1
|
Xu P, Zhang R, Zhou Z, Xu H, Li Y, Yang M, Lin R, Wang Y, Huang X, Xie Q, Meng W. MARK2 regulates Golgi apparatus reorientation by phosphorylation of CAMSAP2 in directional cell migratio. eLife 2025; 14:RP105977. [PMID: 40333320 PMCID: PMC12058119 DOI: 10.7554/elife.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.
Collapse
Affiliation(s)
- Peipei Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- Neuroscience Center, Department of Basic Medical Sciences, Shantou University Medical CollegeShantouChina
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengge Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruifan Lin
- Wangjing Hospital of China Academy of Chinese Medical SciencesBeijingChina
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Qi Xie
- Wangjing Hospital of China Academy of Chinese Medical SciencesBeijingChina
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Lambies G, Lee SW, Duong-Polk K, Aza-Blanc P, Maganti S, Galapate CM, Deshpande A, Deshpande AJ, Scott DA, Dawson DW, Commisso C. Cell polarity proteins promote macropinocytosis in response to metabolic stress. Nat Commun 2024; 15:10541. [PMID: 39627191 PMCID: PMC11614886 DOI: 10.1038/s41467-024-54788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
Macropinocytosis has emerged as a scavenging pathway that cancer cells exploit to survive in a nutrient-deprived microenvironment. Tumor cells are especially reliant on glutamine for their survival, and in pancreatic ductal adenocarcinoma (PDAC) cells, glutamine deficiency can enhance the stimulation of macropinocytosis. Here, we identify the atypical protein kinase C (aPKC) enzymes, PKCζ and PKCι, as regulators of macropinocytosis. In normal epithelial cells, aPKCs associate with the scaffold proteins Par3 and Par6 to regulate cell polarity, affecting several targets, including the Par1 kinases and we find that each of these proteins is required for macropinocytosis. Mechanistically, aPKCs are regulated by EGFR signaling or by the transcription factor CREM to promote the Par3 relocation to microtubules, facilitating macropinocytosis in a dynein-dependent manner. Importantly, cell fitness impairment caused by aPKC depletion is rescued by the restoration of macropinocytosis and aPKCs support PDAC growth in vivo. Our findings enhance our understanding of the mechanistic underpinnings that control macropinocytic uptake in the context of metabolic stress.
Collapse
Affiliation(s)
- Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Szu-Wei Lee
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Pedro Aza-Blanc
- Functional Genomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska M Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anagha Deshpande
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aniruddha J Deshpande
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
He X, He H, Hou Z, Wang Z, Shi Q, Zhou T, Wu Y, Qin Y, Wang J, Cai Z, Cui J, Jin S. ER-phagy restrains inflammatory responses through its receptor UBAC2. EMBO J 2024; 43:5057-5084. [PMID: 39284914 PMCID: PMC11535055 DOI: 10.1038/s44318-024-00232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
ER-phagy, a selective form of autophagic degradation of endoplasmic reticulum (ER) fragments, plays an essential role in governing ER homeostasis. Dysregulation of ER-phagy is associated with the unfolded protein response (UPR), which is a major clue for evoking inflammatory diseases. However, the molecular mechanism underpinning the connection between ER-phagy and disease remains poorly defined. Here, we identified ubiquitin-associated domain-containing protein 2 (UBAC2) as a receptor for ER-phagy, while at the same time being a negative regulator of inflammatory responses. UBAC2 harbors a canonical LC3-interacting region (LIR) in its cytoplasmic domain, which binds to autophagosomal GABARAP. Upon ER-stress or autophagy activation, microtubule affinity-regulating kinase 2 (MARK2) phosphorylates UBAC2 at serine (S) 223, promoting its dimerization. Dimerized UBAC2 interacts more strongly with GABARAP, thus facilitating selective degradation of the ER. Moreover, by affecting ER-phagy, UBAC2 restrains inflammatory responses and acute ulcerative colitis (UC) in mice. Our findings indicate that ER-phagy directed by a MARK2-UBAC2 axis may provide targets for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Xing He
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haowei He
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zitong Hou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zheyu Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qinglin Shi
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- Institute of Precision Medicine, Department of Critical Care Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunfei Qin
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cai
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Homma D, Limlingan SJM, Saito T, Ando K. SARS-CoV-2-derived protein Orf9b enhances MARK2 activity via interaction with the autoinhibitory KA1 domain. FEBS Lett 2024; 598:2385-2393. [PMID: 38969617 DOI: 10.1002/1873-3468.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
Microtubule affinity-regulating kinase 2 (MARK2) is a Ser/Thr protein kinase that regulates cell polarity and immune responses. Here, we report that Orf9b, one of the accessory proteins encoded in the SARS-CoV-2 genome, increases MARK2 activity via interaction with the autoinhibitory KAI domain. We found that co-expression of Orf9b enhances the kinase activity of MARK2 in HEK293 cells. Orf9b does not bind to or enhance the activity of the mutant form of MARK2 lacking the KA1 domain. Orf9b lowers inhibitory phosphorylation of MARK2 at T595 while mutation experiments indicate that this site is dispensable for Orf9b-mediated enhancement of MARK2 activity. Our results suggest that Orf9b enhances MARK2 activity by binding the autoinhibitory KA1 domain, which closely interacts with the kinase domain.
Collapse
Affiliation(s)
- Daiki Homma
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | | | - Taro Saito
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Japan
| |
Collapse
|
5
|
Bland T, Hirani N, Briggs DC, Rossetto R, Ng K, Taylor IA, McDonald NQ, Zwicker D, Goehring NW. Optimized PAR-2 RING dimerization mediates cooperative and selective membrane binding for robust cell polarity. EMBO J 2024; 43:3214-3239. [PMID: 38907033 PMCID: PMC11294563 DOI: 10.1038/s44318-024-00123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.
Collapse
Affiliation(s)
- Tom Bland
- Francis Crick Institute, London, NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | | | - Riccardo Rossetto
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - KangBo Ng
- Francis Crick Institute, London, NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | - Neil Q McDonald
- Francis Crick Institute, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, WC1E 7HX, UK
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Nathan W Goehring
- Francis Crick Institute, London, NW1 1AT, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| |
Collapse
|
6
|
Wibbe N, Steinbacher T, Tellkamp F, Beckmann N, Brinkmann F, Stecher M, Gerke V, Niessen CM, Ebnet K. RhoGDI1 regulates cell-cell junctions in polarized epithelial cells. Front Cell Dev Biol 2024; 12:1279723. [PMID: 39086660 PMCID: PMC11288927 DOI: 10.3389/fcell.2024.1279723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Cell-cell contact formation of polarized epithelial cells is a multi-step process that involves the co-ordinated activities of Rho family small GTPases. Consistent with the central role of Rho GTPases, a number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) have been identified at cell-cell junctions at various stages of junction maturation. As opposed to RhoGEFs and RhoGAPs, the role of Rho GDP dissociation inhibitors (GDIs) during cell-cell contact formation is poorly understood. Here, we have analyzed the role of RhoGDI1/ARHGDIA, a member of the RhoGDI family, during cell-cell contact formation of polarized epithelial cells. Depletion of RhoGDI1 delays the development of linear cell-cell junctions and the formation of barrier-forming tight junctions. In addition, RhoGDI1 depletion impairs the ability of cells to stop migration in response to cell collision and increases the migration velocity of collectively migrating cells. We also find that the cell adhesion receptor JAM-A promotes the recruitment of RhoGDI1 to cell-cell contacts. Our findings implicate RhoGDI1 in various processes involving the dynamic reorganization of cell-cell junctions.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frederik Tellkamp
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Niklas Beckmann
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Manuel Stecher
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| |
Collapse
|
7
|
Packer J, Gubieda AG, Brooks A, Deutz LN, Squires I, Ellison S, Schneider C, Naganathan SR, Wollman AJ, Dickinson DJ, Rodriguez J. Atypical Protein Kinase C Promotes its own Asymmetric Localisation by Phosphorylating Cdc42 in the C. elegans zygote. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.563985. [PMID: 38009101 PMCID: PMC10675845 DOI: 10.1101/2023.10.27.563985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Atypical protein kinase C (aPKC) is a major regulator of cell polarity. Acting in conjunction with Par6, Par3 and the small GTPase Cdc42, aPKC becomes asymmetrically localised and drives the polarisation of cells. aPKC activity is crucial for its own asymmetric localisation, suggesting a hitherto unknown feedback mechanism contributing to polarisation. Here we show in the C. elegans zygote that the feedback relies on aPKC phosphorylation of Cdc42 at serine 71. The turnover of CDC-42 phosphorylation ensures optimal aPKC asymmetry and activity throughout polarisation by tuning Par6/aPKC association with Par3 and Cdc42. Moreover, turnover of Cdc42 phosphorylation regulates actomyosin cortex dynamics that are known to drive aPKC asymmetry. Given the widespread role of aPKC and Cdc42 in cell polarity, this form of self-regulation of aPKC may be vital for the robust control of polarisation in many cell types.
