1
|
Abhishek K, Mallick BN. Population dependent rearing modifies sleep and decision-making ability with the involvement of noradrenaline: A study conducted using zebrafish as a model. Behav Brain Res 2025; 487:115573. [PMID: 40228719 DOI: 10.1016/j.bbr.2025.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
Sleep is an instinct phenomenon, which affects cognitive processes including learning, memory and decision-making. Its quality, quantity and pattern vary in species through evolution. Living in groups (compared to living individually) with an increased population (as a family and a society) is an important contributing factor influencing the evolution of many behaviours. We hypothesized that rearing (upbringing) among many individuals (as compared to in isolation) and socialization might have influenced the quality, quantity and pattern of optimum sleep (a fundamental behaviour), which in turn affected animal behaviour(s) including learning and decision-making. To confirm, using zebrafish (which expresses shoaling) as a model we evaluated their sleep pattern as well as decision-making ability when reared post-birth under isolated (individually) or populated conditions. We observed that zebrafish reared under isolation affected sleep and compromised their decision-making ability when exposed to predator, which otherwise threatens their survivability. Also, the adverse effects of isolation were improved when the zebrafish were either reared in shoal or, by α1-adrenoceptor antagonist, prazosin, suggesting the role of noradrenaline in mediating the responses. Based on our findings we propose that one of the physiological benefits of living in a society is better (optimum) sleep health, which in turn helps with quality living.
Collapse
Affiliation(s)
- Kumar Abhishek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Birendra Nath Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Amity Institute of Neuropsychology & Neurosciences, Amity University, Sector 125, NOIDA 201313, India.
| |
Collapse
|
2
|
Wang L, Quan W, Song J, Qin Y, Zeng H, Zhang J, Zhao X, Li J, Chen J. Association Between ω-3, ω-6 Polyunsaturated Fatty Acid and Sleep Disorders: From Cross-Sectional to Mendelian Randomization Studies. Food Sci Nutr 2025; 13:e70311. [PMID: 40433111 PMCID: PMC12108440 DOI: 10.1002/fsn3.70311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Sleep disorders are a common health problem affecting a significant proportion of the adult population. Emerging evidence suggests that dietary factors, particularly polyunsaturated fatty acid (PUFA) intake, may play a role in modulating sleep quality. This study aims to investigate the association between omega-3 (ω-3) and omega-6 (ω-6) PUFA and sleep disorders using cross-sectional survey data and data from genome-wide association studies (GWAS). Using data from the National Health and Nutrition Examination Survey (NHANES, 2005-2018), we analyzed a cohort of 31,920 participants, with the primary independent variables being intake of ω-3 and ω-6 PUFAs. Multivariate regression was used to assess associations, and restricted cubic spline analysis was used to explore potential non-linear dose-response relationships. Two-sample Mendelian randomization (MR) analyses were performed to evaluate the causal effects of levels of multiple fatty acids on the risk of sleep disorders. For analysis on NHANES data, the participants with sleep disorders had significantly lower ω-3 PUFA intake (1.71 ± 1.11 g) compared to those without sleep disorders (1.78 ± 1.14 g, p < 0.001). Regression analysis revealed that higher ω-3 PUFA intake was associated with a reduced risk of sleep disorders, while the MR analyses showed that a higher ratio of ω-6 to total fatty acid levels was causally associated with a lower risk of sleep disorders (IVW OR = 0.930, 95% CI: 0.880-0.983, p = 0.011). Our findings suggest that increased ω-3 FA intake and increased ratio of ω-6 to total fatty acid level may be associated with a lower risk of sleep disorders, highlighting the potential benefits of dietary modification for sleep health. Future research should further explore these associations and consider intervention studies to establish causality and optimal dietary recommendations to prevent sleep disorders.
Collapse
Affiliation(s)
- Lin Wang
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Wei Quan
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jia Song
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Yidan Qin
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Huibin Zeng
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jian Zhang
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Xuan Zhao
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jia Li
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jiajun Chen
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
3
|
Pradhan S, Madan GK, Kang D, Bueno E, Atanas AA, Kramer TS, Dag U, Lage JD, Gomes MA, Lu AKY, Park J, Flavell SW. Pathogen infection induces sickness behaviors through neuromodulators linked to stress and satiety in C. elegans. Nat Commun 2025; 16:3200. [PMID: 40180949 PMCID: PMC11968842 DOI: 10.1038/s41467-025-58478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
When animals are infected by a pathogen, peripheral sensors of infection signal to the brain to induce adaptive behavioral changes known as sickness behaviors. While the pathways that signal from the periphery to the brain have been intensively studied, how central circuits are reconfigured to elicit these behavioral changes is not well understood. Here we find that neuromodulatory systems linked to stress and satiety are recruited during chronic pathogen infection to alter the behavior of Caenorhabditis elegans. Upon infection by the bacterium Pseudomonas aeruginosa PA14, C. elegans decrease feeding, then display reversible bouts of quiescence, and eventually die. The ALA neuron and its neuropeptides FLP-7, FLP-24, and NLP-8, which control stress-induced sleep in uninfected animals, promote the PA14-induced feeding reduction. However, the ALA neuropeptide FLP-13 instead delays quiescence and death in infected animals. Cell-specific genetic perturbations show that the neurons that release FLP-13 to delay quiescence in infected animals are distinct from ALA. A brain-wide imaging screen reveals that infection-induced quiescence involves ASI and DAF-7/TGF-beta, which control satiety-induced quiescence in uninfected animals. Our results suggest that a common set of neuromodulators are recruited across different physiological states, acting from distinct neural sources and in distinct combinations to drive state-dependent behaviors.
