1
|
Wang J, Zhou C. Genome-Wide Characterization and Analysis of the FH Gene Family in Medicago truncatula Under Abiotic Stresses. Genes (Basel) 2025; 16:555. [PMID: 40428377 PMCID: PMC12111191 DOI: 10.3390/genes16050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND The formin family proteins play an important role in guiding the assembly and nucleation of linear actin and can promote the formation of actin filaments independently of the Arp2/3 complex. As a key protein that regulates the cytoskeleton and cell morphological structure, the formin gene family has been widely studied in plants such as Arabidopsis thaliana and rice. METHODS In this study, we conducted comprehensive analyses, including phylogenetic tree construction, conserved motif identification, co-expression network analysis, and transcriptome data mining. RESULTS A total of 18 MtFH gene family members were identified, and the distribution of these genes on chromosomes was not uniform. The phylogenetic tree divided the FH proteins of the four species into two major subgroups (Clade I and Clade II). Notably, Medicago truncatula and soybean exhibited closer phylogenetic relationships. The analysis of cis-acting elements revealed the potential regulatory role of the MtFH gene in light response, hormone response, and stress response. GO enrichment analysis again demonstrated the importance of FH for reactions such as actin nucleation. Expression profiling revealed that MtFH genes displayed significant transcriptional responsiveness to cold, drought, and salt stress conditions. And there was a temporal complementary relationship between the expression of some genes under stress. The protein interaction network indicated an interaction relationship between MtFH protein and profilin, etc. In addition, 22 miRNAs were screened as potential regulators of the MtFH gene at the post-transcriptional level. CONCLUSIONS In general, this study provides a basis for deepening the understanding of the physiological function of the MtFH gene and provides a reference gene for stress resistance breeding in agricultural production.
Collapse
Affiliation(s)
| | - Chunyang Zhou
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130012, China;
| |
Collapse
|
2
|
Das S, Das S, Maity A, Maiti S. Nuclear Protein FNBP4: A Novel Inhibitor of Non-diaphanous Formin FMN1-Mediated Actin Cytoskeleton Dynamics. J Biol Chem 2025:108550. [PMID: 40316024 DOI: 10.1016/j.jbc.2025.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/04/2025] Open
Abstract
Formin1 (FMN1), a member of the non-diaphanous formin family, is essential for development and neuronal function. Unlike diaphanous-related formins, FMN1 is not subject to canonical autoinhibition through the DID and DAD domains, nor is it activated by Rho GTPase binding. Recent studies suggest that formins also play roles in the nucleus, influencing DNA damage response and transcriptional regulation. However, the mechanisms regulating formins particularly non-diaphanous ones like FMN1 remain poorly understood. Our previous research identified the interaction between FMN1 and formin-binding protein 4 (FNBP4), prompting further investigation into its functional role in regulating actin dynamics. Results reveal that FNBP4 inhibits FMN1-mediated actin assembly in vitro. It is shown that FNBP4 prevents FMN1 from displacing the capping protein CapZ at the growing barbed end of actin filaments. Additionally, FNBP4 inhibits FMN1's bundling activity in a concentration-dependent manner. Further analysis indicates that FNBP4 interacts with the FH1 domain and the interdomain connector between the FH1 and FH2 domains, creating spatial constraints on the FH2 domain. We propose that FNBP4 acts as a stationary inhibitor of FMN1. In addition, our subcellular localization studies revealed that FNBP4 is exclusively nuclear, supported by the identification of a monopartite nuclear localization signal (NLS) within its sequence, suggesting a potential role in regulating nuclear actin dynamics. This study provides new insights into the regulatory role of FNBP4 in modulating FMN1-mediated actin dynamics, shedding light on regulatory mechanisms specific to non-diaphanous formins.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saikat Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Amrita Maity
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
3
|
Pissarek H, Huang N, Frasch LH, Aberle H, Frasch M. Formin 3 stabilizes the cytoskeleton of Drosophila tendon cells, thus enabling them to resist muscle tensile forces. J Cell Sci 2025; 138:jcs263543. [PMID: 40084430 PMCID: PMC12045603 DOI: 10.1242/jcs.263543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
The cytoskeleton of Drosophila tendon cells features specialized F-actin and microtubule arrays that endow these cells with resistance to the tensile forces exerted by the attached muscles. In a forward genetic screen for mutants with neuromuscular junction and muscle morphology phenotypes in larvae, we identified formin 3 (form3) as a crucial component for stabilizing these cytoskeletal arrays under muscle tension. form3 mutants exhibit severely stretched tendon cells in contact with directly attached larval body wall muscles, leading to muscle retraction and rounding. Both the actomyosin and microtubule arrays are expanded likewise in these mutants and can separate laterally in extreme cases. Analysis of a natively HA-tagged, functional version of Form3 reveals that Form3 is distributed along the length of these cytoskeletal arrays. Based on our findings and existing data on vertebrate and Caenorhabditis elegans orthologs of form3, we propose that the primary function of Form3 in this context is to co-bundle actin filaments and microtubules, thus maximizing the rigidity of these cytoskeletal structures against muscle tensile forces.
Collapse
Affiliation(s)
- Helena Pissarek
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Na Huang
- Heinrich Heine University Düsseldorf, Department of Biology, Institute for Functional Cell Morphology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Leanna H. Frasch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Hermann Aberle
- Heinrich Heine University Düsseldorf, Department of Biology, Institute for Functional Cell Morphology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Manfred Frasch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Mahanta B, Courtemanche N. The mode of subunit addition regulates the processive elongation of actin filaments by formin. J Biol Chem 2025; 301:108071. [PMID: 39667500 PMCID: PMC11773026 DOI: 10.1016/j.jbc.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Formins play crucial roles in actin polymerization by nucleating filaments and regulating their elongation. Formins bind the barbed ends of filaments via their dimeric FH2 domains, which step processively onto incoming actin subunits during elongation. Actin monomers can bind formin-bound barbed ends directly or undergo diffusion-mediated delivery through interactions with formin FH1 domains and profilin. Despite its fundamental importance, a clear mechanism governing processive FH2 stepping has remained elusive. In this study, we systematically characterized the polymerization behavior of the Saccharomyces cerevisiae formin Bni1p using in vitro reconstitution assays and stochastic simulations. We found that Bni1p assembles populations of filaments with lengths that depend nonlinearly on the rate of elongation. This processive behavior is dictated by a variable probability of dissociation that depends on the reaction conditions. Bni1p dissociates from barbed ends with a basal off-rate, which enables prolonged filament assembly over the course of a long lifetime at the barbed end. A bias toward FH1-mediated delivery as the dominant mechanism for polymerization curtails elongation by shortening the lifetime of the formin at the filament end. This facilitates the assembly of populations of filaments with similar average lengths, even when polymerization proceeds at different rates. Our results suggest a central role for formin FH1 domains in regulating processivity. The specific effects of FH1 domains on processivity are variable and likely tailored to the physiological function of each formin.
Collapse
Affiliation(s)
- Biswaprakash Mahanta
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
5
|
Shing P, Islam MSU, Khatun MS, Zohra FT, Hasan N, Rahman SM, Sarkar MAR. Genome-wide identification, characterization and expression profiles of FORMIN gene family in cotton (Gossypium Raimondii L.). BMC Genom Data 2024; 25:105. [PMID: 39695391 DOI: 10.1186/s12863-024-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Gossypium raimondii serves as a widely used genomic model cotton species. Its genetic influence to enhance fiber quality and ability to adapt to challenging environments both contribute to increasing cotton production. The formins are a large protein family that predominately consists of FH1 and FH2 domains. The presence of the formin domains highly regulates the actin and microtubule filament in the cytoskeleton dynamics confronting various abiotic stresses such as drought, salinity, and cold temperatures. RESULTS In this study, 26 formin genes were analyzed and characterized in G. raimondii and mostly were found in the nucleus and chloroplast. According to the evolutionary phylogenetic relationship, GrFH were dispersed and classified into seven different groups and shared an ancestry relationship with MtFH. The GrFH gene structure prediction revealed diverse intron-exon arrangements between groups. The FH2 conserved domain was found in all the GrFH distributed on 12 different chromosomes. Moreover, 11 pairs of GrFH transpired segmental duplication. Among them, GrFH4-GrFH7 evolved 35 million years ago (MYA) according to the evolutionary divergence time. Besides, 57 cis-acting regulatory elements (CAREs) motifs were found to play a potential role in plant growth, development, and in response to various abiotic stresses, including cold stress. The GrFH genes mostly exhibited biological processes resulting in the regulation of actin polymerization. The ERF, GATA, MYB, and LBD, major transcription factors (TFs) families in GrFH, regulated expression in abiotic stress specifically salt as well as defense against certain pathogens. The microRNA of GrFH unveiled the regulatory mechanism to regulate their gene expression in abiotic stresses such as salt and cold. One of the most economic aspects of cotton (G.raimondii) is the production of lint due to its use in manufacturing fabrics and other industrial applications. The expression profiles of GrFH in different tissues particularly during the conversion from ovule to fiber (lint), and the increased levels (up-regulation) of GrFH4, GrFH6, GrFH12, GrFH14, and GrFH26 under cold conditions, along with GrFH19 and GrFH26 in response to salt stress, indicated their potential involvement in combating these environmental challenges. Moreover, these stress-tolerant GrFH linked to cytoskeleton dynamics are essential in producing high-quality lint. CONCLUSIONS The findings from this study can contribute to elucidating the evolutionary and functional characterizations of formin genes and deciphering their potential role in abiotic stress such as cold and salt as well as in the future implications in wet lab.