Collapse
Affiliation(s)
- John Packer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | - Alicia G. Gubieda
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | - Aaron Brooks
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | - Lars N. Deutz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- These authors contributed equally
| | - Iolo Squires
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | | | | | - Sundar Ram Naganathan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Adam J.M. Wollman
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Josana Rodriguez
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Lead contact
| |
Collapse
|
8
|
Sandegaard SL, Riishede A, Birn H, Damkier HH, Praetorius J. The Cyst Epithelium in Polycystic Kidney Disease Patients Displays Normal Apical-Basolateral Cell Polarity. Int J Mol Sci 2024; 25:1904. [PMID: 38339183 PMCID: PMC10855726 DOI: 10.3390/ijms25031904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The main characteristic of polycystic kidney disease is the development of multiple fluid-filled renal cysts. The discovery of mislocalized sodium-potassium pump (Na,K-ATPase) in the apical membrane of cyst-lining epithelia alluded to reversal of polarity as a possible explanation for the fluid secretion. The topic of apical Na,K-ATPase in cysts remains controversial. We investigated the localization of the Na,K-ATPase and assessed the apical-basolateral polarization of cyst-lining epithelia by means of immunohistochemistry in kidney tissue from six polycystic kidney disease patients undergoing nephrectomy. The Na,K-ATPase α1 subunit was conventionally situated in the basolateral membrane of all immunoreactive cysts. Proteins of the Crumbs and partitioning defective (Par) complexes were localized to the apical membrane domain in cyst epithelial cells. The apical targeting protein Syntaxin-3 also immunolocalized to the apical domain of cyst-lining epithelial cells. Proteins of the basolateral Scribble complex immunolocalized to the basolateral domain of cysts. Thus, no deviations from the typical epithelial distribution of basic cell polarity proteins were observed in the cysts from the six patients. Furthermore, we confirmed that cysts can originate from virtually any tubular segment with preserved polarity. In conclusion, we find no evidence of a reversal in apical-basolateral polarity in cyst-lining epithelia in polycystic kidney disease.
Collapse
Affiliation(s)
- Samuel Loft Sandegaard
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
| | - Andreas Riishede
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
| | - Henrik Birn
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
- Department of Clinical Medicine, Health Faculty, Aarhus University, DK-8200 Aarhus N, Denmark
| | - Helle Hasager Damkier
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
| | - Jeppe Praetorius
- Department of Biomedicine, Health Faculty, Aarhus University, DK-8000 Aarhus C, Denmark; (S.L.S.); (A.R.); (H.B.); (H.H.D.)
| |
Collapse
|
9
|
Lambies G, Lee SW, Duong-Polk K, Aza-Blanc P, Maganti S, Dawson DW, Commisso C. Cell polarity proteins promote macropinocytosis in response to metabolic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575943. [PMID: 38293142 PMCID: PMC10827152 DOI: 10.1101/2024.01.16.575943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Macropinocytosis has emerged as a nutrient-scavenging pathway that cancer cells exploit to survive the nutrient-deprived conditions of the tumor microenvironment. Cancer cells are especially reliant on glutamine for their survival, and in pancreatic ductal adenocarcinoma (PDAC) cells, glutamine deficiency can enhance the stimulation of macropinocytosis, allowing the cells to escape metabolic stress through the production of extracellular-protein-derived amino acids. Here, we identify the atypical protein kinase C (aPKC) enzymes, PKCζ and PKCι as novel regulators of macropinocytosis. In normal epithelial cells, aPKCs are known to regulate cell polarity in association with the scaffold proteins Par3 and Par6, controlling the function of several targets, including the Par1 kinases. In PDAC cells, we identify that each of these cell polarity proteins are required for glutamine stress-induced macropinocytosis. Mechanistically, we find that the aPKCs are regulated by EGFR signaling or by the transcription factor CREM to promote the relocation of Par3 to microtubules, facilitating macropinocytosis in a dynein-dependent manner. Importantly, we determine that cell fitness impairment caused by aPKC depletion is rescued by the restoration of macropinocytosis and that aPKCs support PDAC growth in vivo. These results identify a previously unappreciated role for cell polarity proteins in the regulation of macropinocytosis and provide a better understanding of the mechanistic underpinnings that control macropinocytic uptake in the context of metabolic stress.
Collapse
|
10
|
Cobbaut M, McDonald NQ, Parker PJ. Control of atypical PKCι membrane dissociation by tyrosine phosphorylation within a PB1-C1 interdomain interface. J Biol Chem 2023; 299:104847. [PMID: 37211093 PMCID: PMC10333572 DOI: 10.1016/j.jbc.2023.104847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Atypical PKCs are cell polarity kinases that operate at the plasma membrane where they function within multiple molecular complexes to contribute to the establishment and maintenance of polarity. In contrast to the classical and novel PKCs, atypical PKCs do not respond to diacylglycerol cues to bind the membrane compartment. Until recently, it was not clear how aPKCs are recruited; whether aPKCs can directly interact with membranes or whether they are dependent on other protein interactors to do so. Two recent studies identified the pseudosubstrate region and the C1 domain as direct membrane interaction modules; however, their relative importance and coupling are unknown. We combined molecular modeling and functional assays to show that the regulatory module of aPKCι, comprising the PB1 pseudosubstrate and C1 domains, forms a cooperative and spatially continuous invariant membrane interaction platform. Furthermore, we show the coordinated orientation of membrane-binding elements within the regulatory module requires a key PB1-C1 interfacial β-strand (beta-strand linker). We show this element contains a highly conserved Tyr residue that can be phosphorylated and that negatively regulates the integrity of the regulatory module, leading to membrane release. We thus expose a hitherto unknown regulatory mechanism of aPKCι membrane binding and release during cell polarization.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK; Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK.
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, UK; Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| | - Peter J Parker
- Protein Phosphorylation Laboratory, The Francis Crick Institute, London, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
11
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
12
|
Abstract
By the time a Drosophila egg is laid, both major body axes have already been defined and it contains all the nutrients needed to develop into a free-living larva in 24 h. By contrast, it takes almost a week to make an egg from a female germline stem cell, during the complex process of oogenesis. This review will discuss key symmetry-breaking steps in Drosophila oogenesis that lead to the polarisation of both body axes: the asymmetric divisions of the germline stem cells; the selection of the oocyte from the 16-cell germline cyst; the positioning of the oocyte at the posterior of the cyst; Gurken signalling from the oocyte to polarise the anterior-posterior axis of the somatic follicle cell epithelium around the developing germline cyst; the signalling back from the posterior follicle cells to polarise the anterior-posterior axis of the oocyte; and the migration of the oocyte nucleus that specifies the dorsal-ventral axis. Since each event creates the preconditions for the next, I will focus on the mechanisms that drive these symmetry-breaking steps, how they are linked and the outstanding questions that remain to be answered.