Collapse
Affiliation(s)
- Sreeparna Pradhan
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gurrein K Madan
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Di Kang
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A Atanas
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Talya S Kramer
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ugur Dag
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica D Lage
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew A Gomes
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alicia Kun-Yang Lu
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungyeon Park
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W Flavell
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Keleş MF, Sapci AOB, Brody C, Palmer I, Mehta A, Ahmadi S, Le C, Taştan Ö, Keleş S, Wu MN. FlyVISTA, an integrated machine learning platform for deep phenotyping of sleep in Drosophila. SCIENCE ADVANCES 2025; 11:eadq8131. [PMID: 40073129 PMCID: PMC11900856 DOI: 10.1126/sciadv.adq8131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
There is great interest in using genetically tractable organisms such as Drosophila to gain insights into the regulation and function of sleep. However, sleep phenotyping in Drosophila has largely relied on simple measures of locomotor inactivity. Here, we present FlyVISTA, a machine learning platform to perform deep phenotyping of sleep in flies. This platform comprises a high-resolution closed-loop video imaging system, coupled with a deep learning network to annotate 35 body parts, and a computational pipeline to extract behaviors from high-dimensional data. FlyVISTA reveals the distinct spatiotemporal dynamics of sleep and wake-associated microbehaviors at baseline, following administration of the sleep-inducing drug gaboxadol, and with dorsal fan-shaped body drivers. We identify a microbehavior ("haltere switch") exclusively seen during quiescence that indicates a deeper sleep stage. These results enable the rigorous analysis of sleep in Drosophila and set the stage for computational analyses of microbehaviors in quiescent animals.
Collapse
Affiliation(s)
- Mehmet F. Keleş
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ali Osman Berk Sapci
- Department of Computer Science, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Casey Brody
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anuradha Mehta
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shahin Ahmadi
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christin Le
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Öznur Taştan
- Department of Computer Science, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark N. Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Gulledge M, Carlezon WA, McHugh RK, Kinard EA, Prerau MJ, Chartoff EH. Spontaneous oxycodone withdrawal disrupts sleep, diurnal, and electrophysiological dynamics in rats. PLoS One 2025; 20:e0312794. [PMID: 39823427 PMCID: PMC11741586 DOI: 10.1371/journal.pone.0312794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/13/2024] [Indexed: 01/19/2025] Open
Abstract
Opioid dependence is defined by an aversive withdrawal syndrome upon drug cessation that can motivate continued drug-taking, development of opioid use disorder, and precipitate relapse. An understudied but common opioid withdrawal symptom is disrupted sleep, reported as both insomnia and daytime sleepiness. Despite the prevalence and severity of sleep disturbances during opioid withdrawal, there is a gap in our understanding of their interactions. The goal of this study was to establish an in-depth, temporal signature of spontaneous oxycodone withdrawal effects on the diurnal composition of discrete sleep stages and the dynamic spectral properties of the electroencephalogram (EEG) signal in male rats. We continuously recorded EEG and electromyography (EMG) signals for 8 d of spontaneous withdrawal after a 14-d escalating-dose oxycodone regimen (0.5-8.0 mg/kg, 2×d; SC). During withdrawal, there was a profound loss (peaking on days 2-3) and gradual return of diurnal structure in sleep, body temperature, and locomotor activity, as well as decreased sleep and wake bout durations dependent on lights on/off. Withdrawal was associated with significant alterations in the slope of the aperiodic 1/f component of the EEG power spectrum, an established biomarker of arousal level. Early in withdrawal, NREM exhibited an acute flattening and return to baseline of both low (1-4 Hz) and high (15-50 Hz) frequency components of the 1/f spectrum. These findings suggest temporally dependent withdrawal effects on sleep, reflecting the complex way in which the allostatic forces of opioid withdrawal impinge upon sleep and diurnal processes. These foundational data based on continuous tracking of vigilance state, sleep stage composition, and spectral EEG properties provide a detailed construct with which to form and test hypotheses on the mechanisms of opioid-sleep interactions.
Collapse
Affiliation(s)
- Michael Gulledge
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A. Carlezon
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - R. Kathryn McHugh
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Elizabeth A. Kinard
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Michael J. Prerau
- Division of Sleep Medicine, Dept. of Medicine, Harvard Medical School, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
| | - Elena H. Chartoff
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| |
Collapse
|
6
|
Pandi-Perumal SR, Saravanan KM, Paul S, Spence DW, Chidambaram SB. Unraveling the Mysteries of Sleep: Exploring Phylogenomic Sleep Signals in the Recently Characterized Archaeal Phylum Lokiarchaeota near Loki's Castle. Int J Mol Sci 2024; 26:60. [PMID: 39795919 PMCID: PMC11719702 DOI: 10.3390/ijms26010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Sleep is a universally conserved behavior whose origin and evolutionary purpose are uncertain. Using phylogenomics, this article investigates the evolutionary foundations of sleep from a never before used perspective. More specifically, it identifies orthologs of human sleep-related genes in the Lokiarchaeota of the Asgard superphylum and examines their functional role. Our findings indicate that a conserved suite of genes associated with energy metabolism and cellular repair is involved, thus suggesting that sleep plays a primordial role in cellular maintenance. The data cited lend credence to the idea that sleep improves organismal fitness across evolutionary time by acting as a restorative process. Notably, our approach demonstrates that phylogenomics is more useful than standard phylogenetics for clarifying common evolutionary traits. By offering insight into the evolutionary history of sleep and putting forth a novel model framework for sleep research across taxa, these findings contribute to our growing understanding of the molecular foundation of sleep. This study lays the groundwork for further investigations into the importance of sleep in various organisms. Such investigations could have consequences for improving human health and more generally could provide a deeper comprehension of the fundamental processes of life.