Collapse
Affiliation(s)
- Pollob Shing
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mst Sumaiya Khatun
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Naimul Hasan
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
6
|
Valencia DA, Koeberlein AN, Nakano H, Rudas A, Harui A, Spencer C, Nakano A, Quinlan ME. Human formin FHOD3-mediated actin elongation is required for sarcomere integrity in cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618125. [PMID: 39464085 PMCID: PMC11507729 DOI: 10.1101/2024.10.13.618125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Contractility and cell motility depend on accurately controlled assembly of the actin cytoskeleton. Formins are a large group of actin assembly proteins that nucleate new actin filaments and act as elongation factors. Some formins may cap filaments, instead of elongating them, and others are known to sever or bundle filaments. The Formin HOmology Domain-containing protein (FHOD)-family of formins is critical to the formation of the fundamental contractile unit in muscle, the sarcomere. Specifically, mammalian FHOD3L plays an essential role in cardiomyocytes. Despite our knowledge of FHOD3L's importance in cardiomyocytes, its biochemical and cellular activities remain poorly understood. It has been proposed that FHOD-family formins act by capping and bundling, as opposed to assembling new filaments. Here, we demonstrate that FHOD3L nucleates actin and rapidly but briefly elongates filaments after temporarily pausing elongation, in vitro. We designed function-separating mutants that enabled us to distinguish which biochemical roles are reqùired in the cell. We found that human FHOD3L's elongation activity, but not its nucleation, capping, or bundling activity, is necessary for proper sarcomere formation and contractile function in neonatal rat ventricular myocytes. The results of this work provide new insight into the mechanisms by which formins build specific structures and will contribute to knowledge regarding how cardiomyopathies arise from defects in sarcomere formation and maintenance.
Collapse
Affiliation(s)
- Dylan A. Valencia
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Angela N. Koeberlein
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
| | - Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
| | - Akos Rudas
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Airi Harui
- Divison of Pulmonary & Critical Care Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, 90095
| | - Cassandra Spencer
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| | - Margot E. Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
7
|
Courtemanche N, Henty-Ridilla JL. Actin filament dynamics at barbed ends: New structures, new insights. Curr Opin Cell Biol 2024; 90:102419. [PMID: 39178734 PMCID: PMC11492572 DOI: 10.1016/j.ceb.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The dynamic actin cytoskeleton contributes to many critical biological processes by providing the structural support underlying the morphology of most cells, facilitating intracellular transport, and generating forces required for cell motility and division. To execute many of these functions, actin monomers polymerize into polarized filaments that display different structural and biochemical properties at each end. Filament dynamics are regulated by diverse regulatory proteins which collaborate to dictate rates of elongation and disassembly, particularly at the fast-growing barbed (plus) end. This review highlights the biochemical mechanisms of six barbed end regulatory proteins: formin, profilin, capping protein, IQGAP1, cyclase-associated protein, and twinfilin. We discuss how individual proteins influence actin dynamics and how several intriguing complex assemblies influence the polymerization fate of actin filaments. Understanding these mechanisms offers insights into how actin is regulated in essential cell processes and dysregulated in disease.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jessica L Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
8
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
9
|
Yuan Z, Li P, Yang X, Cai X, Wu L, Zhao F, Wen W, Zhou M, Hou Y. FgPfn participates in vegetative growth, sexual reproduction, pathogenicity, and fungicides sensitivity via affecting both microtubules and actin in the filamentous fungus Fusarium graminearum. PLoS Pathog 2024; 20:e1012215. [PMID: 38701108 PMCID: PMC11095717 DOI: 10.1371/journal.ppat.1012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/15/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgβ2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 μg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.
Collapse
Affiliation(s)
- Zhili Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengfei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowei Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Luoyu Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feifei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weidong Wen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Oosterheert W, Boiero Sanders M, Funk J, Prumbaum D, Raunser S, Bieling P. Molecular mechanism of actin filament elongation by formins. Science 2024; 384:eadn9560. [PMID: 38603491 DOI: 10.1126/science.adn9560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Formins control the assembly of actin filaments (F-actin) that drive cell morphogenesis and motility in eukaryotes. However, their molecular interaction with F-actin and their mechanism of action remain unclear. In this work, we present high-resolution cryo-electron microscopy structures of F-actin barbed ends bound by three distinct formins, revealing a common asymmetric formin conformation imposed by the filament. Formation of new intersubunit contacts during actin polymerization sterically displaces formin and triggers its translocation. This "undock-and-lock" mechanism explains how actin-filament growth is coordinated with formin movement. Filament elongation speeds are controlled by the positioning and stability of actin-formin interfaces, which distinguish fast and slow formins. Furthermore, we provide a structure of the actin-formin-profilin ring complex, which resolves how profilin is rapidly released from the barbed end during filament elongation.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Johanna Funk
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Sherer LA, Mahanta B, Courtemanche N. Computational tools for quantifying actin filament numbers, lengths, and bundling. Biol Open 2024; 13:bio060267. [PMID: 38372564 PMCID: PMC10924227 DOI: 10.1242/bio.060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
The actin cytoskeleton is a dynamic filamentous network that assembles into specialized structures to enable cells to perform essential processes. Direct visualization of fluorescently-labeled cytoskeletal proteins has provided numerous insights into the dynamic processes that govern the assembly of actin-based structures. However, accurate analysis of these experiments is often complicated by the interdependent and kinetic natures of the reactions involved. It is often challenging to disentangle these processes to accurately track their evolution over time. Here, we describe two programs written in the MATLAB programming language that facilitate counting, length measurements, and quantification of bundling of actin filaments visualized in fluorescence micrographs. To demonstrate the usefulness of our programs, we describe their application to the analysis of two representative reactions: (1) a solution of pre-assembled filaments under equilibrium conditions, and (2) a reaction in which actin filaments are crosslinked together over time. We anticipate that these programs can be applied to extract equilibrium and kinetic information from a broad range of actin-based reactions, and that their usefulness can be expanded further to investigate the assembly of other biopolymers.
Collapse
Affiliation(s)
- Laura A. Sherer
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Biswaprakash Mahanta
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Xu L, Cao L, Li J, Staiger CJ. Cooperative actin filament nucleation by the Arp2/3 complex and formins maintains the homeostatic cortical array in Arabidopsis epidermal cells. THE PLANT CELL 2024; 36:764-789. [PMID: 38057163 PMCID: PMC10896301 DOI: 10.1093/plcell/koad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Precise control over how and where actin filaments are created leads to the construction of unique cytoskeletal arrays within a common cytoplasm. Actin filament nucleators are key players in this activity and include the conserved actin-related protein 2/3 (Arp2/3) complex as well as a large family of formins. In some eukaryotic cells, these nucleators compete for a common pool of actin monomers and loss of one favors the activity of the other. To test whether this mechanism is conserved, we combined the ability to image single filament dynamics in the homeostatic cortical actin array of living Arabidopsis (Arabidopsis thaliana) epidermal cells with genetic and/or small molecule inhibitor approaches to stably or acutely disrupt nucleator activity. We found that Arp2/3 mutants or acute CK-666 treatment markedly reduced the frequency of side-branched nucleation events as well as overall actin filament abundance. We also confirmed that plant formins contribute to side-branched filament nucleation in vivo. Surprisingly, simultaneous inhibition of both classes of nucleator increased overall actin filament abundance and enhanced the frequency of de novo nucleation events by an unknown mechanism. Collectively, our findings suggest that multiple actin nucleation mechanisms cooperate to generate and maintain the homeostatic cortical array of plant epidermal cells.