Collapse
|
13
|
Tang EI, Cheng CY. MARK2 and MARK4 Regulate Sertoli Cell BTB Dynamics Through Microtubule and Actin Cytoskeletons. Endocrinology 2022; 163:6667645. [PMID: 35971301 PMCID: PMC10147390 DOI: 10.1210/endocr/bqac130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Microtubule affinity-regulating kinases (MARKs) are nonreceptor Ser/Thr protein kinases known to regulate cell polarity and microtubule dynamics in Caenorhabditis elegans, Drosophila, invertebrates, vertebrates, and mammals. An earlier study has shown that MARK4 is present at the ectoplasmic specialization and blood-testis barrier (BTB) in the seminiferous epithelium of adult rat testes. Here, we report the function of MARK4 and another isoform MARK2 in Sertoli cells at the BTB. Knockdown of MARK2, MARK4, or MARK2 and MARK4 by RNAi using the corresponding siRNA duplexes without apparent off-target effects was shown to impair tight junction (TJ)-permeability barrier at the Sertoli cell BTB. It also disrupted microtubule (MT)- and actin-based cytoskeletal organization within Sertoli cells. Although MARK2 and MARK4 were shown to share sequence homology, they likely regulated the Sertoli cell BTB and MT cytoskeleton differently. Disruption of the TJ-permeability barrier following knockdown of MARK4 was considerably more severe than loss of MARK2, though both perturbed the barrier. Similarly, loss of MARK2 affected MT organization in a different manner than the loss of MARK4. Knockdown of MARK2 caused MT bundles to be arranged around the cell periphery, whereas knockdown of MARK4 caused MTs to retract from the cell edge. These differences in effects on the TJ-permeability barrier are likely from the unique roles of MARK2 and MARK4 in regulating the MT cytoskeleton of the Sertoli cell.
Collapse
Affiliation(s)
- Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, Rockefeller University, New York, NY 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, Rockefeller University, New York, NY 10065, USA
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
14
|
Ma B, Ma C, Li J, Fang Y. Revealing phosphorylation regulatory networks during embryogenesis of honey bee worker and drone (Apis mellifera). Front Cell Dev Biol 2022; 10:1006964. [PMID: 36225314 PMCID: PMC9548569 DOI: 10.3389/fcell.2022.1006964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Protein phosphorylation is known to regulate a comprehensive scenario of critical cellular processes. However, phosphorylation-mediated regulatory networks in honey bee embryogenesis are mainly unknown. We identified 6342 phosphosites from 2438 phosphoproteins and predicted 168 kinases in the honey bee embryo. Generally, the worker and drone develop similar phosphoproteome architectures and major phosphorylation events during embryogenesis. In 24 h embryos, protein kinases A play vital roles in regulating cell proliferation and blastoderm formation. At 48–72 h, kinase subfamily dual-specificity tyrosine-regulated kinase, cyclin-dependent kinase (CDK), and induced pathways related to protein synthesis and morphogenesis suggest the centrality to enhance the germ layer development, organogenesis, and dorsal closure. Notably, workers and drones formulated distinct phosphoproteome signatures. For 24 h embryos, the highly phosphorylated serine/threonine-protein kinase minibrain, microtubule-associated serine/threonine-protein kinase 2 (MAST2), and phosphorylation of mitogen-activated protein kinase 3 (MAPK3) at Thr564 in workers, are likely to regulate the late onset of cell proliferation; in contrast, drone embryos enhanced the expression of CDK12, MAPK3, and MAST2 to promote the massive synthesis of proteins and cytoskeleton. In 48 h, the induced serine/threonine-protein kinase and CDK12 in worker embryos signify their roles in the construction of embryonic tissues and organs; however, the highly activated kinases CDK1, raf homolog serine/threonine-protein kinase, and MAST2 in drone embryos may drive the large-scale establishment of tissues and organs. In 72 h, the activated pathways and kinases associated with cell growth and tissue differentiation in worker embryos may promote the configuration of rudimentary organs. However, kinases implicated in cytoskeleton organization in drone embryos may drive the blastokinesis and dorsal closure. Our hitherto most comprehensive phosphoproteome offers a valuable resource for signaling research on phosphorylation dynamics in honey bee embryos.
Collapse
Affiliation(s)
| | | | - Jianke Li
- *Correspondence: Jianke Li, ; Yu Fang,
| | - Yu Fang
- *Correspondence: Jianke Li, ; Yu Fang,
| |
Collapse
|
15
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
16
|
Pasapera AM, Heissler SM, Eto M, Nishimura Y, Fischer RS, Thiam HR, Waterman CM. MARK2 regulates directed cell migration through modulation of myosin II contractility and focal adhesion organization. Curr Biol 2022; 32:2704-2718.e6. [PMID: 35594862 DOI: 10.1016/j.cub.2022.04.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/23/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Cancer cell migration during metastasis is mediated by a highly polarized cytoskeleton. MARK2 and its invertebrate homolog Par1B are kinases that regulate the microtubule cytoskeleton to mediate polarization of neurons in mammals and embryos in invertebrates. However, the role of MARK2 in cancer cell migration is unclear. Using osteosarcoma cells, we found that in addition to its known localizations on microtubules and the plasma membrane, MARK2 also associates with the actomyosin cytoskeleton and focal adhesions. Cells depleted of MARK proteins demonstrated that MARK2 promotes phosphorylation of both myosin II and the myosin phosphatase targeting subunit MYPT1 to synergistically drive myosin II contractility and stress fiber formation in cells. Studies with isolated proteins showed that MARK2 directly phosphorylates myosin II regulatory light chain, while its effects on MYPT1 phosphorylation are indirect. Using a mutant lacking the membrane-binding domain, we found that membrane association is required for focal adhesion targeting of MARK2, where it specifically enhances cell protrusion by promoting FAK phosphorylation and formation of focal adhesions oriented in the direction of migration to mediate directionally persistent cell motility. Together, our results define MARK2 as a master regulator of the actomyosin and microtubule cytoskeletal systems and focal adhesions to mediate directional cancer cell migration.
Collapse
Affiliation(s)
- Ana M Pasapera
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Sarah M Heissler
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 370 W. 9th Avenue, Columbus, OH 43210, USA
| | - Masumi Eto
- Department of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Yukako Nishimura
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA; Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Robert S Fischer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Hawa R Thiam
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Wen FL, Kwan CW, Wang YC, Shibata T. Autonomous epithelial folding induced by an intracellular mechano-polarity feedback loop. PLoS Comput Biol 2021; 17:e1009614. [PMID: 34871312 PMCID: PMC8675927 DOI: 10.1371/journal.pcbi.1009614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/16/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Epithelial tissues form folded structures during embryonic development and organogenesis. Whereas substantial efforts have been devoted to identifying mechanical and biochemical mechanisms that induce folding, whether and how their interplay synergistically shapes epithelial folds remains poorly understood. Here we propose a mechano-biochemical model for dorsal fold formation in the early Drosophila embryo, an epithelial folding event induced by shifts of cell polarity. Based on experimentally observed apical domain homeostasis, we couple cell mechanics to polarity and find that mechanical changes following the initial polarity shifts alter cell geometry, which in turn influences the reaction-diffusion of polarity proteins, thus forming a feedback loop between cell mechanics and polarity. This model can induce spontaneous fold formation in silico, recapitulate polarity and shape changes observed in vivo, and confer robustness to tissue shape change against small fluctuations in mechanics and polarity. These findings reveal emergent properties of a developing epithelium under control of intracellular mechano-polarity coupling.
