL. The mMRI features were compared using chi-square tests or Fisher exact test. Minimum ADC (ADCmin), mean ADC(ADCmean), relative minimum ADC (rADCmin), relative mean ADC (rADCmean), and relative maximum CBV (rCBVmax) values were compared in PCNS-DLBCL with different molecular status by using the Mann-Whitney U test. The diagnostic performances were evaluated by receiver operating characteristic curves. RESULTS PCNS-DLBCL with high PD-L1 expression demonstrated a significantly higher ADCmin value than those with low PD-L1. The ADCmean and rADCmean values were significantly lower in PCNS-DLBCL with high Ki-67 status compared with those in low Ki-67 status. Other ADC, CBV parameters, and mMRI features did not show any association with these molecular statuses The diagnostic efficacy of ADC values in assessing PD-L1 and Ki-67 status was relatively low, with area under the curves (AUCs) values less than 0.7. CONCLUSIONS DWI-derived ADC values can provide some relevant information about PD-L1 and Ki-67 status in PCNS-DLBCL, but may not be sufficient to predict their expression due to the rather low diagnostic performance.
Collapse
Affiliation(s)
- Xiaofang Zhou
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
- Department of Radiology, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Feng Wang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
- Department of Radiology, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Lan Yu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
- Department of Radiology, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Feiman Yang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
- Department of Radiology, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Jie Kang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
- Department of Radiology, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China
| | - Dairong Cao
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China.
- Department of Radiology, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Zhen Xing
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China.
- Department of Radiology, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, 350212, Fujian, China.
| |
Collapse
|
13
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
14
|
Chattopadhyay S, Hazra R, Mallick A, Gayen S, Roy S. A review exploring the fusion of oncolytic viruses and cancer immunotherapy: An innovative strategy in the realm of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189110. [PMID: 38754793 DOI: 10.1016/j.bbcan.2024.189110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Oncolytic viruses (OVs) are increasingly recognized as potent tools in cancer therapy, effectively targeting and eradicating oncogenic conditions while sparing healthy cells. They enhance antitumor immunity by triggering various immune responses throughout the cancer cycle. Genetically engineered OVs swiftly destroy cancerous tissues and activate the immune system by releasing soluble antigens like danger signals and interferons. Their ability to stimulate both innate and adaptive immunity makes them particularly attractive in cancer immunotherapy. Recent advancements involve combining OVs with other immune therapies, yielding promising results. Transgenic OVs, designed to enhance immunostimulation and specifically target cancer cells, further improve immune responses. This review highlights the intrinsic mechanisms of OVs and underscores their synergistic potential with other immunotherapies. It also proposes strategies for optimizing armed OVs to bolster immunity against tumors.
Collapse
Affiliation(s)
- Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, West Bengal 700053, India.
| |
Collapse
|
15
|
Hossain SM, Carpenter C, Eccles MR. Genomic and Epigenomic Biomarkers of Immune Checkpoint Immunotherapy Response in Melanoma: Current and Future Perspectives. Int J Mol Sci 2024; 25:7252. [PMID: 39000359 PMCID: PMC11241335 DOI: 10.3390/ijms25137252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) demonstrate durable responses, long-term survival benefits, and improved outcomes in cancer patients compared to chemotherapy. However, the majority of cancer patients do not respond to ICIs, and a high proportion of those patients who do respond to ICI therapy develop innate or acquired resistance to ICIs, limiting their clinical utility. The most studied predictive tissue biomarkers for ICI response are PD-L1 immunohistochemical expression, DNA mismatch repair deficiency, and tumour mutation burden, although these are weak predictors of ICI response. The identification of better predictive biomarkers remains an important goal to improve the identification of patients who would benefit from ICIs. Here, we review established and emerging biomarkers of ICI response, focusing on epigenomic and genomic alterations in cancer patients, which have the potential to help guide single-agent ICI immunotherapy or ICI immunotherapy in combination with other ICI immunotherapies or agents. We briefly review the current status of ICI response biomarkers, including investigational biomarkers, and we present insights into several emerging and promising epigenomic biomarker candidates, including current knowledge gaps in the context of ICI immunotherapy response in melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Carien Carpenter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.M.H.); (C.C.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
16
|
Seema Mustafa, Jansen CS, Jani Y, Evans S, Zhuang TZ, Brown J, Nazha B, Master V, Bilen MA. The Evolving Landscape of Biomarkers for Immune Checkpoint Blockade in Genitourinary Cancers. Biomark Insights 2024; 19:11772719241254179. [PMID: 38827239 PMCID: PMC11143877 DOI: 10.1177/11772719241254179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
In the past decade, immune checkpoint inhibitors (ICI) have been approved for treatment of genitourinary malignancies and have revolutionized the treatment landscape of these tumors. However, despite the remarkable success of these therapies in some GU malignancies, many patients' tumors do not respond to these therapies, and others may experience significant side effects, such as immune-related adverse events (iRAEs). Accordingly, biomarkers and improved prognostic tools are critically needed to help predict which patients will respond to ICI, predict and mitigate risk of developing immune-related adverse events, and inform personalized choice of therapy for each patient. Ongoing clinical and preclinical studies continue to provide an increasingly robust understanding of the mechanisms of the response to immunotherapy, which continue to inform biomarker development and validation. Herein, we provide a comprehensive review of biomarkers of the response to immunotherapy in GU tumors and their role in selection of therapy and disease monitoring.
Collapse
Affiliation(s)
- Seema Mustafa
- Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline S Jansen
- Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | - Sean Evans
- Emory University School of Medicine, Atlanta, GA, USA
| | - Tony Z Zhuang
- Emory University School of Medicine, Atlanta, GA, USA
| | - Jacqueline Brown
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bassel Nazha
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viraj Master
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
Jani Y, Jansen CS, Gerke MB, Bilen MA. Established and emerging biomarkers of immunotherapy in renal cell carcinoma. Immunotherapy 2024; 16:405-426. [PMID: 38264827 PMCID: PMC11913054 DOI: 10.2217/imt-2023-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors, have heralded impressive progress for patient care in renal cell carcinoma (RCC). Despite this success, some patients' disease fails to respond, and other patients experience significant side effects. Thus, development of biomarkers is needed to ensure that patients can be selected to maximize benefit from immunotherapies. Improving clinicians' ability to predict which patients will respond to immunotherapy and which are most at risk of adverse events - namely through clinical biomarkers - is indispensable for patient safety and therapeutic efficacy. Accordingly, an evolving suite of therapeutic biomarkers continues to be investigated. This review discusses biomarkers for immunotherapy in RCC, highlighting current practices and emerging innovations, aiming to contribute to improved outcomes for patients with RCC.
Collapse
Affiliation(s)
- Yash Jani
- Mercer University, Macon, GA31207, USA
| | - Caroline S Jansen
- Emory University School of Medicine, Atlanta, GA30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA30322, USA
| | - Margo B Gerke
- Emory University School of Medicine, Atlanta, GA30322, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA30322, USA
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA30322, USA
| |
Collapse
|
18
|
Xu X, Ma M, Ye K, Zhang D, Chen X, Wu J, Mo X, Xiao Z, Shi C, Luo L. Magnetic resonance imaging-based approaches for detecting the efficacy of combining therapy following VEGFR-2 and PD-1 blockade in a colon cancer model. J Transl Med 2024; 22:198. [PMID: 38395884 PMCID: PMC10893708 DOI: 10.1186/s12967-024-04975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Angiogenesis inhibitors have been identified to improve the efficacy of immunotherapy in recent studies. However, the delayed therapeutic effect of immunotherapy poses challenges in treatment planning. Therefore, this study aims to explore the potential of non-invasive imaging techniques, specifically intravoxel-incoherent-motion diffusion-weighted imaging (IVIM-DWI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI), in detecting the anti-tumor response to the combination therapy involving immune checkpoint blockade therapy and anti-angiogenesis therapy in a tumor-bearing animal model. METHODS The C57BL/6 mice were implanted with murine MC-38 cells to establish colon cancer xenograft model, and randomly divided into the control group, anti-PD-1 therapy group, and combination therapy group (VEGFR-2 inhibitor combined with anti-PD-1 antibody treatment). All mice were imaged before and, on the 3rd, 6th, 9th, and 12th day after administration, and pathological examinations were conducted at the same time points. RESULTS The combination therapy group effectively suppressed tumor growth, exhibiting a significantly higher tumor inhibition rate of 69.96% compared to the anti-PD-1 group (56.71%). The f value and D* value of IVIM-DWI exhibit advantages in reflecting tumor angiogenesis. The D* value showed the highest correlation with CD31 (r = 0.702, P = 0.001), and the f value demonstrated the closest correlation with vessel maturity (r = 0.693, P = 0.001). While the BOLD-MRI parameter, R2* value, shows the highest correlation with Hif-1α(r = 0.778, P < 0.001), indicating the capability of BOLD-MRI to evaluate tumor hypoxia. In addition, the D value of IVIM-DWI is closely related to tumor cell proliferation, apoptosis, and infiltration of lymphocytes. The D value was highly correlated with Ki-67 (r = - 0.792, P < 0.001), TUNEL (r = 0.910, P < 0.001) and CD8a (r = 0.918, P < 0.001). CONCLUSIONS The combination of VEGFR-2 inhibitors with PD-1 immunotherapy shows a synergistic anti-tumor effect on the mouse colon cancer model. IVIM-DWI and BOLD-MRI are expected to be used as non-invasive approaches to provide imaging-based evidence for tumor response detection and efficacy evaluation.