Collapse
Affiliation(s)
- Liyuan Xu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- EMBRIO Institute, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Bremer KV, Wu C, Patel AA, He KL, Grunfeld AM, Chanfreau GF, Quinlan ME. Formin tails act as a switch, inhibiting or enhancing processive actin elongation. J Biol Chem 2024; 300:105557. [PMID: 38097186 PMCID: PMC10797183 DOI: 10.1016/j.jbc.2023.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024] Open
Abstract
Formins are large, multidomain proteins that nucleate new actin filaments and accelerate elongation through a processive interaction with the barbed ends of filaments. Their actin assembly activity is generally attributed to their eponymous formin homology (FH) 1 and 2 domains; however, evidence is mounting that regions outside of the FH1FH2 stretch also tune actin assembly. Here, we explore the underlying contributions of the tail domain, which spans the sequence between the FH2 domain and the C terminus of formins. Tails vary in length from ∼0 to >200 residues and contain a number of recognizable motifs. The most common and well-studied motif is the ∼15-residue-long diaphanous autoregulatory domain. This domain mediates all or nothing regulation of actin assembly through an intramolecular interaction with the diaphanous inhibitory domain in the N-terminal half of the protein. Multiple reports demonstrate that the tail can enhance both nucleation and processivity. In this study, we provide a high-resolution view of the alternative splicing encompassing the tail in the formin homology domain (Fhod) family of formins during development. While four distinct tails are predicted, we found significant levels of only two of these. We characterized the biochemical effects of the different tails. Surprisingly, the two highly expressed Fhod-tails inhibit processive elongation and diminish nucleation, while a third supports activity. These findings demonstrate a new mechanism of modulating actin assembly by formins and support a model in which splice variants are specialized to build distinct actin structures during development.
Collapse
Affiliation(s)
- Kathryn V Bremer
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Aanand A Patel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Kevin L He
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Alex M Grunfeld
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
14
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Ling Z, Aini H, Kajikawa S, Shirakawa J, Tsuji K, Asou Y, Koga H, Sekiya I, Nifuji A, Noda M, Ezura Y. Osteolytic Bone Loss and Skeletal Deformities in a Mouse Model for Early-Onset Paget's Disease of Bone with PFN1 Mutation Are Treatable by Alendronate. Pharmaceuticals (Basel) 2023; 16:1395. [PMID: 37895866 PMCID: PMC10610320 DOI: 10.3390/ph16101395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
A novel osteolytic disorder due to PFN1 mutation was discovered recently as early-onset Paget's disease of bone (PDB). Bone loss and pain in adult PDB patients have been treated using bisphosphonates. However, therapeutic strategies for this specific disorder have not been established. Here, we evaluated the efficiency of alendronate (ALN) on a mutant mouse line, recapitulating this disorder. Five-week-old conditional osteoclast-specific Pfn1-deficient mice (Pfn1-cKOOCL) and control littermates (33 females and 22 males) were injected with ALN (0.1 mg/kg) or vehicle twice weekly until 8 weeks of age. After euthanizing, bone histomorphometric parameters and skeletal deformities were analyzed using 3D μCT images and histological sections. Three weeks of ALN administration significantly improved bone mass at the distal femur, L3 vertebra, and nose in Pfn1-cKOOCL mice. Histologically increased osteoclasts with expanded distribution in the distal femur were normalized in these mice. Geometric bone shape analysis revealed a partial recovery from the distal femur deformity. A therapeutic dose of ALN from 5 to 8 weeks of age significantly improved systemic bone loss in Pfn1-cKOOCL mice and femoral bone deformity. Our study suggests that preventive treatment of bony deformity in early-onset PDB is feasible.
Collapse
Affiliation(s)
- Zhu Ling
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 170-8455, Japan; (Z.L.)
| | - Hailati Aini
- Department of Nano-Bioscience, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shuhei Kajikawa
- Department of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan
| | - Jumpei Shirakawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| | - Kunikazu Tsuji
- Department of Nano-Bioscience, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
- Department of Orthopedic Surgery, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yoshinori Asou
- Department of Nano-Bioscience, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
- Department of Orthopedic Surgery, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 170-8455, Japan; (Z.L.)
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Akira Nifuji
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan
| | - Masaki Noda
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yoichi Ezura
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 170-8455, Japan; (Z.L.)
- Faculty of Occupational Therapy, Teikyo Heisei University, Tokyo 170-8445, Japan
| |
Collapse
|
16
|
Cui X, Zou M, Li J. Basally distributed actin array drives embryonic hypocotyl elongation during the seed-to-seedling transition in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:191-206. [PMID: 37537721 DOI: 10.1111/nph.19149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Seed germination is a vital developmental transition for the production of progeny by sexual reproduction in spermatophytes. The seed-to-seedling transition is predominately driven by hypocotyl cell elongation. However, the mechanism that underlies hypocotyl growth remains largely unknown. In this study, we characterized the actin array reorganization in embryonic hypocotyl epidermal cells. Live-cell imaging revealed a basally organized actin array formed during hypocotyl cell elongation. This polarized actin assembly is a barrel-shaped network, which comprises a backbone of longitudinally aligned actin cables and a fine actin cap linking these cables. We provide genetic evidence that the basal actin array formation requires formin-mediated actin polymerization and directional movement of actin filaments powered by myosin XIs. In fh1-1 and xi3ko mutants, actin filaments failed to reorganize into the basal actin array, and the hypocotyl cell elongation was inhibited compared with wild-type plants. Collectively, our work uncovers the molecular mechanisms for basal actin array assembly and demonstrates the connection between actin polarization and hypocotyl elongation during seed-to-seedling transition.
Collapse
Affiliation(s)
- Xuan Cui
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Minxia Zou
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
17
|
Antoku S, Schwartz TU, Gundersen GG. FHODs: Nuclear tethered formins for nuclear mechanotransduction. Front Cell Dev Biol 2023; 11:1160219. [PMID: 37215084 PMCID: PMC10192571 DOI: 10.3389/fcell.2023.1160219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
In this review, we discuss FHOD formins with a focus on recent studies that reveal a new role for them as critical links for nuclear mechanotransduction. The FHOD family in vertebrates comprises two structurally related proteins, FHOD1 and FHOD3. Their similar biochemical properties suggest overlapping and redundant functions. FHOD1 is widely expressed, FHOD3 less so, with highest expression in skeletal (FHOD1) and cardiac (FHOD3) muscle where specific splice isoforms are expressed. Unlike other formins, FHODs have strong F-actin bundling activity and relatively weak actin polymerization activity. These activities are regulated by phosphorylation by ROCK and Src kinases; bundling is additionally regulated by ERK1/2 kinases. FHODs are unique among formins in their association with the nuclear envelope through direct, high affinity binding to the outer nuclear membrane proteins nesprin-1G and nesprin-2G. Recent crystallographic structures reveal an interaction between a conserved motif in one of the spectrin repeats (SRs) of nesprin-1G/2G and a site adjacent to the regulatory domain in the amino terminus of FHODs. Nesprins are components of the LINC (linker of nucleoskeleton and cytoskeleton) complex that spans both nuclear membranes and mediates bidirectional transmission of mechanical forces between the nucleus and the cytoskeleton. FHODs interact near the actin-binding calponin homology (CH) domains of nesprin-1G/2G enabling a branched connection to actin filaments that presumably strengthens the interaction. At the cellular level, the tethering of FHODs to the outer nuclear membrane mechanically couples perinuclear actin arrays to the nucleus to move and position it in fibroblasts, cardiomyocytes, and potentially other cells. FHODs also function in adhesion maturation during cell migration and in the generation of sarcomeres, activities distant from the nucleus but that are still influenced by it. Human genetic studies have identified multiple FHOD3 variants linked to dilated and hypertrophic cardiomyopathies, with many mutations mapping to "hot spots" in FHOD3 domains. We discuss how FHOD1/3's role in reinforcing the LINC complex and connecting to perinuclear actin contributes to functions of mechanically active tissues such as striated muscle.
