1
|
Rimini M, Fornaro L, Prinzi FL, Rizzato MD, Saborowski A, Antonuzzo L, Rossari F, Satake T, Peeters F, Vivaldi C, Pressiani T, Lucchetti J, Kim JW, Abidoye O, Rapposelli IG, Tamberi S, Finkelmeier F, Giordano G, Pircher C, Chon HJ, Braconi C, Qaisar A, Pirrone C, Castet F, Tamburini E, Yoo C, Parisi A, Diana A, Scartozzi M, Prager GW, Avallone A, Schirripa M, Kim IH, Perkhofer L, Oneda E, Verrico M, Couto N, Adeva J, Chan SL, Spinelli GP, Personeni N, Garajova I, Rodriquenz MG, Leo S, Alvim CM, Roque R, Farinea G, Salani F, De Rosa A, Lavacchi D, Camera S, Ikeda M, Dekervel J, Niger M, Balsano R, Tonini G, Corallo S, Kang M, Bekaii-Saab T, Esposito L, Boccaccino A, Vitiello F, Himmelsbach V, Landriscina M, Djaballah SA, Tesini G, Masi G, Vogel A, Lonardi S, Rimassa L, Casadei-Gardini A. Factors associated with reaching maintenance therapy in patients with advanced biliary tract cancer treated with durvalumab: Real-world results from a multicenter and multinational study. Int J Cancer 2025. [PMID: 40387725 DOI: 10.1002/ijc.35481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Standard of care first-line systemic treatment for advanced biliary tract cancer includes chemo-immunotherapy with gemcitabine, cisplatin, and durvalumab, followed by maintenance durvalumab monotherapy. The present work aims to investigate the differences in baseline clinical and molecular characteristics between patients with early progression during chemo-immunotherapy and those who reach durvalumab maintenance therapy. The study population included patients with unresectable, locally advanced, or metastatic BTC who received treatment at 38 clinical Institutions in 12 countries from July 2021 to December 2023. The primary objective of the study was to investigate whether baseline clinical and molecular characteristics differed between patients with early progression during chemo-immunotherapy versus those reaching durvalumab maintenance therapy. Four hundred forty-eight patients were included in this study. Two hundred twenty-seven patients (50.7%) received maintenance with durvalumab monotherapy, whereas 221 (49.3%) did not receive maintenance therapy due to PD during first-line chemo-immunotherapy before completing 8 cycles. Results show that patients who received maintenance were more likely to be older (≥70 years), have an ECOG = 0, locally advanced disease, and a neutrophil-to-lymphocyte ratio (NLR) <3. A higher proportion of patients with BAP1 mutations received maintenance, while TP53 mutations were more common in those who progressed early. According to the present analysis, a substantial proportion of patients (50.7%) with advanced BTC who were treated with chemotherapy plus durvalumab proceeded to receive maintenance therapy with durvalumab monotherapy, with a median treatment duration of 4.4 cycles. Patients ≥70 years, with ECOG PS 0, with locally advanced disease, and with NLR <3 had a higher likelihood of receiving maintenance therapy.
Collapse
Affiliation(s)
- Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Lorenzo Fornaro
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Federica Lo Prinzi
- Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | | | - Lorenzo Antonuzzo
- Clinical Oncology Unit, Careggi University Hospital; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence; Thoracic Surgery Unit, Careggi University Hospital, Florence, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Tomoyuki Satake
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Frederik Peeters
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Caterina Vivaldi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Jessica Lucchetti
- Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Jin Won Kim
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Oluseyi Abidoye
- Department of Internal Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Stefano Tamberi
- Medical Oncology, Santa Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Fabian Finkelmeier
- Medical Clinic 1, Department of Gastroenterology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Chiara Pircher
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Hong Jae Chon
- Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Chiara Braconi
- University of Glasgow (School of Cancer Sciences), Beatson West of Scotland Cancer Centre, CRUK Scotland Centre, Glasgow, UK
| | - Aitzaz Qaisar
- University of Glasgow (School of Cancer Sciences), Beatson West of Scotland Cancer Centre, CRUK Scotland Centre, Glasgow, UK
| | - Chiara Pirrone
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, Genoa, Italy
| | - Florian Castet
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Emiliano Tamburini
- Oncology Department and Palliative Care, Cardinale Panico Tricase City Hospital, Tricase, Italy
| | - Changhoon Yoo
- ASAN Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Alessandro Parisi
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | - Anna Diana
- Oncology Unit, Ospedale del Mare, Naples, Italy
| | - Mario Scartozzi
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Gerald W Prager
- Department of Medicine I, Clinical Division of Oncology, Medical University Vienna, Austria
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples, Italy
| | - Marta Schirripa
- Medical Oncology Unit, Department of Oncology and Hematology, Belcolle Hospital, Viterbo, Italy
| | - Il Hwan Kim
- Division of Oncology, Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Lukas Perkhofer
- Internal Medicine 1, University Hospital Ulm, Ulm, Germany
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany
| | - Ester Oneda
- Dipartimento di Oncologia medica, Fondazione Poliambulanza, Brescia, Italy
| | - Monica Verrico
- UOC Oncologia A, Department of Hematology, Oncology and Dermatology, Policlinico Umberto I University Hospital, Sapienza University of Rome, Rome, Italy
| | - Nuno Couto
- Digestive Unit, Champalimaud Clinical Centre, Champalimaud Research Centre, Lisbon, Portugal
| | - Jorge Adeva
- 12 de Octubre University Hospital, Spanish Society of Medical Oncology (SEOM), Madrid, Spain
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Gian Paolo Spinelli
- UOC Oncologia Territoriale, Polo Pontino, La Sapienza Università Di Roma, Latina, Italy
| | - Nicola Personeni
- Medical Oncology Unit, P.O. Manerbio - ASST Garda, Manerbio (Brescia), Italy
| | - Ingrid Garajova
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Maria Grazia Rodriquenz
- Oncology Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Silvana Leo
- Division of Oncology, Vito Fazzi Hospital, Lecce, Italy
| | - Cecilia Melo Alvim
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Ricardo Roque
- Portuguese Institute of Oncology of Coimbra, Coimbra, Portugal
| | - Giovanni Farinea
- 12 de Octubre University Hospital, Spanish Society of Medical Oncology (SEOM), Madrid, Spain
| | - Francesca Salani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio De Rosa
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Daniele Lavacchi
- Clinical Oncology Unit, Careggi University Hospital; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Jeroen Dekervel
- Digestive Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Monica Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rita Balsano
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Giuseppe Tonini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Salvatore Corallo
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Minsu Kang
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Luca Esposito
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Vera Himmelsbach
- Medical Clinic 1, Department of Gastroenterology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Policlinico Riuniti, Foggia, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Giulia Tesini
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Arndt Vogel
- Hannover Medical School, Hannover, Germany
- Longo Family Chair in Liver Cancer Research, Division of Gastroenterology and Hepatology, Toronto General Hospital, Medical Oncology, Princess Margaret Cancer Centre, Schwartz Reisman Liver Research Centre, Toronto, Canada
| | - Sara Lonardi
- Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lorenza Rimassa
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
2
|
Poggiana C, Piazza AF, Catoni C, Gallingani I, Piccin L, Pellegrini S, Aneloni V, Salizzato V, Pigozzo J, Fabozzi A, Facchinetti A, Menin C, Del Fiore P, Mocellin S, Chiarion-Sileni V, Rosato A, Scaini MC. A model workflow for microfluidic enrichment and genetic analysis of circulating melanoma cells. Sci Rep 2025; 15:15329. [PMID: 40316673 PMCID: PMC12048555 DOI: 10.1038/s41598-025-99153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Circulating melanoma cells (CMCs) are responsible for the hematogenous spread of melanoma and, ultimately, metastasis. However, their study has been limited by the low abundance in patient blood and the heterogeneous expression of surface markers. The FDA-approved CellSearch platform enriches CD146-positive CMCs, whose number correlates with progression-free survival and overall survival. However, a single marker may not be sufficient to identify them all. The Parsortix system allows enrichment of CMCs based on their size and deformability, keeping them viable and suitable for downstream molecular analyses. In this study, we tested the strengths, weaknesses and potential convergences of both platforms to integrate the counting of CMCs with a protocol for their genetic analysis. Samples run on Parsortix were labeled with a customized melanoma antibody cocktail, which efficiently labeled and distinguished CMCs from endothelial cells/leukocytes. The capture rate of CellSearch and Parsortix was comparable for cell lines, but Parsortix had a higher capture rate in real-life samples. Moreover, double enrichment with both CellSearch and Parsortix succeeded in removing most of the leukocyte contamination, resulting in an almost pure CMC sample suitable for genetic analysis. In this regard, a proof-of-concept analysis of CMCs from a paradigmatic case of a metastatic uveal melanoma patient led to the identification of multiple genetic alterations. In particular, the GNAQ p.Q209L was identified as homozygous, while a deletion in BAP1 exon 9 was found hemizygous. Moreover, an isochromosome 8 and a homozygous deletion of the CDKN2A gene were detected. In conclusion, we have optimized an approach to successfully enrich and retrieve viable CMCs from metastatic melanoma patients. Moreover, this study provides proof-of-principle for the feasibility of a marker-agnostic CMC enrichment followed by CMC phenotypic identification and genetic analysis.Kindly check and confirm the processed contributed equally is correctly identify We confirm.
Collapse
Affiliation(s)
- Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Ilaria Gallingani
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Luisa Piccin
- Medical Oncology 2, Veneto Institute of Oncology, IOV-IRCCS, Padova, Italy
| | - Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Vittorio Aneloni
- UOC Immunotrasfusionale, University-Hospital of Padova, Padova, Italy
| | | | - Jacopo Pigozzo
- Medical Oncology 2, Veneto Institute of Oncology, IOV-IRCCS, Padova, Italy
| | - Alessio Fabozzi
- Oncology Unit 3, Veneto Institute of Oncology IOV-IRCCS, Padova, 35128, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| |
Collapse
|
3
|
Chen S, Zhao C, Liu R, Jiao W. A bibliometric analysis of malignant pleural mesothelioma from 2010 to 2023. J Thorac Dis 2025; 17:2014-2027. [PMID: 40400943 PMCID: PMC12090152 DOI: 10.21037/jtd-24-1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/07/2025] [Indexed: 05/23/2025]
Abstract
Background Malignant pleural mesothelioma (MPM) is an aggressive tumor originating from the mesothelial lining of the pleural cavity. It is characterized by extensive nodular pleural thickening and has a propensity to invade the pleural adipose tissue and adjacent chest structures. The prognosis is poor, with a median survival time rarely exceeding 12 months following diagnosis. Methods This bibliometric analysis systematically assessed global trends in MPM research from 2010 to 2023 using 6,487 publications indexed in PubMed. Quantitative evaluations of publication metrics, international collaboration, and keyword co-occurrence networks were conducted using R software with the bibliometrix package. Network construction and thematic mapping were employed to analyze the temporal evolution of research topics. Results The United States and Europe have played pivotal roles in this research, while contributions from China and Japan have been steadily increasing. Traditional treatment approaches and etiological studies are relatively well-established. Meanwhile, immunotherapy has emerged as a prominent focus of recent research. Conclusions Future global collaboration in this field should be enhanced, as precision medicine related to immunology and genetics has the potential to transform the treatment landscape of MPM.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ce Zhao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruiqi Liu
- Department of Radiology, The First People’s Hospital of Fuyang, Fuyang, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Elsayed AM, Kittaneh M, Cebulla CM, Abdel-Rahman MH. An overview of BAP1 biological functions and current therapeutics. Biochim Biophys Acta Rev Cancer 2025; 1880:189267. [PMID: 39842618 DOI: 10.1016/j.bbcan.2025.189267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that was first identified in 1998. Germline loss-of-function variants in BAP1 are associated with a tumor predisposition syndrome with at least four cancers: uveal melanoma (UM), malignant mesothelioma (MMe), renal cell carcinoma (RCC), and cutaneous melanoma (CM). Furthermore, somatic BAP1 mutations are important drivers for several cancers most notably UM, MMe, RCC, intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Emerging evidence substantiates the fundamental role of BAP1 in suppressing cancer initiation and progression by tuning DNA damage repair, apoptosis, ferroptosis, immune response, Warburg phenomenon, and metastasis. Multiple treatment strategies such as poly (ADP-ribose) polymerase (PARP) inhibitors, EZH2 inhibitors, alkylating agents, and immunotherapy have been used as potential therapies for BAP1-mutated tumors. Although these agents showed promising results in BAP1-mutated tumors in preclinical studies, the results of most clinical trials are still dismal. The objectives of this review are to summarize the current state of knowledge regarding the biological functions of BAP1, the implications of these functions in tumorigenesis, and the current progress in BAP1-targeted therapy.