Collapse
Affiliation(s)
- Fu-Lai Wen
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (F-LW); (Y-CW); (TS)
| | - Chun Wai Kwan
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yu-Chiun Wang
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- * E-mail: (F-LW); (Y-CW); (TS)
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- * E-mail: (F-LW); (Y-CW); (TS)
| |
Collapse
|
18
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
20
|
Bonello T, Aguilar-Aragon M, Tournier A, Thompson BJ, Campanale JP. A picket fence function for adherens junctions in epithelial cell polarity. Cells Dev 2021; 168:203719. [PMID: 34242843 DOI: 10.1016/j.cdev.2021.203719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Adherens junctions are a defining feature of all epithelial cells, providing cell-cell adhesion and contractile ring formation that is essential for cell and tissue morphology. In Drosophila, adherens junctions are concentrated between the apical and basolateral plasma membrane domains, defined by aPKC-Par6-Baz and Lgl/Dlg/Scrib, respectively. Whether adherens junctions contribute to apical-basal polarization itself has been unclear because neuroblasts exhibit apical-basal polarization of aPKC-Par6-Baz and Lgl in the absence of adherens junctions. Here we show that, upon disruption of adherens junctions in epithelial cells, apical polarity determinants such as aPKC can still segregate from basolateral Lgl, but lose their sharp boundaries and also overlap with Dlg and Scrib - similar to neuroblasts. In addition, control of apical versus basolateral domain size is lost, along with control of cell shape, in the absence of adherens junctions. Manipulating the levels of apical Par3/Baz or basolateral Lgl polarity determinants in experiments and in computer simulations confirms that adherens junctions provide a 'picket fence' diffusion barrier that restricts the spread of polarity determinants along the membrane to enable precise domain size control. Movement of adherens junctions in response to mechanical forces during morphogenetic change thus enables spontaneous adjustment of apical versus basolateral domain size as an emergent property of the polarising system.
Collapse
Affiliation(s)
- Teresa Bonello
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia
| | - Mario Aguilar-Aragon
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia
| | - Alexander Tournier
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia
| | - Barry J Thompson
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia.
| | | |
Collapse
|
21
|
MARK2 phosphorylates eIF2α in response to proteotoxic stress. PLoS Biol 2021; 19:e3001096. [PMID: 33705388 PMCID: PMC7951919 DOI: 10.1371/journal.pbio.3001096] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The regulation of protein synthesis is essential for maintaining cellular homeostasis, especially during stress responses, and its dysregulation could underlie the development of human diseases. The critical step during translation regulation is the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Here we report the identification of a direct kinase of eIF2α, microtubule affinity-regulating kinase 2 (MARK2), which phosphorylates eIF2α in response to proteotoxic stress. The activity of MARK2 was confirmed in the cells lacking the 4 previously known eIF2α kinases. MARK2 itself was found to be a substrate of protein kinase C delta (PKCδ), which serves as a sensor for protein misfolding stress through a dynamic interaction with heat shock protein 90 (HSP90). Both MARK2 and PKCδ are activated via phosphorylation in proteotoxicity-associated neurodegenerative mouse models and in human patients with amyotrophic lateral sclerosis (ALS). These results reveal a PKCδ-MARK2-eIF2α cascade that may play a critical role in cellular proteotoxic stress responses and human diseases. The regulation of protein translation is vital for cellular stress responses and human diseases. This study identifies a new pathway that regulates the key step of translation initiation, with MARK2 directly phosphorylating eIF2α and acting downstream of PKCδ. This pathway is activated in conditions of cellular stress and in proteotoxicity-associated neurodegeneration.
Collapse
|
22
|
Fic W, Bastock R, Raimondi F, Los E, Inoue Y, Gallop JL, Russell RB, St Johnston D. RhoGAP19D inhibits Cdc42 laterally to control epithelial cell shape and prevent invasion. J Cell Biol 2021; 220:211832. [PMID: 33646271 PMCID: PMC7927664 DOI: 10.1083/jcb.202009116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Cdc42-GTP is required for apical domain formation in epithelial cells, where it recruits and activates the Par-6-aPKC polarity complex, but how the activity of Cdc42 itself is restricted apically is unclear. We used sequence analysis and 3D structural modeling to determine which Drosophila GTPase-activating proteins (GAPs) are likely to interact with Cdc42 and identified RhoGAP19D as the only high-probability Cdc42GAP required for polarity in the follicular epithelium. RhoGAP19D is recruited by α-catenin to lateral E-cadherin adhesion complexes, resulting in exclusion of active Cdc42 from the lateral domain. rhogap19d mutants therefore lead to lateral Cdc42 activity, which expands the apical domain through increased Par-6/aPKC activity and stimulates lateral contractility through the myosin light chain kinase, Genghis khan (MRCK). This causes buckling of the epithelium and invasion into the adjacent tissue, a phenotype resembling that of precancerous breast lesions. Thus, RhoGAP19D couples lateral cadherin adhesion to the apical localization of active Cdc42, thereby suppressing epithelial invasion.