Collapse
Affiliation(s)
- Seithikurippu R. Pandi-Perumal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | | | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology & Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Special Interest Group—Brain, Behaviour and Cognitive Neurosciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
7
|
Lloyd E, Xia F, Moore K, Zertuche C, Rastogi A, Kozol R, Kenzior O, Warren W, Appelbaum L, Moran RL, Zhao C, Duboue E, Rohner N, Keene AC. Elevated DNA Damage without signs of aging in the short-sleeping Mexican Cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590174. [PMID: 38659770 PMCID: PMC11042282 DOI: 10.1101/2024.04.18.590174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Dysregulation of sleep has widespread health consequences and represents an enormous health burden. Short-sleeping individuals are predisposed to the effects of neurodegeneration, suggesting a critical role for sleep in the maintenance of neuronal health. While the effects of sleep on cellular function are not completely understood, growing evidence has identified an association between sleep loss and DNA damage, raising the possibility that sleep facilitates efficient DNA repair. The Mexican tetra fish, Astyanax mexicanus provides a model to investigate the evolutionary basis for changes in sleep and the consequences of sleep loss. Multiple cave-adapted populations of these fish have evolved to sleep for substantially less time compared to surface populations of the same species without identifiable impacts on healthspan or longevity. To investigate whether the evolved sleep loss is associated with DNA damage and cellular stress, we compared the DNA Damage Response (DDR) and oxidative stress levels between A. mexicanus populations. We measured markers of chronic sleep loss and discovered elevated levels of the DNA damage marker γH2AX in the brain, and increased oxidative stress in the gut of cavefish, consistent with chronic sleep deprivation. Notably, we found that acute UV-induced DNA damage elicited an increase in sleep in surface fish but not in cavefish. On a transcriptional level, only the surface fish activated the photoreactivation repair pathway following UV damage. These findings suggest a reduction of the DDR in cavefish compared to surface fish that coincides with elevated DNA damage in cavefish. To examine DDR pathways at a cellular level, we created an embryonic fibroblast cell line from the two populations of A. mexicanus. We observed that both the DDR and DNA repair were diminished in the cavefish cells, corroborating the in vivo findings and suggesting that the acute response to DNA damage is lost in cavefish. To investigate the long-term impact of these changes, we compared the transcriptome in the brain and gut of aged surface fish and cavefish. Strikingly, many genes that are differentially expressed between young and old surface fish do not transcriptionally vary by age in cavefish. Taken together, these findings suggest that cavefish have developed resilience to sleep loss, despite possessing cellular hallmarks of chronic sleep deprivation.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Fanning Xia
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Kinsley Moore
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Carolina Zertuche
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Aakriti Rastogi
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Rob Kozol
- Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458
| | - Olga Kenzior
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Wesley Warren
- Department of Genomics, University of Missouri, Columbia, MO 65211
| | - Lior Appelbaum
- Faculty of Life Science and the Multidisciplinary Brain Research Center, Bar Illan University, Ramat Gan, Israel
| | - Rachel L Moran
- Department of Biology, Texas A&M University, College Station, TX 77840
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Erik Duboue
- Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
8
|
Shih MFM, Zhang J, Brown EB, Dubnau J, Keene AC. Targeted single cell expression profiling identifies integrators of sleep and metabolic state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614841. [PMID: 39386468 PMCID: PMC11463630 DOI: 10.1101/2024.09.25.614841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Animals modulate sleep in accordance with their internal and external environments. Metabolic cues are particularly potent regulators of sleep, allowing animals to alter their sleep timing and amount depending on food availability and foraging duration. The fruit fly, Drosophila melanogaster, suppresses sleep in response to acute food deprivation, presumably to forage for food. This process is dependent on a single pair of Lateral Horn Leucokinin (LHLK) neurons, that secrete the neuropeptide Leucokinin. These neurons signal to insulin producing cells and suppress sleep under periods of starvation. The identification of individual neurons that modulate sleep-metabolism interactions provides the opportunity to examine the cellular changes associated with sleep modulation. Here, we use single-cell sequencing of LHLK neurons to examine the transcriptional responses to starvation. We validate that a Patch-seq approach selectively isolates RNA from individual LHLK neurons. Single-cell CEL-Seq comparisons of LHLK neurons between fed and 24-hr starved flies identified 24 genes that are differentially expressed in accordance with starvation state. In total, 12 upregulated genes and 12 downregulated genes were identified. Gene-ontology analysis showed an enrichment for Attacins, a family of anti-microbial peptides, along with several transcripts with diverse roles in regulating cellular function. Targeted knockdown of differentially expressed genes identified multiple genes that function within LHLK neurons to regulate sleep-metabolism interactions. Functionally validated genes include an essential role for the E3 ubiquitin Ligase insomniac, the sorbitol dehydrogenase Sodh1, as well as AttacinC and AttacinB in starvation-induced sleep suppression. Taken together, these findings provide a pipeline for identifying novel regulators of sleep-metabolism interactions within individual neurons.
Collapse
Affiliation(s)
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, TX 77840
| | | | - Joshua Dubnau
- Dept of Anesthesiology, Stony Brook School of Medicine, Stony Brook NY, 11794
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook NY, 11794
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
9
|
de Souza PE, Gonçalves BDSB, Souza-Silva M, Ferreira RL. Divergent patterns of locomotor activity in cave isopods (Oniscidea: Styloniscidae) in Neotropics. Chronobiol Int 2024; 41:1199-1216. [PMID: 39158061 DOI: 10.1080/07420528.2024.2391865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
In cave environments, stable conditions devoid of light-dark cycles and temperature fluctuations sustain circadian clock mechanisms across various species. However, species adapted to these conditions may exhibit disruption of circadian rhythm in locomotor activity. This study examines potential rhythm loss due to convergent evolution in five semi-aquatic troglobitic isopod species (Crustacea: Styloniscidae), focusing on its impact on locomotor activity. The hypothesis posits that these species display aperiodic locomotor activity patterns. Isopods were subjected to three treatments: constant red light (DD), constant light (LL), and light-dark cycles (LD 12:12), totaling 1656 h. Circadian rhythm analysis employed the Sokolove and Bushell periodogram chi-square test, Hurst coefficient calculation, intermediate stability (IS), and activity differences for each species. Predominantly, all species exhibited an infradian rhythm under DD and LL. There was synchronization of the locomotor rhythm in LD, likely as a result of masking. Three species displayed diurnal activity, while two exhibited nocturnal activity. The Hurst coefficient indicated rhythmic persistence, with LD showing higher variability. LD conditions demonstrated higher IS values, suggesting synchronized rhythms across species. Significant individual variations were observed within species across the three conditions. Contrary to the hypothesis, all species exhibited synchronization under light-dark conditions. Analyzing circadian activity provides insights into organism adaptation to non-cyclical environments, emphasizing the importance of exploring underlying mechanisms.