Collapse
Affiliation(s)
- Xi Xu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Mengjie Ma
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510080, China
| | - Kunlin Ye
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xinhui Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiayang Wu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xukai Mo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, China.
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, China.
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Gao Y, Zhang H, Tang L, Li F, Yang L, Xiao H, Karges J, Huang W, Zhang W, Liu C. Cancer Nanobombs Delivering Artoxplatin with a Polyigniter Bearing Hydrophobic Ferrocene Units Upregulate PD-L1 Expression and Stimulate Stronger Anticancer Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300806. [PMID: 37166035 PMCID: PMC10811492 DOI: 10.1002/advs.202300806] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Poor immunogenicity seriously hampers the broader implementation of antitumor immunotherapy. Enhanced immunogenicity capable of achieving greater antitumor immunity is urgently required. Here, a novel polymer that contains hydrophobic ferrocene (Fc) units and thioketal bonds in the main chain, which further delivered a prodrug of oxaliplatin and artesunate, i.e., Artoxplatin, to cancer cells is described. This polymer with Fc units in the nanoparticle can work as a polyigniter to spark the peroxide bonds in Artoxplatin and generate abundant reactive oxygen species (ROS) to kill cancers as nanobombig for cancer therapy. Moreover, ROS can trigger the breakdown of thioketal bonds in the polymer, resulting in the biodegradation of the polymer. Importantly, nanobombig can facilitate the maturation of dendritic cells and promote the activation of antitumor immunity, through the enhanced immunogenic cell death effect by ROS generated in situ. Furthermore, metabolomics analysis reveals a decrease in glutamine in nanobombig -treated cancer cells, resulting in the upregulation of programmed death ligand 1 (PD-L1). Consequently, it is further demonstrated enhanced tumor inhibitory effects when using nanobombig combined with anti-PD-L1 therapy. Overall, the nanosystem offers a rational design of an efficient chemo-immunotherapy regimen to promote antitumor immunity by improving tumor immunogenicity, addressing the key challenges cancer immunotherapy faced.
Collapse
Affiliation(s)
- Yongchao Gao
- Department of Clinical PharmacologyXiangya HospitalCentral South University87 Xiangya RoadChangsha410008P. R. China
- Institute of Clinical PharmacologyCentral South UniversityHunan Key Laboratory of Pharmacogenetics110 Xiangya RoadChangsha410078P. R. China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of Education110 Xiangya RoadChangsha410078P. R. China
- National Clinical Research Center for Geriatric Disorders87 Xiangya RoadChangshaHunan410008P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Physics and Chemistry and CAS Key Laboratories of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Feifei Li
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Li Yang
- Institute of Chinese Medical SciencesState Key Laboratory of Quality Research in Chinese MedicineUniversity of MacauMacao999078P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Physics and Chemistry and CAS Key Laboratories of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Johannes Karges
- Faculty of Chemistry and BiochemistryRuhr‐University BochumUniversitätsstrasse 15044780BochumGermany
| | - Weihua Huang
- Department of Clinical PharmacologyXiangya HospitalCentral South University87 Xiangya RoadChangsha410008P. R. China
- Institute of Clinical PharmacologyCentral South UniversityHunan Key Laboratory of Pharmacogenetics110 Xiangya RoadChangsha410078P. R. China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of Education110 Xiangya RoadChangsha410078P. R. China
- National Clinical Research Center for Geriatric Disorders87 Xiangya RoadChangshaHunan410008P. R. China
| | - Wei Zhang
- Department of Clinical PharmacologyXiangya HospitalCentral South University87 Xiangya RoadChangsha410008P. R. China
- Institute of Clinical PharmacologyCentral South UniversityHunan Key Laboratory of Pharmacogenetics110 Xiangya RoadChangsha410078P. R. China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of Education110 Xiangya RoadChangsha410078P. R. China
- National Clinical Research Center for Geriatric Disorders87 Xiangya RoadChangshaHunan410008P. R. China
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangsha410006P. R. China
- Key Specialty of Clinical PharmacyThe First Affiliated Hospital of Guangdong Pharmaceutical UniversityGuangzhou510080P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
20
|
Ford CT. PD-1 Targeted Antibody Discovery Using AI Protein Diffusion. Technol Cancer Res Treat 2024; 23:15330338241275947. [PMID: 39228166 PMCID: PMC11375674 DOI: 10.1177/15330338241275947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
The programmed cell death protein 1 (PD-1, CD279) is an important therapeutic target in many oncological diseases. This checkpoint protein inhibits T lymphocytes from attacking other cells in the body and thus blocking it improves the clearance of tumor cells by the immune system. While there are already multiple FDA-approved anti-PD-1 antibodies, including nivolumab (Opdivo® from Bristol-Myers Squibb) and pembrolizumab (Keytruda® from Merck), there are ongoing efforts to discover new and improved checkpoint inhibitor therapeutics. In this study, we present multiple anti-PD-1 antibody fragments that were derived computationally using protein diffusion and evaluated through our scalable, in silico pipeline. Here we present nine synthetic Fv structures that are suitable for further empirical testing of their anti-PD-1 activity due to desirable predicted binding performance.
Collapse
Affiliation(s)
- Colby T. Ford
- Tuple LLC, Charlotte, NC, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
21
|
Schwarzlmueller P, Corradini S, Seidensticker M, Zimmermann P, Schreiner J, Maier T, Triebig A, Knösel T, Pazos M, Pfluger T, Weigand I, Belka C, Ricke J, Reincke M, Schmidmaier R, Kroiss M. High-Dose Rate Brachytherapy Combined with PD-1 Blockade as a Treatment for Metastatic Adrenocortical Carcinoma - A Single Center Case Series. Horm Metab Res 2024; 56:30-37. [PMID: 37748508 DOI: 10.1055/a-2150-3944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The response rate of advanced adrenocortical carcinoma (ACC) to standard chemotherapy with mitotane and etoposide/doxorubicin/cisplatin (EDP-M) is unsatisfactory, and benefit is frequently short lived. Immune checkpoint inhibitors (CPI) have been examined in patient's refractory to EDP-M, but objective response rates are only approximately 15%. High-dose rate brachytherapy (HDR-BT) is a catheter-based internal radiotherapy and expected to favorably combine with immunotherapies. Here we describe three cases of patients with advanced ACC who were treated with HDR-BT and the CPI pembrolizumab. None of the tumors were positive for established response markers to CPI. All patients were female, had progressed on EDP-M and received external beam radiation therapy for metastatic ACC. Pembrolizumab was initiated 7 or 23 months after brachytherapy in two cases and prior to brachytherapy in one case. Best response of lesions treated with brachytherapy was complete (n=2) or partial response (n=1) that was ongoing at last follow up after 23, 45 and 4 months, respectively. Considering all sites of tumor, response was complete and partial remission in the two patients with brachytherapy prior to pembrolizumab. The third patient developed progressive disease with severe Cushing's syndrome and died due to COVID-19. Immune-related adverse events of colitis (grade 3), gastroduodenitis (grade 3), pneumonitis (grade 2) and thyroiditis (grade 1) occurred in the two patients with systemic response. HDR-BT controlled metastases locally. Sequential combination with CPI therapy may enhance an abscopal antitumoral effect in non-irradiated metastases in ACC. Systematic studies are required to confirm this preliminary experience and to understand underlying mechanisms.
Collapse
Affiliation(s)
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Petra Zimmermann
- Department of General, Visceral and Transplant Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Jochen Schreiner
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Tanja Maier
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Triebig
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Montserrat Pazos
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Pfluger
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Isabel Weigand
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Reincke
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Ralf Schmidmaier
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Kroiss
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
22
|
Blal N, Guarnieri D. Preparation Method and In Vitro Characterization of Nanoparticles Sensitive to Tumor Microenvironment. Methods Mol Biol 2024; 2748:85-98. [PMID: 38070109 DOI: 10.1007/978-1-0716-3593-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Immunotherapy is considered a powerful clinical strategy aiming to boost the immune system to fight cancer. In this context, nanomaterials (NMs) are uniquely suited to improve the development and the broad implementation of cancer immunotherapies by overcoming several challenges. In fact, NMs can be rationally designed to navigate complex physical barriers, respond to tumor microenvironments, and enhance/modulate immune system activation. Here, we present a method to prepare stimuli-responsive biocompatible nanoparticles (NPs) able to target the tumor microenvironment. Moreover, we describe protocols to characterize the physical-chemical properties of NPs as well as to evaluate their biocompatibility and therapeutic potential in vitro on three-dimensional (3D) tumor spheroids.