Collapse
Affiliation(s)
- Abdelrahman M Elsayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
| | - Muaiad Kittaneh
- Department of Oncology, Loyola University Chicago, Maywood, IL 60660, USA
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Division of Human Genetics, Department of Internal Medicine, The Ohio State University Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Yu L, Zheng X, Wu Y, Ge K. USP14-Dependent IGF1R Aggravates High Glucose-Induced Diabetic Retinopathy by Upregulating BAP1. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05215-2. [PMID: 40163271 DOI: 10.1007/s12010-025-05215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes. Insulin-like growth factor 1 receptor (IGF1R) has been implicated in the pathogenesis of DR; however, the underlying mechanism remains unclear. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to assess IGF1R mRNA expression. Western blotting assays were performed to analyze the protein expression of IGF1R, ubiquitin-specific peptidase 14 (USP14), and BRCA1-associated protein 1 (BAP1). Cell viability, apoptosis, interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels were analyzed using cell counting kit-8 assay, flow cytometry, and enzyme-linked immunosorbent assays, respectively. Fluorescent microscopy and flow cytometry were performed for reactive oxygen species (ROS) level assessment, and colorimetric assays for iron (Fe2+) and glutathione (GSH) levels. Co-immunoprecipitation assays and/or colocalization techniques were employed to validate the association of IGF1R with USP14 and BAP1. Treatment with high glucose (HG) increased the protein expression of IGF1R, USP14, and BAP1 in ARPE-19 cells. Silencing of IGF1R mitigated HG-induced apoptosis, inflammatory response, and ferroptosis in ARPE-19 cells. USP14 was found to stabilize IGF1R protein expression through deubiquitination. Overexpression of USP14 exacerbated HG-induced cellular injury, whereas silencing of USP14 protected ARPE-19 cells by reducing IGF1R expression. Interaction between IGF1R and BAP1 was confirmed in ARPE-19 cells and IGF1R silencing protected cells from HG-induced injury by regulating BAP1 expression. Thus, USP14-dependent regulation of IGF1R expression and its interaction with BAP1 play a crucial role in the pathogenesis of high glucose-induced diabetic retinopathy.
Collapse
Affiliation(s)
- Li Yu
- Department of Ophthalmology, Jiangxia District, The First People's Hospital of , No.1 Zhifang Cultural Avenue, Jiangxia District, Wuhan City, 430200, Hubei Province, China
| | - Xia Zheng
- Department of Ophthalmology, Jiangxia District, The First People's Hospital of , No.1 Zhifang Cultural Avenue, Jiangxia District, Wuhan City, 430200, Hubei Province, China
| | - Yan Wu
- Department of Ophthalmology, Jiangxia District, The First People's Hospital of , No.1 Zhifang Cultural Avenue, Jiangxia District, Wuhan City, 430200, Hubei Province, China.
| | - Kui Ge
- Department of Ophthalmology, Jiangxia District, The First People's Hospital of , No.1 Zhifang Cultural Avenue, Jiangxia District, Wuhan City, 430200, Hubei Province, China.
| |
Collapse
|
6
|
Zhang P, Liu X, Liu Y, Zhu H, Zheng C, Ling Q, Yan F, He Q, Zhu H, Yuan T, Yang B. VCP Promotes Cholangiocarcinoma Development by Mediating BAP1 Ubiquitination-Dependent Degradation. Cancer Sci 2025. [PMID: 40122668 DOI: 10.1111/cas.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Cholangiocarcinoma (CCA), recognized for its high malignancy, has been an enormous challenge due to lacking effective treatment therapy over the past decades. Recently, the targeted therapies, such as Pemigatinib and Ivosidenib, have provided new treatment options for patients carrying fibroblast growth factor receptor (FGFR) and isocitrate dehydrogenase 1/2 (IDH1/2) mutations, but only ~30% of patients harbor these mutants; it is urgent to explore novel targets and therapeutic therapies. The frequent downregulation of BAP1 has been observed in CCA, and the low expression of BAP1 is closely related to the poor prognosis of CCA. However, there are no effective interventions to re-activate BAP1 protein; blocking its degradation may provide a feasible strategy for BAP1-downregulation CCA treatment. In this study, we demonstrated the tumor-suppressive roles of BAP1 in CCA and identified VCP functions as the key upstream regulator mediated by BAP1 protein homeostasis. Mechanistically, VCP binds to BAP1 and promotes the latter's ubiquitination degradation via the ubiquitin-proteasome pathway, thus promoting cell proliferation and inhibiting cell apoptosis. Moreover, we found that VCP inhibitors inhibited CCA cell growth and promoted cell apoptosis by blocking BAP1 ubiquitination degradation. Collectively, our findings not only provided a novel mechanism underlying the aberrant low expression of BAP1 in CCA but also verified the anti-tumor effect of VCP inhibitors in CCA, offering a novel therapeutic target for CCA treatment.
Collapse
Affiliation(s)
- Peiying Zhang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangning Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongdao Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Churun Zheng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Nawn D, Hassan SS, Hromić-Jahjefendić A, Bhattacharya T, Basu P, Redwan EM, Barh D, Andrade BS, Aljabali AA, Serrano-Aroca Á, Lundstrom K, Tambuwala MM, Uversky VN. Molecular genomic insights into melanoma associated proteins PRAME and BAP1. J Biomol Struct Dyn 2025:1-31. [PMID: 40084617 DOI: 10.1080/07391102.2025.2475228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Melanoma, a globally prevalent skin cancer with over 325,000 new cases annually, necessitates a comprehensive under- standing of its molecular components. This study looks at the PRAME (cutaneous melanoma-associated antigen) and BAP1 (gene controlling gene-environment interactions) proteins. Both PRAME and BAP1 are associated with critical genomic alterations that significantly influence melanoma progression and patient outcomes. PRAME is overexpressed in various cancers, especially uveal melanoma (UM), where high levels correlate with poor prognosis and genomic instability linked to chromosome 8q12 alterations. Meanwhile, mutations in BAP1 contribute to increased genomic instability and a higher risk of metastasis in UM, highlighting its importance as a key prognostic marker in tumorigenesis. Established approaches along with features proposed in this work are used to investigate sequence conservation, polyglutamic acid presence, intrinsic disorder of proteins, polar-nonpolar residues arrangement PRAME and BAP1 conserved residues highlight their critical roles in protein function and interaction. Sequence invariance indicates the possibility of functional relevance and evolutionary conservation. PRAME has enhanced intrinsic disorder and flexibility, whereas BAP1 has changed disorder-promoting residue sequences. Polyglutamic acid strings are found in both proteins, emphasizing their modulatory involvement in protein interactions. The ratios and spatial arrangement of amino acids have a profound influence on interactions and gene dysregulation. This work contributes to a better knowledge of the two melanoma-associated proteins viz. PRAME and BAP1 by unraveling their structural and functional complexities.
Collapse
Affiliation(s)
- Debaleena Nawn
- Department of Computer Science and Engineering, Adamas University, Jagannathpur, Kolkata, West Bengal, India
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, West Bengal, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Tanishta Bhattacharya
- Developmental Genetics (Dept III), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pallab Basu
- School of Physics, University of the Witwatersrand, Johannesburg, Braamfontein, South Africa
- Adjunct Faculty, Woxsen School of Sciences, Woxsen University, Hyderabad, Telangana, India
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Protein Research Department, Therapeutic and Protective Proteins Laboratory, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg EL-Arab, Alexandria, Egypt
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, India
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Silva Andrade
- Department of Biological Sciences, Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia (UESB), Jequié, Brazil
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Li Z, Chen X, Xiang W, Tang T, Gan L. m6A Demethylase FTO-Mediated Upregulation of BAP1 Induces Neuronal Ferroptosis via the p53/SLC7A11 Axis in the MPP +/MPTP-Induced Parkinson's Disease Model. ACS Chem Neurosci 2025; 16:405-416. [PMID: 39846440 DOI: 10.1021/acschemneuro.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the involvement of ferroptosis in its pathological mechanism. In this study, the effects and mechanism of BRCA1-associated protein 1 (BAP1) on neuronal ferroptosis in PD were evaluated. Methods: A PD mouse model was constructed by injecting mice with MPTP. Nissl staining, immunohistochemistry, immunofluorescence, and Prussian blue staining evaluated histopathology and iron distribution. The PD cell model was constructed by subjecting SK-N-SH cells to MPP+. The m6A level of BAP1 was assessed by MeRIP. mRNA levels of BAP1, FTO, IGF2BP1, METTL3, YTHDF2, and SLC7A11 were evaluated utilizing RT-qPCR. Protein levels of BAP1, FTO, IGF2BP1, METTL3, YTHDF2, SLC7A11, and p53 were measured by Western blot. Cell viability was assessed using CCK-8 assay, and TUNEL was used for assessing apoptosis. The levels of MDA, GSH, SOD, and Fe2+ were also measured. The interactions among molecules were verified using RIP assay, dual luciferase reporter assay, and ChIP assay. Results: SK-N-SH cells treated with MPP+ showed a decrease in overall m6A levels of BAP1. FTO facilitated m6A demethylation of BAP1, leading to an increased level of expression of BAP1. m6A-binding protein, YTHDF2 recognized and decayed methylated mRNA of BAP1, leading to the reduced BAP1 stability. The FTO/BAP1 axis promoted MPP+-induced ferroptosis by suppressing SLC7A11. BAP1, in collaboration with p53, reduced the level of expression of SLC7A11. Knocking down BAP1 mitigated ferroptosis in an MPTP mouse model. Conclusion: m6A-mediated modification of BAP1 regulates neuronal ferroptosis by cooperating with p53 to decrease the level of SLC7A11. Thus, BAP1 may be a potential therapeutic target for PD treatment.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Xin Chen
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Wenwen Xiang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Ting Tang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| | - Li Gan
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, P.R. China
| |
Collapse
|
9
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
10
|
Lei J, Chen J, Yu W, Wu Q, Jing S, Tang Y, Lin L, Hu M. Portrait of WWP1: the current state in human cancer. Front Cell Dev Biol 2025; 12:1516613. [PMID: 39949609 PMCID: PMC11821962 DOI: 10.3389/fcell.2024.1516613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
WWP1, a member of the C2-WW-HECT E3 ligase family, is an E3 ubiquitin-protein ligase containing WW domains. This enzyme plays a critical role in regulating diverse cellular processes. Its expression is modulated by various factors and non-coding RNAs, resulting in ubiquitination that affects substrate protein degradation. WWP1 demonstrates a dual function, acting predominantly as an oncogene in tumors but occasionally as a tumor suppressor. This review summarizes WWP1's biological roles, therapeutic potential in oncology, upstream regulatory factors, and downstream substrates. It aims to promote research on WWP1's antitumor effects, improve understanding of its role in tumorigenesis, and support the development of targeted therapies.
Collapse
Affiliation(s)
- Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jun Chen
- The Central Hospital of Ezhou, Affiliated Hospital of Hubei University of Science and Technology, Ezhou, Hubei, China
| | - Wenwen Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qing Wu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shuang Jing
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuanguang Tang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
11
|
Nielsen DM, Hsu M, Zapata M, Ciavarra G, van Zyl L. Bayesian analysis of the rate of spontaneous malignant mesothelioma among BAP1 mutant mice in the absence of asbestos exposure. Sci Rep 2025; 15:169. [PMID: 39747518 PMCID: PMC11697272 DOI: 10.1038/s41598-024-84069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Cancers of the mesothelium, such as malignant mesothelioma (MM), historically have been attributed solely to exposure to asbestos. Recent large scale genetic and genomic functional studies now show that approximately 20% of all human mesotheliomas are causally linked to highly penetrant inherited (germline) pathogenic mutations in numerous cancer related genes. The rarity of these mutations in humans makes it difficult to perform statistically conclusive genetic studies to understand their biological effects. This has created a disconnect between functional and epidemiological studies. However, since the molecular pathogenesis of MM in mice accurately recapitulates that of human disease, this disconnect between functional and epidemiological studies can be overcome by using inbred mouse strains that harbor mutation(s) in genes involved in the disease. Most mouse studies have focused on the effect of asbestos exposure, leaving the effects of genetic mutations in the absence of exposure understudied. Here, using existing peer-reviewed studies, we investigate the rate of spontaneous MM among mice with and without germline genetic mutations, in the absence of asbestos exposure. We leveraged these published data to generate a historical control dataset (HCD) to allow us to improve statistical power and account for genetic heterogeneity between studies. Our Bayesian analyses indicate that the odds of spontaneous MM among germline BAP1 mutant mice is substantially larger than that of wildtype mice. These results support the existing biological study findings that mesotheliomas can arise in the presence of pathogenic germline mutations, independently of asbestos exposure.
Collapse
Affiliation(s)
- Dahlia M Nielsen
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Mei Hsu
- ArrayXpress, Inc., Raleigh, NC, USA
| | | | | | | |
Collapse
|
12
|
Radhakrishnan D, Kotulová J, Hofmanová L, Sithara AA, Turi M, Žihala D, Ďurech M, Vrána J, Uleri V, Niederlova V, Stepanek O, Chyra Z, Jelínek T, Hájek R, Hrdinka M. Deubiquitinase BAP1 is crucial for surface expression of T cell receptor (TCR) complex, T cell-B cell conjugate formation, and T cell activation. J Leukoc Biol 2024; 117:qiae184. [PMID: 39189628 DOI: 10.1093/jleuko/qiae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
The adaptive immune response critically hinges on the functionality of T cell receptors, governed by complex molecular mechanisms, including ubiquitination. In this study, we delved into the role of in T cell immunity, focusing on T cell-B cell conjugate formation and T cell activation. Using a CRISPR-Cas9 screening approach targeting deubiquitinases genes in Jurkat T cells, we identified BAP1 as a key positive regulator of T cell-B cell conjugate formation. Subsequent investigations into BAP1 knockout cells revealed impaired T cell activation, evidenced by decreased MAPK and NF-kB signaling pathways and reduced CD69 expression upon T cell receptor stimulation. Flow cytometry and qPCR analyses demonstrated that BAP1 deficiency leads to decreased surface expression of T cell receptor complex components and reduced mRNA levels of the co-stimulatory molecule CD28. Notably, the observed phenotypes associated with BAP1 knockout are specific to T cells and fully dependent on BAP1 catalytic activity. In-depth RNA-seq and mass spectrometry analyses further revealed that BAP1 deficiency induces broad mRNA and protein expression changes. Overall, our findings elucidate the vital role of BAP1 in T cell biology, especially in T cell-B cell conjugate formation and T cell activation, offering new insights and directions for future research in immune regulation.