Collapse
Affiliation(s)
- Priscila Emanuela de Souza
- Center of Studies on Subterranean Biology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
| | | | - Marconi Souza-Silva
- Center of Studies on Subterranean Biology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
| | - Rodrigo Lopes Ferreira
- Center of Studies on Subterranean Biology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
- Graduate Program in Applied Ecology, Department of Ecology and Conservation, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
10
|
Niknazar H, Mednick SC. A Multi-Level Interpretable Sleep Stage Scoring System by Infusing Experts' Knowledge Into a Deep Network Architecture. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:5044-5061. [PMID: 38358869 DOI: 10.1109/tpami.2024.3366170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational challenges remain for user applications due to a lack of interpretability of algorithmic decisions and results. This black box problem is particularly problematic for high-risk applications such as medical-related decision-making. The current study goal was to design an interpretable deep learning system for time series classification of electroencephalogram (EEG) for sleep stage scoring as a step toward designing a transparent system. We have developed an interpretable deep neural network that includes a kernel-based layer guided by a set of principles used for sleep scoring by human experts in the visual analysis of polysomnographic records. A kernel-based convolutional layer was defined and used as the first layer of the system and made available for user interpretation. The trained system and its results were interpreted in four levels from microstructure of EEG signals, such as trained kernels and effect of each kernel on the detected stages, to macrostructures, such as transitions between stages. The proposed system demonstrated greater performance than prior studies and the system learned information consistent with expert knowledge.
Collapse
|
11
|
Keleş MF, Sapci AOB, Brody C, Palmer I, Le C, Taştan Ö, Keleş S, Wu MN. FlyVISTA, an Integrated Machine Learning Platform for Deep Phenotyping of Sleep in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564733. [PMID: 37961473 PMCID: PMC10635029 DOI: 10.1101/2023.10.30.564733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Animal behavior depends on internal state. While subtle movements can signify significant changes in internal state, computational methods for analyzing these "microbehaviors" are lacking. Here, we present FlyVISTA, a machine-learning platform to characterize microbehaviors in freely-moving flies, which we use to perform deep phenotyping of sleep. This platform comprises a high-resolution closed-loop video imaging system, coupled with a deep-learning network to annotate 35 body parts, and a computational pipeline to extract behaviors from high-dimensional data. FlyVISTA reveals the distinct spatiotemporal dynamics of sleep-associated microbehaviors in flies. We further show that stimulation of dorsal fan-shaped body neurons induces micromovements, not sleep, whereas activating R5 ring neurons triggers rhythmic proboscis extension followed by persistent sleep. Importantly, we identify a novel microbehavior ("haltere switch") exclusively seen during quiescence that indicates a deeper sleep stage. These findings enable the rigorous analysis of sleep in Drosophila and set the stage for computational analyses of microbehaviors.
Collapse
Affiliation(s)
- Mehmet F. Keleş
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ali Osman Berk Sapci
- Department of Computer Science, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Casey Brody
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Christin Le
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Öznur Taştan
- Department of Computer Science, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Sündüz Keleş
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark N. Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Norman H, Munson A, Cortese D, Koeck B, Killen SS. The interplay between sleep and ecophysiology, behaviour and responses to environmental change in fish. J Exp Biol 2024; 227:jeb247138. [PMID: 38860399 PMCID: PMC11213526 DOI: 10.1242/jeb.247138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Evidence of behavioural sleep has been observed in every animal species studied to date, but current knowledge of the behaviour, neurophysiology and ecophysiology associated with sleep is concentrated on mammals and birds. Fish are a hugely diverse group that can offer novel insights into a variety of sleep-related behaviours across environments, but the ecophysiological relevance of sleep in fish has been largely overlooked. Here, we systematically reviewed the literature to assess the current breadth of knowledge on fish sleep, and surveyed the diverse physiological effects and behaviours associated with sleep. We also discuss possible ways in which unstudied external factors may alter sleep behaviours. For example, predation risk may alter sleep patterns, as has been shown in mammalian, avian and reptilian species. Other environmental factors - such as water temperature and oxygen availability - have the potential to alter sleep patterns in fish differently than for terrestrial endotherms. Understanding the ecological influences on sleep in fish is vital, as sleep deprivation has the potential to affect waking behaviour and fitness owing to cognitive and physiological impairments, possibly affecting ecological phenomena and sensitivity to environmental stressors in ways that have not been considered.
Collapse
Affiliation(s)
- Helena Norman
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amelia Munson
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Koeck
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shaun S. Killen
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Pandi-Perumal SR, Saravanan KM, Paul S, Namasivayam GP, Chidambaram SB. Waking Up the Sleep Field: An Overview on the Implications of Genetics and Bioinformatics of Sleep. Mol Biotechnol 2024; 66:919-931. [PMID: 38198051 DOI: 10.1007/s12033-023-01009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Sleep genetics is an intriguing, as yet less understood, understudied, emerging area of biological and medical discipline. A generalist may not be aware of the current status of the field given the variety of journals that have published studies on the genetics of sleep and the circadian clock over the years. For researchers venturing into this fascinating area, this review thus includes fundamental features of circadian rhythm and genetic variables impacting sleep-wake cycles. Sleep/wake pathway medication exposure and susceptibility are influenced by genetic variations, and the responsiveness of sleep-related medicines is influenced by several functional polymorphisms. This review highlights the features of the circadian timing system and then a genetic perspective on wakefulness and sleep, as well as the relationship between sleep genetics and sleep disorders. Neurotransmission genes, as well as circadian and sleep/wake receptors, exhibit functional variability. Experiments on animals and humans have shown that these genetic variants impact clock systems, signaling pathways, nature, amount, duration, type, intensity, quality, and quantity of sleep. In this regard, the overview covers research on sleep genetics, the genomic properties of several popular model species used in sleep studies, homologs of mammalian genes, sleep disorders, and related genes. In addition, the study includes a brief discussion of sleep, narcolepsy, and restless legs syndrome from the viewpoint of a model organism. It is suggested that the understanding of genetic clues on sleep function and sleep disorders may, in future, result in an evidence-based, personalized treatment of sleep disorders.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Ganesh Pandian Namasivayam
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), A210, Kyoto University Institute for Advanced Study, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Saravana Babu Chidambaram
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
- Special Interest Group - Brain, Behaviour and Cognitive Neurosciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
14
|
Han E, Lee SS, Park KH, Blum ID, Liu Q, Mehta A, Palmer I, Issa H, Han A, Brown MP, Sanchez-Franco VM, Velasco M, Tabuchi M, Wu MN. Tob Regulates the Timing of Sleep Onset at Night in Drosophila. J Neurosci 2024; 44:e0389232024. [PMID: 38485259 PMCID: PMC11063825 DOI: 10.1523/jneurosci.0389-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Sleep is regulated by homeostatic sleep drive and the circadian clock. While tremendous progress has been made in elucidating the molecular components of the core circadian oscillator, the output mechanisms by which this robust oscillator generates rhythmic sleep behavior remain poorly understood. At the cellular level, growing evidence suggests that subcircuits in the master circadian pacemaker suprachiasmatic nucleus (SCN) in mammals and in the clock network in Drosophila regulate distinct aspects of sleep. Thus, to identify novel molecules regulating the circadian timing of sleep, we conducted a large-scale screen of mouse SCN-enriched genes in Drosophila Here, we show that Tob (Transducer of ERB-B2) regulates the timing of sleep onset at night in female fruit flies. Knockdown of Tob pan-neuronally, either constitutively or conditionally, advances sleep onset at night. We show that Tob is specifically required in "evening neurons" (the LNds and the fifth s-LNv) of the clock network for proper timing of sleep onset. Tob levels cycle in a clock-dependent manner in these neurons. Silencing of these "evening" clock neurons results in an advanced sleep onset at night, similar to that seen with Tob knockdown. Finally, sharp intracellular recordings demonstrate that the amplitude and kinetics of LNd postsynaptic potentials (PSPs) cycle between day and night, and this cycling is attenuated with Tob knockdown in these cells. Our data suggest that Tob acts as a clock output molecule in a subset of clock neurons to potentiate their activity in the evening and enable the proper timing of sleep onset at night.