Collapse
Affiliation(s)
- Naym Blal
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Salerno, Italy
| | - Daniela Guarnieri
- Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Salerno, Italy.
| |
Collapse
|
23
|
Fang Q, Shen G, Xie Q, Guan Y, Liu X, Ren D, Zhao F, Liu Z, Ma F, Zhao J. Development of Tumor Markers for Breast Cancer Immunotherapy. Curr Mol Med 2024; 24:547-564. [PMID: 37157196 DOI: 10.2174/1566524023666230508152817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
Although breast cancer treatment has been developed remarkably in recent years, it remains the primary cause of death among women. Immune checkpoint blockade therapy has significantly altered the way breast cancer is treated, although not all patients benefit from the changes. At present, the most effective mechanism of immune checkpoint blockade application in malignant tumors is not clear and efficacy may be influenced by many factors, including host, tumor, and tumor microenvironment dynamics. Therefore, there is a pressing need for tumor immunomarkers that can be used to screen patients and help determine which of them would benefit from breast cancer immunotherapy. At present, no single tumor marker can predict treatment efficacy with sufficient accuracy. Multiple markers may be combined to more accurately pinpoint patients who will respond favorably to immune checkpoint blockade medication. In this review, we have examined the breast cancer treatments, developments in research on the role of tumor markers in maximizing the clinical efficacy of immune checkpoint inhibitors, prospects for the identification of novel therapeutic targets, and the creation of individualized treatment plans. We also discuss how tumor markers can provide guidance for clinical practice.
Collapse
Affiliation(s)
- Qianqian Fang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yumei Guan
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinlan Liu
- Department of Oncology, General Hospital of Ningxia Medical University, No. 804 Shengli Road, Xingqing District, Yinchuan, 750004, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| |
Collapse
|
24
|
Gehl V, O'Rourke CJ, Andersen JB. Immunogenomics of cholangiocarcinoma. Hepatology 2023:01515467-990000000-00649. [PMID: 37972940 DOI: 10.1097/hep.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The development of cholangiocarcinoma spans years, if not decades, during which the immune system becomes corrupted and permissive to primary tumor development and metastasis. This involves subversion of local immunity at tumor sites, as well as systemic immunity and the wider host response. While immune dysfunction is a hallmark of all cholangiocarcinoma, the specific steps of the cancer-immunity cycle that are perturbed differ between patients. Heterogeneous immune functionality impacts the evolutionary development, pathobiological behavior, and therapeutic response of these tumors. Integrative genomic analyses of thousands of primary tumors have supported a biological rationale for immune-based stratification of patients, encompassing immune cell composition and functionality. However, discerning immune alterations responsible for promoting tumor initiation, maintenance, and progression from those present as bystander events remains challenging. Functionally uncoupling the tumor-promoting or tumor-suppressing roles of immune profiles will be critical for identifying new immunomodulatory treatment strategies and associated biomarkers for patient stratification. This review will discuss the immunogenomics of cholangiocarcinoma, including the impact of genomic alterations on immune functionality, subversion of the cancer-immunity cycle, as well as clinical implications for existing and novel treatment strategies.
Collapse
Affiliation(s)
- Virag Gehl
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
25
|
He M, Yu J, Chen S, Mi H. A Systematic Immune and Prognostic Analysis of CD48 Interaction with Tumor Microenvironment in Pan-Cancer. Int J Gen Med 2023; 16:5255-5269. [PMID: 38021043 PMCID: PMC10655609 DOI: 10.2147/ijgm.s431696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background The cluster of differentiation 48 (CD48) is a member of the signaling lymphocyte activation molecule family, constitutively expressed on most hematopoietic cells. CD48 was reported to affect immune regulation in certain tumors, thereby influencing tumor development and prognosis, but its impact on the prognosis and immune infiltration in pan-cancer remains unclear. Material and Methods We systematically analyzed the raw data from The Cancer Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), and Tumor Immune Dysfunction and Exclusion (TIDE) databases. Initially, we investigated the differences in CD48 expression between pan-cancer and adjacent normal tissues. Then, the correlation analysis of CD48 with tumor mutational burden (TMB), microsatellite instability (MSI), tumor microenvironment (TME), and immune-related genes was evaluated. Moreover, bioinformatics tools: ESTIMATE and gene set enrichment analysis (GSEA) were used for tumor immunology analysis in pan-cancer. We performed validation studies including quantitative real-time PCR (qPCR) and Western blotting. Results Differential analysis revealed that CD48 was significantly altered in pan-cancer as compared with normal tissues. Meanwhile, the survival analysis demonstrated that CD48 strongly correlated with overall survival (OS), disease-free interval (DFI), progression-free interval (PFI), and disease-specific survival (DSS), indicating its crucial role in the tumor patients' prognosis. CD48 expression was also associated with TMB and MSI levels in 17 and 14 types of pan-cancers, respectively. Moreover, CD48 was linked to immune infiltrating cells and stromal components in the TME. Conclusion Concludingly, patients with pan-cancer may benefit from evaluating CD48 as a prognostic and immunotherapy response biomarker.
Collapse
Affiliation(s)
- Mingdong He
- Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jun Yu
- Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Hua Mi
- Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
26
|
Acharya R, Mahapatra A, Verma HK, Bhaskar LVKS. Unveiling Therapeutic Targets for Esophageal Cancer: A Comprehensive Review. Curr Oncol 2023; 30:9542-9568. [PMID: 37999111 PMCID: PMC10670555 DOI: 10.3390/curroncol30110691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Esophageal cancer is a highly aggressive and deadly disease, ranking as the sixth leading cause of cancer-related deaths worldwide. Despite advances in treatment, the prognosis remains poor. A multidisciplinary approach is crucial for achieving complete remission, with treatment options varying based on disease stage. Surgical intervention and endoscopic treatment are used for localized cancer, while systemic treatments like chemoradiotherapy and targeted drug therapy play a crucial role. Molecular markers such as HER2 and EGFR can be targeted with drugs like trastuzumab and cetuximab, and immunotherapy drugs like pembrolizumab and nivolumab show promise by targeting immune checkpoint proteins. Epigenetic modifications offer new avenues for targeted therapy. Treatment selection depends on factors like stage, tumor location, and patient health, with post-operative and rehabilitation care being essential. Early diagnosis, appropriate treatment, and supportive care are key to improving outcomes. Continued research is needed to develop effective targeted drugs with minimal side effects. This review serves as a valuable resource for clinicians and researchers dedicated to enhancing esophageal cancer treatment outcomes.
Collapse
Affiliation(s)
- Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (A.M.)
| | - Ananya Mahapatra
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (A.M.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany;
| | - L. V. K. S. Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (A.M.)
| |
Collapse
|
27
|
Leshem Y, Dolev Y, Siegelmann-Danieli N, Sharman Moser S, Apter L, Chodick G, Nikolaevski-Berlin A, Shamai S, Merimsky O, Wolf I. Association between diabetes mellitus and reduced efficacy of pembrolizumab in non-small cell lung cancer. Cancer 2023; 129:2789-2797. [PMID: 37354065 DOI: 10.1002/cncr.34918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is a highly prevalent chronic metabolic disorder. Although DM has been associated with immune dysfunction, the effect of DM on the efficacy of immunotherapy is unknown. This study aimed to evaluate the impact of DM on the efficacy of pembrolizumab in metastatic non-small cell lung cancer (NSCLC). METHODS The authors reviewed the medical records of consecutive metastatic NSCLC patients treated with first-line pembrolizumab either alone or in combination with chemotherapy at a single tertiary center. For validation, a computerized data from Maccabi Healthcare Services, a 2.5-million-member state health service was used. RESULTS Of the 203 eligible patients, 51 (25%) had DM. Patients with DM had a significantly shorter median progression-free survival (PFS) (5.9 vs. 7.1 months, p = .004) and overall survival (OS) (12 vs. 21 months, p = .006). The shorter OS in diabetic patients was more pronounced when pembrolizumab was given alone (12 vs. 27 months, p = .03) than when combined with chemotherapy (14.3 vs. 19.4 months, p = .06). Multivariate analysis confirmed DM as an independent risk factor for shorter PFS (hazard ratio [HR], 1.67; 95% confidence interval [CI], 1.11-2.50, p = .01) and OS (HR, 1.73; 95% CI, 1.09-2.76, p = .02). In a validation cohort of 452 metastatic NSCLC patients, the time on pembrolizumab treatment was shorter in diabetic patients (p = .025), with only 19.6% of patients remaining on treatment at 12 months compared to 31.7% of the nondiabetic patients. CONCLUSIONS This study suggests immunotherapy is less beneficial in diabetic NSCLC patients. More work is needed to verify our findings and explore similar effects in other cancer entities.