Collapse
Affiliation(s)
- Dhwani Radhakrishnan
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Jana Kotulová
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Lucie Hofmanová
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Anjana Anilkumar Sithara
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Marcello Turi
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale, 142-KM 3.95-, 10060 Candiolo (TO), Italy
| | - David Žihala
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Michal Ďurech
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Jan Vrána
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Valeria Uleri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, Czech Republic
| | - Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 4, 128 20 Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, Czech Republic
| | - Zuzana Chyra
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Roman Hájek
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Matouš Hrdinka
- Faculty of Science, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| |
Collapse
|
13
|
González-Fernández M, Perry C, Gerhards NM, Francica P, Rottenberg S. Docetaxel response in BRCA1,p53-deficient mammary tumor cells is affected by Huntingtin and BAP1. Proc Natl Acad Sci U S A 2024; 121:e2402849121. [PMID: 39705313 DOI: 10.1073/pnas.2402849121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/30/2024] [Indexed: 12/22/2024] Open
Abstract
Taxanes are frequently used anticancer drugs known to kill tumor cells by inducing mitotic aberrations and segregation defects. A defining feature of specific cancers, notably triple-negative breast cancer (TNBC) and particularly those deficient in BRCA1, is chromosomal instability (CIN). Here, we focused on understanding the mechanisms of docetaxel-induced cytotoxicity, especially in the context of BRCA1-deficient TNBC. Using functional genetic screens in CIN+ cells, we identified genes that mediate docetaxel response and found an interaction between Huntingtin (HTT) and BRCA1-associated protein-1 (BAP1). We employed Brca1-/-;p53-/- mammary tumor cells, derived from genetically engineered mouse tumors that closely mimic the human disease, to investigate the role of these genes in CIN+ BRCA1-deficient cells. Specifically, we observed that loss of HTT sensitizes CIN+ BRCA1-deficient mammary tumor cells to docetaxel by shortening mitotic spindle poles and increasing spindle multipolarity. In contrast, BAP1 depletion protected cells against these spindle aberrations by restoring spindle length and enhancing mitotic clustering of the extra centrosomes. In conclusion, our findings shed light on the roles of HTT and BAP1 in controlling mitotic spindle multipolarity and centrosome clustering, specifically in the absence of BRCA1. This affects the response to microtubule-targeting agents and suggests that further studies of the interaction of these genes with the mitotic spindle may provide useful insights into how to target CIN+ cells, particularly in the challenging therapeutic landscape of BRCA1-deficient TNBC.
Collapse
Affiliation(s)
- Martín González-Fernández
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Carmen Perry
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Nora Merete Gerhards
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Paola Francica
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| | - Sven Rottenberg
- Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
14
|
Li F, Hu H, Li L, Ding L, Lu Z, Mao X, Wang R, Luo W, Lin Y, Li Y, Chen X, Zhu Z, Lu Y, Zhou C, Wang M, Xia L, Li G, Gao L. Integrated machine learning reveals the role of tryptophan metabolism in clear cell renal cell carcinoma and its association with patient prognosis. Biol Direct 2024; 19:132. [PMID: 39707545 DOI: 10.1186/s13062-024-00576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Precision oncology's implementation in clinical practice faces significant constraints due to the inadequacies in tools for detailed patient stratification and personalized treatment methodologies. Dysregulated tryptophan metabolism has emerged as a crucial factor in tumor progression, encompassing immune suppression, proliferation, metastasis, and metabolic reprogramming. However, its precise role in clear cell renal cell carcinoma (ccRCC) remains unclear, and predictive models or signatures based on tryptophan metabolism are conspicuously lacking. METHODS The influence of tryptophan metabolism on tumor cells was explored using single-cell RNA sequencing data. Genes involved in tryptophan metabolism were identified across both single-cell and bulk-cell dimensions through weighted gene co-expression network analysis (WGCNA) and its single-cell data variant (hdWGCNA). Subsequently, a tryptophan metabolism-related signature was developed using an integrated machine-learning approach. This signature was then examined in multi-omics data to assess its associations with patient clinical features, prognosis, cancer malignancy-related pathways, immune microenvironment, genomic characteristics, and responses to immunotherapy and targeted therapy. Finally, the genes within the signature were validated through experiments including qRT-PCR, Western blot, CCK8 assay, and transwell assay. RESULTS Dysregulated tryptophan metabolism was identified as a potential driver of the malignant transformation of normal epithelial cells. The tryptophan metabolism-related signature (TMRS) demonstrated robust predictive capability for overall survival (OS) and progression-free survival (PFS) across multiple datasets. Moreover, a high TMRS risk score correlated with increased tumor malignancy, significant metabolic reprogramming, an inflamed yet dysfunctional immune microenvironment, heightened genomic instability, resistance to immunotherapy, and increased sensitivity to certain targeted therapeutics. Experimental validation revealed differential expression of genes within the signature between RCC and adjacent normal tissues, with reduced expression of DDAH1 linked to enhanced proliferation and metastasis of tumor cells. CONCLUSION This study investigated the potential impact of dysregulated tryptophan metabolism on clear cell renal cell carcinoma, leading to the development of a tryptophan metabolism-related signature that may provide insights into patient prognosis, tumor biological status, and personalized treatment strategies. This signature serves as a valuable reference for further exploring the role of tryptophan metabolism in renal cell carcinoma and for the development of clinical applications based on this metabolic pathway.
Collapse
Affiliation(s)
- Fan Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Haiyi Hu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Liyang Li
- School of Medicine, University of New South Wales, Sydney, Australia
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Xudong Mao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Ziwei Zhu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Yi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Chenghao Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China.
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China.
| | - Lei Gao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China.
| |
Collapse
|
15
|
Aljabali AAA, Tambuwala MM, El-Tanani M, Hassan SS, Lundstrom K, Mishra V, Mishra Y, Hromić-Jahjefendić A, Redwan EM, Uversky VN. A comprehensive review of PRAME and BAP1 in melanoma: Genomic instability and immunotherapy targets. Cell Signal 2024; 124:111434. [PMID: 39326690 DOI: 10.1016/j.cellsig.2024.111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In a thorough review of the literature, the complex roles of PRAME (preferentially expressed Antigen of Melanoma) and BAP1 (BRCA1-associated protein 1) have been investigated in uveal melanoma (UM) and cutaneous melanoma. High PRAME expression in UM is associated with poor outcomes and correlated with extraocular extension and chromosome 8q alterations. BAP1 mutations in the UM indicate genomic instability and a poor prognosis. Combining PRAME and BAP1 immunohistochemical staining facilitates effective risk stratification. Mechanistically, both genes are associated with genomic instability, making them promising targets for cancer immunotherapy. Hypomethylation of PRAME, specifically in its promoter regions, is critical for UM progression and contributes to epigenetic reprogramming. Additionally, miR-211 regulation is crucial in melanoma and has therapeutic potential. The way PRAME changes signaling pathways provides clues about the cause of cancer due to genomic instability related to modifications in DNA repair. Inhibition of poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in cells expressing PRAME could lead to potential therapeutic applications. Pathway enrichment analysis underscores the significance of PRAME and BAP1 in melanoma pathogenesis.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan.
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates.
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur, 721140, West Bengal, India.
| | | | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, 21934 Alexandria, Egypt.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
16
|
Ma Y, Zhu Y, Wang F, Zhao G, Huang L, Lu R, Wang D, Tian X, Ye Y. 3,3'-Diindolylmethane promotes bone formation - A assessment in MC3T3-E1 cells and zebrafish. Biochem Pharmacol 2024; 230:116618. [PMID: 39528071 DOI: 10.1016/j.bcp.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Osteoporosis is a common degenerative bone disease in middle-aged and elderly people. The current drugs used to treat osteoporosis have many side effects and low patient compliance. Phytochemotherapy may be safer and more effective. 3,3'-diindolemethane (DIM) is the digestive product of indole-3-methanol in cruciferous vegetables in the stomach, which is a kind of anti-tumor and anti-oxidation phytochemical. However, the effects of DIM on osteoblasts and the mechanism by which DIM regulates bone formation are not fully understood. The aim of this study was to investigate the effects of DIM on the bone formation of mouse preosteoblasts MC3T3-E1 and zebrafish. DIM promotes proliferation and osteogenic differentiation of MC3T3-E1 cells in vitro, and also plays a bone promoting role by increasing the interaction between BRCA1-Associated Protein 1(BAP1) and Inositol 1,4,5-Trisphosphate Receptor(IP3R), up-regulating the expression of BAP1 and IP3R and downstream storage operation calcium entry (SOCE) related protein Recombinant Stromal Interaction Molecule 1(STIM1). The effect of DIM on osteoporosis was confirmed in zebrafish osteoporosis model, and its molecular mechanism may be related to BAP1/IP3R/SOCE signaling pathway. These findings highlight the potential therapeutic value of DIM in the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Ying Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yin Zhu
- Department of Oncology, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Feng Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guoyang Zhao
- Orthopedics Department, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lianlian Huang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China; Center for Experimental Research, Affiliated Kunshan Hospital to Jiangsu University, Suzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xinyu Tian
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Jiangsu University, Nanjing, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
17
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
18
|
Ebrahimi A, Ak G, Özel C, İzgördü H, Ghorbanpoor H, Hassan S, Avci H, Metintaş M. Clinical Perspectives and Novel Preclinical Models of Malignant Pleural Mesothelioma: A Critical Review. ACS Pharmacol Transl Sci 2024; 7:3299-3333. [PMID: 39539262 PMCID: PMC11555512 DOI: 10.1021/acsptsci.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Pleural mesothelioma (PM), a rare malignant tumor explicitly associated with asbestos and erionite exposures, has become a global health problem due to limited treatment options and a poor prognosis, in which the median life expectancy varies depending on the method of treatment. However, the importance of early diagnosis is emphasized, and the practical methods have not matured yet. This study provides a critical overview of PM, addressing various aspects like epidemiology, etiology, diagnosis, treatment options, and the potential use of advanced technologies like microfluidic chip-based models for research and diagnosis. It initially begins with fundamentals of clinical aspects and then discusses the identification of disease-specific biomarkers in patients' serum or plasma samples, which could potentially be used for early diagnosis. A detailed investigation of the sophisticated preclinical models is highlighted. Recent three-dimensional (3D) model accomplishments, including microarchitecture modeling by transwell coculture, spheroids, organoids, 3D bioprinting constructs, and ex vivo tumor slices, are discussed comprehensively. On-chip models that imitate physiological processes, such as detection chips and therapeutic screening chips, are assessed as potential techniques. The review concludes with a critical and constructive discussion of the growing interest in the topic and its limitations and suggestions.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Güntülü Ak
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Ceren Özel
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Hüseyin İzgördü
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Biomedical Engineering, Eskişehir
Osmangazi University, Eskişehir 26040, Turkey
| | - Shabir Hassan
- Department
of Biological Sciences, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Huseyin Avci
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Muzaffer Metintaş
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
19
|
Yang J, Xia L, Jie H, Wang T, Guo C, Liu C, Liao H, Mei J, Pu Q, Liu L. The impact of age on the efficacy of radiotherapy in pleural mesothelioma patients receiving trimodality therapy: a population-based study of the SEER database. J Thorac Dis 2024; 16:6462-6474. [PMID: 39552901 PMCID: PMC11565357 DOI: 10.21037/jtd-24-1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/06/2024] [Indexed: 11/19/2024]
Abstract
Background Pleural mesothelioma (PM) is a highly aggressive tumor with poor survival outcomes. The role of additional radiotherapy for PM patients who have received surgery and chemotherapy remains controversial. In this study, we aim to evaluate the impact of age on the effectiveness of additional radiotherapy in order to identify the populations that may benefit from the trimodality therapy. Methods We designed a case-control study and retrospectively selected PM patients who underwent surgery and chemotherapy, with or without radiotherapy, from the Surveillance, Epidemiology, and End Results (SEER) database (2000-2019). Kaplan-Meier curves were performed to compare the overall survival (OS) and cancer-specific survival (CSS) between the surgery + chemotherapy group and the trimodality therapy group. Propensity score matching (PSM) was used to balance the clinical characteristics and reduce potential confounding effects. Results A total of 745 patients were selected, of which 515 received surgery + chemotherapy and 230 received trimodality therapy. For patients aged 50 to <65 years, additional radiotherapy showed better OS (3-year: 34.78% vs. 23.92%, P=0.02) and CSS (3-year: 36.15% vs. 25.46%, P=0.04) compared to surgery + chemotherapy. Similar results were observed after PSM (3-year OS: 38.76% vs. 26.53%, P=0.02; 3-year CSS: 40.49% vs. 26.92%, P=0.02). No significant benefit of radiotherapy was seen for patients aged <50 and ≥65 years, both before and after PSM. Conclusions Our findings reveal that trimodality therapy is associated with better OS and CSS compared to surgery + chemotherapy for patients aged 50 to <65 years. These patients might obtain a benefit from additional radiotherapy.