Collapse
Affiliation(s)
- Susumu Antoku
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Thomas U. Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| |
Collapse
|
18
|
Wirshing AC, Rodriguez SG, Goode BL. Evolutionary tuning of barbed end competition allows simultaneous construction of architecturally distinct actin structures. J Cell Biol 2023; 222:213854. [PMID: 36729023 PMCID: PMC9929936 DOI: 10.1083/jcb.202209105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
How cells simultaneously assemble actin structures of distinct sizes, shapes, and filamentous architectures is still not well understood. Here, we used budding yeast as a model to investigate how competition for the barbed ends of actin filaments might influence this process. We found that while vertebrate capping protein (CapZ) and formins can simultaneously associate with barbed ends and catalyze each other's displacement, yeast capping protein (Cap1/2) poorly displaces both yeast and vertebrate formins. Consistent with these biochemical differences, in vivo formin-mediated actin cable assembly was strongly attenuated by the overexpression of CapZ but not Cap1/2. Multiwavelength live cell imaging further revealed that actin patches in cap2∆ cells acquire cable-like features over time, including recruitment of formins and tropomyosin. Together, our results suggest that the activities of S. cerevisiae Cap1/2 have been tuned across evolution to allow robust cable assembly by formins in the presence of high cytosolic levels of Cap1/2, which conversely limit patch growth and shield patches from formins.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Sofia Gonzalez Rodriguez
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Bruce L. Goode
- https://ror.org/05abbep66Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA,Correspondence to Bruce L. Goode:
| |
Collapse
|
19
|
Ponlachantra K, Suginta W, Robinson RC, Kitaoku Y. AlphaFold2: A versatile tool to predict the appearance of functional adaptations in evolution: Profilin interactions in uncultured Asgard archaea: Profilin interactions in uncultured Asgard archaea. Bioessays 2023; 45:e2200119. [PMID: 36461738 DOI: 10.1002/bies.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
The release of AlphaFold2 (AF2), a deep-learning-aided, open-source protein structure prediction program, from DeepMind, opened a new era of molecular biology. The astonishing improvement in the accuracy of the structure predictions provides the opportunity to characterize protein systems from uncultured Asgard archaea, key organisms in evolutionary biology. Despite the accumulation in metagenomics-derived Asgard archaea eukaryotic-like protein sequences, limited structural and biochemical information have restricted the insight in their potential functions. In this review, we focus on profilin, an actin-dynamics regulating protein, which in eukaryotes, modulates actin polymerization through (1) direct actin interaction, (2) polyproline binding, and (3) phospholipid binding. We assess AF2-predicted profilin structures in their potential abilities to participate in these activities. We demonstrate that AF2 is a powerful new tool for understanding the emergence of biological functional traits in evolution.
Collapse
Affiliation(s)
- Khongpon Ponlachantra
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Yoshihito Kitaoku
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| |
Collapse
|
20
|
Maufront J, Guichard B, Cao LY, Cicco AD, Jégou A, Romet-Lemonne G, Bertin A. Direct observation of the conformational states of formin mDia1 at actin filament barbed ends and along the filament. Mol Biol Cell 2022; 34:ar2. [PMID: 36383775 PMCID: PMC9816646 DOI: 10.1091/mbc.e22-10-0472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The fine regulation of actin polymerization is essential to control cell motility and architecture and to perform essential cellular functions. Formins are key regulators of actin filament assembly, known to processively elongate filament barbed ends and increase their polymerization rate. Different models have been extrapolated to describe the molecular mechanism governing the processive motion of formin FH2 domains at polymerizing barbed ends. Using negative stain electron microscopy, we directly identified for the first time two conformations of the mDia1 formin FH2 domains in interaction with the barbed ends of actin filaments. These conformations agree with the speculated open and closed conformations of the "stair-stepping" model. We observed the FH2 dimers to be in the open conformation for 79% of the data, interacting with the two terminal actin subunits of the barbed end while they interact with three actin subunits in the closed conformation. In addition, we identified and characterized the structure of single FH2 dimers encircling the core of actin filaments, and reveal their ability to spontaneously depart from barbed ends.
Collapse
Affiliation(s)
- Julien Maufront
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France
| | - Bérengère Guichard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Lu-Yan Cao
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| | - Guillaume Romet-Lemonne
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| | - Aurélie Bertin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| |
Collapse
|
21
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
22
|
Schutt CE, Karlén M, Karlsson R. A structural model of the profilin-formin pacemaker system for actin filament elongation. Sci Rep 2022; 12:20515. [PMID: 36443454 PMCID: PMC9705415 DOI: 10.1038/s41598-022-25011-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The formins constitute a large class of multi-domain polymerases that catalyze the localization and growth of unbranched actin filaments in cells from yeast to mammals. The conserved FH2 domains form dimers that bind actin at the barbed end of growing filaments and remain attached as new subunits are added. Profilin-actin is recruited and delivered to the barbed end by formin FH1 domains via the binding of profilin to interspersed tracts of poly-L-proline. We present a structural model showing that profilin-actin can bind the FH2 dimer at the barbed end stabilizing a state where profilin prevents its associated actin subunit from directly joining the barbed end. It is only with the dissociation of profilin from the polymerase that an actin subunit rotates and docks into its helical position, consistent with observations that under physiological conditions optimal elongation rates depend on the dissociation rate of profilin, independently of cellular concentrations of actin subunits.
Collapse
Affiliation(s)
- Clarence E. Schutt
- grid.16750.350000 0001 2097 5006Department of Chemistry, Princeton University, Princeton, NJ USA
| | | | - Roger Karlsson
- Department of Molecular Biosciences, WGI, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
23
|
Actin-Binding Proteins in Cardiac Hypertrophy. Cells 2022; 11:cells11223566. [PMID: 36428995 PMCID: PMC9688942 DOI: 10.3390/cells11223566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The heart reacts to a large number of pathological stimuli through cardiac hypertrophy, which finally can lead to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain elusive. Actin participates in the formation of highly differentiated myofibrils under the regulation of actin-binding proteins (ABPs), which provides a structural basis for the contractile function and morphological change in cardiomyocytes. Previous studies have shown that the functional abnormality of ABPs can contribute to cardiac hypertrophy. Here, we review the function of various actin-binding proteins associated with the development of cardiac hypertrophy, which provides more references for the prevention and treatment of cardiomyopathy.
Collapse
|
24
|
Billault-Chaumartin I, Michon L, Anderson CA, Yde SE, Suarez C, Iwaszkiewicz J, Zoete V, Kovar DR, Martin SG. Actin assembly requirements of the formin Fus1 to build the fusion focus. J Cell Sci 2022; 135:jcs260289. [PMID: 35673994 PMCID: PMC9377709 DOI: 10.1242/jcs.260289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures.
Collapse
Affiliation(s)
- Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Caitlin A. Anderson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah E. Yde
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Amphipôle Building, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Amphipôle Building, CH-1015 Lausanne, Switzerland
- Department of Oncology UNIL-CHUV, University of Lausanne, Ludwig Institute for Cancer Research, Route de la Corniche 9A, CH-1066 Epalinges, Switzerland
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Pimm ML, Liu X, Tuli F, Heritz J, Lojko A, Henty-Ridilla JL. Visualizing molecules of functional human profilin. eLife 2022; 11:e76485. [PMID: 35666129 PMCID: PMC9249392 DOI: 10.7554/elife.76485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Profilin-1 (PFN1) is a cytoskeletal protein that regulates the dynamics of actin and microtubule assembly. Thus, PFN1 is essential for the normal division, motility, and morphology of cells. Unfortunately, conventional fusion and direct labeling strategies compromise different facets of PFN1 function. As a consequence, the only methods used to determine known PFN1 functions have been indirect and often deduced in cell-free biochemical assays. We engineered and characterized two genetically encoded versions of tagged PFN1 that behave identical to each other and the tag-free protein. In biochemical assays purified proteins bind to phosphoinositide lipids, catalyze nucleotide exchange on actin monomers, stimulate formin-mediated actin filament assembly, and bound tubulin dimers (kD = 1.89 µM) to impact microtubule dynamics. In PFN1-deficient mammalian cells, Halo-PFN1 or mApple-PFN1 (mAp-PEN1) restored morphological and cytoskeletal functions. Titrations of self-labeling Halo-ligands were used to visualize molecules of PFN1. This approach combined with specific function-disrupting point-mutants (Y6D and R88E) revealed PFN1 bound to microtubules in live cells. Cells expressing the ALS-associated G118V disease variant did not associate with actin filaments or microtubules. Thus, these tagged PFN1s are reliable tools for studying the dynamic interactions of PFN1 with actin or microtubules in vitro as well as in important cell processes or disease-states.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuseUnited States
| | - Xinbei Liu
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuseUnited States
| | - Farzana Tuli
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuseUnited States
| | - Jennifer Heritz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuseUnited States
| | - Ashley Lojko
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuseUnited States
| | - Jessica L Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuseUnited States
- Department of Neuroscience and Physiology, SUNY Upstate Medical UniversitySyracuseUnited States
| |
Collapse
|
26
|
Molecular Dissection of DAAM Function during Axon Growth in Drosophila Embryonic Neurons. Cells 2022; 11:cells11091487. [PMID: 35563792 PMCID: PMC9102401 DOI: 10.3390/cells11091487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Axonal growth is mediated by coordinated changes of the actin and microtubule (MT) cytoskeleton. Ample evidence suggests that members of the formin protein family are involved in the coordination of these cytoskeletal rearrangements, but the molecular mechanisms of the formin-dependent actin–microtubule crosstalk remains largely elusive. Of the six Drosophila formins, DAAM was shown to play a pivotal role during axonal growth in all stages of nervous system development, while FRL was implicated in axonal development in the adult brain. Here, we aimed to investigate the potentially redundant function of these two formins, and we attempted to clarify which molecular activities are important for axonal growth. We used a combination of genetic analyses, cellular assays and biochemical approaches to demonstrate that the actin-processing activity of DAAM is indispensable for axonal growth in every developmental condition. In addition, we identified a novel MT-binding motif within the FH2 domain of DAAM, which is required for proper growth and guidance of the mushroom body axons, while being dispensable during embryonic axon development. Together, these data suggest that DAAM is the predominant formin during axonal growth in Drosophila, and highlight the contribution of multiple formin-mediated mechanisms in cytoskeleton coordination during axonal growth.