Collapse
Affiliation(s)
- Yasmin Leshem
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardenna Dolev
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nava Siegelmann-Danieli
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Sharman Moser
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
| | - Lior Apter
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
- Department of Health Systems Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gabriel Chodick
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Sivan Shamai
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ofer Merimsky
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ido Wolf
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Thiangphak E, Leetanaporn K, Buhachat R. Pretreatment total lymphocyte count as a prognostic factor of survival in patients with recurrent cervical cancer after definitive radiation-based therapy: a retrospective study. Obstet Gynecol Sci 2023; 66:407-416. [PMID: 37465944 PMCID: PMC10514585 DOI: 10.5468/ogs.23119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE This study evaluated the association between pretreatment total lymphocyte count (TLC) and overall survival (OS) in patients with recurrent cervical cancer. METHODS We retrospectively reviewed 290 patients with recurrent cervical cancer with definite complete responses to either definitive radiotherapy or concurrent chemoradiotherapy between January 2009 and December 2022. The associations between pretreatment TLC and progression-free survival (PFS) and OS rates were evaluated. RESULTS Ninety-three patients (32%) had a pretreatment TLC <1,000 cells/mm3. Patients with a pretreatment TLC <1,000 cells/mm3 had lower treatment response rates than their counterparts (P=0.045). The OS and PFS rates were significantly higher in patients with pretreatment TLC ≥1,000 cells/mm3 than in those with pretreatment TLC <1,000 cells/mm3 (10.74 vs. 3.89 months, P<0.0001; 8.32 vs. 4.97 months, P=0.042; respectively). Moreover, pretreatment TLC ≥1,000 cells/mm3 was identified as an independent prognostic factor for OS in both univariate analysis (hazard ratio [HR], 0.57; 95% conficence interval [CI], 0.44-0.74; P<0.001) and multivariate analysis (HR, 0.64; 95% CI, 0.47-0.86; P=0.003). However, TLC ≥1,000 cells/mm3 was identified as a prognostic factor for PFS only in univariate analysis (HR, 0.71; 95% CI, 0.51-0.99; P=0.043) but not in the multivariate analysis (HR, 0.81; 95% CI, 0.55-1.18; P=0.3). CONCLUSION Pretreatment TLC was associated with treatment response and was identified as an independent prognostic factor associated with the survival outcomes of patients with recurrent cervical cancer.
Collapse
Affiliation(s)
- Ekasak Thiangphak
- Department of Obstetrics and Gynecology, Songklanagarind Hospital, Songkhla,
Thailand
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Songklanagarind Hospital, Songkhla,
Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla,
Thailand
| | - Rakchai Buhachat
- Department of Obstetrics and Gynecology, Songklanagarind Hospital, Songkhla,
Thailand
| |
Collapse
|
29
|
Şener GY, Sütcüoğlu O, Öğüt B, Güven DC, Kavuncuoğlu A, Özdemir N, Özet A, Aksoy S, Tezel YGG, Akyürek N, Yazıcı O. Comparison of PD-L1 and VISTA expression status in primary and recurrent/refractory tissue after (chemo)radiotherapy in head and neck cancer. Strahlenther Onkol 2023; 199:761-772. [PMID: 36862156 DOI: 10.1007/s00066-023-02053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/29/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND PD-L1 and VISTA are thought to play a role in escape from the immune system, tumor progression, and treatment response in tumoral tissue. The current study aimed to evaluate the effects of radiotherapy (RT) and chemoradiotherapy (CRT) on PD-L1 and VISTA expression in head and neck cancers. METHODS PD-L1 and VISTA expression were compared between the primary biopsy taken at the time of diagnosis and refractory tissue biopsies of patients who received definitive CRT or recurrent tissue biopsies of patients who had surgery followed by adjuvant RT or CRT. RESULTS In total, 47 patients were included. Radiotherapy had no effect on the expression levels of PD-L1 and VISTA in patients with head and neck cancer (p = 0.542 and p = 0.425, respectively). A positive correlation was found between PD-L1 and VISTA expression (p < 0.001; r = 0.560). PD-L1 and VISTA expression in the first biopsy were found to be significantly higher in clinical lymph node-positive patients compared to node-negative patients (PD-L1 p = 0.038; VISTA p = 0.018). The median overall survival of patients with ≥ 1% VISTA expression in the initial biopsy was significantly shorter than that of patients with < 1% VISTA expression (52.4 vs. 110.1 months, respectively; p = 0.048). CONCLUSION It was found that PD-L1 and VISTA expression did not change with RT or CRT. Further studies are needed to evaluate the relationship of PD-L1 and VISTA expression with RT and CRT.
Collapse
Affiliation(s)
| | - Osman Sütcüoğlu
- Department of Medical Oncology, School of Medicine, Gazi University, Besevler/Ankara, Turkey.
| | - Betül Öğüt
- Department of Pathology, Gazi University, Ankara, Turkey
| | - Deniz Can Güven
- Department of Medical Oncology, Hacettepe University, Ankara, Turkey
| | | | - Nuriye Özdemir
- Department of Medical Oncology, School of Medicine, Gazi University, Besevler/Ankara, Turkey
| | - Ahmet Özet
- Department of Medical Oncology, School of Medicine, Gazi University, Besevler/Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University, Ankara, Turkey
| | | | - Nalan Akyürek
- Department of Pathology, Hacettepe University, Ankara, Turkey
| | - Ozan Yazıcı
- Department of Medical Oncology, School of Medicine, Gazi University, Besevler/Ankara, Turkey
| |
Collapse
|
30
|
Cao Y, Ye Q, Ma M, She QB. Enhanced bypass of PD-L1 translation reduces the therapeutic response to mTOR kinase inhibitors. Cell Rep 2023; 42:112764. [PMID: 37405918 PMCID: PMC10491412 DOI: 10.1016/j.celrep.2023.112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/23/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Increased PD-L1 expression in cancer cells is known to enhance immunosuppression, but the mechanism underlying PD-L1 upregulation is incompletely characterized. We show that PD-L1 expression is upregulated through internal ribosomal entry site (IRES)-mediated translation upon mTORC1 inhibition. We identify an IRES element in the PD-L1 5'-UTR that permits cap-independent translation and promotes continuous production of PD-L1 protein despite effective inhibition of mTORC1. eIF4A is found to be a key PD-L1 IRES-binding protein that enhances PD-L1 IRES activity and protein production in tumor cells treated with mTOR kinase inhibitors (mTORkis). Notably, treatment with mTORkis in vivo elevates PD-L1 levels and reduces the number of tumor-infiltrating lymphocytes in immunogenic tumors, but anti-PD-L1 immunotherapy restores antitumor immunity and enhances the therapeutic efficacy of mTORkis. These findings report a molecular mechanism for regulating PD-L1 expression through bypassing mTORC1-mediated cap-dependent translation and provide a rationale for targeting PD-L1 immune checkpoint to improve mTOR-targeted therapy.
Collapse
Affiliation(s)
- Yanan Cao
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Qing Ye
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Murong Ma
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Qing-Bai She
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40506, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA.
| |
Collapse
|
31
|
Sbrana A, Mazzini G, Comolli G, Antonuzzo A, Danova M. The contribution of automated cytometry in immuno-oncology. Methods Cell Biol 2023; 195:23-37. [PMID: 40180453 DOI: 10.1016/bs.mcb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Cancer immunotherapy has been a real revolution and has given many survival chances to several patients. However, the understanding of resistance to immunotherapy is still an unmet need in clinical practice. Monitoring of immune mechanisms could be a tool to better understand this phenomenon. FCM and CyTOF could be used in this field, since they allow the simultaneous analysis of several protein expressions pattern, thus possibly understanding the functions of several immune cell populations, such as T cells, and their interactions with tumor cells and tumor microenvironment. Furthermore, automated cytometry could be used to understand the interaction of drugs with their target through the analysis of receptor occupancy. Spectral overlap, however, could be a limit for multiple simultaneous analyses. Other possible limitations of these techniques are a low number of cells in samples and the need for viable cells (with the possible interference of cell debris). The lack of standardized protocols, and thus the difficult reproducibility, have been the major limit to their application in clinical practice, so international efforts have been made to get to shared guidelines. Ongoing trials are to answer to the possibility of clinical application of these techniques.