Collapse
Affiliation(s)
- Emily Han
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| | - Sang Soo Lee
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Kristen H Park
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Ian D Blum
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Qiang Liu
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Anuradha Mehta
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Habon Issa
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Alice Han
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Matt P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| | | | - Miguel Velasco
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| | - Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Mark N Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
15
|
Bitsikas V, Cubizolles F, Schier AF. A vertebrate family without a functional Hypocretin/Orexin arousal system. Curr Biol 2024; 34:1532-1540.e4. [PMID: 38490200 DOI: 10.1016/j.cub.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
The Hypocretin/Orexin signaling pathway suppresses sleep and promotes arousal, whereas the loss of Hypocretin/Orexin results in narcolepsy, including the involuntary loss of muscle tone (cataplexy).1 Here, we show that the South Asian fish species Chromobotia macracanthus exhibits a sleep-like state during which individuals stop swimming and rest on their side. Strikingly, we discovered that the Hypocretin/Orexin system is pseudogenized in C. macracanthus, but in contrast to Hypocretin-deficient mammals, C. macracanthus does not suffer from sudden behavioral arrests. Similarly, zebrafish mutations in hypocretin/orexin show no evident signs of cataplectic-like episodes. Notably, four additional species in the Botiidae family also lack a functional Hypocretin/Orexin system. These findings identify the first vertebrate family that does not rely on a functional Hypocretin/Orexin system for the regulation of sleep and arousal.
Collapse
Affiliation(s)
- Vassilis Bitsikas
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Fabien Cubizolles
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
16
|
Mason L, Connolly J, Devenney LE, Lacey K, O’Donovan J, Doherty R. Sleep, Nutrition, and Injury Risk in Adolescent Athletes: A Narrative Review. Nutrients 2023; 15:5101. [PMID: 38140360 PMCID: PMC10745648 DOI: 10.3390/nu15245101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
This narrative review explores the impact of sleep and nutrition on injury risk in adolescent athletes. Sleep is viewed as essential to the recuperation process and is distinguished as an active participant in recovery through its involvement in growth, repair, regeneration, and immunity. Furthermore, the literature has shown that the sleep of athletes impacts elements of athletic performance including both physical and cognitive performance, recovery, injury risk, and mental well-being. For sleep to have a restorative effect on the body, it must meet an individual's sleep needs whilst also lasting for an adequate duration and being of adequate quality, which is age-dependent. The literature has suggested that athletes have increased sleep needs compared to those of the general population and thus the standard recommendations may not be sufficient for athletic populations. Therefore, a more individualised approach accounting for overall sleep health may be more appropriate for addressing sleep needs in individuals including athletes. The literature has demonstrated that adolescent athletes achieve, on average, ~6.3 h of sleep, demonstrating a discrepancy between sleep recommendations (8-10 h) and actual sleep achieved. Sleep-wake cycles undergo development during adolescence whereby adaptation occurs in sleep regulation during this phase. These adaptations increase sleep pressure tolerance and are driven by the maturation of physiological, psychological, and cognitive functioning along with delays in circadian rhythmicity, thus creating an environment for inadequate sleep during adolescence. As such, the adolescent period is a phase of rapid growth and maturation that presents multiple challenges to both sleep and nutrition; consequently, this places a significant burden on an adolescent athletes' ability to recover, thus increasing the likelihood of injury. Therefore, this article aims to provide a comprehensive review of the available literature on the importance of sleep and nutrition interactions in injury risk in adolescent athletes. Furthermore, it provides foundations for informing further investigations exploring the relation of sleep and nutrition interactions to recovery during adolescence.
Collapse
Affiliation(s)
- Lorcán Mason
- Sports Lab North West, Atlantic Technological University Donegal, Port Road, F92 FC93 Letterkenny, Ireland (R.D.)
| | - James Connolly
- Department of Computing, Atlantic Technological University Donegal, Port Road, F92 FC93 Letterkenny, Ireland
| | - Lydia E. Devenney
- Faculty of Arts & Social Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Karl Lacey
- Sports Lab North West, Atlantic Technological University Donegal, Port Road, F92 FC93 Letterkenny, Ireland (R.D.)
| | - Jim O’Donovan
- DCU Glasnevin Campus, Dublin City University, Collins Avenue Extension, Dublin 9, D09 Y8VX Dublin, Ireland
- Sport Ireland Institute, National Sport Campus, Abbotstown, Dublin 15, D15 Y52H Dublin, Ireland
| | - Rónán Doherty
- Sports Lab North West, Atlantic Technological University Donegal, Port Road, F92 FC93 Letterkenny, Ireland (R.D.)