Collapse
|
27
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Rust MB, Marcello E. Disease association of cyclase-associated protein (CAP): Lessons from gene-targeted mice and human genetic studies. Eur J Cell Biol 2022; 101:151207. [PMID: 35150966 DOI: 10.1016/j.ejcb.2022.151207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/03/2022] Open
Abstract
Cyclase-associated protein (CAP) is an actin binding protein that has been initially described as partner of the adenylyl cyclase in yeast. In all vertebrates and some invertebrate species, two orthologs, named CAP1 and CAP2, have been described. CAP1 and CAP2 are characterized by a similar multidomain structure, but different expression patterns. Several molecular studies clarified the biological function of the different CAP domains, and they shed light onto the mechanisms underlying CAP-dependent regulation of actin treadmilling. However, CAPs are crucial elements not only for the regulation of actin dynamics, but also for signal transduction pathways. During recent years, human genetic studies and the analysis of gene-targeted mice provided important novel insights into the physiological roles of CAPs and their involvement in the pathogenesis of several diseases. In the present review, we summarize and discuss recent progress in our understanding of CAPs' physiological functions, focusing on heart, skeletal muscle and central nervous system as well as their involvement in the mechanisms controlling metabolism. Remarkably, loss of CAPs or impairment of CAPs-dependent pathways can contribute to the pathogenesis of different diseases. Overall, these studies unraveled CAPs complexity highlighting their capability to orchestrate structural and signaling pathways in the cells.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany.
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
29
|
Liu X, Pimm ML, Haarer B, Brawner AT, Henty-Ridilla JL. Biochemical characterization of actin assembly mechanisms with ALS-associated profilin variants. Eur J Cell Biol 2022; 101:151212. [PMID: 35248815 PMCID: PMC10163920 DOI: 10.1016/j.ejcb.2022.151212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Eight separate mutations in the actin-binding protein profilin-1 have been identified as a rare cause of amyotrophic lateral sclerosis (ALS). Profilin is essential for many neuronal cell processes through its regulation of lipids, nuclear signals, and cytoskeletal dynamics, including actin filament assembly. Direct interactions between profilin and actin monomers inhibit actin filament polymerization. In contrast, profilin can also stimulate polymerization by simultaneously binding actin monomers and proline-rich tracts found in other proteins. Whether the ALS-associated mutations in profilin compromise these actin assembly functions is unclear. We performed a quantitative biochemical comparison of the direct and formin mediated impact for the eight ALS-associated profilin variants on actin assembly using classic protein-binding and single-filament microscopy assays. We determined that the binding constant of each profilin for actin monomers generally correlates with the actin nucleation strength associated with each ALS-related profilin. In the presence of formin, the A20T, R136W, Q139L, and C71G variants failed to activate the elongation phase of actin assembly. This diverse range of formin-activities is not fully explained through profilin-poly-L-proline (PLP) interactions, as all ALS-associated variants bind a formin-derived PLP peptide with similar affinities. However, chemical denaturation experiments suggest that the folding stability of these profilins impact some of these effects on actin assembly. Thus, changes in profilin protein stability and alterations in actin filament polymerization may both contribute to the profilin-mediated actin disruptions in ALS.
Collapse
Affiliation(s)
- Xinbei Liu
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Morgan L Pimm
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian Haarer
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Andrew T Brawner
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jessica L Henty-Ridilla
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
30
|
Abstract
The precise assembly and disassembly of actin filaments is required for several cellular processes, and their regulation has been scrutinized for decades. Twenty years ago, a handful of studies marked the advent of a new type of experiment to study actin dynamics: using optical microscopy to look at individual events, taking place on individual filaments in real time. Here, we summarize the main characteristics of this approach and how it has changed our ability to understand actin assembly dynamics. We also highlight some of its caveats and reflect on what we have learned over the past 20 years, leading us to propose a set of guidelines, which we hope will contribute to a better exploitation of this powerful tool.
Collapse
|
31
|
OsFH3 Encodes a Type II Formin Required for Rice Morphogenesis. Int J Mol Sci 2021; 22:ijms222413250. [PMID: 34948047 PMCID: PMC8706662 DOI: 10.3390/ijms222413250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
The actin cytoskeleton is crucial for plant morphogenesis, and organization of actin filaments (AF) is dynamically regulated by actin-binding proteins. However, the roles of actin-binding proteins, particularly type II formins, in this process remain poorly understood in plants. Here, we report that a type II formin in rice, Oryza sativa formin homolog 3 (OsFH3), acts as a major player to modulate AF dynamics and contributes to rice morphogenesis. osfh3 mutants were semi-dwarf with reduced size of seeds and unchanged responses to light or gravity compared with mutants of osfh5, another type II formin in rice. osfh3 osfh5 mutants were dwarf with more severe developmental defectiveness. Recombinant OsFH3 could nucleate actin, promote AF bundling, and cap the barbed end of AF to prevent elongation and depolymerization, but in the absence of profilin, OsFH3 could inhibit AF elongation. Different from other reported type II formins, OsFH3 could bind, but not bundle, microtubules directly. Furthermore, its N-terminal phosphatase and tensin homolog domain played a key role in modulating OsFH3 localization at intersections of AF and punctate structures of microtubules, which differed from other reported plant formins. Our results, thus, provide insights into the biological function of type II formins in modulating plant morphology by acting on AF dynamics.
Collapse
|
32
|
Zhao Y, Zhang H, Wang H, Ye M, Jin X. Role of formin INF2 in human diseases. Mol Biol Rep 2021; 49:735-746. [PMID: 34698992 DOI: 10.1007/s11033-021-06869-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Formin proteins catalyze actin nucleation and microfilament polymerization. Inverted formin 2 (INF2) is an atypical diaphanous-related formin characterized by polymerization and depolymerization of actin. Accumulating evidence showed that INF2 is associated with kidney disease focal segmental glomerulosclerosis and cancers, such as colorectal and thyroid cancer where it functions as a tumor suppressor, glioblastoma, breast, prostate, and gastric cancer, via its oncogenic function. However, studies on the underlying molecular mechanisms of the different roles of INF2 in diverse cancers are limited. This review comprehensively describes the structure, biochemical features, and primary pathogenic mutations of INF2.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Hui Zhang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Haibiao Wang
- Department of Hepato-Biliary-Pancreatic Surgery, The Affiliated Ningbo Medical Center of LiHuiLi Hospital of Medical School of Ningbo University, Ningbo, 315048, China. .,Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China. .,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
33
|
Zweifel ME, Sherer LA, Mahanta B, Courtemanche N. Nucleation limits the lengths of actin filaments assembled by formin. Biophys J 2021; 120:4442-4456. [PMID: 34506773 DOI: 10.1016/j.bpj.2021.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 10/24/2022] Open
Abstract
Formins stimulate actin polymerization by promoting both filament nucleation and elongation. Because nucleation and elongation draw upon a common pool of actin monomers, the rate at which each reaction proceeds influences the other. This interdependent mechanism determines the number of filaments assembled over the course of a polymerization reaction, as well as their equilibrium lengths. In this study, we used kinetic modeling and in vitro polymerization reactions to dissect the contributions of filament nucleation and elongation to the process of formin-mediated actin assembly. We found that the rates of nucleation and elongation evolve over the course of a polymerization reaction. The period over which each process occurs is a key determinant of the total number of filaments that are assembled, as well as their average lengths at equilibrium. Inclusion of formin in polymerization reactions speeds filament nucleation, thus increasing the number and shortening the lengths of filaments that are assembled over the course of the reaction. Modulation of the elongation rate produces modest changes in the equilibrium lengths of formin-bound filaments. However, the dependence of filament length on the elongation rate is limited by the number of filament ends generated via formin's nucleation activity. Sustained elongation of small numbers of formin-bound filaments, therefore, requires inhibition of nucleation via monomer sequestration and a low concentration of activated formin. Our results underscore the mechanistic advantage for keeping formin's nucleation efficiency relatively low in cells, where unregulated actin assembly would produce deleterious effects on cytoskeletal dynamics. Under these conditions, differences in the elongation rates mediated by formin isoforms are most likely to impact the kinetics of actin assembly.