Collapse
Affiliation(s)
- Weronika Fic
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Rebecca Bastock
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Francesco Raimondi
- BioQuant and Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Erinn Los
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yoshiko Inoue
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jennifer L. Gallop
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Robert B. Russell
- BioQuant and Biochemie Zentrum Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Daniel St Johnston
- Gurdon Institute, University of Cambridge, Cambridge, UK,Department of Genetics, University of Cambridge, Cambridge, UK,Correspondence to Daniel St Johnston:
| |
Collapse
|
23
|
Mashukova A, Forteza R, Shah VN, Salas PJ. The cell polarity kinase Par1b/MARK2 activation selects specific NF-kB transcripts via phosphorylation of core mediator Med17/TRAP80. Mol Biol Cell 2021; 32:690-702. [PMID: 33596087 PMCID: PMC8108508 DOI: 10.1091/mbc.e20-10-0646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Par1b/MARK2 is a Ser/Thr kinase with pleiotropic effects that participates in the generation of apico-basal polarity in Caenorhabditis elegans. It is phosphorylated by atypical PKC(ι/λ) in Thr595 and inhibited. Because previous work showed a decrease in atypical protein kinase C (aPKC) activity under proinflammatory conditions, we analyzed the hypothesis that the resulting decrease in Thr595-MARK2 with increased kinase activity may also participate in innate immunity. We confirmed that pT595-MARK2 was decreased under inflammatory stimulation. The increase in MARK2 activity was verified by Par3 delocalization and rescue with a specific inhibitor. MARK2 overexpression significantly enhanced the transcriptional activity of NF-kB for a subset of transcripts. It also resulted in phosphorylation of a single band (∼Mr 80,000) coimmunoprecipitating with RelA, identified as Med17. In vitro phosphorylation showed direct phosphorylation of Med17 in Ser152 by recombinant MARK2. Expression of S152D-Med17 mimicked the effect of MARK2 activation on downstream transcriptional regulation, which was antagonized by S152A-Med17. The decrease in pThr595 phosphorylation was validated in aPKC-deficient mouse jejunal mucosae. The transcriptional effects were confirmed in transcriptome analysis and transcript enrichment determinations in cells expressing S152D-Med17. We conclude that theMARK2-Med17 axis represents a novel form of cross-talk between polarity signaling and transcriptional regulation including, but not restricted to, innate immunity responses.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136.,Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314
| | - Radia Forteza
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Viraj N Shah
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Pedro J Salas
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
24
|
Castiglioni VG, Pires HR, Rosas Bertolini R, Riga A, Kerver J, Boxem M. Epidermal PAR-6 and PKC-3 are essential for larval development of C. elegans and organize non-centrosomal microtubules. eLife 2020; 9:e62067. [PMID: 33300872 PMCID: PMC7755398 DOI: 10.7554/elife.62067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
The cortical polarity regulators PAR-6, PKC-3, and PAR-3 are essential for the polarization of a broad variety of cell types in multicellular animals. In C. elegans, the roles of the PAR proteins in embryonic development have been extensively studied, yet little is known about their functions during larval development. Using inducible protein degradation, we show that PAR-6 and PKC-3, but not PAR-3, are essential for postembryonic development. PAR-6 and PKC-3 are required in the epidermal epithelium for animal growth, molting, and the proper pattern of seam-cell divisions. Finally, we uncovered a novel role for PAR-6 in organizing non-centrosomal microtubule arrays in the epidermis. PAR-6 was required for the localization of the microtubule organizer NOCA-1/Ninein, and defects in a noca-1 mutant are highly similar to those caused by epidermal PAR-6 depletion. As NOCA-1 physically interacts with PAR-6, we propose that PAR-6 promotes non-centrosomal microtubule organization through localization of NOCA-1/Ninein.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Helena R Pires
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Rodrigo Rosas Bertolini
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Amalia Riga
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Jana Kerver
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
25
|
Gubieda AG, Packer JR, Squires I, Martin J, Rodriguez J. Going with the flow: insights from Caenorhabditis elegans zygote polarization. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190555. [PMID: 32829680 PMCID: PMC7482210 DOI: 10.1098/rstb.2019.0555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cell polarity is the asymmetric distribution of cellular components along a defined axis. Polarity relies on complex signalling networks between conserved patterning proteins, including the PAR (partitioning defective) proteins, which become segregated in response to upstream symmetry breaking cues. Although the mechanisms that drive the asymmetric localization of these proteins are dependent upon cell type and context, in many cases the regulation of actomyosin cytoskeleton dynamics is central to the transport, recruitment and/or stabilization of these polarity effectors into defined subcellular domains. The transport or advection of PAR proteins by an actomyosin flow was first observed in the Caenorhabditis elegans zygote more than a decade ago. Since then a multifaceted approach, using molecular methods, high-throughput screens, and biophysical and computational models, has revealed further aspects of this flow and how polarity regulators respond to and modulate it. Here, we review recent findings on the interplay between actomyosin flow and the PAR patterning networks in the polarization of the C. elegans zygote. We also discuss how these discoveries and developed methods are shaping our understanding of other flow-dependent polarizing systems. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
| | | | | | | | - Josana Rodriguez
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
26
|
Salinas-Saavedra M, Martindale MQ. Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the metazoa. eLife 2020; 9:54927. [PMID: 32716297 PMCID: PMC7441587 DOI: 10.7554/elife.54927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| |
Collapse
|
27
|
Annunziata MC, Parisi M, Esposito G, Fabbrocini G, Ammendola R, Cattaneo F. Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling. Int J Mol Sci 2020; 21:ijms21113818. [PMID: 32471307 PMCID: PMC7312799 DOI: 10.3390/ijms21113818] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
FPR1, FPR2, and FPR3 are members of Formyl Peptides Receptors (FPRs) family belonging to the GPCR superfamily. FPR2 is a low affinity receptor for formyl peptides and it is considered the most promiscuous member of this family. Intracellular signaling cascades triggered by FPRs include the activation of different protein kinases and phosphatase, as well as tyrosine kinase receptors transactivation. Protein kinases and phosphatases act coordinately and any impairment of their activation or regulation represents one of the most common causes of several human diseases. Several phospho-sites has been identified in protein kinases and phosphatases, whose role may be to expand the repertoire of molecular mechanisms of regulation or may be necessary for fine-tuning of switch properties. We previously performed a phospho-proteomic analysis in FPR2-stimulated cells that revealed, among other things, not yet identified phospho-sites on six protein kinases and one protein phosphatase. Herein, we discuss on the selective phosphorylation of Serine/Threonine-protein kinase N2, Serine/Threonine-protein kinase PRP4 homolog, Serine/Threonine-protein kinase MARK2, Serine/Threonine-protein kinase PAK4, Serine/Threonine-protein kinase 10, Dual specificity mitogen-activated protein kinase kinase 2, and Protein phosphatase 1 regulatory subunit 14A, triggered by FPR2 stimulation. We also describe the putative FPR2-dependent signaling cascades upstream to these specific phospho-sites.
Collapse
Affiliation(s)
- Maria Carmela Annunziata
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Melania Parisi
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
- Correspondence: ; Fax: +39-081-7464-359
| |
Collapse
|
28
|
Kipryushina YO, Yakovlev KV. Maternal control of early patterning in sea urchin embryos. Differentiation 2020; 113:28-37. [PMID: 32371341 DOI: 10.1016/j.diff.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Sea urchin development has been studied extensively for more than a century and considered regulative since the first experimental evidence. Further investigations have repeatedly supported this standpoint by revealing the presence of inductive mechanisms that alter cell fate decisions at early cleavage stages and flexibility of development in response to environmental conditions. Some features indicate that sea urchin development is not completely regulative, but actually includes determinative events. In 16-cell embryos, mesomeres and macromeres represent multipotency, while the cell fate of most vegetal micromeres is restricted. It is known that the mature sea urchin eggs are polarized by the asymmetrical distribution of some maternal mRNAs and proteins. Spatially-distributed maternal factors are necessary for the orientation of the primary animal-vegetal axis, which is established by both maternal and zygotic mechanisms later in development. The secondary dorsal-ventral axis is conditionally specified later in development. Dorsal-ventral polarity is very liable during the early cleavages, though more recent data argue that its direction may be oriented by maternal asymmetry. In this review, we focus on the role of maternal factors in initial embryonic patterning during the first cleavages of sea urchin embryos before activation of the embryonic genome.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky St. 17, 690041, Vladivostok, Russia; Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
29
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
30
|
ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2020; 229:47-68. [PMID: 29177764 DOI: 10.1007/978-3-319-63187-5_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.
Collapse
|
31
|
CagA-ASPP2 complex mediates loss of cell polarity and favors H. pylori colonization of human gastric organoids. Proc Natl Acad Sci U S A 2020; 117:2645-2655. [PMID: 31964836 DOI: 10.1073/pnas.1908787117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The main risk factor for stomach cancer, the third most common cause of cancer death worldwide, is infection with Helicobacter pylori bacterial strains that inject cytotoxin-associated gene A (CagA). As the first described bacterial oncoprotein, CagA causes gastric epithelial cell transformation by promoting an epithelial-to-mesenchymal transition (EMT)-like phenotype that disrupts junctions and enhances motility and invasiveness of the infected cells. However, the mechanism by which CagA disrupts gastric epithelial cell polarity to achieve its oncogenicity is not fully understood. Here we found that the apoptosis-stimulating protein of p53 2 (ASPP2), a host tumor suppressor and an important CagA target, contributes to the survival of cagA-positive H. pylori in the lumen of infected gastric organoids. Mechanistically, the CagA-ASPP2 interaction is a key event that promotes remodeling of the partitioning-defective (PAR) polarity complex and leads to loss of cell polarity of infected cells. Blockade of cagA-positive H. pylori ASPP2 signaling by inhibitors of the EGFR (epidermal growth factor receptor) signaling pathway-identified by a high-content imaging screen-or by a CagA-binding ASPP2 peptide, prevents the loss of cell polarity and decreases the survival of H. pylori in infected organoids. These findings suggest that maintaining the host cell-polarity barrier would reduce the detrimental consequences of infection by pathogenic bacteria, such as H. pylori, that exploit the epithelial mucosal surface to colonize the host environment.