Collapse
Affiliation(s)
- Andrea Sbrana
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, Pisa, Italy; Service of Pneumo-Oncology, Unit of Pneumology, Pisa, Italy
| | | | - Giuditta Comolli
- Department of Microbiology and Virology and Laboratory of Biochemistry-Biotechnology and Advanced Diagnostics, IRCCS San Matteo Foundation, Pavia, Italy
| | | | - Marco Danova
- Unit of Internal Medicine and Medical Oncology, Vigevano Civic Hospital, Pavia, Italy; LIUC University, Castellanza, Varese, Italy.
| |
Collapse
|
32
|
Özdemir BC, Espinosa da Silva C, Arangalage D, Monney P, Guler SA, Huynh-Do U, Stirnimann G, Possamai L, Trepp R, Hoepner R, Salmen A, Gerard CL, Hruz P, Christ L, Rothschild SI. Multidisciplinary recommendations for essential baseline functional and laboratory tests to facilitate early diagnosis and management of immune-related adverse events among cancer patients. Cancer Immunol Immunother 2023; 72:1991-2001. [PMID: 37017694 PMCID: PMC10264466 DOI: 10.1007/s00262-023-03436-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/22/2023] [Indexed: 04/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have fundamentally changed the treatment landscape of various cancers. While ICI treatments result in improved survival, quality of life and are cost-effective, the majority of patients experience at least one immune-related adverse event (irAE). Many of these side effects cause little discomfort or are asymptomatic; however, irAEs can affect any organ and are potentially life-threatening. Consequently, early diagnosis and appropriate treatment of irAEs are critical for optimizing long-term outcomes and quality of life in affected patients. Some irAEs are diagnosed according to typical symptoms, others by abnormal findings from diagnostic tests. While there are various guidelines addressing the management of irAEs, recommendations for the early recognition of irAEs as well as the optimal extent and frequency of laboratory tests are mostly lacking. In clinical practice, blood sampling is usually performed before each ICI administration (i.e., every 2-3 weeks), often for several months, representing a burden for patients as well as health care systems. In this report, we propose essential laboratory and functional tests to improve the early detection and management of irAEs and in cancer patients treated with ICIs. These multidisciplinary expert recommendations regarding essential laboratory and functional tests can be used to identify possible irAEs at an early time point, initiate appropriate interventions to improve patient outcomes, and reduce the burden of blood sampling during ICI treatment.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Cristina Espinosa da Silva
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, USA
| | - Dimitri Arangalage
- Department of Cardiology, INSERM U1148, Bichat Hospital, University of Paris, Paris, France
| | - Pierre Monney
- Department of Cardiology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Sabina A Guler
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Guido Stirnimann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lucia Possamai
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Roman Trepp
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism (UDEM), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Camille L Gerard
- Department of Oncology, Lausanne University Hospital (CHUV), University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - Petr Hruz
- Department of Gastroenterology, University Hospital Basel, Basel, Switzerland
| | - Lisa Christ
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sacha I Rothschild
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Department Internal Medicine, Center for Oncology and Hematology, Cantonal Hospital Baden, Baden, Switzerland
| |
Collapse
|
33
|
Narmani A, Ganji S, Amirishoar M, Jahedi R, Kharazmi MS, Jafari SM. Smart chitosan-PLGA nanocarriers functionalized with surface folic acid ligands against lung cancer cells. Int J Biol Macromol 2023:125554. [PMID: 37356696 DOI: 10.1016/j.ijbiomac.2023.125554] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Lung cancer is the second most prevalent and first killer cancer worldwide, and conventional approaches do not have enough ability to suppress it. Therefore, a novel targeted chitosan (CS)-poly lactic-co-glycolic acid (PLGA)-folic acid (FA) nanocarrier was developed for delivery of sorafenib (Sor) to lung cancer cells. The nanocarrier (CPSF) had a size of 30-40 nm with globular shapes. Surface charge and drug content of CPSF were ascertained at about 1.1 mV and 15 %, respectively. Controlled (4 % within 2 h) and pH-sensitive (18 % within 2 h at pH = 5.0) Sor release were observed for the nanocarrier. The MTT assay demonstrated a cell viability of 13 % after 24 h treatment with 400 nM CPSF in A549 cancer cells while it was 78 % in MSC normal cells. The qRT-PCR revealed >8 folds and 11 folds increase for Caspase9 and P53 genes after 5 h treatment with 100 nM (IC50) CPSF; but a reduction of 5 folds was observed for the Bcl2 gene. Besides, 57 % and 20 % apoptosis were attained in cell cycle arrest and apoptosis assays for CPSF, respectively. CPF indicated about 88 % internalization in cancer cells. These data prove that CPSF is a promising nanodelivery system for lung cancer suppression.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Saeid Ganji
- Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Amirishoar
- Department of Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayyeh Jahedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
34
|
Zheng Y, Li S, Tang H, Meng X, Zheng Q. Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer. Front Immunol 2023; 14:1153990. [PMID: 37426654 PMCID: PMC10327275 DOI: 10.3389/fimmu.2023.1153990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
The emergence of immunotherapy has profoundly changed the treatment model for triple-negative breast cancer (TNBC). But the heterogeneity of this disease resulted in significant differences in immunotherapy efficacy, and only some patients are able to benefit from this therapeutic modality. With the recent explosion in studies on the mechanism of cancer immunotherapy drug resistance, this article will focus on the processes of the immune response; summarize the immune evasion mechanisms in TNBC into three categories: loss of tumor-specific antigen, antigen presentation deficiency, and failure to initiate an immune response; together with the aberrant activation of a series of immune-critical signaling pathways, we will discuss how these activities jointly shape the immunosuppressive landscape within the tumor microenvironment. This review will attempt to elucidate the molecular mechanism of drug resistance in TNBC, identify potential targets that may assist in reversing drug resistance, and lay a foundation for research on identifying biomarkers for predicting immune efficacy and selection of breast cancer populations that may benefit from immunotherapy.
Collapse
Affiliation(s)
- Yiwen Zheng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shujin Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongchao Tang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qinghui Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Luke JJ, Fakih M, Schneider C, Chiorean EG, Bendell J, Kristeleit R, Kurzrock R, Blagden SP, Brana I, Goff LW, O'Hayer K, Geschwindt R, Smith M, Zhou F, Naing A. Phase I/II sequencing study of azacitidine, epacadostat, and pembrolizumab in advanced solid tumors. Br J Cancer 2023; 128:2227-2235. [PMID: 37087488 PMCID: PMC10241827 DOI: 10.1038/s41416-023-02267-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase 1 (IDO1), an interferon-inducible enzyme, contributes to tumor immune intolerance. Immune checkpoint inhibition may increase interferon levels; combining IDO1 inhibition with immune checkpoint blockade represents an attractive strategy. Epigenetic agents trigger interferon responses and may serve as an immunotherapy priming method. We evaluated whether epigenetic therapy plus IDO1 inhibition and immune checkpoint blockade confers clinical benefit to patients with advanced solid tumors. METHODS ECHO-206 was a Phase I/II study where treatment-experienced patients with advanced solid tumors (N = 70) received azacitidine plus an immunotherapy doublet (epacadostat [IDO1 inhibitor] and pembrolizumab). Sequencing of treatment was also assessed. Primary endpoints were safety/tolerability (Phase I), maximum tolerated dose (MTD) or pharmacologically active dose (PAD; Phase I), and investigator-assessed objective response rate (ORR; Phase II). RESULTS In Phase I, no dose-limiting toxicities were reported, the MTD was not reached; a PAD was not determined. ORR was 5.7%, with four partial responses. The most common treatment-related adverse events (AEs) were fatigue (42.9%) and nausea (42.9%). Twelve (17.1%) patients experienced ≥1 fatal AE, one of which (asthenia) was treatment-related. CONCLUSIONS Although the azacitidine-epacadostat-pembrolizumab regimen was well tolerated, it was not associated with substantial clinical response in patients with advanced solid tumors previously exposed to immunotherapy.
Collapse
Affiliation(s)
- Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Charles Schneider
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - E Gabriela Chiorean
- University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | | | - Razelle Kurzrock
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sarah P Blagden
- Early Phase Clinical Trials Unit, University of Oxford, Oxford, England, UK
| | - Irene Brana
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura W Goff
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Feng Zhou
- Incyte Corporation, Wilmington, DE, USA
| | - Aung Naing
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
36
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
37
|
Chen T, Zheng Y, Roskos L, Mager DE. Comparison of sequential and joint nonlinear mixed effects modeling of tumor kinetics and survival following Durvalumab treatment in patients with metastatic urothelial carcinoma. J Pharmacokinet Pharmacodyn 2023:10.1007/s10928-023-09848-w. [PMID: 36906878 DOI: 10.1007/s10928-023-09848-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/09/2023] [Indexed: 03/13/2023]
Abstract
Standard endpoints such as objective response rate are usually poorly correlated with overall survival (OS) for treatment with immune checkpoint inhibitors. Longitudinal tumor size may serve as a more useful predictor of OS, and establishing a quantitative relationship between tumor kinetics (TK) and OS is a crucial step for successfully predicting OS based on limited tumor size measurements. This study aims to develop a population TK model in combination with a parametric survival model by sequential and joint modeling approaches to characterize durvalumab phase I/II data from patients with metastatic urothelial cancer, and to evaluate and compare the performance of the two modeling approaches in terms of parameter estimates, TK and survival predictions, and covariate identification. The tumor growth rate constant was estimated to be greater for patients with OS ≤ 16 weeks as compared to that for patients with OS > 16 weeks with the joint modeling approach (kg= 0.130 vs. 0.0551 week-1, p-value < 0.0001), but similar for both groups (kg = 0.0624 vs.0.0563 week-1, p-value = 0.37) with the sequential modeling approach. The predicted TK profiles by joint modeling appeared better aligned with clinical observations. Joint modeling also predicted OS more accurately than the sequential approach according to concordance index and Brier score. The sequential and joint modeling approaches were also compared using additional simulated datasets, and survival was predicted better by joint modeling in the case of a strong association between TK and OS. In conclusion, joint modeling enabled the establishment of a robust association between TK and OS and may represent a better choice for parametric survival analyses over the sequential approach.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Yanan Zheng
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA.,Gilead Sciences, Foster City, CA, USA
| | - Lorin Roskos
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA.,Exelixis, Alameda, CA, USA
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA. .,Enhanced Pharmacodynamics, LLC, Buffalo, NY, USA.