Collapse
Affiliation(s)
- Mark E Zweifel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Laura A Sherer
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Biswaprakash Mahanta
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
34
|
Murk K, Ornaghi M, Schiweck J. Profilin Isoforms in Health and Disease - All the Same but Different. Front Cell Dev Biol 2021; 9:681122. [PMID: 34458253 PMCID: PMC8387879 DOI: 10.3389/fcell.2021.681122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Profilins are small actin binding proteins, which are structurally conserved throughout evolution. They are probably best known to promote and direct actin polymerization. However, they also participate in numerous cell biological processes beyond the roles typically ascribed to the actin cytoskeleton. Moreover, most complex organisms express several profilin isoforms. Their cellular functions are far from being understood, whereas a growing number of publications indicate that profilin isoforms are involved in the pathogenesis of various diseases. In this review, we will provide an overview of the profilin family and "typical" profilin properties including the control of actin dynamics. We will then discuss the profilin isoforms of higher animals in detail. In terms of cellular functions, we will focus on the role of Profilin 1 (PFN1) and Profilin 2a (PFN2a), which are co-expressed in the central nervous system. Finally, we will discuss recent findings that link PFN1 and PFN2a to neurological diseases, such as amyotrophic lateral sclerosis (ALS), Fragile X syndrome (FXS), Huntington's disease and spinal muscular atrophy (SMA).
Collapse
Affiliation(s)
- Kai Murk
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marta Ornaghi
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Schiweck
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
ALS-linked PFN1 variants exhibit loss and gain of functions in the context of formin-induced actin polymerization. Proc Natl Acad Sci U S A 2021; 118:2024605118. [PMID: 34074767 DOI: 10.1073/pnas.2024605118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Profilin-1 (PFN1) plays important roles in modulating actin dynamics through binding both monomeric actin and proteins enriched with polyproline motifs. Mutations in PFN1 have been linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). However, whether ALS-linked mutations affect PFN1 function has remained unclear. To address this question, we employed an unbiased proteomics analysis in mammalian cells to identify proteins that differentially interact with mutant and wild-type (WT) PFN1. These studies uncovered differential binding between two ALS-linked PFN1 variants, G118V and M114T, and select formin proteins. Furthermore, both variants augmented formin-mediated actin assembly relative to PFN1 WT. Molecular dynamics simulations revealed mutation-induced changes in the internal dynamic couplings within an alpha helix of PFN1 that directly contacts both actin and polyproline, as well as structural fluctuations within the actin- and polyproline-binding regions of PFN1. These data indicate that ALS-PFN1 variants have the potential for heightened flexibility in the context of the ternary actin-PFN1-polyproline complex during actin assembly. Conversely, PFN1 C71G was more severely destabilized than the other PFN1 variants, resulting in reduced protein expression in both transfected and ALS patient lymphoblast cell lines. Moreover, this variant exhibited loss-of-function phenotypes in the context of actin assembly. Perturbations in actin dynamics and assembly can therefore result from ALS-linked mutations in PFN1. However, ALS-PFN1 variants may dysregulate actin polymerization through different mechanisms that depend upon the solubility and stability of the mutant protein.
Collapse
|
36
|
Nishimura Y, Shi S, Zhang F, Liu R, Takagi Y, Bershadsky AD, Viasnoff V, Sellers JR. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. J Cell Sci 2021; 134:237818. [PMID: 33589498 PMCID: PMC8121067 DOI: 10.1242/jcs.253708] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The small molecular inhibitor of formin FH2 domains, SMIFH2, is widely used in cell biological studies. It inhibits formin-driven actin polymerization in vitro, but not polymerization of pure actin. It is active against several types of formin from different species. Here, we found that SMIFH2 inhibits retrograde flow of myosin 2 filaments and contraction of stress fibers. We further checked the effect of SMIFH2 on non-muscle myosin 2A and skeletal muscle myosin 2 in vitro, and found that SMIFH2 inhibits activity of myosin ATPase and the ability to translocate actin filaments in the gliding actin in vitro motility assay. Inhibition of non-muscle myosin 2A in vitro required a higher concentration of SMIFH2 compared with that needed to inhibit retrograde flow and stress fiber contraction in cells. We also found that SMIFH2 inhibits several other non-muscle myosin types, including bovine myosin 10, Drosophila myosin 7a and Drosophila myosin 5, more efficiently than it inhibits formins. These off-target inhibitions demand additional careful analysis in each case when solely SMIFH2 is used to probe formin functions. This article has an associated First Person interview with Yukako Nishimura, joint first author of the paper.
Collapse
Affiliation(s)
- Yukako Nishimura
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Shidong Shi
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Fang Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasuharu Takagi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander D Bershadsky
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Virgile Viasnoff
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,CNRS UMI 3639 BMC, Singapore 117411, Singapore.,Department of Biological Sciences, National university of Singapore, Singapore 117558, Singapore
| | - James R Sellers
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Prostak SM, Robinson KA, Titus MA, Fritz-Laylin LK. The actin networks of chytrid fungi reveal evolutionary loss of cytoskeletal complexity in the fungal kingdom. Curr Biol 2021; 31:1192-1205.e6. [DOI: 10.1016/j.cub.2021.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/05/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
|
38
|
Zweifel ME, Courtemanche N. Profilin's Affinity for Formin Regulates the Availability of Filament Ends for Actin Monomer Binding. J Mol Biol 2020; 432:166688. [PMID: 33289668 DOI: 10.1016/j.jmb.2020.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022]
Abstract
Nucleation-promoting proteins tightly regulate actin polymerization in cells. Whereas many of these proteins bind actin monomers directly, formins use the actin-binding protein profilin to dynamically load actin monomers onto their flexible Formin Homology 1 (FH1) domains. Following binding, FH1 domains deliver profilin-actin complexes to filament ends. To investigate profilin's role as an adaptor protein in formin-mediated elongation, we engineered a chimeric formin that binds actin monomers directly via covalent attachment of profilin to its binding site in the formin. This formin mediates slow filament elongation owing to a high probability of profilin binding at filament ends. Varying the position at which profilin is tethered to the formin alters the elongation rate by modulating profilin occupancy at the filament end. By regulating the availability of the barbed end, we propose that profilin binding establishes a secondary point of control over the rate of filament elongation mediated by formins. Profilin's differential affinities for actin monomers, barbed ends and polyproline are thus tuned to adaptively bridge actin and formins and optimize the rate of actin polymerization.