Collapse
Affiliation(s)
- Jun Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liang Xia
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Jie
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tengyong Wang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chenglin Guo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hu Liao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiandong Mei
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Pu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Constantinou SM, Bennett DC. Cell Senescence and the Genetics of Melanoma Development. Genes Chromosomes Cancer 2024; 63:e23273. [PMID: 39422311 DOI: 10.1002/gcc.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous malignant melanoma is an aggressive skin cancer with an approximate lifetime risk of 1 in 38 in the UK. While exposure to ultraviolet radiation is a key environmental risk factor for melanoma, up to ~10% of patients report a family history of melanoma, and ~1% have a strong family history. The understanding of causal mutations in melanoma has been critical to the development of novel targeted therapies that have contributed to improved outcomes for late-stage patients. Here, we review current knowledge of the genes affected by familial melanoma mutations and their partial overlap with driver genes commonly mutated in sporadic melanoma development. One theme linking a set of susceptibility loci/genes is the regulation of skin pigmentation and suntanning. The largest functional set of susceptibility variants, typically with high penetrance, includes CDKN2A, RB1, and telomerase reverse transcriptase (TERT) mutations, associated with attenuation of cell senescence. We discuss the mechanisms of action of these gene sets in the biology and progression of nevi and melanoma.
Collapse
Affiliation(s)
- Sophie M Constantinou
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| | - Dorothy C Bennett
- Molecular & Cellular Sciences Research Section, City St George's, University of London, London, UK
| |
Collapse
|
21
|
Yuan W, Zhang Q, Zhao Y, Xia W, Yin S, Liang X, Chen T, Li G, Liu Y, Liu Z, Huang J. BAP1 regulates HSF1 activity and cancer immunity in pancreatic cancer. J Exp Clin Cancer Res 2024; 43:275. [PMID: 39350280 PMCID: PMC11441124 DOI: 10.1186/s13046-024-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The vast majority of pancreatic cancers have been shown to be insensitive to single-agent immunotherapy. Exploring the mechanisms of immune resistance and implementing combination therapeutic strategies are crucial for PDAC patients to derive benefits from immunotherapy. Deletion of BAP1 occurs in approximately 27% of PDAC patients and is significantly correlated with poor prognosis, but the mechanism how BAP1-deletion compromises survival of patients with PDAC remain a puzzle. METHODS Bap1 knock-out KPC (KrasG12D/+; LSLTrp53R172H/+; Pdx-1-Cre) mice and control KPC mice, syngeneic xenograft models were applied to analysis the correlation between BAP1 and immune therapy response in PDAC. Immunoprecipitation, RT-qPCR, luciferase and transcriptome analysis were combined to revealing potential mechanisms. Syngeneic xenograft models and flow cytometry were constructed to examine the efficacy of the inhibitor of SIRT1 and its synergistic effect with anti-PD-1 therapy. RESULT The deletion of BAP1 contributes to the resistance to immunotherapy in PDAC, which is attributable to BAP1's suppression of the transcriptional activity of HSF1. Specifically, BAP1 competes with SIRT1 for binding to the K80 acetylated HSF1. The BAP1-HSF1 interaction preserves the acetylation of HSF1-K80 and promotes HSF1-HSP70 interaction, facilitating HSF1 oligomerization and detachment from the chromatin. Furthermore, we demonstrate that the targeted inhibition of SIRT1 reverses the immune insensitivity in BAP1 deficient PDAC mouse model. CONCLUSION Our study elucidates an unrevealed mechanism by which BAP1 regulates immune therapy response in PDAC via HSF1 inhibition, and providing promising therapeutic strategies to address immune insensitivity in BAP1-deficient PDAC.
Collapse
Affiliation(s)
- Weiwei Yuan
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Taoyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaofeng Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yanshen Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jinxi Huang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
22
|
Auskalnis S, Janciauskiene R, Rimsaite U, Alksnyte A, Ugenskiene R. Synchronous Seminoma of Testis and Renal Cell Carcinoma: A Rare Case Report. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1553. [PMID: 39336594 PMCID: PMC11434273 DOI: 10.3390/medicina60091553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Seminoma is the most common solid malignant tumour in young men. Clear-cell kidney carcinoma is the most common malignancy of the genitourinary tract. However, the synchronous occurrence of both of these tumours is rare. Case presentation: We present the case of a 36-year-old patient who presented to a medical facility at the end of 2019 with an enlarged right testicle. A unilateral orchofuniculectomy was performed, and a mass measuring 30 cm was removed. During histological examination, testicular seminoma pT2, R0, was diagnosed. An abdominal computed tomography (CT) scan showed a 6.4 cm × 6.8 cm × 6.7 cm tumour in the right kidney and a metastatic-like lesion in the right adrenal gland. A right nephrectomy and an adrenalectomy and paraaortic and paracaval lymphadenectomies were performed. A histological evaluation confirmed the presence of clear-cell renal carcinoma pT2aR0 G2, adrenal hyperplasia, and seminoma metastases in the removed lymph node. Chemotherapy with a Bleomycin, Etoposide, and Cisplatin (BEP) regimen was carried out. Three years after the last cycle of chemotherapy, a follow-up CT scan showed metastases in the left kidney, the right ischium, and the right lung. A well-differentiated clear-cell carcinoma G1 of the left kidney and metastasis of clear-cell carcinoma G2 in the right ischium were confirmed after the biopsy, and no tumour lesions were found in the lung tissue specimen. Treatment with targeted therapy with Sunitinib was started because the risk was favourable according to the Heng criteria. Genetic testing was performed, and the following genes were analysed: VHL, BAP1, CHEK2, FH, MET, MUTYH, APC, and STK11. The testing did not reveal any pathogenic or potentially pathogenic mutations or sequence changes of unknown clinical significance in the genes analysed. Conclusions: According to the authors, the occurrence of synchronous primary tumours is linked to one's genetic predisposition. DNA sequencing of tumour tissue could provide more information on the corresponding aetiopathogenesis.
Collapse
Affiliation(s)
- Stasys Auskalnis
- Department of Urology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Janciauskiene
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Urte Rimsaite
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Aurelija Alksnyte
- Department of Urology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
23
|
Wang J, Wang M, Wu S, Zhu Y, Fan K, Chen Y, Xiao Z, Chen J, Tu K, Huang D, Zhang Y, Xu Q. Tumor suppressor BAP1 suppresses disulfidptosis through the regulation of SLC7A11 and NADPH levels. Oncogenesis 2024; 13:31. [PMID: 39266549 PMCID: PMC11393423 DOI: 10.1038/s41389-024-00535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
BAP1, BRCA1-Associated Protein 1, serves as a novel tumor suppressor through the deubiquitination of monoubiquitination of H2A and subsequent gene transcriptional regulation. Regulated cell death like apoptosis or ferroptosis is considered an essential mechanism mediating tumor suppression. Previous reports, including ours, have demonstrated that BAP1 could promote apoptosis and ferroptosis to inhibit tumor development. Whether BAP1 regulated additional types of cell death remains unclear. Disulfidptosis is a recently identified novel cell death mode characterized by aberrant accumulation of intracellular disulfide (e.g., cystine) and depletion of NADPH. In this study, we first demonstrated that BAP1 could significantly protect disulfidptosis induced by glucose starvation, which is validated by various cell death inhibitors and the accumulation of disulfide bonds in the cytoskeleton proteins. BAP1 is known to inhibit SLC7A11 expression. We found that the protective effect of BAP1 against disulfidptosis was counteracted when overexpressing SLC7A11 or adding additional cystine. Conversely, BAP1-mediated suppression of disulfidptosis was largely abrogated when SLC7A11-mediated cystine uptake was inhibited by the knockout of SLC7A11 or erastin treatment. Besides, high BAP1 expression showed lower NADP+/NADPH levels, which might confer resistance to disulfidptosis. Consistent with these observations, the expression level of BAP1 was also positively correlated with NADPH-related genes in KIRC patients, though the underlying mechanism mediating NADPH regulation remains further investigation. In summary, our results revealed the role of BAP1 in the regulation disulfidptosis and provided new insights into the understanding of disulfidptosis in tumor development.
Collapse
Affiliation(s)
- Jin Wang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minglin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Shaobo Wu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yanan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Kexin Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yuhan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhengtao Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jing Chen
- Department of Obstetrics, Xi'an New Chang'an Maternity Hospital, Xi'an, Shaanxi, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongsheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Yilei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Shi N, Chen S, Wang D, Wu T, Zhang N, Chen M, Ding X. MDK promotes M2 macrophage polarization to remodel the tumour microenvironment in clear cell renal cell carcinoma. Sci Rep 2024; 14:18254. [PMID: 39107475 PMCID: PMC11303797 DOI: 10.1038/s41598-024-69183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
The efficacy of immunotherapy for clear cell renal cell carcinoma (ccRCC), especially advanced ccRCC, is limited, presenting a clinical challenge. This limitation is closely tied to the immune regulation network. Understanding the heterogeneity of the tumour microenvironment (TME) is crucial for developing advanced ccRCC therapies. Using publicly available ccRCC data (scRNA-seq, bulk RNA-seq, and somatic mutation data), a multiomics study was performed to explore TME heterogeneity. Three distinct ccRCC immune subtypes were identified through combined scRNA-seq and bulk RNA-seq analysis. A prognostic model based on unique cell signalling molecules in immunosuppressive tumour subtype was validated in the TCGA and CheckMate cohorts. MDK emerged as a critical regulatory gene in the immunosuppressive subtype, predicting a poor ccRCC prognosis and a poor immunotherapy response. MDK promotes M2 macrophage polarization via the MDK-LRP1 interaction, and the inhibition of MDK suppressed M2 polarization. This study revealed the heterogeneity of the ccRCC TME and a reliable prognostic model, shedding light on the vital role of MDK in the immunosuppressive TME and paving the way for optimized ccRCC immunotherapy.