Collapse
|
32
|
Enteropathogenic Escherichia coli (EPEC) Recruitment of PAR Polarity Protein Atypical PKCζ to Pedestals and Cell-Cell Contacts Precedes Disruption of Tight Junctions in Intestinal Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020527. [PMID: 31947656 PMCID: PMC7014222 DOI: 10.3390/ijms21020527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell–cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.
Collapse
|
33
|
New insights into apical-basal polarization in epithelia. Curr Opin Cell Biol 2019; 62:1-8. [PMID: 31505411 DOI: 10.1016/j.ceb.2019.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022]
Abstract
The establishment of an apical-basal axis of polarity is essential for the organization and functioning of epithelial cells. Polarization of epithelial cells is orchestrated by a network of conserved polarity regulators that establish opposing cortical domains through mutually antagonistic interactions and positive feedback loops. While our understanding is still far from complete, the molecular details behind these interactions continue to be worked out. Here, we highlight recent findings on the mechanisms that control the activity and localization of apical-basal polarity regulators, including oligomerization and higher-order complex formation, auto-inhibitory interactions, and electrostatic interactions with the plasma membrane.
Collapse
|
34
|
Shibue T, Reinhardt F, Weinberg RA. Syndecan-Mediated Ligation of ECM Proteins Triggers Proliferative Arrest of Disseminated Tumor Cells. Cancer Res 2019; 79:5944-5957. [PMID: 31481497 DOI: 10.1158/0008-5472.can-19-1165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022]
Abstract
Systemic dissemination of tumor cells often begins long before the development of overt metastases, revealing the inefficient nature of the metastatic process. Thus, already at the time of initial clinical presentation, many patients with cancer harbor a myriad disseminated tumor cells (DTC) throughout the body, most of which are found as mitotically quiescent solitary cells. This indicates that the majority of DTCs fail, for still unknown reasons, to initiate rapid proliferation after entering foreign tissue, which likely contributes significantly to the inefficiency of metastasis formation. Here, we showed that extracellular matrix (ECM) components of the host parenchyma prevented proliferation of DTCs that had recently infiltrated foreign tissue by binding to syndecan receptors expressed on the surface of these cells. This led to the recruitment of the Par-3:Par-6:atypical PKC protein complex, a critical regulator of cell polarity, to the plasma membrane and release of Par-1 kinase into the cytosol. Cytosolic Par-1 bound, phosphorylated, and inactivated KSR scaffolding proteins ultimately inhibited Ras/ERK signaling and, in turn, cell proliferation. Inhibition of the syndecan-mediated signaling restored the proliferation of otherwise dormant DTCs, enabling these cells to efficiently colonize foreign tissues. Intriguingly, naturally aggressive cancer cells overcame the antiproliferative effect of syndecan-mediated signaling either by shutting down this signaling pathway or by activating a proproliferative signaling pathway that works independent of syndecan-mediated signaling. Collectively, these observations indicate that the proliferative arrest of DTCs is attributable, in part, to the syndecan-mediated ligation of ECM proteins. SIGNIFICANCE: This study identifies a novel signaling pathway that regulates the proliferative dormancy of individual disseminated tumor cells.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/23/5944/F1.large.jpg.
Collapse
Affiliation(s)
- Tsukasa Shibue
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.,Ludwig Center for Molecular Oncology at MIT, Cambridge, Massachusetts
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts. .,Ludwig Center for Molecular Oncology at MIT, Cambridge, Massachusetts.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
35
|
Ahrari S, Mogharrab N, Navapour L. Structure and dynamics of inactive and active MARK4: conformational switching through the activation process. J Biomol Struct Dyn 2019; 38:2468-2481. [DOI: 10.1080/07391102.2019.1655479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sajjad Ahrari
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Navid Mogharrab
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
36
|
Huang H, Arighi CN, Ross KE, Ren J, Li G, Chen SC, Wang Q, Cowart J, Vijay-Shanker K, Wu CH. iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res 2019; 46:D542-D550. [PMID: 29145615 PMCID: PMC5753337 DOI: 10.1093/nar/gkx1104] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Protein post-translational modifications (PTMs) play a pivotal role in numerous biological processes by modulating regulation of protein function. We have developed iPTMnet (http://proteininformationresource.org/iPTMnet) for PTM knowledge discovery, employing an integrative bioinformatics approach—combining text mining, data mining, and ontological representation to capture rich PTM information, including PTM enzyme-substrate-site relationships, PTM-specific protein-protein interactions (PPIs) and PTM conservation across species. iPTMnet encompasses data from (i) our PTM-focused text mining tools, RLIMS-P and eFIP, which extract phosphorylation information from full-scale mining of PubMed abstracts and full-length articles; (ii) a set of curated databases with experimentally observed PTMs; and iii) Protein Ontology that organizes proteins and PTM proteoforms, enabling their representation, annotation and comparison within and across species. Presently covering eight major PTM types (phosphorylation, ubiquitination, acetylation, methylation, glycosylation, S-nitrosylation, sumoylation and myristoylation), iPTMnet knowledgebase contains more than 654 500 unique PTM sites in over 62 100 proteins, along with more than 1200 PTM enzymes and over 24 300 PTM enzyme-substrate-site relations. The website supports online search, browsing, retrieval and visual analysis for scientific queries. Several examples, including functional interpretation of phosphoproteomic data, demonstrate iPTMnet as a gateway for visual exploration and systematic analysis of PTM networks and conservation, thereby enabling PTM discovery and hypothesis generation.
Collapse
Affiliation(s)
- Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA.,Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Cecilia N Arighi
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA.,Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Karen E Ross
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jia Ren
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - Gang Li
- Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Sheng-Chih Chen
- Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Qinghua Wang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA.,Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Julie Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | - K Vijay-Shanker
- Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA.,Department of Computer & Information Sciences, University of Delaware, Newark, DE 19711, USA.,Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
37
|
Hart M, Zulkipli I, Shrestha RL, Dang D, Conti D, Gul P, Kujawiak I, Draviam VM. MARK2/Par1b kinase present at centrosomes and retraction fibres corrects spindle off-centring induced by actin disassembly. Open Biol 2019; 9:180263. [PMID: 31238822 PMCID: PMC6597755 DOI: 10.1098/rsob.180263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tissue maintenance and development requires a directed plane of cell division. While it is clear that the division plane can be determined by retraction fibres that guide spindle movements, the precise molecular components of retraction fibres that control spindle movements remain unclear. We report MARK2/Par1b kinase as a novel component of actin-rich retraction fibres. A kinase-dead mutant of MARK2 reveals MARK2's ability to monitor subcellular actin status during interphase. During mitosis, MARK2's localization at actin-rich retraction fibres, but not the rest of the cortical membrane or centrosome, is dependent on its activity, highlighting a specialized spatial regulation of MARK2. By subtly perturbing the actin cytoskeleton, we reveal MARK2's role in correcting mitotic spindle off-centring induced by actin disassembly. We propose that MARK2 provides a molecular framework to integrate cortical signals and cytoskeletal changes in mitosis and interphase.