Collapse
Affiliation(s)
- Mark E Zweifel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
39
|
Ree R, Kind L, Kaziales A, Varland S, Dai M, Richter K, Drazic A, Arnesen T. PFN2 and NAA80 cooperate to efficiently acetylate the N-terminus of actin. J Biol Chem 2020; 295:16713-16731. [PMID: 32978259 PMCID: PMC7864067 DOI: 10.1074/jbc.ra120.015468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Indexed: 12/01/2022] Open
Abstract
The actin cytoskeleton is of profound importance to cell shape, division, and intracellular force generation. Profilins bind to globular (G-)actin and regulate actin filament formation. Although profilins are well-established actin regulators, the distinct roles of the dominant profilin, profilin 1 (PFN1), versus the less abundant profilin 2 (PFN2) remain enigmatic. In this study, we use interaction proteomics to discover that PFN2 is an interaction partner of the actin N-terminal acetyltransferase NAA80, and further confirm this by analytical ultracentrifugation. Enzyme assays with NAA80 and different profilins demonstrate that PFN2 binding specifically increases the intrinsic catalytic activity of NAA80. NAA80 binds PFN2 through a proline-rich loop, deletion of which abrogates PFN2 binding. Small-angle X-ray scattering shows that NAA80, actin, and PFN2 form a ternary complex and that NAA80 has partly disordered regions in the N-terminus and the proline-rich loop, the latter of which is partly ordered upon PFN2 binding. Furthermore, binding of PFN2 to NAA80 via the proline-rich loop promotes binding between the globular domains of actin and NAA80, and thus acetylation of actin. However, the majority of cellular NAA80 is stably bound to PFN2 and not to actin, and we propose that this complex acetylates G-actin before it is incorporated into filaments. In conclusion, we reveal a functionally specific role of PFN2 as a stable interactor and regulator of the actin N-terminal acetyltransferase NAA80, and establish the modus operandi for NAA80-mediated actin N-terminal acetylation, a modification with a major impact on cytoskeletal dynamics.
Collapse
Affiliation(s)
- Rasmus Ree
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Laura Kind
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anna Kaziales
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sylvia Varland
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Minglu Dai
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Klaus Richter
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Adrian Drazic
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
40
|
Akıl C, Kitaoku Y, Tran LT, Liebl D, Choe H, Muengsaen D, Suginta W, Schulte A, Robinson RC. Mythical origins of the actin cytoskeleton. Curr Opin Cell Biol 2020; 68:55-63. [PMID: 33049465 DOI: 10.1016/j.ceb.2020.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
The origin of the eukaryotic cell is one of the greatest mysteries in modern biology. Eukaryotic-wide specific biological processes arose in the lost ancestors of eukaryotes. These distinctive features, such as the actin cytoskeleton, define what it is to be a eukaryote. Recent sequencing, characterization, and isolation of Asgard archaea have opened an intriguing window into the pre-eukaryotic cell. Firstly, sequencing of anaerobic sediments identified a group of uncultured organisms, Asgard archaea, which contain genes with homology to eukaryotic signature genes. Secondly, characterization of the products of these genes at the protein level demonstrated that Asgard archaea have related biological processes to eukaryotes. Finally, the isolation of an Asgard archaeon has produced a model organism in which the morphological consequences of the eukaryotic-like processes can be studied. Here, we consider the consequences for the Asgard actin cytoskeleton and for the evolution of a regulated actin system in the archaea-to-eukaryotic transition.
Collapse
Affiliation(s)
- Caner Akıl
- Institute of Molecular and Cell Biology, A∗STAR (Agency for Science, Technology and Research), Biopolis, 138673, Singapore; Tokyo Institute of Technology, Earth-Life Science Institute (ELSI), Tokyo 152-8551, Japan
| | - Yoshihito Kitaoku
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama 700-8530, Japan
| | - Linh T Tran
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama 700-8530, Japan
| | - David Liebl
- A∗STAR Microscopy Platform, Research Support Center, A∗STAR, Biopolis 138673, Singapore
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Duangkamon Muengsaen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, A∗STAR (Agency for Science, Technology and Research), Biopolis, 138673, Singapore; Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama 700-8530, Japan; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
41
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
42
|
Xie Y, Loh ZY, Xue J, Zhou F, Sun J, Qiao Z, Jin S, Deng Y, Li H, Wang Y, Lu L, Gao Y, Miao Y. Orchestrated actin nucleation by the Candida albicans polarisome complex enables filamentous growth. J Biol Chem 2020; 295:14840-14854. [PMID: 32848016 DOI: 10.1074/jbc.ra120.013890] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/09/2020] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a dimorphic fungus that converts from a yeast form to a hyphae form during infection. This switch requires the formation of actin cable to coordinate polarized cell growth. It's known that nucleation of this cable requires a multiprotein complex localized at the tip called the polarisome, but the mechanisms underpinning this process were unclear. Here, we found that C. albicans Aip5, a homolog of polarisome component ScAip5 in Saccharomyces cerevisiae that nucleates actin polymerization and synergizes with the formin ScBni1, regulates actin assembly and hyphae growth synergistically with other polarisome proteins Bni1, Bud6, and Spa2. The C terminus of Aip5 binds directly to G-actin, Bni1, and the C-terminal of Bud6, which form the core of the nucleation complex to polymerize F-actin. Based on insights from structural biology and molecular dynamic simulations, we propose a possible complex conformation of the actin nucleation core, which provides cooperative positioning and supports the synergistic actin nucleation activity of a tri-protein complex Bni1-Bud6-Aip5. Together with known interactions of Bni1 with Bud6 and Aip5 in S. cerevisiae, our findings unravel molecular mechanisms of C. albicans by which the tri-protein complex coordinates the actin nucleation in actin cable assembly and hyphal growth, which is likely a conserved mechanism in different filamentous fungi and yeast.
Collapse
Affiliation(s)
- Ying Xie
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zhi Yang Loh
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jiao Xue
- School of Biological Sciences, Nanyang Technological University, Singapore; College of Life Science and Technology, Jinan University, Guangzhou, China; The College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jialin Sun
- School of Biological Sciences, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shengyang Jin
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Hongye Li
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yue Wang
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yonggui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Nanyang Drive, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
43
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
44
|
Alzahofi N, Welz T, Robinson CL, Page EL, Briggs DA, Stainthorp AK, Reekes J, Elbe DA, Straub F, Kallemeijn WW, Tate EW, Goff PS, Sviderskaya EV, Cantero M, Montoliu L, Nedelec F, Miles AK, Bailly M, Kerkhoff E, Hume AN. Rab27a co-ordinates actin-dependent transport by controlling organelle-associated motors and track assembly proteins. Nat Commun 2020; 11:3495. [PMID: 32661310 PMCID: PMC7359353 DOI: 10.1038/s41467-020-17212-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
Cell biologists generally consider that microtubules and actin play complementary roles in long- and short-distance transport in animal cells. On the contrary, using melanosomes of melanocytes as a model, we recently discovered that the motor protein myosin-Va works with dynamic actin tracks to drive long-range organelle dispersion in opposition to microtubules. This suggests that in animals, as in yeast and plants, myosin/actin can drive long-range transport. Here, we show that the SPIRE-type actin nucleators (predominantly SPIRE1) are Rab27a effectors that co-operate with formin-1 to generate actin tracks required for myosin-Va-dependent transport in melanocytes. Thus, in addition to melanophilin/myosin-Va, Rab27a can recruit SPIREs to melanosomes, thereby integrating motor and track assembly activity at the organelle membrane. Based on this, we suggest a model in which organelles and force generators (motors and track assemblers) are linked, forming an organelle-based, cell-wide network that allows their collective activity to rapidly disperse the population of organelles long-distance throughout the cytoplasm.