Collapse
Affiliation(s)
- Naipeng Shi
- Department of Urology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Saisai Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Dong Wang
- Department of Urology, Nantong Tongzhou Hospital of Traditional Chinese Medicine, Nantong, China
| | - Tiange Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Nieke Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xuefei Ding
- Department of Urology, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
25
|
Tian Q, Liu C, Liao J, Wang G, Han W, Xiong X, Chen Z, Gu L, Li M. ATF2/BAP1 Axis Mediates Neuronal Apoptosis After Subarachnoid Hemorrhage via P53 Pathway. Stroke 2024; 55:2113-2125. [PMID: 38965653 DOI: 10.1161/strokeaha.123.045781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Neuronal apoptosis plays an essential role in the pathogenesis of brain injury after subarachnoid hemorrhage (SAH). BAP1 (BRCA1-associated protein 1) is considered to exert pro-apoptotic effects in multiple diseases. However, evidence supporting the effect of BAP1 on the apoptotic response to SAH is lacking. Therefore, we aimed to confirm the role of BAP1 in SAH-induced apoptosis. METHODS Enzyme-linked immunosorbent assay (ELISA) was used to detect BAP1 expression in the cerebrospinal fluid. Endovascular perforation was performed in mice to induce SAH. Lentiviral short hairpin RNA targeting BAP1 mRNA was transduced into the ipsilateral cortex of mice with SAH to investigate the role of BAP1 in neuronal damage. Luciferase and coimmunoprecipitation assays were performed to investigate the mechanism through which BAP1 participates in hemin-induced SAH. RESULTS First, BAP1 expression was upregulated in the cerebrospinal fluid of patients with SAH and positively associated with unfavorable outcomes. ATF2 (activating transcription factor-2) then regulated BAP1 expression by binding to the BAP1 promoter. In addition, BAP1 overexpression enhanced P53 activity and stability by reducing P53 proteasome-mediated degradation. Subsequently, elevated P53 promoted neuronal apoptosis via the P53 pathway. Inhibition of the neuronal BAP1/P53 axis significantly reduced neurological deficits and neuronal apoptosis and improved neurological dysfunction in mice after SAH. CONCLUSIONS Our results suggest that the neuronal ATF2/BAP1 axis exerts a brain-damaging effect by modulating P53 activity and stability and may be a novel therapeutic target for SAH.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery (Q.T., C.L., J.L., G.W., W.H., X.X., Z.C., M.L.), Renmin Hospital of Wuhan University, China
| | - Chengli Liu
- Department of Neurosurgery (Q.T., C.L., J.L., G.W., W.H., X.X., Z.C., M.L.), Renmin Hospital of Wuhan University, China
| | - Jianming Liao
- Department of Neurosurgery (Q.T., C.L., J.L., G.W., W.H., X.X., Z.C., M.L.), Renmin Hospital of Wuhan University, China
| | - Guijun Wang
- Department of Neurosurgery (Q.T., C.L., J.L., G.W., W.H., X.X., Z.C., M.L.), Renmin Hospital of Wuhan University, China
| | - Wenrui Han
- Department of Neurosurgery (Q.T., C.L., J.L., G.W., W.H., X.X., Z.C., M.L.), Renmin Hospital of Wuhan University, China
| | - Xiaoxing Xiong
- Department of Neurosurgery (Q.T., C.L., J.L., G.W., W.H., X.X., Z.C., M.L.), Renmin Hospital of Wuhan University, China
| | - Zhibiao Chen
- Department of Neurosurgery (Q.T., C.L., J.L., G.W., W.H., X.X., Z.C., M.L.), Renmin Hospital of Wuhan University, China
| | - Lijuan Gu
- Central Laboratory (L.G.), Renmin Hospital of Wuhan University, China
- Department of Anesthesiology (L.G.), Renmin Hospital of Wuhan University, China
| | - Mingchang Li
- Department of Neurosurgery (Q.T., C.L., J.L., G.W., W.H., X.X., Z.C., M.L.), Renmin Hospital of Wuhan University, China
| |
Collapse
|
26
|
Li W, Zhao B, Wang Q, Lu J, Wu X, Chen X. M2 macrophage exosomes promote resistance to sorafenib in hepatocellular carcinoma cells via miR-200c-3p. Int Immunopharmacol 2024; 139:112807. [PMID: 39068757 DOI: 10.1016/j.intimp.2024.112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Sorafenib is a chemotherapeutic agent used to treat hepatocellular carcinoma (HCC). However, its clinical response rates are often low. Tumour-associated macrophages (TAMs) have been implicated in tumour resistance. The relationship between TAMs-derived exosomes and primary resistance to sorafenib in hepatocellular carcinoma is unclear. METHODS The study analysed RNA-SEQ data from TCGA-LIHC to explore the relationship between TAMs and sorafenib IC50. THP-1-induced M2 macrophages were used as a model to investigate the relationship between M2 macrophage exosomes and primary resistance to sorafenib in hepatocellular carcinoma cells using apoptosis, colony generation, cell viability and dual luciferase. RESULTS M2 macrophage score and sorafenib IC50 were positively correlated in hepatocellular carcinoma patients, M2 macrophage exosomes promoted sorafenib resistance in hepatocellular carcinoma cells, and M2-exo-miR-200c-3p facilitated the development of sorafenib resistance in hepatocellular carcinoma cells by mediating the activation of PI3K/AKT. CONCLUSION We propose and demonstrate for the first time that M2 macrophage exosomes promote sorafenib resistance in hepatocellular carcinoma, providing a new perspective for the clinical treatment of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Wenhua Li
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Bin Zhao
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Qianwen Wang
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Junxia Lu
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China
| | - Xiangwei Wu
- Shihezi University School of Medicine, Shihezi 832000, China; The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| | - Xueling Chen
- Shihezi University School of Medicine, Shihezi 832000, China; Key Laboratory for Prevention and Treatment of High Morbidity in Central Asia, National Health and Health Commission, Shihezi 832000, China.
| |
Collapse
|
27
|
Reveneau MF, Masliah-Planchon J, Fernandez M, Ouikene A, Dron B, Dadamessi I, Dayen C, Golmard L, Chauffert B. Major response of a peritoneal mesothelioma to nivolumab and ipilimumab: a case report, molecular analysis and review of literature. Front Oncol 2024; 14:1410322. [PMID: 39091916 PMCID: PMC11291227 DOI: 10.3389/fonc.2024.1410322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPM) is a rare tumor associated with a poor prognosis and a lack of consensus regarding treatment strategies. While the Checkmate 743 trial demonstrated the superiority of first-line nivolumab and ipilimumab over chemotherapy in malignant pleural mesothelioma (MPlM), few studies have assessed the effectiveness of immunotherapy against MPM, due to its rarity. Here, we report a major and sustained 12-month response in a 74-year-old female patient who received the anti-PD-1 nivolumab and the anti-CTLA4 ipilimumab as first-line therapy for diffuse MPM. PD-L1 was expressed and BAP1 expression was lost, as shown by immunohistochemistry, however the BAP1 gene was not mutated. Our findings suggest a role for ICI in non-resectable diffuse MPM exhibiting PD-L1 overexpression and loss of BAP1 expression, and instill new hope in their treatment. To our knowledge, this is the second reported case of dual immunotherapy used as first-line in MPM with a major clinical response. To investigate the clinical outcome, we conducted additional molecular analyses of the MPM tumor and we reviewed the literature on immunotherapy in MPM to discuss the role of PD-L1 and BAP1.
Collapse
Affiliation(s)
- Marie-Florence Reveneau
- Department of Genetics, Institut Curie, Paris, France
- Department of Medical Oncology, Saint Quentin Hospital, Saint Quentin, France
| | | | - Manuel Fernandez
- Department of Radiology, Saint Quentin Hospital, Saint Quentin, France
| | - Abdenour Ouikene
- Department of Medical Oncology, Saint Quentin Hospital, Saint Quentin, France
| | - Bernard Dron
- Department of Digestive Surgery, Saint Quentin Hospital, Saint Quentin, France
| | - Innocenti Dadamessi
- Department of Digestive Surgery, Saint Quentin Hospital, Saint Quentin, France
| | - Charles Dayen
- Department of Pneumology, Saint Quentin Hospital, Saint Quentin, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France
| | - Bruno Chauffert
- Department of Medical Oncology, Saint Quentin Hospital, Saint Quentin, France
| |
Collapse
|
28
|
Okita R, Senoo T, Mimura-Kimura Y, Mimura Y, Murakami T, Ikeda E, Okada M, Inokawa H, Aoe K. Characterizing soluble immune checkpoint molecules and TGF-β 1,2,3 in pleural effusion of malignant pleural mesothelioma. Sci Rep 2024; 14:15947. [PMID: 38987362 PMCID: PMC11236966 DOI: 10.1038/s41598-024-66189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
The clinical impact of soluble molecules in pleural effusion (PE) is unclear in patients with malignant pleural mesothelioma (MPM). In this single-center, retrospective, observational study, we assessed soluble forms of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and PD-1 ligand 1 (PD-L1) using enzyme-linked immunosorbent assays; three TGF-β isoforms were measured via multiplex assay in PE of patients with fibrinous pleuritis (FP) or MPM, to assess relationships between the levels of six molecules, clinicopathological characteristics, and efficacy of immune checkpoint inhibitors. Soluble forms of CTLA-4, PD-L1, PD-1, TGF-β1, TGF-β2, and TGF-β3 were variably produced in PE of FP (n = 34) and MPM (n = 79); we found significant relationships between the six molecules and clinicopathological features. Although none of the three soluble immune checkpoint molecules showed diagnostic or prognostic effects in patients with MPM, TGF-β2 level in PE is a useful differential diagnostic marker between FP and MPM. Both TGF-β1 and TGF-β3 levels are promising prognostic markers for MPM. Moreover, we found that higher baseline levels of PD-1 soluble forms predicted the response to anti-PD1 monotherapy. Our findings identify novel diagnostic, prognostic, and predictive biomarkers for anti-PD1 therapy in patients with MPM.
Collapse
Affiliation(s)
- Riki Okita
- Department of Thoracic Surgery, National Hospital Organization Yamaguchi Ube Medical Center, Higashikiwa 685, Ube, Yamaguchi, 755-0241, Japan.
| | - Tomoya Senoo
- Department of Thoracic Surgery, National Hospital Organization Yamaguchi Ube Medical Center, Higashikiwa 685, Ube, Yamaguchi, 755-0241, Japan
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Higashikiwa 685, Ube, Yamaguchi, 755-0241, Japan
| | - Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Higashikiwa 685, Ube, Yamaguchi, 755-0241, Japan
| | - Tomoyuki Murakami
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Higashikiwa 685, Ube, Yamaguchi, 755-0241, Japan
- Department of Pathology, KYURIN/KYURIN PACELL Corporation, 26-67 Morishita-Cho, Yahatanishi-Ku, Kitakyushu, Fukuoka, 806-0046, Japan
| | - Eiji Ikeda
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Higashikiwa 685, Ube, Yamaguchi, 755-0241, Japan
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masanori Okada
- Department of Thoracic Surgery, National Hospital Organization Yamaguchi Ube Medical Center, Higashikiwa 685, Ube, Yamaguchi, 755-0241, Japan
| | - Hidetoshi Inokawa
- Department of Thoracic Surgery, National Hospital Organization Yamaguchi Ube Medical Center, Higashikiwa 685, Ube, Yamaguchi, 755-0241, Japan
| | - Keisuke Aoe
- Department of Medical Oncology, National Hospital Organization Yamaguchi Ube Medical Center, Higashikiwa 685, Ube, Yamaguchi, 755-0241, Japan
| |
Collapse
|
29
|
Wang Y, Shang P, Xu C, Dong W, Zhang X, Xia Y, Sui C, Yang C. Novel genetic alterations in liver cancer distinguish distinct clinical outcomes and combination immunotherapy responses. Front Pharmacol 2024; 15:1416295. [PMID: 38948469 PMCID: PMC11211383 DOI: 10.3389/fphar.2024.1416295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: Genomic profiling has revolutionized therapeutic interventions and the clinical management of liver cancer. However, pathogenetic mechanisms, molecular determinants of recurrence, and predictive biomarkers for first-line treatment (anti-PD-(L)1 plus bevacizumab) in liver cancer remain incompletely understood. Materials and methods: Targeted next-generation sequencing (tNGS) (a 603-cancer-gene panel) was applied for the genomic profiling of 232 hepatocellular carcinoma (HCC) and 22 intrahepatic cholangiocarcinoma (ICC) patients, among which 47 unresectable/metastatic HCC patients underwent anti-PD-1 plus bevacizumab therapy. Genomic alterations were estimated for their association with vascular invasion (VI), location of onset, recurrence, overall survival (OS), recurrence-free survival (RFS), and anti-PD-1 plus bevacizumab therapy response. Results: The genomic landscape exhibited that the most commonly altered genes in HCC were TP53, FAT3, PDE4DIP, KMT2C, FAT1, and MYO18A, while TP53, FAT1, FAT3, PDE4DIP, ROS1, and GALNT11 were frequently altered in ICC; notably, KRAS (18.18% vs. 1.29%) and BAP1 (13.64% vs. 1.29%) alterations were significantly more prevalent in ICC. Comparison analysis demonstrated the distinct clinicopathological/genomic characterizations between Chinese and Western HCC cohorts. Genomic profiling of HCC underlying VI showed that LDLR, MSH2, KDM5D, PDE3A, and FOXO1 were frequently altered in the VI group compared to patients without VIs. Compared to the right hepatic lobes of HCC patients, the left hepatic lobe of HCC patients had superior OS (median OS: 36.77 months vs. unreached, p < 0.05). By further comparison, Notch signaling pathway-related alterations were significantly prevalent among the right hepatic lobes of HCC patients. Of note, multivariate Cox regression analysis showed that altered RB1, NOTCH3, MGA, SYNE1, and ZFHX3, as independent prognostic factors, were significantly correlated with the OS of HCC patients. Furthermore, altered LATS1 was abundantly enriched in the HCC-recurrent group, and impressively, it was independent of clinicopathological features in predicting RFS (median RFS of altered type vs. wild-type: 5.57 months vs. 22.47 months, p < 0.01). Regarding those treated HCC patients, TMB value, altered PTPRZ1, and cell cycle-related alterations were identified to be positively associated with the objective response rate (ORR), but KMT2D alterations were negatively correlated with ORR. In addition, altered KMT2D and cell cycle signaling were significantly associated with reduced and increased time to progression-free survival (PFS), respectively. Conclusion: Comprehensive genomic profiling deciphered distinct molecular characterizations underlying VI, location of onset, recurrence, and survival time in liver cancer. The identification of novel genetic predictors of response to anti-PD-1 plus bevacizumab in HCC facilitated the development of an evidence-based approach to therapy.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Peipei Shang
- Department of Medical Oncology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chang Xu
- Department of General Surgery, Biliary Tract Disease Institute, Biliary Tract Disease Center, and Cancer Center of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaofeng Zhang
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery IV and Clinical Research Institute, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chengjun Sui
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng Yang
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Matull J, Placke JM, Lodde G, Zaremba A, Utikal J, Terheyden P, Pföhler C, Herbst R, Kreuter A, Welzel J, Kretz J, Möller I, Sucker A, Paschen A, Livingstone E, Zimmer L, Hadaschik E, Ugurel S, Schadendorf D, Thielmann CM, Griewank KG. Clinical and genetic characteristics of BAP1-mutated non-uveal and uveal melanoma. Front Immunol 2024; 15:1383125. [PMID: 38903495 PMCID: PMC11188379 DOI: 10.3389/fimmu.2024.1383125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
Background Screening for gene mutations has become routine clinical practice across numerous tumor entities, including melanoma. BAP1 gene mutations have been identified in various tumor types and acknowledged as a critical event in metastatic uveal melanoma, but their role in non-uveal melanoma remains inadequately characterized. Methods A retrospective analysis of all melanomas sequenced in our department from 2014-2022 (n=2650) was conducted to identify BAP1 mutated samples. Assessment of clinical and genetic characteristics was performed as well as correlations with treatment outcome. Results BAP1 mutations were identified in 129 cases and distributed across the entire gene without any apparent hot spots. Inactivating BAP1 mutations were more prevalent in uveal (55%) compared to non-uveal (17%) melanomas. Non-uveal BAP1 mutated melanomas frequently exhibited UV-signature mutations and had a significantly higher mutation load than uveal melanomas. GNAQ and GNA11 mutations were common in uveal melanomas, while MAP-Kinase mutations were frequent in non-uveal melanomas with NF1, BRAF V600 and NRAS Q61 mutations occurring in decreasing frequency, consistent with a strong UV association. Survival outcomes did not differ among non-uveal melanoma patients based on whether they received targeted or immune checkpoint therapy, or if their tumors harbored inactivating BAP1 mutations. Conclusion In contrast to uveal melanomas, where BAP1 mutations serve as a significant prognostic indicator of an unfavorable outcome, BAP1 mutations in non-uveal melanomas are primarily considered passenger mutations and do not appear to be relevant from a prognostic or therapeutic perspective.