- Sport Ireland Institute, National Sport Campus, Abbotstown, Dublin 15, D15 Y52H Dublin, Ireland
| |
Collapse
|
17
|
Brown EB, Zhang J, Lloyd E, Lanzon E, Botero V, Tomchik S, Keene AC. Neurofibromin 1 mediates sleep depth in Drosophila. PLoS Genet 2023; 19:e1011049. [PMID: 38091360 PMCID: PMC10763969 DOI: 10.1371/journal.pgen.1011049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 11/03/2023] [Indexed: 01/04/2024] Open
Abstract
Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.
Collapse
Affiliation(s)
- Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth Lanzon
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seth Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
18
|
Gessner NR, Peiravi M, Zhang F, Yimam S, Springer D, Harbison ST. A conserved role for frizzled in sleep architecture. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad045. [PMID: 38033424 PMCID: PMC10684271 DOI: 10.1093/sleepadvances/zpad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Previous studies of natural variants in Drosophila melanogaster implicated the Wnt signaling receptor frizzled in sleep. Given that the Wnt signaling pathway is highly conserved across species, we hypothesized that frizzled class receptor 1 (Fzd1), the murine homolog of frizzled, would also have a role in sleep. Using a CRISPR transgenic approach, we removed most of the Fzd1 coding region from C57BL/6N mice. We used a video assay to measure sleep characteristics in Fzd1-deficient mice. As Wnt signaling is known to affect visuospatial memory, we also examined the impact of the deletion on learning and memory using the novel object recognition (NOR) paradigm. Fzd1-deficient mice had altered sleep compared to littermate controls. The mice did not respond differently to the NOR paradigm compared to controls but did display anxiety-like behavior. Our strategy demonstrates that the study of natural variation in Drosophila sleep translates into candidate genes for sleep in vertebrate species such as the mouse.
Collapse
Affiliation(s)
- Nicholas R Gessner
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Morteza Peiravi
- Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fan Zhang
- Transgenic Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shemsiya Yimam
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Danielle Springer
- Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Tao Y, Qin Y, Chen S, Xu T, Lin J, Su D, Yu W, Chen X. Emerging trends and hot spots of sleep and genetic research: a bibliometric analysis of publications from 2002 to 2022 in the field. Front Neurol 2023; 14:1264177. [PMID: 38020599 PMCID: PMC10663257 DOI: 10.3389/fneur.2023.1264177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Sleep is an important biological process and has been linked to many diseases; however, very little is known about which and how genes control and regulate sleep. Although technology has seen significant development, this issue has still not been adequately resolved. Therefore, we conducted a bibliometric analysis to assess the progress in research on sleep quality and associated genes over the past 2 decades. Through our statistical data and discussions, we aimed to provide researchers with better research directions and ideas, thus promoting the advancement of this field. Methods On December 29, 2022, we utilized bibliometric techniques, such as co-cited and cluster analysis and keyword co-occurrence, using tools such as CiteSpace, VOSviewer, and the Online Analysis Platform of Literature Metrology (http://bibliometric.com/), to conduct a thorough examination of the relevant publications extracted from the Web of Science Core Collection (WoSCC). Our analysis aimed to identify the emerging trends and hot spots in this field while also predicting their potential development in future. Results Cluster analysis of the co-cited literature revealed the most popular terms relating to sleep quality and associated genes in the manner of cluster labels; these included genome-wide association studies (GWAS), circadian rhythms, obstructive sleep apnea (OSA), DNA methylation, and depression. Keyword burst detection suggested that obstructive sleep apnea, circadian clock, circadian genes, and polygenic risk score were newly emergent research hot spots. Conclusion Based on this bibliometric analysis of the publications in the last 20 years, a comprehensive analysis of the literature clarified the contributions, changes in research hot spots, and evolution of research techniques regarding sleep quality and associated genes. This research can provide medical staff and researchers with revelations into future directions of the study on the pathological mechanisms of sleep-related diseases.
Collapse
Affiliation(s)
- Ying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yi Qin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Sifan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Tian Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Lin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Xuemei Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
20
|
Mishra Y, Mallick BN. Rapid eye movements associated with REM sleep is involved in consolidation of visuospatial learning in rats. Physiol Behav 2023; 271:114352. [PMID: 37714322 DOI: 10.1016/j.physbeh.2023.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Rapid eye movement (REM) sleep plays a significant role in visuospatial learning and memory consolidation; however, its mechanism of action is unknown. Rapid eye movements (REMs), a characteristic active feature of REM sleep, is a potential correlate of neural processing for visual memory consolidation. The superior colliculus (SC) plays a central role in oculomotor control and spatial localization of objects in the visual field. We proposed that local reversible inactivation of the SC during post-learning sessions might interfere with REMs and negatively impact REM sleep associated consolidation of the visuospatial learnt task. Under gaseous anesthesia, bilateral cannulae aiming SC and electrodes for recording electrophysiological signals to classify sleep-waking were implanted. Following standard protocol, all rats were subjected to Morris water maze (MWM) training for 5 consecutive days followed by probe trial. After MWM training, on all except the probe test days, the rat SC were bilaterally infused with either vehicle (control, Group 1), Lidocaine hydrochloride a local anesthetic (Lox 2%, Group 2), or muscimol (Mus, GABA agonist, Group 3) and sleep-wakefulness recorded after day 1, 4, and post-probe learning sessions. Post-learning, compared to vehicle, Mus treated group significantly decreased REMs, phasic REM sleep, percent time spent in REM sleep and REM sleep frequency/hr. Also, during probe test, the escape latency was significantly increased, and the percentage time spent in the platform quadrant were significantly decreased in both, Mus and Lox 2% treated rats, while the number of platform location crossings was decreased in Mus treated group. The results showed that Lox 2% and Mus into SC reduced consolidation of visuospatial learning. The findings support our contention that SC mediated activation of REMs exerts a positive influence in processing and consolidation of visual learning during REM sleep. The findings explain the role of REMs during REM sleep in visual memory consolidation.