Collapse
Affiliation(s)
- Madeleine Hart
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Ihsan Zulkipli
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | | | - David Dang
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK.,3 Department of Informatics, King's College, London , London , UK
| | - Duccio Conti
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Parveen Gul
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| | - Izabela Kujawiak
- 2 Department of Genetics, University of Cambridge , Cambridge , UK
| | - Viji M Draviam
- 1 School of Biological and Chemical Sciences, Queen Mary University of London , London , UK
| |
Collapse
|
38
|
Kono K, Yoshiura S, Fujita I, Okada Y, Shitamukai A, Shibata T, Matsuzaki F. Reconstruction of Par-dependent polarity in apolar cells reveals a dynamic process of cortical polarization. eLife 2019; 8:45559. [PMID: 31172945 PMCID: PMC6555595 DOI: 10.7554/elife.45559] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular polarization is fundamental for various biological processes. The Par network system is conserved for cellular polarization. Its core complex consists of Par3, Par6, and aPKC. However, the general dynamic processes that occur during polarization are not well understood. Here, we reconstructed Par-dependent polarity using non-polarized Drosophila S2 cells expressing all three components endogenously in the cytoplasm. The results indicated that elevated Par3 expression induces cortical localization of the Par-complex at the interphase. Its asymmetric distribution goes through three steps: emergence of cortical dots, development of island-like structures with dynamic amorphous shapes, repeating fusion and fission, and polarized clustering of the islands. Our findings also showed that these islands contain a meshwork of unit-like segments. Furthermore, Par-complex patches resembling Par-islands exist in Drosophila mitotic neuroblasts. Thus, this reconstruction system provides an experimental paradigm to study features of the assembly process and structure of Par-dependent cell-autonomous polarity.
Collapse
Affiliation(s)
- Kalyn Kono
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeki Yoshiura
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Ikumi Fujita
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan.,Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Atsunori Shitamukai
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumio Matsuzaki
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
39
|
Pichaud F, Walther RF, Nunes de Almeida F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J Cell Sci 2019; 132:132/10/jcs217869. [PMID: 31113848 DOI: 10.1242/jcs.217869] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc42 - a member of the small Rho GTPase family - regulates cell polarity across organisms from yeast to humans. It is an essential regulator of polarized morphogenesis in epithelial cells, through coordination of apical membrane morphogenesis, lumen formation and junction maturation. In parallel, work in yeast and Caenorhabditis elegans has provided important clues as to how this molecular switch can generate and regulate polarity through localized activation or inhibition, and cytoskeleton regulation. Recent studies have revealed how important and complex these regulations can be during epithelial morphogenesis. This complexity is mirrored by the fact that Cdc42 can exert its function through many effector proteins. In epithelial cells, these include atypical PKC (aPKC, also known as PKC-3), the P21-activated kinase (PAK) family, myotonic dystrophy-related Cdc42 binding kinase beta (MRCKβ, also known as CDC42BPB) and neural Wiskott-Aldrich syndrome protein (N-WASp, also known as WASL). Here, we review how the spatial regulation of Cdc42 promotes polarity and polarized morphogenesis of the plasma membrane, with a focus on the epithelial cell type.
Collapse
Affiliation(s)
- Franck Pichaud
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Rhian F Walther
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
40
|
Folkmann AW, Seydoux G. Spatial regulation of the polarity kinase PAR-1 by parallel inhibitory mechanisms. Development 2019; 146:dev.171116. [PMID: 30814118 PMCID: PMC6451319 DOI: 10.1242/dev.171116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/18/2019] [Indexed: 12/31/2022]
Abstract
The MARK/PAR-1 family of kinases are conserved regulators of cell polarity that share a conserved C-terminal kinase-associated domain (KA1). Localization of MARK/PAR-1 kinases to specific regions of the cell cortex is a hallmark of polarized cells. In Caenorhabditiselegans zygotes, PAR-1 localizes to the posterior cortex under the influence of another polarity kinase, aPKC/PKC-3. Here, we report that asymmetric localization of PAR-1 protein is not essential, and that PAR-1 kinase activity is regulated spatially. We find that, as in human MARK1, the PAR-1 KA1 domain is an auto-inhibitory domain that suppresses kinase activity. Auto-inhibition by the KA1 domain functions in parallel with phosphorylation by PKC-3 to suppress PAR-1 activity in the anterior cytoplasm. The KA1 domain also plays an additional role that is essential for germ plasm maintenance and fertility. Our findings suggest that modular regulation of kinase activity by redundant inhibitory inputs contributes to robust symmetry breaking by MARK/PAR-1 kinases in diverse cell types.
Collapse
Affiliation(s)
- Andrew W Folkmann
- Department of Molecular Biology and Genetics, HHMI, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, HHMI, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Barr J, Charania S, Gilmutdinov R, Yakovlev K, Shidlovskii Y, Schedl P. The CPEB translational regulator, Orb, functions together with Par proteins to polarize the Drosophila oocyte. PLoS Genet 2019; 15:e1008012. [PMID: 30865627 PMCID: PMC6433291 DOI: 10.1371/journal.pgen.1008012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/25/2019] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
orb is a founding member of the CPEB family of translational regulators and is required at multiple steps during Drosophila oogenesis. Previous studies showed that orb is required during mid-oogenesis for the translation of the posterior/germline determinant oskar mRNA and the dorsal-ventral determinant gurken mRNA. Here, we report that orb also functions upstream of these axes determinants in the polarization of the microtubule network (MT). Prior to oskar and gurken translational activation, the oocyte MT network is repolarized. The MT organizing center at the oocyte posterior is disassembled, and a new MT network is established at the oocyte anterior. Repolarization depends upon cross-regulatory interactions between anterior (apical) and posterior (basal) Par proteins. We show that repolarization of the oocyte also requires orb and that orb is needed for the proper functioning of the Par proteins. orb interacts genetically with aPKC and cdc42 and in egg chambers compromised for orb activity, Par-1 and aPKC protein and aPKC mRNA are mislocalized. Moreover, like cdc42-, the defects in Par protein localization appear to be connected to abnormalities in the cortical actin cytoskeleton. These abnormalities also disrupt the localization of the spectraplakin Shot and the microtubule minus-end binding protein Patronin. These two proteins play a critical role in the repolarization of the MT network.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sofia Charania
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rudolf Gilmutdinov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Yakovlev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Establishment of the PAR-1 cortical gradient by the aPKC-PRBH circuit. Nat Chem Biol 2018; 14:917-927. [PMID: 30177850 DOI: 10.1038/s41589-018-0117-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
Abstract
Cell polarity is the asymmetric compartmentalization of cellular components. An opposing gradient of partitioning-defective protein kinases, atypical protein kinase C (aPKC) and PAR-1, at the cell cortex guides diverse asymmetries in the structure of metazoan cells, but the mechanism underlying their spatial patterning remains poorly understood. Here, we show in Caenorhabditis elegans zygotes that the cortical PAR-1 gradient is patterned as a consequence of dual mechanisms: stabilization of cortical dynamics and protection from aPKC-mediated cortical exclusion. Dual control of cortical PAR-1 depends on a physical interaction with the PRBH-domain protein PAR-2. Using a reconstitution approach in heterologous cells, we demonstrate that PAR-1, PAR-2, and polarized Cdc42-PAR-6-aPKC comprise the minimal network sufficient for the establishment of an opposing cortical gradient. Our findings delineate the mechanism governing cortical polarity, in which a circuit consisting of aPKC and the PRBH-domain protein ensures the local recruitment of PAR-1 to a well-defined cortical compartment.
Collapse
|
43
|
Kullmann L, Krahn MP. Redundant regulation of localization and protein stability of DmPar3. Cell Mol Life Sci 2018; 75:3269-3282. [PMID: 29523893 PMCID: PMC11105499 DOI: 10.1007/s00018-018-2792-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
Apical-basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical-basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical-basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical-basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical-basal cell polarization.