| |
Collapse
|
38
|
Wang C, Zhang Y, Deng J, Liang B, Xing D. Developments of PROTACs technology in immune-related diseases. Eur J Med Chem 2023; 249:115127. [PMID: 36724631 DOI: 10.1016/j.ejmech.2023.115127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Traditional chemotherapy and immunotherapy are primary disease-treatment strategies. However, they face numerous challenges, including limited therapeutic benefits, off-target effects, serious adverse effects, drug resistance, long half-life time, poor oral bioavailability, and drugging undruggable proteins. Proteolytic targeted chimeras (PROTACs) were suggested to solve these problems. PROTACs are heterogeneous functional molecules linked by a chemical linker and contain a binding ligand for the protein of interest and a recruiting ligand for the E3 ligand. The binding of a PROTAC to a target protein brings the E3 ligand enzyme into proximity, initiating polyubiquitination of the target protein, followed by protease-mediated degradation. To date, PROTACs against dozens of immunological targets have been successfully developed, many of which have been clinically validated drug targets, and several have entered clinical trials for immune-related diseases. This article reviews the role of PROTACs-mediated degradation of critical proteins in immune disorders and cancer immunotherapy. Chemical structures, cellular and in vivo activities, and pharmacodynamics of these PROTACs are summarized. Lastly, we also discuss the prospects and potential limitations that PROTACs face.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
39
|
The Characteristics of Tumor Microenvironment Predict Survival and Response to Immunotherapy in Adrenocortical Carcinomas. Cells 2023; 12:cells12050755. [PMID: 36899891 PMCID: PMC10000893 DOI: 10.3390/cells12050755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Increasing evidence confirms that tumor microenvironment (TME) can influence tumor progression and treatment, but TME is still understudied in adrenocortical carcinoma (ACC). In this study, we first scored TME using the xCell algorithm, then defined genes associated with TME, and then used consensus unsupervised clustering analysis to construct TME-related subtypes. Meanwhile, weighted gene co-expression network analysis was used to identify modules correlated with TME-related subtypes. Ultimately, the LASSO-Cox approach was used to establish a TME-related signature. The results showed that TME-related scores in ACC may not correlate with clinical features but do promote a better overall survival. Patients were classified into two TME-related subtypes. Subtype 2 had more immune signaling features, higher expression of immune checkpoints and MHC molecules, no CTNNB1 mutations, higher infiltration of macrophages and endothelial cells, lower tumor immune dysfunction and exclusion scores, and higher immunophenoscore, suggesting that subtype 2 may be more sensitive to immunotherapy. 231 modular genes highly relevant to TME-related subtypes were identified, and a 7-gene TME-related signature that independently predicted patient prognosis was established. Our study revealed an integrated role of TME in ACC and helped to identify those patients who really responded to immunotherapy, while providing new strategies on risk management and prognosis prediction.
Collapse
|
40
|
Diagnostic Predictors of Immunotherapy Response in Head and Neck Squamous Cell Carcinoma. Diagnostics (Basel) 2023; 13:diagnostics13050862. [PMID: 36900006 PMCID: PMC10001329 DOI: 10.3390/diagnostics13050862] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Programmed cell death ligand-1 (PD-L1) binds PD-1 on CD8+ lymphocytes, inhibiting their cytotoxic action. Its aberrant expression by head and neck squamous cell carcinoma (HNSCC) cells leads to immune escape. Pembrolizumab and nivolumab, two humanized monoclonal antibodies against PD-1, have been approved in HNSCC treatment, but ~60% of patients with recurrent or metastatic HNSCC fail to respond to immunotherapy and only 20 to 30% of treated patients have long-term benefits. The purpose of this review is to analyze all the fragmentary evidence present in the literature to identify what future diagnostic markers could be useful for predicting, together with PD-L1 CPS, the response to immunotherapy and its durability. We searched PubMed, Embase, and the Cochrane Register of Controlled Trials and we summarize the evidence collected in this review. We confirmed that PD-L1 CPS is a predictor of response to immunotherapy, but it should be measured across multiple biopsies and repeatedly over time. PD-L2, IFN-γ, EGFR, VEGF, TGF-β, TMB, blood TMB, CD73, TILs, alternative splicing, tumor microenvironment, and some macroscopic and radiological features are promising predictors worthy of further studies. Studies comparing predictors appear to give greater potency to TMB and CXCR9.
Collapse
|
41
|
Treatment of metastatic alveolar soft part sarcoma with axitinib and pembrolizumab in an 80-year-old patient with a history of autoimmune disorders. Anticancer Drugs 2023; 34:311-316. [PMID: 36206096 DOI: 10.1097/cad.0000000000001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alveolar soft part sarcoma (ASPS) is a rare malignancy with low sensitivity to chemotherapy. While localized ASPS has a very good prognosis after resection, the 5-year overall survival rate drops substantially in metastatic disease. We report the case of an 80-year-old male patient with ASPS of the left elbow and metastasis to the lung, lymph nodes and peritoneum. After weighing the benefits and risks, systemic treatment with the anti-PD-1 checkpoint inhibitor pembrolizumab combined with the vascular endothelial growth factor receptor tyrosinkinase inhibitor axitinib was initiated in this patient with a history of psoriasis and Crohn's disease. After only two cycles of therapy, a significant size reduction of the nodal cervical metastasis became apparent. A partial response of all metastases was then confirmed in the first computed tomography restaging. So far, side effects have remained manageable, especially with regard to the development or worsening of autoimmune adverse events. The patient continued to have a high quality of life, while also remaining in ongoing partial response for 15 months at the time of submission. While sarcomas generally have low sensitivity to immunotherapies, ASPS is an exception, and checkpoint inhibition is an integral part of its systemic therapy.
Collapse
|
42
|
Wu Q, Xia Y, Xiong X, Duan X, Pang X, Zhang F, Tang S, Su J, Wen S, Mei L, Cannon RD, Ji P, Ou Z. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol 2023; 14:1169608. [PMID: 37180717 PMCID: PMC10173311 DOI: 10.3389/fphar.2023.1169608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, immune checkpoint blockade (ICB) has revolutionized the standard of treatment for solid tumors. Despite success in several immunogenic tumor types evidenced by improved survival, ICB remains largely unresponsive, especially in "cold tumors" with poor lymphocyte infiltration. In addition, side effects such as immune-related adverse events (irAEs) are also obstacles for the clinical translation of ICB. Recent studies have shown that focused ultrasound (FUS), a non-invasive technology proven to be effective and safe for tumor treatment in clinical settings, could boost the therapeutic effect of ICB while alleviating the potential side effects. Most importantly, the application of FUS to ultrasound-sensitive small particles, such as microbubbles (MBs) or nanoparticles (NPs), allows for precise delivery and release of genetic materials, catalysts and chemotherapeutic agents to tumor sites, thus enhancing the anti-tumor effects of ICB while minimizing toxicity. In this review, we provide an updated overview of the progress made in recent years concerning ICB therapy assisted by FUS-controlled small-molecule delivery systems. We highlight the value of different FUS-augmented small-molecules delivery systems to ICB and describe the synergetic effects and underlying mechanisms of these combination strategies. Furthermore, we discuss the limitations of the current strategies and the possible ways that FUS-mediated small-molecule delivery systems could boost novel personalized ICB treatments for solid tumors.