Collapse
Affiliation(s)
- Yashaswee Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Birendra Nath Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Amity Institute of Neuropsychology and Neurosciences, Amity University Campus, Gautam Budh Nagar Sector 125, Noida, Uttar Pradesh 201313, India.
| |
Collapse
|
21
|
Ajayi OM, Wynne NE, Chen SC, Vinauger C, Benoit JB. Sleep: An Essential and Understudied Process in the Biology of Blood-Feeding Arthropods. Integr Comp Biol 2023; 63:530-547. [PMID: 37429615 PMCID: PMC10503478 DOI: 10.1093/icb/icad097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Understanding the biology of blood-feeding arthropods is critical to managing them as vectors of etiological agents. Circadian rhythms act in the regulation of behavioral and physiological aspects such as blood feeding, immunity, and reproduction. However, the impact of sleep on these processes has been largely ignored in blood-feeding arthropods, but recent studies in mosquitoes show that sleep-like states directly impact host landing and blood feeding. Our focus in this review is on discussing the relationship between sleep and circadian rhythms in blood-feeding arthropods along with how unique aspects such as blood gluttony and dormancy can impact sleep-like states. We highlight that sleep-like states are likely to have profound impacts on vector-host interactions but will vary between lineages even though few direct studies have been conducted. A myriad of factors, such as artificial light, could directly impact the time and levels of sleep in blood-feeding arthropods and their roles as vectors. Lastly, we discuss underlying factors that make sleep studies in blood-feeding arthropods difficult and how these can be bypassed. As sleep is a critical factor in the fitness of animal systems, a lack of focus on sleep in blood-feeding arthropods represents a significant oversight in understanding their behavior and its role in pathogen transmission.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Nicole E Wynne
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Shyh-Chi Chen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
22
|
Mishra S, Sharma N, Lone SR. Understanding the impact of sociosexual interactions on sleep using Drosophila melanogaster as a model organism. Front Physiol 2023; 14:1220140. [PMID: 37670770 PMCID: PMC10476103 DOI: 10.3389/fphys.2023.1220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Sleep is conserved across species, and it is believed that a fixed amount of sleep is needed for normal neurobiological functions. Sleep rebound follows sleep deprivation; however, continuous sleep deprivation for longer durations is believed to be detrimental to the animal's wellbeing. Under some physiologically demanding situations, such as migration in birds, the birth of new offspring in cetaceans, and sexual interactions in pectoral sandpipers, animals are known to forgo sleep. The mechanisms by which animals forgo sleep without having any obvious negative impact on the proper functioning of their neurobiological processes are yet unknown. Therefore, a simple assay is needed to study how animals forgo sleep. The assay should be ecologically relevant so it can offer insights into the physiology of the organisms. Equally important is that the organism should be genetically amenable, which helps in understanding the cellular and molecular processes that govern such behaviors. This paper presents a simple method of sociosexual interaction to understand the process by which animals forgo sleep. In the case of Drosophila melanogaster, when males and females are in proximity, they are highly active and lose a significant amount of sleep. In addition, there is no sleep rebound afterward, and instead, males engaged in sexual interactions continue to show normal sleep. Thus, sexual drive in the fruit flies is a robust assay to understand the underlying mechanism by which animals forgo sleep.
Collapse
|
23
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
24
|
Alhowimel AS, Alenazi AM, Alshehri MM, Alqahtani BA, Al-Jamaan A, Alodaibi F, Alshehri YS, Charest J. Translation and Validation of the Arabic Version of the Athlete Sleep Screening Questionnaire. Healthcare (Basel) 2023; 11:healthcare11101501. [PMID: 37239787 DOI: 10.3390/healthcare11101501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Sleep improves the cognitive and physical performance of athletes. A detailed questionnaire that detects sleep disruptions is required to identify sleep-deprived athletes. This study evaluates the translated Athlete Sleep Screening Questionnaire (ASSQ), a tool suggested by the International Olympic Committee, among Arabic-speaking athletes. The ASSQ was translated into Arabic and examined for floor or ceiling effects, internal consistency, and validity among Arabic-speaking athletes. The Arabic Pittsburgh Sleep Quality Index (PSQI) was employed to assess convergent validity. Ninety athletes (28.9% women) participated and completed this study's questionnaires. The Cronbach's alpha for the ASSQ-Sleep Difficulty Score (SDS) was 0.435, and that of the ASSQ-chronotype was 0.632. The SDS and chronotype subset of the ASSQ demonstrated excellent test-retest reliability, with intraclass correlation coefficients of 0.84 and 0.938, respectively. The ASSQ-SDS correlated positively with the PSQI (0.734, p = 0.001). The ASSQ-chronotype was inversely associated with the PSQI (p = 0.001). This study's findings can assist clinicians in assessing sleep disorders in sports. The Arabic version of the ASSQ has satisfactory psychometric qualities and can identify clinically relevant sleep problems in athletes.
Collapse
Affiliation(s)
- Ahmed S Alhowimel
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Aqeel M Alenazi
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Bader A Alqahtani
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Abdulaziz Al-Jamaan
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Faris Alodaibi
- Department of Rehabilitation Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasir S Alshehri
- Department of Physical Therapy, College of Medical Rehabilitation Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Jonathan Charest
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Centre for Sleep & Human Performance, Calgary, AB T2X 3V4, Canada
| |
Collapse
|
25
|
Lee G, Jang H, Oh Y. The role of diuretic hormones (DHs) and their receptors in Drosophila. BMB Rep 2023; 56:209-215. [PMID: 36977606 PMCID: PMC10140481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023] Open
Abstract
Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrientsensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems. [BMB Reports 2023; 56(4): 209-215].
Collapse
Affiliation(s)
- Gahbien Lee
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Heejin Jang
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yangkyun Oh
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
26
|
Lee G, Jang H, Oh Y. The role of diuretic hormones (DHs) and their receptors in Drosophila. BMB Rep 2023; 56:209-215. [PMID: 36977606 PMCID: PMC10140481 DOI: 10.5483/bmbrep.2023-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 10/11/2023] Open
Abstract
Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrientsensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems. [BMB Reports 2023; 56(4): 209-215].