Collapse
Affiliation(s)
- Johanna Matull
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Hospital Oberhausen, University Witten/Herdecke, Oberhausen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Anne Zaremba
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
- German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Patrick Terheyden
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Claudia Pföhler
- Department of Dermatology, Saarland University Medical School, Homburg, Germany
| | - Rudolf Herbst
- Skin Cancer Unit, Helios Klinikum Erfurt, Erfurt, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, Helios St. Elisabeth Hospital Oberhausen, University Witten/Herdecke, Oberhausen, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Julia Kretz
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Inga Möller
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Eva Hadaschik
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
- Comprehensive Cancer Center (Westdeutsches Tumorzentrum), University Hospital Essen, Essen & National Center for Tumor Diseases (NCT) West, Essen, Germany
- Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Carl Maximilian Thielmann
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| | - Klaus Georg Griewank
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Germany & German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung, DKTK), Essen, Germany
| |
Collapse
|
31
|
Liu Y, Hu N, Ai B, Xia H, Li W. MiR-31-5p alleviates septic cardiomyopathy by targeting BAP1 to inhibit SLC7A11 deubiquitination and ferroptosis. BMC Cardiovasc Disord 2024; 24:286. [PMID: 38816686 PMCID: PMC11137958 DOI: 10.1186/s12872-024-03954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Septic cardiomyopathy is one of the most severe and common complications in patients with sepsis and poses a great threat to their prognosis. However, the potential mechanisms and effective therapeutic drugs need to be explored. The control of cardiac cell death by miRNAs has emerged as a prominent area of scientific interest in the diagnosis and treatment of heart disorders in recent times. In the present investigation, we discovered that overexpression of miR-31-5p prevented LPS-induced damage to H9C2 cells and that miR-31-5p could inhibit BAP1 production by binding to its 3'-UTR. BRCA1-Associated Protein 1 (BAP1) is a ubiquitin carboxy-terminal hydrolase. BAP1 upregulation blocked effect of miR-31-5p on H9C2 cell injury. Moreover, BAP1 inhibited the expression of solute carrier family 7 member 11 (SLC7A11) by deubiquitinating histone 2 A (H2Aub) on the promoter of SLC7A11. Furthermore, overexpression of miR-31-5p and downregulation of BAP1 inhibited SLC7A11 mediated ferroptosis. In addition, the downregulation of SLC7A11 reversed the inhibitory effect of miR-31-5p on the expression of myocardial injury and inflammatory factors, and cell apoptosis was reversed. In conclusion, these results indicate that miR-31-5p alleviates malignant development of LPS-induced H9C2 cell injury by targeting BAP1 and regulating SLC7A11 deubiquitination-mediated ferroptosis, which confirmed the protective effect of miR-31-5p on H9C2 cell injury and revealed potential mechanisms that may provide new targets for treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Yafeng Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Niandan Hu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bo Ai
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Wenqiang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
32
|
Beigi YZ, Lanjanian H, Fayazi R, Salimi M, Hoseyni BHM, Noroozizadeh MH, Masoudi-Nejad A. Heterogeneity and molecular landscape of melanoma: implications for targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:17. [PMID: 38724687 PMCID: PMC11082128 DOI: 10.1186/s43556-024-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".
Collapse
Affiliation(s)
- Yasaman Zohrab Beigi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Lanjanian
- Software Engineering Department, Engineering Faculty, Istanbul Topkapi University, Istanbul, Turkey
| | - Reyhane Fayazi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Behnaz Haji Molla Hoseyni
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
33
|
Xu D, Gao Y, Yang H, Spils M, Marti TM, Losmanová T, Su M, Wang W, Zhou Q, Dorn P, Shu Y, Peng RW. BAP1 Deficiency Inflames the Tumor Immune Microenvironment and Is a Candidate Biomarker for Immunotherapy Response in Malignant Pleural Mesothelioma. JTO Clin Res Rep 2024; 5:100672. [PMID: 38715965 PMCID: PMC11070913 DOI: 10.1016/j.jtocrr.2024.100672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 03/17/2025] Open
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is a rare and universally lethal malignancy with limited treatment options. Immunotherapy with immune checkpoint inhibitors (ICIs) has recently been approved for unresectable MPM, but response to ICIs is heterogeneous, and reliable biomarkers for prospective selection of appropriate subpopulations likely to benefit from ICIs remain elusive. METHODS We performed multiscale integrative analyses of published primary tumor data set from The Cancer Genome Atlas (TCGA) and the French cohort E-MTAB-1719 to unravel the tumor immune microenvironment of MPM deficient in BAP1, one of the most frequently mutated tumor suppressor genes (TSGs) in the disease. The molecular profiling results were validated in independent cohorts of patients with MPM using immunohistochemistry and multiplex immunohistochemistry. RESULTS We revealed that BAP1 deficiency enriches immune-associated pathways in MPM, leading to increased mRNA signatures of interferon alfa/gamma response, activating dendritic cells, immune checkpoint receptors, and T-cell inflammation. This finding was confirmed in independent patient cohorts, where MPM tumors with low BAP1 levels are associated with an inflammatory tumor immune microenvironment characterized by increased exhausted precursor T-cells and macrophages but decreased myeloid-derived suppressor cells (MDSCs). In addition, BAP1low MPM cells are in close proximity to T cells and therefore can potentially be targeted with ICIs. Finally, we revealed that BAP1-proficient MPM is associated with a hyperactive mitogen-activated protein kinase (MAPK) pathway and may benefit from treatment with MEK inhibitors (MEKis). CONCLUSION Our results suggest that BAP1 plays an immunomodulatory role in MPM and that BAP1-deficient MPM may benefit from immunotherapy, which merits further clinical investigation.
Collapse
Affiliation(s)
- Duo Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yanyun Gao
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Marc Spils
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tereza Losmanová
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Min Su
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Wenxiang Wang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
Liu XL, Run-Hua Z, Pan JX, Li ZJ, Yu L, Li YL. Emerging therapeutic strategies for metastatic uveal melanoma: Targeting driver mutations. Pigment Cell Melanoma Res 2024; 37:411-425. [PMID: 38411373 DOI: 10.1111/pcmr.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults. Although primary UM can be effectively controlled, a significant proportion of cases (40% or more) eventually develop distant metastases, commonly in the liver. Metastatic UM remains a lethal disease with limited treatment options. The initiation of UM is typically attributed to activating mutations in GNAQ or GNA11. The elucidation of the downstream pathways such as PKC/MAPK, PI3K/AKT/mTOR, and Hippo-YAP have provided potential therapeutic targets. Concurrent mutations in BRCA1 associated protein 1 (BAP1) or splicing factor 3b subunit 1 (SF3B1) are considered crucial for the acquisition of malignant potential. Furthermore, in preclinical studies, actionable targets associated with BAP1 loss or oncogenic mutant SF3B1 have been identified, offering promising avenues for UM treatment. This review aims to summarize the emerging targeted and epigenetic therapeutic strategies for metastatic UM carrying specific driver mutations and the potential of combining these approaches with immunotherapy, with particular focus on those in upcoming or ongoing clinical trials.
Collapse
Affiliation(s)
- Xiao-Lian Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhou Run-Hua
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jing-Xuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Jie Li
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Le Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Lei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
van Kooten JP, Dietz MV, Dubbink HJ, Verhoef C, Aerts JGJV, Madsen EVE, von der Thüsen JH. Genomic characterization and detection of potential therapeutic targets for peritoneal mesothelioma in current practice. Clin Exp Med 2024; 24:80. [PMID: 38642130 PMCID: PMC11032274 DOI: 10.1007/s10238-024-01342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
Peritoneal mesothelioma (PeM) is an aggressive tumor with limited treatment options. The current study aimed to evaluate the value of next generation sequencing (NGS) of PeM samples in current practice. Foundation Medicine F1CDx NGS was performed on 20 tumor samples. This platform assesses 360 commonly somatically mutated genes in solid tumors and provides a genomic signature. Based on the detected mutations, potentially effective targeted therapies were identified. NGS was successful in 19 cases. Tumor mutational burden (TMB) was low in 10 cases, and 11 cases were microsatellite stable. In the other cases, TMB and microsatellite status could not be determined. BRCA1 associated protein 1 (BAP1) mutations were found in 32% of cases, cyclin dependent kinase inhibitor 2A/B (CDKN2A/B) and neurofibromin 2 (NF2) mutations in 16%, and ataxia-telangiectasia mutated serine/threonine kinase (ATM) in 11%. Based on mutations in the latter two genes, potential targeted therapies are available for approximately a quarter of cases (i.e., protein kinase inhibitors for three NF2 mutated tumors, and polyADP-ribose polymerase inhibitors for two ATM mutated tumors). Extensive NGS analysis of PeM samples resulted in the identification of potentially effective targeted therapies for about one in four patients. Although these therapies are currently not available for patients with PeM, ongoing developments might result in new treatment options in the future.
Collapse
Affiliation(s)
- Job P van Kooten
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Michelle V Dietz
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands.
| | | | - Cornelis Verhoef
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eva V E Madsen
- Department of Surgical Oncology and Gastrointestinal Surgery, Erasmus MC Cancer Institute, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | | |
Collapse
|
36
|
Rossi G, Righi L, Barbisan F, Tiseo M, Spagnolo P, Grosso F, Pisapia P, Malapelle U, Sculco M, Dianzani I, Abate-Daga L, Davolio MC, Ceresoli GL, Galetta D, Pasello G, Novello S, Bironzo P. BAP1 Loss, Nuclear Grading, and Nonepithelioid Features in the Diagnosis of Mesothelioma in Italy: Nevermore without the Pathology Report. J Pers Med 2024; 14:394. [PMID: 38673021 PMCID: PMC11051266 DOI: 10.3390/jpm14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The pathologic diagnosis of pleural mesothelioma is generally based on international guidelines, but no compulsory points based on different drugs approvals in different European countries are required to be reported. According to the last (2021) edition of the World Health Organization classification of pleural tumors, the nuclear grade of epithelioid-type mesothelioma should be always inserted in the pathologic report, while the presence of BRCA-associated protein-1 (BAP1) (clone C4) loss and a statement on the presence of the sarcomatoid/nonepithelioid component are fundamental for both a screening of patients with suspected BAP1 tumor predisposition syndrome and the eligibility to perform first-line immunotherapy at least in some countries. Several Italian experts on pleural mesothelioma who are deeply involved in national scientific societies or dedicated working groups supported by patient associations agreed that the pathology report of mesothelioma of the pleura should always include the nuclear grade in the epithelioid histology, which is an overt statement on the presence of sarcomatoid components (at least 1%, in agreement with the last classification of pleural mesothelioma) and the presence of BAP1 loss (BAP1-deficient mesothelioma) or not (BAP1-retained mesothelioma) in order to screen patients possibly harboring BAP1 tumor predisposition syndrome. This review aims to summarize the most recent data on these three important elements to provide evidence regarding the possible precision needs for mesothelioma.
Collapse
Affiliation(s)
- Giulio Rossi
- Pathology Unit, Services Area, Fondazione Poliambulanza Hospital Institute, Via Bissolati 57, 25124 Brescia, Italy;
- Fondazione FONICAP, Via Locchi, 26, 37124 Verona, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (L.R.); (S.N.); (P.B.)
| | - Francesca Barbisan
- Pathological Anatomy Institute, Polytechnic University of Marche Region, 60126 Ancona, Italy;
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma and Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy;
| | - Federica Grosso
- Mesothelioma Unit, AO SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Pasquale Pisapia
- Department of Public Health, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy;
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy;
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (M.S.); (I.D.)