Collapse
Affiliation(s)
- Qiuyu Wu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuanhang Xia
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaohe Xiong
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xinxing Duan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Song Tang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Junlei Su
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Shuqiong Wen
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| | - Zhanpeng Ou
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| |
Collapse
|
43
|
Nan H, Guo P, Fan J, Zeng W, Hu C, Zheng C, Pan B, Cao Y, Ge Y, Xue X, Li W, Lin K. Comprehensive analysis of the prognosis, tumor microenvironment, and immunotherapy response of SDHs in colon adenocarcinoma. Front Immunol 2023; 14:1093974. [PMID: 36949947 PMCID: PMC10025334 DOI: 10.3389/fimmu.2023.1093974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Background Succinate dehydrogenase (SDH), one of the key enzymes in the tricarboxylic acid cycle, is mainly found in the mitochondria. SDH consists of four subunits encoding SDHA, SDHB, SDHC, and SDHD. The biological function of SDH is significantly related to cancer progression. Colorectal cancer (CRC) is one of the most common malignant tumors globally, whose most common histological subtype is colon adenocarcinoma (COAD). However, the correlation between SDH factors and COAD remains unclear. Methods The data on pan-cancer was obtained from The Cancer Genome Atlas (TCGA) database. Kaplan-Meier survival analysis showed the prognostic ability of SDHs. The cBioPortal database reflected genetic variations of SDHs. The correlation analysis was conducted between SDHs and mitochondrial energy metabolism genes (MMGs) and the protein-protein interaction (PPI) network was built. Consequently, Univariate and Multivariate Cox Regression Analysis on SDHs and other clinical characteristics were conducted. A nomogram was established. The ssGSEA analysis visualized the association between SDHs and immune infiltration. Immunophenoscore (IPS) explored the correlation between SDHs and immunotherapy, and the correlation between SDHs and targeted therapy was investigated through Genomics of Drug Sensitivity in Cancer. Finally, qPCR and immunohistochemistry detected SDHs' expression. Results After assessing SDHs differential expression in pan-cancer, we found that SDHB, SDHC, and SDHD benefit COAD patients. The cBioPortal database demonstrated that SDHA was the top gene in mutation frequency rank. Correlation analysis mirrored a strong link between SDHs and MMGs. We formulated a nomogram and found that SDHB, SDHC, SDHD, and clinical characteristics correlated with COAD patients' survival. For T helper cells, Th2 cells, and Tem, SDHA, SDHB, SDHC, and SDHD were significantly enriched in the high expression group. Moreover, COAD patients with high SDHA expression were more suitable for immunotherapy. And COAD patients with different SDHs' expression have different sensitivity to targeted drugs. Further verifying the gene and protein expression levels of SDHs, we found that the tissues were consistent with the bioinformatics analysis. Conclusions Our study analyzed the expression and prognostic value of SDHs in COAD, explored the pathway mechanisms involved, and the immune cell correlations, indicating that SDHs might be biomarkers for COAD patients.
Collapse
Affiliation(s)
- Han Nan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pengkun Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianing Fan
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen Zeng
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chonghan Hu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Can Zheng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Bujian Pan
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
| | - Yu Cao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwen Ge
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangyang Xue, ; Wenshu Li, ; Kezhi Lin,
| | - Wenshu Li
- Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Xiangyang Xue, ; Wenshu Li, ; Kezhi Lin,
| | - Kezhi Lin
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangyang Xue, ; Wenshu Li, ; Kezhi Lin,
| |
Collapse
|
44
|
Stereotactic Body Radiotherapy and Immunotherapy for Older Patients with Oligometastases: A Proposed Paradigm by the International Geriatric Radiotherapy Group. Cancers (Basel) 2022; 15:cancers15010244. [PMID: 36612239 PMCID: PMC9818761 DOI: 10.3390/cancers15010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The standard of care for metastatic disease is systemic therapy. A unique subset of patients with limited metastatic disease defined as distant involvement of five anatomic sites or less (oligometastases) have a better chance of remission or improved survival and may benefit from local treatments such as surgery or stereotactic body radiotherapy (SBRT). However, to prevent further spread of disease, systemic treatment such as chemotherapy, targeted therapy, and hormonal therapy may be required. Older patients (70 years old or above) or physiologically frail younger patients with multiple co-morbidities may not be able to tolerate the conventional chemotherapy due to its toxicity. In addition, those with a good performance status may not receive optimal chemotherapy due to concern about toxicity. Recently, immunotherapy with checkpoint inhibitors (CPI) has become a promising approach only in the management of program death ligand 1 (PD-L1)-positive tumors. Thus, a treatment method that elicits induction of PD-L1 production by tumor cells may allow all patients with oligometastases to benefit from immunotherapy. In vitro studies have demonstrated that high dose of radiotherapy may induce formation of PD-L1 in various tumors as a defense mechanism against inflammatory T cells. Clinical studies also corroborated those observations. Thus, SBRT, with its high precision to minimize damage to normal organs, may be a potential treatment of choice for older patients with oligometastases due to its synergy with immunotherapy. We propose a protocol combining SBRT to achieve a minimum radiobiologic equivalent dose around 59.5 Gy to all tumor sites if feasible, followed four to six weeks later by CPI for those cancer patients with oligometastases. All patients will be screened with frailty screening questionnaires to identify individuals at high risk for toxicity. The patients will be managed with an interdisciplinary team which includes oncologists, geriatricians, nurses, nutritionists, patient navigators, and social workers to manage all aspects of geriatric patient care. The use of telemedicine by the team may facilitate patient monitoring during treatment and follow-up. Preliminary data on toxicity, local control, survival, and progression-free survival may be obtained and serve as a template for future prospective studies.
Collapse
|
45
|
Voronova V, Vislobokova A, Mutig K, Samsonov M, Peskov K, Sekacheva M, Materenchuk M, Bunyatyan N, Lebedeva S. Combination of immune checkpoint inhibitors with radiation therapy in cancer: A hammer breaking the wall of resistance. Front Oncol 2022; 12:1035884. [PMID: 36544712 PMCID: PMC9760959 DOI: 10.3389/fonc.2022.1035884] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology is an emerging field in the treatment of oncological diseases, that is based on recruitment of the host immune system to attack the tumor. Radiation exposure may help to unlock the potential of the immune activating agents by enhancing the antigen release and presentation, attraction of immunocompetent cells to the inflammation site, and eliminating the tumor cells by phagocytosis, thereby leading to an overall enhancement of the immune response. Numerous preclinical studies in mouse models of glioma, murine melanoma, extracranial cancer, or colorectal cancer have contributed to determination of the optimal radiotherapy fractionation, as well as the radio- and immunotherapy sequencing strategies for maximizing the antitumor activity of the treatment regimen. At the same time, efficacy of combined radio- and immunotherapy has been actively investigated in clinical trials of metastatic melanoma, non-small-cell lung cancer and renal cell carcinoma. The present review summarizes the current advancements and challenges related to the aforementioned treatment approach.
Collapse
Affiliation(s)
- Veronika Voronova
- Department of Pharmacological Modeling, M&S Decisions LLC, Moscow, Russia
| | - Anastasia Vislobokova
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mikhail Samsonov
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kirill Peskov
- Department of Pharmacological Modeling, M&S Decisions LLC, Moscow, Russia,MID3 Research Center, I.M. Sechenov First Moscow State Medical University, Moscow, Russia,Artificial Intelligence Research Center, STU Sirius, Sochi, Russia
| | - Marina Sekacheva
- World-Class Research Center “Digital biodesign and personalized healthcare”, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maria Materenchuk
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalya Bunyatyan
- Institute of Professional Education, I.M. Sechenov First Moscow State Medical University, Moscow, Russia,Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medicinal Products” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia,Institute of Professional Education, I.M. Sechenov First Moscow State Medical University, Moscow, Russia,*Correspondence: Svetlana Lebedeva,
| |
Collapse
|
46
|
Liu X, Pan L, Wang K, Pan W, Li N, Tang B. Imaging strategies for monitoring the immune response. Chem Sci 2022; 13:12957-12970. [PMID: 36425502 PMCID: PMC9667917 DOI: 10.1039/d2sc03446h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/05/2022] [Indexed: 08/11/2023] Open
Abstract
Real-time monitoring of the immune response can be used to evaluate the immune status of the body and to distinguish immune responders and non-responders, so as to better guide immunotherapy. Through direct labelling of immune cells and imaging specific biomarkers of different cells, the activation status of immune cells and immunosuppressive status of tumor cells can be visualized. The immunotherapeutic regimen can then be adjusted accordingly in a timely manner to improve the efficacy of immunotherapy. In this review, various imaging methods, immune-related imaging probes, current challenges and opportunities are summarized and discussed.
Collapse
Affiliation(s)
- Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Limeng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Kaiye Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
47
|
Jaimes MC, Leipold M, Kraker G, Amir E, Maecker H, Lannigan J. Full spectrum flow cytometry and mass cytometry: A 32-marker panel comparison. Cytometry A 2022; 101:942-959. [PMID: 35593221 PMCID: PMC9790709 DOI: 10.1002/cyto.a.24565] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023]
Abstract
High-dimensional single-cell data has become an important tool in unraveling the complexity of the immune system and its involvement in homeostasis and a large array of pathologies. As technological tools are developed, researchers are adopting them to answer increasingly complex biological questions. Up until recently, mass cytometry (MC) has been the main technology employed in cytometric assays requiring more than 29 markers. Recently, however, with the introduction of full spectrum flow cytometry (FSFC), it has become possible to break the fluorescence barrier and go beyond 29 fluorescent parameters. In this study, in collaboration with the Stanford Human Immune Monitoring Center (HIMC), we compared five patient samples using an established immune panel developed by the HIMC using their MC platform. Using split samples and the same antibody panel, we were able to demonstrate highly comparable results between the two technologies using multiple data analysis approaches. We report here a direct comparison of two technology platforms (MC and FSFC) using a 32-marker flow cytometric immune monitoring panel that can identify all the previously described and anticipated immune subpopulations defined by this panel.