Collapse
Affiliation(s)
- Noura Alzahofi
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Tobias Welz
- University Hospital Regensburg, Regensburg, Germany
| | | | - Emma L Page
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Amy K Stainthorp
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - James Reekes
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - David A Elbe
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Felix Straub
- University Hospital Regensburg, Regensburg, Germany
| | - Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK
| | - Philip S Goff
- Cell Biology and Genetics Research Centre, St. George's, University of London, London, SW17 0RE, UK
| | - Elena V Sviderskaya
- Cell Biology and Genetics Research Centre, St. George's, University of London, London, SW17 0RE, UK
| | - Marta Cantero
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, 28049, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Lluis Montoliu
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, 28049, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Francois Nedelec
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Amanda K Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Maryse Bailly
- UCL Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK
| | | | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
45
|
Le S, Yu M, Bershadsky A, Yan J. Mechanical regulation of formin-dependent actin polymerization. Semin Cell Dev Biol 2020; 102:73-80. [DOI: 10.1016/j.semcdb.2019.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
|
46
|
Kostrzewska-Poczekaj M, Byzia E, Soloch N, Jarmuz-Szymczak M, Janiszewska J, Kowal E, Paczkowska J, Kiwerska K, Wierzbicka M, Bartochowska A, Ustaszewski A, Greczka G, Grenman R, Szyfter K, Giefing M. DIAPH2 alterations increase cellular motility and may contribute to the metastatic potential of laryngeal squamous cell carcinoma. Carcinogenesis 2020; 40:1251-1259. [PMID: 30793164 DOI: 10.1093/carcin/bgz035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Low 5-year survival rate in laryngeal squamous cell carcinoma (LSCC) is to large extent attributable to high rate of recurrences and metastases. Despite the importance of the latter process, its complex genetic background remains not fully understood. Recently, we identified two metastasis-related candidate genes, DIAPH2 and DIAPH3 to be frequently targeted by hemizygous/homozygous deletions, respectively, in LSCC cell lines. They physiologically regulate such processes as cell movement and adhesion, hence we found it as a rationale, to study if tumor LSCC specimens harbor mutations of these genes and whether the mutations are associated with metastasizing tumors. As a proof of concept, we sequenced both genes in five LSCC cell lines derived from lymph node metastases assuming there the highest probability of finding alterations. Indeed, we identified one hemizygous deletion (c.3116_3240del125) in DIAPH2 targeting the FH2 domain. Moreover, we analyzed 95 LSCC tumors (53 N0 and 42 N+) using the Illumina platform and identified three heterozygous single nucleotide variants in DIAPH2 targeting conserved domains exclusively in N+ tumors. By combining these results with cBioPortal data we showed significant enrichment of DIAPH2 mutations (P = 0.036) in N+ tumors. To demonstrate the consequences of DIAPH2 inactivation, CRISPR/Cas9 editing was used to obtain a heterozygous DIAPH2+/- mutant HEK-293T cell line. Importantly, the edited line shows a shift from 'proliferation' to 'migration' phenotype typically observed in metastasizing cells. In conclusion, we report that DIAPH2 alterations are present primarily in metastasizing specimens of LSCC and suggest that they may contribute to the metastatic potential of the tumor.
Collapse
Affiliation(s)
| | - E Byzia
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - N Soloch
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - M Jarmuz-Szymczak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - J Janiszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - E Kowal
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - J Paczkowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - K Kiwerska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Tumor Pathology, Greater Poland Cancer Center, Poznan, Poland
| | - M Wierzbicka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - A Bartochowska
- Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - A Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - G Greczka
- Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - R Grenman
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Central Hospital and Turku University, Turku, Finland
| | - K Szyfter
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - M Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
47
|
Liu D, Fu X, Wang Y, Wang X, Wang H, Wen J, Kang N. Protein diaphanous homolog 1 (Diaph1) promotes myofibroblastic activation of hepatic stellate cells by regulating Rab5a activity and TGFβ receptor endocytosis. FASEB J 2020; 34:7345-7359. [PMID: 32304339 PMCID: PMC7686927 DOI: 10.1096/fj.201903033r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 01/19/2023]
Abstract
TGFβ induces the differentiation of hepatic stellate cells (HSCs) into tumor-promoting myofibroblasts but underlying mechanisms remain incompletely understood. Because endocytosis of TGFβ receptor II (TβRII), in response to TGFβ stimulation, is a prerequisite for TGF signaling, we investigated the role of protein diaphanous homolog 1 (known as Diaph1 or mDia1) for the myofibroblastic activation of HSCs. Using shRNA to knockdown Diaph1 or SMIFH2 to target Diaph1 activity of HSCs, we found that the inactivation of Diaph1 blocked internalization and intracellular trafficking of TβRII and reduced SMAD3 phosphorylation induced by TGFβ1. Mechanistic studies revealed that the N-terminal portion of Diaph1 interacted with both TβRII and Rab5a directly and that Rab5a activity of HSCs was increased by Diaph1 overexpression and decreased by Diaph1 knockdown. Additionally, expression of Rab5aQ79L (active Rab5a mutant) increased whereas the expression of Rab5aS34N (inactive mutant) reduced the endosomal localization of TβRII in HSCs compared to the expression of wild-type Rab5a. Functionally, TGFβ stimulation promoted HSCs to express tumor-promoting factors, and α-smooth muscle actin, fibronection, and CTGF, markers of myofibroblastic activation of HSCs. Targeting Diaph1 or Rab5a suppressed HSC activation and limited tumor growth in a tumor implantation mouse model. Thus, Dipah1 and Rab5a represent targets for inhibiting HSC activation and the hepatic tumor microenvironment.
Collapse
Affiliation(s)
- Donglian Liu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xinhui Fu
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Hua Wang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jialing Wen
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis Section, The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
48
|
Zweifel ME, Courtemanche N. Competition for delivery of profilin-actin to barbed ends limits the rate of formin-mediated actin filament elongation. J Biol Chem 2020; 295:4513-4525. [PMID: 32075907 DOI: 10.1074/jbc.ra119.012000] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/11/2020] [Indexed: 11/06/2022] Open
Abstract
Formins direct the elongation of unbranched actin filaments by binding their barbed ends and processively stepping onto incoming actin monomers to incorporate them into the filament. Binding of profilin to actin monomers creates profilin-actin complexes, which then bind polyproline tracts located in formin homology 1 (FH1) domains. Diffusion of these natively disordered domains enables direct delivery of profilin-actin to the barbed end, speeding the rate of filament elongation. In this study, we investigated the mechanism of coordinated actin delivery from the multiple polyproline tracts in formin FH1 domains. We found that each polyproline tract can efficiently mediate polymerization, but that all tracts do not generate the same rate of elongation. In WT FH1 domains, the multiple polyproline tracts compete to deliver profilin-actin to the barbed end. This competition ultimately limits the rate of formin-mediated elongation. We propose that intrinsic properties of the filament-binding FH2 domain tune the efficiency of FH1-mediated elongation by directly regulating the rate of monomer incorporation at the barbed end. A strong correlation between competitive FH1-mediated profilin-actin delivery and FH2-regulated gating of the barbed end effectively limits the elongation rate, thereby obviating the need for evolutionary optimization of FH1 domain sequences.
Collapse
Affiliation(s)
- Mark E Zweifel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
49
|
Prill K, Dawson JF. Assembly and Maintenance of Sarcomere Thin Filaments and Associated Diseases. Int J Mol Sci 2020; 21:E542. [PMID: 31952119 PMCID: PMC7013991 DOI: 10.3390/ijms21020542] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/22/2022] Open
Abstract
Sarcomere assembly and maintenance are essential physiological processes required for cardiac and skeletal muscle function and organism mobility. Over decades of research, components of the sarcomere and factors involved in the formation and maintenance of this contractile unit have been identified. Although we have a general understanding of sarcomere assembly and maintenance, much less is known about the development of the thin filaments and associated factors within the sarcomere. In the last decade, advancements in medical intervention and genome sequencing have uncovered patients with novel mutations in sarcomere thin filaments. Pairing this sequencing with reverse genetics and the ability to generate patient avatars in model organisms has begun to deepen our understanding of sarcomere thin filament development. In this review, we provide a summary of recent findings regarding sarcomere assembly, maintenance, and disease with respect to thin filaments, building on the previous knowledge in the field. We highlight debated and unknown areas within these processes to clearly define open research questions.
Collapse
Affiliation(s)
| | - John F. Dawson
- Centre for Cardiovascular Investigations, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
50
|
Suzuki E, Chikireddy J, Dmitrieff S, Guichard B, Romet-Lemonne G, Jégou A. Geometrical Constraints Greatly Hinder Formin mDia1 Activity. NANO LETTERS 2020; 20:22-32. [PMID: 31797667 PMCID: PMC7086397 DOI: 10.1021/acs.nanolett.9b02241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Formins are one of the central players in the assembly of most actin networks in cells. The sensitivity of these processive molecular machines to mechanical tension is now well established. However, how the activity of formins is affected by geometrical constraints related to network architecture, such as filament cross-linking and formin spatial confinement, remains largely unknown. Combining microfluidics and micropatterning, we reconstituted in vitro mDia1 formin-elongated filament bundles induced by fascin, with different geometrical constraints on the formins, and measured the impact of these constraints on formin elongation rate and processivity. When filaments are not bundled, the anchoring details of formins have only a mild impact on their processivity and do not affect their elongation rate. When formins are unanchored, we show that filament bundling by fascin reduces both their elongation rate and their processivity. Strikingly, when filaments elongated by surface-anchored formins are cross-linked together, formin elongation rate immediately decreases and processivity is reduced up to 24-fold depending on the cumulative impact of formin rotational and translational freedom. Our results reveal an unexpected crosstalk between the constraints at the filament and the formin levels. We anticipate that in cells the molecular details of formin anchoring to the plasma membrane strongly modulate formin activity at actin filament barbed ends.
Collapse
|