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (M.S.); (I.D.)
| | - Laura Abate-Daga
- TU.TO.R. Tumori Toracici Rari, Patient Advocacy, 20123 Milan, Italy;
| | - Maria Cristina Davolio
- Legal Medicine and Risk Management Department, Azienda Unità Sanitaria Locale di Modena, Strada Martiniana, 21, 41126 Modena, Italy;
| | | | - Domenico Galetta
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Giulia Pasello
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (L.R.); (S.N.); (P.B.)
| | - Paolo Bironzo
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (L.R.); (S.N.); (P.B.)
| |
Collapse
|
37
|
Chen Z, Huang H, Huang H, Yu L, Weng H, Xiao J, Zou L, Zhang H, Liang C, Zhou H, Guo H, Wang Z, Li Z, Wu T, Zhang H, Wu H, Peng Z, Zhai L, Chen X, Liang Y, Hong H, Lin T. Genomic features reveal potential benefit of adding anti-PD-1 immunotherapy to treat non-upper aerodigestive tract natural killer/T-cell lymphoma. Leukemia 2024; 38:829-839. [PMID: 38378844 DOI: 10.1038/s41375-024-02171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a highly heterogeneous disease with a poor prognosis. However, the genomic characteristics and proper treatment strategies for non-upper aerodigestive tract NKTCL (NUAT-NKTCL), a rare subtype of NKTCL, remain largely unexplored. In this study, 1589 patients newly diagnosed with NKTCL at 14 hospitals were assessed, 196 (12.3%) of whom had NUAT-NKTCL with adverse clinical characteristics and an inferior prognosis. By using whole-genome sequencing (WGS) and whole-exome sequencing (WES) data, we found strikingly different mutation profiles between upper aerodigestive tract (UAT)- and NUAT-NKTCL patients, with the latter group exhibiting significantly higher genomic instability. In the NUAT-NKTCL cohort, 128 patients received frontline P-GEMOX chemotherapy, 37 of whom also received anti-PD-1 immunotherapy. The application of anti-PD-1 significantly improved progression-free survival (3-year PFS rate 53.9% versus 17.0%, P = 0.009) and overall survival (3-year OS rate 63.7% versus 29.2%, P = 0.01) in the matched NUAT-NKTCL cohort. WES revealed frequent mutations involving immune regulation and genomic instability in immunochemotherapy responders. Our study showed distinct clinical characteristics and mutational profiles in NUAT-NKTCL compared with UAT patients and suggested adding anti-PD-1 immunotherapy in front-line treatment of NUAT-NKTCL. Further studies are needed to validate the efficacy and related biomarkers for immunochemotherapy proposed in this study.
Collapse
Affiliation(s)
- Zegeng Chen
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - He Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huageng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le Yu
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Huawei Weng
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jian Xiao
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huilai Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chaoyong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Hui Zhou
- Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, China
| | - Hongqiang Guo
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Zhao Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhiming Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tao Wu
- The Affiliated Hospital of Guizhou Medical University, Guizhou Cancer Hospital, Guiyang, 550004, China
| | - Hongyu Zhang
- Department of Oncology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, China
| | - Huijing Wu
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Zhigang Peng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Linzhu Zhai
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinggui Chen
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Tongyu Lin
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
38
|
Nel AE, Pavlisko EN, Roggli VL. The Interplay Between the Immune System, Tumor Suppressor Genes, and Immune Senescence in Mesothelioma Development and Response to Immunotherapy. J Thorac Oncol 2024; 19:551-564. [PMID: 38000500 DOI: 10.1016/j.jtho.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Despite efforts to ban asbestos mining and manufacturing, mesothelioma deaths in the United States have remained stable at approximately 2500 cases annually. This trend is not unique to the United States but is also a global phenomenon, associated with increased aging of populations worldwide. Although geoeconomic factors such as lack of regulations and continued asbestos manufacturing in resource-poor countries play a role, it is essential to consider biological factors such as immune senescence and increased genetic instability associated with aging. Recognizing that mesothelioma shares genetic instability and immune system effects with other age-related cancers is crucial because the impact of aging on mesothelioma is frequently assessed in the context of disease latency after asbestos exposure. Nevertheless, the long latency period, often cited as a reason for mesothelioma's elderly predominance, should not overshadow the shared mechanisms. This communication focuses on the role of immune surveillance in mesothelioma, particularly exploring the impact of immune escape resulting from altered TSG function during aging, contributing to the phylogenetic development of gene mutations and mesothelioma oncogenesis. The interplay between the immune system, TSGs, and aging not only shapes the immune landscape in mesothelioma but also contributes to the development of heterogeneous tumor microenvironments, significantly influencing responses to immunotherapy approaches and survival rates. By understanding the complex interplay between aging, TSG decline, and immune senescence, health care professionals can pave the way for more effective and personalized immunotherapies, ultimately offering hope for better outcomes in the fight against mesothelioma.
Collapse
Affiliation(s)
- Andre E Nel
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California; Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.
| | | | - Victor L Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
39
|
Kennedy S, Owens S, Ivers L, Hegarty C, O'Neill V, Berenguer-Pina JJ, Horgan N, Crown J, Walsh N. Prognostic Value of BAP1 Protein Expression in Uveal Melanoma. Am J Surg Pathol 2024; 48:329-336. [PMID: 38238977 PMCID: PMC10876168 DOI: 10.1097/pas.0000000000002176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The prognostic value of the traditional pathologic parameters that form part of the American Joint Committee on Cancer staging system and genetic classifications using monosomy chromosome 3 and structural alterations in chromosome 8 are well established and are part of the diagnostic workup of uveal melanoma (UM). However, it has not been fully clarified whether nuclear protein expression of the tumor suppressor gene BAP1 (nBAP1) by immunohistochemistry alone is as powerful a predictor of overall survival (OS) and/or disease-specific survival (DSS) as chromosome analysis. The protein expression of nBAP1 was evaluated in a retrospective cohort study of 308 consecutive patients treated by primary enucleation between January 1974 and December 2022. We correlated clinical, pathologic, and cytogenetic characteristics to identify the best prognostic indicators for OS and DSS. Loss of nBAP1 was detected in 144/308 (47%) of patients. Loss of nBAP1 expression was significantly associated with poor survival. In patients with disomy chromosome 3, nBAP1 negative is significantly associated with poorer OS but not DSS. We observed that older age (>63 years), presence of metastasis, and nBAP1 negative remained independent prognostic factors in multivariate analysis. nBAP1 protein expression proved to be a more reliable prognostic indicator for OS than the American Joint Committee on Cancer staging, M3 status, or The Cancer Genome Atlas classification in this cohort. This study provides support for accurate prognostication of UM patients in routine histology laboratories by immunohistochemistry for nBAP1 alone.
Collapse
Affiliation(s)
- Susan Kennedy
- National Ophthalmic Pathology Laboratory & Research Foundation, Royal Victoria Eye and Ear Hospital
- School of Biotechnology, Dublin City University
| | - Sally Owens
- National Ophthalmic Pathology Laboratory & Research Foundation, Royal Victoria Eye and Ear Hospital
- School of Biotechnology, Dublin City University
| | - Laura Ivers
- School of Biotechnology, Dublin City University
| | - Ciara Hegarty
- National Ophthalmic Pathology Laboratory & Research Foundation, Royal Victoria Eye and Ear Hospital
- School of Biotechnology, Dublin City University
| | - Valerie O'Neill
- National Ophthalmic Pathology Laboratory & Research Foundation, Royal Victoria Eye and Ear Hospital
| | | | - Noel Horgan
- Ocular Oncology Service, Department of Ophthalmology, Research Foundation Royal Victoria Eye & Ear Hospital, Dublin, Ireland
| | - John Crown
- School of Biotechnology, Dublin City University
- Department of Medical Oncology, St Vincent's University Hospital
| | - Naomi Walsh
- School of Biotechnology, Dublin City University
| |
Collapse
|
40
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
41
|
Symes E, Tjota M, Cody B, Kindler H, Mitchell O, Witmer H, Turaga K, Mueller J, Krausz T, Husain AN, Li H. Mesothelioma in situ of the peritoneum: report of three cases and review of the literature. Histopathology 2024; 84:492-506. [PMID: 38084880 DOI: 10.1111/his.15092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 01/10/2024]
Abstract
AIM Diagnosis of mesothelioma in situ (MIS) is historically controversial and, until recently, specific features defining the entity have not been well characterized. Most reported cases of MIS occurred in the pleura; peritoneal MIS is very rare. This study investigates the morphologic features and results of ancillary testing in peritoneal MIS. METHODS We present three patients with peritoneal MIS, as defined by a single layer of mesothelial cells with loss of nuclear BRCA-1-associated protein-1 (BAP1) immunostaining and without evidence of invasive tumour by microscopic evaluation, imaging, or direct examination of the peritoneum. Histology and immunostains were reviewed by three expert thoracic pathologists with multidisciplinary input. Next-generation sequencing (NGS) was performed in all three cases. A literature review was conducted to characterize this rare precursor lesion. RESULTS BAP1 was lost in all three lesions, while methylthioadenosine phosphorylase (MTAP) was retained in two (not performed in the third). NGS revealed BAP1 pathogenic alterations in all three cases as well as mutations of SMO, ERCC3, TET2, and U2AF1. Progression to invasive mesothelioma occurred in one patient at 13 months postdiagnosis (case 1). One patient was diagnosed at age 24 and was later found to harbour a BAP1 germline mutation (case 3). CONCLUSION This work describes the histologic features and clinicopathologic characteristics of peritoneal MIS in three cases, highlights BAP1 somatic and germline mutations in peritoneal MIS, and strengthens the importance of ancillary studies (including immunohistochemical and molecular studies) in the diagnosis of MIS.
Collapse
Affiliation(s)
- Emily Symes
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Melissa Tjota
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Brittany Cody
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hedy Kindler
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Hunter Witmer
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Kiran Turaga
- Department of Surgery, University of Chicago, Chicago, IL, USA
- Department of Surgery, Yale Cancer Center, New Haven, CT, USA
| | - Jeffrey Mueller
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Thomas Krausz
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Huihua Li
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
42
|
Takeda K, Bastacky S, Dhir R, Mohebnasab M, Quiroga-Garza GM. Morphological characteristics of SETD2-mutated locally advanced clear cell renal cell carcinoma: Comparison with BAP1-mutated clear cell renal cell carcinoma. Ann Diagn Pathol 2024; 68:152223. [PMID: 37976977 DOI: 10.1016/j.anndiagpath.2023.152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
SET-domain containing 2 (SETD2) and BRCA1-associated protein 1 (BAP1), both chromatin remodeling genes, are frequently mutated in clear cell renal cell carcinoma (ccRCC) and involved in tumor progression and metastasis. Herein, we studied clinicopathologic features of 7 cases of locally advanced ccRCC with single SETD2 mutation, and compared to 7 cases of locally advanced ccRCC with single BAP1 mutation. SETD2-mutated ccRCC showed high-grade transformation, comprising of enlarged tumor cells with voluminous clear cytoplasm, enlarged irregular nuclei with prominent nucleoli, eosinophilic cytoplasmic granules, arranged in various architectural patterns such as large nested, tubular, tubulopapillary and solid. 71 % (5 of 7 cases) of SETD2-mutated ccRCC showed a rhabdoid morphology. SETD2-mutated ccRCC have striking propensity for invasive growth; all cases have vascular invasion and perirenal (extracapsular) adipose tissue invasion. After nephrectomy, distant metastasis was found in 67 % (4 of 7 cases) of patients with SETD2-mutated ccRCC. The most common metastatic site was the lung (3 cases), followed by precaval lymph nodes (1 case). BAP1-mutated ccRCC also showed a similar high-grade morphology, with rhabdoid and/or sarcomatoid features. Their high-grade features mostly overlapped with those of SETD2-mutated ccRCC, which makes difficult to predict the presence of BAP1 or SETD2 mutation solely from morphology. These findings justify the use of molecular testing to detect these mutations, especially when we encounter high-grade ccRCC. Detecting SETD2 and BAP1 mutation in ccRCC is useful for risk stratification and proper therapeutic strategy.
Collapse
Affiliation(s)
- Kotaro Takeda
- Department of Pathology, Genitourinary Pathology Center of Excellence, University of Pittsburgh Medical Center, Pittsburgh, USA.
| | - Sheldon Bastacky
- Department of Pathology, Genitourinary Pathology Center of Excellence, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Rajiv Dhir
- Department of Pathology, Genitourinary Pathology Center of Excellence, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Maedeh Mohebnasab
- Department of Pathology, Division of Molecular Genetics Pathology, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Gabriela M Quiroga-Garza
- Department of Pathology, Genitourinary Pathology Center of Excellence, University of Pittsburgh Medical Center, Pittsburgh, USA
| |
Collapse
|
43
|
Midena G, Parrozzani R, Frizziero L, Esposito G, Micera A, Midena E. Expression of GNAQ, BAP1, SF3B1, and EIF1AX Proteins in the Aqueous Humor of Eyes Affected by Uveal Melanoma. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38175637 PMCID: PMC10774693 DOI: 10.1167/iovs.65.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose The purpose of this study was to quantify specific aqueous humor (AH) proteins in eyes affected by posterior uveal melanoma (UM). Methods Thirty-six eyes affected by primary UM were included. Tumor thickness and largest basal diameter were specific clinical characteristics. Tumors were staged with the American Joint Commission on Cancer Eighth Edition (AJCC) classification. During the brachytherapy (Iodine-125) surgical procedure, both the AH sample collection and the 25-gauge transscleral fine needle aspiration biopsy (FNAB) were performed. AH samples were analyzed by immunoprecipitation and SDS PAGE techniques to quantify GNAQ, BAP1, SF3B1, and EIF1AX proteins. Cytologic material underwent fluorescence in situ hybridization for chromosome 3. The AH of 36 healthy eyes was used as the control group. Cluster analysis of groups was also performed. Results Compared with the control group, significantly higher protein levels of: GNAQ (P = 0.02), BAP1 (P = 0.01), and SF3B1 (P = 0.02) were detected in eyes with UM. Cluster analysis of UM group revealed 2 clusters, one showing higher expression of GNAQ and BAP1 protein and one of EIF1AX protein. Moreover, the 2 clusters corresponded with the chromosome 3 status of UM. Conclusions Specific and selected proteins may be detected in the AH of eyes affected by UM. These findings confirm the possibilities provided by AH analysis in UM.