Collapse
Affiliation(s)
- Lars Kullmann
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany.
| |
Collapse
|
44
|
Pires HR, Boxem M. Mapping the Polarity Interactome. J Mol Biol 2018; 430:3521-3544. [DOI: 10.1016/j.jmb.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
|
45
|
Hapak SM, Rothlin CV, Ghosh S. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization. Cell Mol Life Sci 2018; 75:2735-2761. [PMID: 29696344 PMCID: PMC11105418 DOI: 10.1007/s00018-018-2828-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Polarity is a fundamental feature of cells. Protein complexes, including the PAR3-PAR6-aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3-PAR6-aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06511, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
46
|
Aras BS, Zhou YC, Dawes A, Chou CS. The importance of mechanical constraints for proper polarization and psuedo-cleavage furrow generation in the early Caenorhabditis elegans embryo. PLoS Comput Biol 2018; 14:e1006294. [PMID: 29985915 PMCID: PMC6053242 DOI: 10.1371/journal.pcbi.1006294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/19/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
Intracellular polarization, where a cell specifies a spatial axis by segregation of specific factors, is a fundamental biological process. In the early embryo of the nematode worm Caenorhabditis elegans (C. elegans), polarization is often accompanied by deformations of the cortex, a highly contractile structure consisting of actin filaments cross-linked by the motor protein myosin (actomyosin). It has been suggested that the eggshell surrounding the early embryo plays a role in polarization although its function is not understood. Here we develop a mathematical model which couples a reaction-diffusion model of actomyosin dynamics with a phase field model of the cell cortex to implicitly track cell shape changes in the early C. elegans embryo. We investigate the potential rigidity effect of the geometric constraint imposed by the presence and size of the eggshell on polarization dynamics. Our model suggests that the geometric constraint of the eggshell is essential for proper polarization and the size of the eggshell also affects the dynamics of polarization. Therefore, we conclude that geometric constraint on a cell might affect the dynamics of a biochemical process. Polarization, whereby molecules and proteins are asymmetrically distributed throughout the cell, is a vital process for many cellular functions. In the early C. elegans embryo the asymmetric distribution of cell cytoskeleton during the initiation of polarization leads to asymmetric contractions which are higher in the anterior and lower in the posterior of a cell. The C. elegans embryo is surrounded by a rigid body, the eggshell, which functions in numerous cell processes. We investigate the structural support of eggshell during the establishment phase by tracking the moving cell surface. We incorporate protein dynamics involved in polarization into the membrane evolution. We conclude that eggshell might have a role in cell polarization by preventing the distortion of cell surface.
Collapse
Affiliation(s)
- Betül Senay Aras
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| | - Y C Zhou
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adriana Dawes
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ching-Shan Chou
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
47
|
Abstract
Establishing and maintaining cell polarity are dynamic processes that necessitate complicated but highly regulated protein interactions. Phosphorylation is a powerful mechanism for cells to control the function and subcellular localization of a target protein, and multiple kinases have played critical roles in cell polarity. Among them, atypical protein kinase C (aPKC) is likely the most studied kinase in cell polarity and has the largest number of downstream substrates characterized so far. More than half of the polarity proteins that are essential for regulating cell polarity have been identified as aPKC substrates. This review covers mainly studies of aPKC in regulating anterior-posterior polarity in the worm one-cell embryo and apical-basal polarity in epithelial cells and asymmetrically dividing cells (for example,
Drosophila neuroblasts). We will go through aPKC target proteins in cell polarity and discuss various mechanisms by which aPKC phosphorylation controls their subcellular localizations and biological functions. We will also review the recent progress in determining the detailed molecular mechanisms in spatial and temporal control of aPKC subcellular localization and kinase activity during cell polarization.
Collapse
Affiliation(s)
- Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, S325 BST, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
48
|
Hapak SM, Ghosh S, Rothlin CV. Axon Regeneration: Antagonistic Signaling Pairs in Neuronal Polarization. Trends Mol Med 2018; 24:615-629. [PMID: 29934283 DOI: 10.1016/j.molmed.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/29/2023]
Abstract
Genome-wide screens, proteomics, and candidate-based approaches have identified numerous genes associated with neuronal regeneration following central nervous system (CNS) injury. Despite significant progress, functional recovery remains a challenge, even in model systems. Neuronal function depends on segregation of axonal versus dendritic domains. A key to functional recovery may lie in recapitulating the developmental signals that instruct axon specification and growth in adult neurons post-injury. Theoretically, binary activator-inhibitor elements operating as a Turing-like system within neurons can specify axonal versus dendritic domains and promote axon growth. We review here various molecules implicated in axon specification that function as signaling pairs driving neuronal polarization and axon growth.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN 55455, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT 06511, USA; Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA; Equal contribution.
| | - Carla V Rothlin
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA; Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT 06520, USA; Equal contribution.
| |
Collapse
|
49
|
Steinbacher T, Kummer D, Ebnet K. Junctional adhesion molecule-A: functional diversity through molecular promiscuity. Cell Mol Life Sci 2018; 75:1393-1409. [PMID: 29238845 PMCID: PMC11105642 DOI: 10.1007/s00018-017-2729-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022]
Abstract
Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) regulate important processes such as cell proliferation, differentiation and morphogenesis. This activity is primarily due to their ability to initiate intracellular signaling cascades at cell-cell contact sites. Junctional adhesion molecule-A (JAM-A) is an IgSF-CAM with a short cytoplasmic tail that has no catalytic activity. Nevertheless, JAM-A is involved in a variety of biological processes. The functional diversity of JAM-A resides to a large part in a C-terminal PDZ domain binding motif which directly interacts with nine different PDZ domain-containing proteins. The molecular promiscuity of its PDZ domain motif allows JAM-A to recruit protein scaffolds to specific sites of cell-cell adhesion and to assemble signaling complexes at those sites. Here, we review the molecular characteristics of JAM-A, including its dimerization, its interaction with scaffolding proteins, and the phosphorylation of its cytoplasmic domain, and we describe how these characteristics translate into diverse biological activities.
Collapse
Affiliation(s)
- Tim Steinbacher
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Daniel Kummer
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany.
| |
Collapse
|
50
|
Vangl2 regulates spermatid planar cell polarity through microtubule (MT)-based cytoskeleton in the rat testis. Cell Death Dis 2018; 9:340. [PMID: 29497043 PMCID: PMC5832773 DOI: 10.1038/s41419-018-0339-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
During spermatogenesis, developing elongating/elongated spermatids are highly polarized cells, displaying unique apico-basal polarity. For instance, the heads of spermatids align perpendicular to the basement membrane with their tails pointing to the tubule lumen. Thus, the maximal number of spermatids are packed within the limited space of the seminiferous epithelium to support spermatogenesis. Herein, we reported findings that elongating/elongated spermatids displayed planar cell polarity (PCP) in adult rat testes in which the proximal end of polarized spermatid heads were aligned uniformly across the plane of the seminiferous epithelium based on studies using confocal microscopy and 3-dimensional (D) reconstruction of the seminiferous tubules. We also discovered that spermatid PCP was regulated by PCP protein Vangl2 (Van Gogh-like protein 2) since Vangl2 knockdown by RNAi was found to perturb spermatid PCP. More important, Vangl2 exerted its regulatory effects through changes in the organization of the microtubule (MT)-based cytoskeleton in the seminiferous epithelium. These changes were mediated via the downstream signaling proteins atypical protein kinase C ξ (PKCζ) and MT-associated protein (MAP)/microtubule affinity-regulating kinase 2 (MARK2). These findings thus provide new insights regarding the biology of spermatid PCP during spermiogenesis.
Collapse
|