Collapse
Affiliation(s)
| | - Michael Leipold
- Department of Microbiology/ImmunologyStanford UniversityStanfordCaliforniaUSA
| | - Geoffrey Kraker
- Technical Applications SupportCytek Biosciences Inc.FremontCaliforniaUSA
| | - El‐ad Amir
- Astrolabe DiagnosticsFort LeeNew JerseyUSA
| | - Holden Maecker
- Department of Microbiology/ImmunologyStanford UniversityStanfordCaliforniaUSA
| | | |
Collapse
|
48
|
Costa VR, Soileau AM, Liu CC, Moeller CE, Carossino M, Langohr IM, Withers SS. Exploring the association of intratumoral immune cell infiltrates with histopathologic grade in canine mast cell tumors. Res Vet Sci 2022; 147:83-91. [PMID: 35490489 PMCID: PMC11293894 DOI: 10.1016/j.rvsc.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
Cutaneous canine mast cell tumors (ccMCTs) vary in their biological behavior, treatment, and prognosis, based on their grade. Immune cell infiltration has been associated with prognosis and response to treatments in some human cancers, and immune-targeting therapeutics are increasingly being explored in veterinary oncology. However, currently little is known about the tumor microenvironment (TME) in ccMCTs. Therefore, the objective of this study was to determine the prevalence of T lymphocytes, T regulatory lymphocytes, PD-1+ cells and macrophages in low- and high-grade ccMCTs. Thirty low-grade and 20 high-grade formalin-fixed paraffin-embedded ccMCT samples were included. Immunohistochemistry (IHC) was performed to detect CD3, FOXP3, Iba1, and PD-1 on sequential sections. Three 400x fields with the highest numbers of CD3+ cells were identified for each tumor. The percentage of CD3+, FOXP3+, and Iba1+ cells, and the number of PD-1+ cells, was quantified in each of these three "hot-spot" fields using ImageJ software. Iba1 expression was significantly greater in high-grade compared to low-grade ccMCTs (mean = 12.5% vs. 9.6%, p = 0.043). PD-1 expression was low overall, but a significantly higher number of PD-1-expressing cells was observed in high-grade ccMCTs (median 1 vs. 0, p = 0.001). No significant difference was noted in CD3 and FOXP3 expression between ccMCT grades. Macrophages and PD-1+ cells were more frequent in high-grade, compared to low-grade ccMCTs. Further studies are needed to define the role of macrophages and rare PD-1+ cells in high-grade ccMCTs.
Collapse
Affiliation(s)
- Victoria R Costa
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Aimee M Soileau
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Chin-Chi Liu
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Cambri E Moeller
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana State University, Department of Pathobiological Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA; Louisiana State University, Louisiana Animal Disease Diagnostic Laboratory (LADDL), River Rd, #1043, Baton Rouge, LA 70803, USA
| | - Ingeborg M Langohr
- Louisiana State University, Department of Pathobiological Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA; Louisiana State University, Louisiana Animal Disease Diagnostic Laboratory (LADDL), River Rd, #1043, Baton Rouge, LA 70803, USA
| | - Sita S Withers
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, 1909 Skip Bertman Dr., Baton Rouge, LA 70803, USA.
| |
Collapse
|
49
|
Hossain SM, Gimenez G, Stockwell PA, Tsai P, Print CG, Rys J, Cybulska-Stopa B, Ratajska M, Harazin-Lechowska A, Almomani S, Jackson C, Chatterjee A, Eccles MR. Innate immune checkpoint inhibitor resistance is associated with melanoma sub-types exhibiting invasive and de-differentiated gene expression signatures. Front Immunol 2022; 13:955063. [PMID: 36248850 PMCID: PMC9554309 DOI: 10.3389/fimmu.2022.955063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Melanoma is a highly aggressive skin cancer, which, although highly immunogenic, frequently escapes the body’s immune defences. Immune checkpoint inhibitors (ICI), such as anti-PD1, anti-PDL1, and anti-CTLA4 antibodies lead to reactivation of immune pathways, promoting rejection of melanoma. However, the benefits of ICI therapy remain limited to a relatively small proportion of patients who do not exhibit ICI resistance. Moreover, the precise mechanisms underlying innate and acquired ICI resistance remain unclear. Here, we have investigated differences in melanoma tissues in responder and non-responder patients to anti-PD1 therapy in terms of tumour and immune cell gene-associated signatures. We performed multi-omics investigations on melanoma tumour tissues, which were collected from patients before starting treatment with anti-PD1 immune checkpoint inhibitors. Patients were subsequently categorized into responders and non-responders to anti-PD1 therapy based on RECIST criteria. Multi-omics analyses included RNA-Seq and NanoString analysis. From RNA-Seq data we carried out HLA phenotyping as well as gene enrichment analysis, pathway enrichment analysis and immune cell deconvolution studies. Consistent with previous studies, our data showed that responders to anti-PD1 therapy had higher immune scores (median immune score for responders = 0.1335, median immune score for non-responders = 0.05426, p-value = 0.01, Mann-Whitney U two-tailed exact test) compared to the non-responders. Responder melanomas were more highly enriched with a combination of CD8+ T cells, dendritic cells (p-value = 0.03) and an M1 subtype of macrophages (p-value = 0.001). In addition, melanomas from responder patients exhibited a more differentiated gene expression pattern, with high proliferative- and low invasive-associated gene expression signatures, whereas tumours from non-responders exhibited high invasive- and frequently neural crest-like cell type gene expression signatures. Our findings suggest that non-responder melanomas to anti-PD1 therapy exhibit a de-differentiated gene expression signature, associated with poorer immune cell infiltration, which establishes a gene expression pattern characteristic of innate resistance to anti-PD1 therapy. Improved understanding of tumour-intrinsic gene expression patterns associated with response to anti-PD1 therapy will help to identify predictive biomarkers of ICI response and may help to identify new targets for anticancer treatment, especially with a capacity to function as adjuvants to improve ICI outcomes.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A. Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cristin G. Print
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Janusz Rys
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | - Bozena Cybulska-Stopa
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | - Magda Ratajska
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Harazin-Lechowska
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | - Suzan Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Christopher Jackson
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- *Correspondence: Michael R. Eccles,
| |
Collapse
|
50
|
Ma Y, Marinkova R, Nenkov M, Jin L, Huber O, Sonnemann J, Peca N, Gaßler N, Chen Y. Tumor-Intrinsic PD-L1 Exerts an Oncogenic Function through the Activation of the Wnt/β-Catenin Pathway in Human Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:11031. [PMID: 36232331 PMCID: PMC9569632 DOI: 10.3390/ijms231911031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) strongly inhibits T cell activation, thereby aiding tumors in escaping the immune response. PD-L1 inhibitors have proven to be effective in the treatment of different types of cancer, including non-small cell lung cancer (NSCLC). Yet, the knowledge regarding the biological function of tumor-intrinsic PD-L1 in lung cancer remains obscure. In our study, we set the goal of determining the function of PD-L1 using overexpression and knockdown strategies. PD-L1 silencing resulted in decreased migratory and invasive ability of tumor cells, together with attenuated colony-forming capacity. Ectopic expression of PD-L1 showed the opposite effects, along with increased activities of MAPK and Wnt/β-catenin pathways, and the upregulation of Wnt/β-catenin target genes. Additionally, overexpression of PD-L1 was associated with dysregulated cellular and exosomal miRNAs involved in tumor progression and metastasis. In primary lung tumors, immunohistochemistry revealed that both PD1 and PD-L1 were highly expressed in squamous cell carcinoma (SCC) compared to adenocarcinoma (p = 0.045 and p = 0.036, respectively). In SCC, PD1 expression was significantly associated with tumor grading (p = 0.016). Taken together, our data suggest that PD-L1 may exert an oncogenic function in NSCLC through activating Wnt/β-catenin signaling, and may act as a potential diagnostic marker for lung SCC.
Collapse
Affiliation(s)
- Yunxia Ma
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Rumyana Marinkova
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Miljana Nenkov
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Lai Jin
- Department of Hematology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | - Otmar Huber
- Institute of Biochemistry II, Jena University Hospital, Friedrich Schiller University Jena, Nonnenplan 2, 07743 Jena, Germany
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children’s Clinic, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Natália Peca
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|