Collapse
Affiliation(s)
| | | | - Luisa Frizziero
- Department of Ophthalmology, University of Padova, Padova, Italy
| | | | | | - Edoardo Midena
- IRCCS–Fondazione Bietti, Rome, Italy
- Department of Ophthalmology, University of Padova, Padova, Italy
| |
Collapse
|
44
|
Cerbone L, Orecchia S, Bertino P, Delfanti S, de Angelis AM, Grosso F. Clinical Next Generation Sequencing Application in Mesothelioma: Finding a Golden Needle in the Haystack. Cancers (Basel) 2023; 15:5716. [PMID: 38136262 PMCID: PMC10741845 DOI: 10.3390/cancers15245716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mesothelioma comprises a group of rare cancers arising from the mesothelium of the pleura, peritoneum, tunica vaginalis testis and pericardium. Mesothelioma is generally associated with asbestos exposure and has a dismal prognosis, with few therapeutic options. Several next generation sequencing (NGS) experiments have been performed on mesothelioma arising at different sites. These studies highlight a genomic landscape mainly characterized by a high prevalence (>20%) of genomic aberrations leading to functional losses in oncosuppressor genes such as BAP1, CDKN2A, NF2, SETD2 and TP53. Nevertheless, to date, evidence of the effect of targeting these alterations with specific drugs is lacking. Conversely, 1-2% of mesothelioma might harbor activating mutations in oncogenes with specifically approved drugs. The goal of this review is to summarize NGS applications in mesothelioma and to provide insights into target therapy of mesothelioma guided by NGS.
Collapse
Affiliation(s)
- Luigi Cerbone
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Sara Orecchia
- Molecular Pathology Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy;
| | - Pietro Bertino
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Sara Delfanti
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Antonina Maria de Angelis
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| | - Federica Grosso
- Mesothelioma Unit, SS Antonio e and Biagio Hospital, 15121 Alessandria, Italy; (L.C.); (P.B.); (S.D.); (A.M.d.A.)
| |
Collapse
|
45
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
46
|
Silva-Clavería F, Álvarez-Muñoz A, Ferrándiz L, Fernández-Orland A, Conde-Martin AF, Moreno-Ramírez D, Ríos-Martín JJ. Difficult to Diagnose Cutaneous Melanoma in a Patient with BAP1 Tumor Predisposition Syndrome. Int J Surg Pathol 2023; 31:1398-1402. [PMID: 36803128 DOI: 10.1177/10668969231152579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
BRCA1-associated protein 1 (BAP1)-inactivated melanomas can occur sporadically or in germline contexts, particularly in recently recognized BAP1-tumor predisposition syndrome. Diagnosis represents a clinical and histopathological challenge, requiring comprehensive analysis of morphology and sometimes molecular analysis in addition to immunohistochemistry. We report a BAP1-inactivated cutaneous melanoma initially diagnosed as an atypical Spitz tumor on the auricle in a patient with BAP1-tumor predisposition syndrome. Immunohistochemistry, fluorescence in situ hybridization, and comparative genomic hybridization allowed diagnosis. Cutaneous BAP1-inactivated melanocytic tumors, previously classified as atypical Spitz Nevi, may have a dermal mitotic activity that can resemble melanoma and on the other hand, atypical Spitz tumors are sometimes difficult to differentiate from BAP1-inactivated melanoma. Specific criteria, requiring molecular diagnosis have been proposed in order to support melanoma diagnosis.
Collapse
Affiliation(s)
- Francisca Silva-Clavería
- Melanoma Unit, Department of Medical & Surgical Dermatology, University Hospital Virgen Macarena, Seville, Spain
| | | | - Lara Ferrándiz
- Melanoma Unit, Department of Medical & Surgical Dermatology, University Hospital Virgen Macarena, Seville, Spain
| | - Almudena Fernández-Orland
- Melanoma Unit, Department of Medical & Surgical Dermatology, University Hospital Virgen Macarena, Seville, Spain
| | | | - David Moreno-Ramírez
- Melanoma Unit, Department of Medical & Surgical Dermatology, University Hospital Virgen Macarena, Seville, Spain
| | - Juan J Ríos-Martín
- Pathology Department, University Hospital Virgen Macarena, Seville, Spain
| |
Collapse
|
47
|
Wu W, Chang F, Zhang J, Tang S, Lv Z, Chen F. A novel coagulation-related lncRNA predicts the prognosis and immune of clear cell renal cell carcinoma. Sci Rep 2023; 13:16302. [PMID: 37770494 PMCID: PMC10539335 DOI: 10.1038/s41598-023-43065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Renal cell cancer is associated with the coagulation system. Long non-coding RNA (lncRNA) expression is closely associated with the development of clear cell renal cell carcinoma (ccRCC). The aim of this study was to build a novel lncRNA model to predict the prognosis and immunological state of ccRCC. The transcriptomic data and clinical data of ccRCC were retrieved from TCGA database, subsequently, the lasso regression and lambda spectra were used to filter prognostic lncRNAs. ROC curves and the C-index were used to confirm the predictive effectiveness of this model. We also explored the difference in immune infiltration, immune checkpoints, tumor mutation burden (TMB) and drug sensitivity between the high- and low-risk groups. We created an 8 lncRNA model for predicting the outcome of ccRCC. Multivariate Cox regression analysis showed that age, tumor grade, and risk score are independent prognostic factors for ccRCC patients. ROC curve and C-index revealed the model had a good performance in predicting prognosis of ccRCC. GO and KEGG analysis showed that coagulation related genes were related to immune response. In addition, high risk group had greater TMB level and higher immune checkpoints expression. Sorafenib, Imatinib, Pazopanib, and etoposide had higher half maximal inhibitory concentration (IC50) in the high risk group whereas Sunitinib and Bosutinib had lower IC50. This novel coagulation-related long noncoding RNAs model could predict the prognosis of patients with ccRCC, and coagulation-related lncRNA may be connected to the tumor microenvironment and gene mutation of ccRCC.
Collapse
Affiliation(s)
- Wensong Wu
- Department of Urology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China, 300170
| | - Fan Chang
- Department of Urology, The Third Central Hospital of Tianjin, 83 Jintang Road, Tianjin, China, 300170
- Department of Urology, Nankai University Afnity the Third Central Hospital, Tianjin, China, 300170
| | - Jianghui Zhang
- Department of Urology, The Third Central Hospital of Tianjin, 83 Jintang Road, Tianjin, China, 300170
- Department of Urology, Nankai University Afnity the Third Central Hospital, Tianjin, China, 300170
| | - Shuai Tang
- Department of Urology, The Third Central Hospital of Tianjin, 83 Jintang Road, Tianjin, China, 300170
- Department of Urology, Nankai University Afnity the Third Central Hospital, Tianjin, China, 300170
| | - Zhen Lv
- Department of Urology, The Third Central Hospital of Tianjin, 83 Jintang Road, Tianjin, China, 300170
- Department of Urology, Nankai University Afnity the Third Central Hospital, Tianjin, China, 300170
| | - Fangmin Chen
- Department of Urology, The Third Central Hospital of Tianjin, 83 Jintang Road, Tianjin, China, 300170.
- Department of Urology, Nankai University Afnity the Third Central Hospital, Tianjin, China, 300170.
| |
Collapse
|
48
|
Zhang C, Wu S. BAP1 mutations inhibit the NF-κB signaling pathway to induce an immunosuppressive microenvironment in uveal melanoma. Mol Med 2023; 29:126. [PMID: 37710185 PMCID: PMC10503157 DOI: 10.1186/s10020-023-00713-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Tumor immune microenvironment regulates the growth and metastasis of uveal melanoma (UM). This study aims to reveal the possible molecular mechanism of BRCA1-associated protein 1 (BAP1) mutations in affecting the tumor immune microenvironment in UM through mediating the nuclear factor-κB (NF-κB) signaling pathway. METHODS TCGA and cBioPortal databases jointly analyzed the genes with high mutation frequency in UM samples. Following survival analysis of UM patients, UM samples with BAP1 mutations were subjected to immune cell infiltration analysis. The signaling pathways associated with the mutated genes were screened by GSEA. Subsequently, the differential BAP1 expression was analyzed in the selected UM cell lines with wild type (WT) or mutant type (MUT) BAP1. RESULTS Bioinformatics analysis identified 12 genes mutated in the UM samples, while only BAP1 mutations were related to the prognosis of UM patients. UM patients with BAP1 mutations had higher immune cell infiltration. BAP1 mutations inhibited the NF-κB signaling pathway, suppressing the cytokine secretion and antigen presentation by macrophages. Rescue experiments confirmed that overexpressed NF-κB could reverse the effect of BAP1 mutations on the immunosuppressive microenvironment, thus suppressing the malignant phenotypes of UM cells. CONCLUSION BAP1 mutations may inhibit the NF-κB signaling pathway, repressing the cytokine secretion and antigen presentation by macrophages, which induces the immunosuppressive microenvironment, enhances the malignant phenotypes of UM cells and ultimately promotes the growth and metastasis of UM.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Strabismus and Pediatric Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Shuai Wu
- Department of Orbital Disease and Ocular Plastic Surgery, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130041, P. R. China.
| |
Collapse
|
49
|
Quiroga EF, Connor PR, Rooper L, Moreno MA, Nix JS. Loss of BAP1 Protein Expression by Immunohistochemistry in the Salivary Duct Carcinoma Component of an Intracapsular Carcinoma ex Pleomorphic Adenoma of the Parotid Gland. Head Neck Pathol 2023; 17:851-854. [PMID: 37594632 PMCID: PMC10514007 DOI: 10.1007/s12105-023-01579-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that is altered in a variety of neoplasms as well as in BAP1 tumor predisposition syndrome. BAP1 alterations are associated with aggressive behavior in some malignancies and may have treatment implications in future. We present the first documented case of loss of BAP1 protein expression by immunohistochemistry in the salivary duct carcinoma (SDC) component of an intracapsular carcinoma ex pleomorphic adenoma (CXPA) in the context of molecular loss of function of BAP1 in the neoplasm. METHODS A woman of approximately 55 years of age presented with a deep parotid lobe mass, which was resected and found to be CXPA. BAP1 immunohistochemistry and next-generation sequencing was performed to further characterize the neoplasm. RESULTS The neoplasm showed loss of BAP1 protein expression in the SDC component but retention in the residual pleomorphic adenoma (PA). Next-generation sequencing confirmed a BAP1 loss of function alteration in the neoplasm. CONCLUSION This is the first documented case report of BAP1 protein expression loss in the SDC component of a CXPA. Future studies are needed to investigate the relevance of BAP1 alterations in SDC and CXPA, which may have prognostic and treatment implications.
Collapse
Affiliation(s)
| | - Patricia R. Connor
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Lisa Rooper
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD 21287 USA
| | - Mauricio A. Moreno
- Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - J. Stephen Nix
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| |
Collapse
|
50
|
Husain S, Mohamed R, Abd Halim KB, Mohd Mutalip SS. Homology modeling of human BAP1 and analysis of its binding properties through molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:7158-7173. [PMID: 36039769 DOI: 10.1080/07391102.2022.2117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
BRCA1-associated protein 1 (BAP1) is a nuclear-localized Ubiquitin C-terminal hydrolase (UCH) that functions as a tumour suppressor, and although BAP1 has been linked to cancer, the molecular mechanism by which BAP1 regulates cancer and its crystal structure have not been elucidated. In this study, computational approaches were used to identify the protein model of BAP1 and its potential inhibitors. The structure of the BAP1 model was constructed through homology modeling and the generated BAP1 model was observed to exhibit good quality protein model as the distribution of its amino acids in the Ramachandran's plot corresponded to 87.7% in the most favoured regions. Docking and simulating of the ubiquitin on the BAP1 model structure revealed the rearrangement of F228, F50, and H169 residues of the BAP1 and switching of BAP1's conformation into a productive state. Our screening results of potential BAP1 inhibitors against the FDA approved drugs shortlisted two potential inhibitors, which are FDA1065 and FDA755. We then performed molecular dynamics simulations and Molecular mechanics Poisson-Boltzmann surface area (MMPBSA) analysis on both inhibitors and found that only the BAP1-FDA755 formed a stable complex and the FDA755 ligand remained its position inside the active site of the BAP1 with a total binding energy of (-51.77 ± 3.49 kcal/mol). We speculate that the presence of methyl group in FDA755 play an important role in stabilizing the BAP1-FDA755 complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Syarifuddin Husain
- Bioinformatics Unit, Faculty of Pharmacy, UiTM Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Ruzianisra Mohamed
- Bioinformatics Unit, Faculty of Pharmacy, UiTM Cawangan Selangor, Bandar Puncak Alam, Selangor, Malaysia
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, UiTM Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Siti Syairah Mohd Mutalip
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, UiTM Puncak Alam Campus, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|