Collapse
Affiliation(s)
- Gahbien Lee
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Heejin Jang
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yangkyun Oh
- Department of Life Sciences, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
27
|
Mishra S, Sharma N, Singh SK, Lone SR. Peculiar sleep features in sympatric species may contribute to the temporal segregation. J Comp Physiol B 2023; 193:57-70. [PMID: 36271924 DOI: 10.1007/s00360-022-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023]
Abstract
Sleep is conserved in the animal kingdom and plays a pivotal role in the adaptation of species. Sleep in Drosophila melanogaster is defined as any continuous 5 min of quiescence, shows a prominent siesta, and consolidated nighttime sleep. Here, we analyzed the sleep of two other species D. malerkotliana (DMK) and D. ananassae (DA), and compared it with D. melanogaster (DM). The DMK males and females have siesta like DM. However, unlike DM, flies continue to sleep beyond siesta till the evening. DA has a less prominent siesta compared to DM and DMK. In the morning, DA took a longer time to respond to the lights ON and continued to sleep for at least half an hour. The nighttime sleep of the DA flies is higher than the other two species. Average length of sleep episode is three times more than that of DM and DMK with few wake episodes. Thus, the nighttime sleep of DA males and females is deep and needs exposure to more potent stimuli to wake up relative to the other two species. DA males and females show higher sleep rebound than the other two species, suggesting the robustness of sleep homeostasis. Although total sleep of DMK and DA is similar, DA is a day-active species with highly consolidated night sleep. DMK, like DM, is a crepuscular species with a midday siesta. Thus, our results suggest that temporal partitioning of sleep, in sympatric species may contribute to temporal segregation.
Collapse
Affiliation(s)
- Sukriti Mishra
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Nisha Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Sunil Kumar Singh
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Shahnaz Rahman Lone
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151001, India.
| |
Collapse
|
28
|
Athanasouli C, Kalmbach K, Booth V, Diniz Behn CG. NREM-REM alternation complicates transitions from napping to non-napping behavior in a three-state model of sleep-wake regulation. Math Biosci 2023; 355:108929. [PMID: 36448821 DOI: 10.1016/j.mbs.2022.108929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The temporal structure of human sleep changes across development as it consolidates from the polyphasic sleep of infants to the single nighttime sleep episode typical in adults. Experimental studies have shown that changes in the dynamics of sleep need may mediate this developmental transition in sleep patterning, however, it is unknown how sleep architecture interacts with these changes. We employ a physiologically-based mathematical model that generates wake, rapid eye movement (REM) and non-REM (NREM) sleep states to investigate how NREM-REM alternation affects the transition in sleep patterns as the dynamics of the homeostatic sleep drive are varied. To study the mechanisms producing these transitions, we analyze the bifurcations of numerically-computed circle maps that represent key dynamics of the full sleep-wake network model by tracking the evolution of sleep onsets across different circadian (∼ 24 h) phases. The maps are non-monotonic and discontinuous, being composed of branches that correspond to sleep-wake cycles containing distinct numbers of REM bouts. As the rates of accumulation and decay of the homeostatic sleep drive are varied, we identify the bifurcations that disrupt a period-adding-like behavior of sleep patterns in the transition between biphasic and monophasic sleep. These bifurcations include border collision and saddle-node bifurcations that initiate new sleep patterns, period-doubling bifurcations leading to higher-order patterns of NREM-REM alternation, and intervals of bistability of sleep patterns with different NREM-REM alternations. Furthermore, patterns of NREM-REM alternation exhibit variable behaviors in different regimes of constant sleep-wake patterns. Overall, the sequence of sleep-wake behaviors, and underlying bifurcations, in the transition from biphasic to monophasic sleep in this three-state model is more complex than behavior observed in models of sleep-wake regulation that do not consider the dynamics of NREM-REM alternation. These results suggest that interactions between the dynamics of the homeostatic sleep drive and the dynamics of NREM-REM alternation may contribute to the wide interindividual variation observed when young children transition from napping to non-napping behavior.
Collapse
Affiliation(s)
- Christina Athanasouli
- Department of Mathematics University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA.
| | - Kelsey Kalmbach
- Department of Applied Mathematics and Statistics Colorado School of Mines, 1500 Illinois Street, Golden, 80401, CO, USA.
| | - Victoria Booth
- Department of Mathematics University of Michigan, 530 Church Street, Ann Arbor, MI, 48109, USA; Department of Anesthesiology, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, 48109-5048, MI, USA.
| | - Cecilia G Diniz Behn
- Department of Applied Mathematics and Statistics Colorado School of Mines, 1500 Illinois Street, Golden, 80401, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 East 17th Place, Aurora, 80045, CO, USA.
| |
Collapse
|
29
|
Sholeyan AE, Rahatabad FN, Setarehdan SK. Designing an Automatic Sleep Staging System Using Deep Convolutional Neural Network Fed by Nonlinear Dynamic Transformation. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Bragazzi NL, Garbarino S, Puce L, Trompetto C, Marinelli L, Currà A, Jahrami H, Trabelsi K, Mellado B, Asgary A, Wu J, Kong JD. Planetary sleep medicine: Studying sleep at the individual, population, and planetary level. Front Public Health 2022; 10:1005100. [PMID: 36330122 PMCID: PMC9624384 DOI: 10.3389/fpubh.2022.1005100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 01/27/2023] Open
Abstract
Circadian rhythms are a series of endogenous autonomous oscillators that are generated by the molecular circadian clock which coordinates and synchronizes internal time with the external environment in a 24-h daily cycle (that can also be shorter or longer than 24 h). Besides daily rhythms, there exist as well other biological rhythms that have different time scales, including seasonal and annual rhythms. Circadian and other biological rhythms deeply permeate human life, at any level, spanning from the molecular, subcellular, cellular, tissue, and organismal level to environmental exposures, and behavioral lifestyles. Humans are immersed in what has been called the "circadian landscape," with circadian rhythms being highly pervasive and ubiquitous, and affecting every ecosystem on the planet, from plants to insects, fishes, birds, mammals, and other animals. Anthropogenic behaviors have been producing a cascading and compounding series of effects, including detrimental impacts on human health. However, the effects of climate change on sleep have been relatively overlooked. In the present narrative review paper, we wanted to offer a way to re-read/re-think sleep medicine from a planetary health perspective. Climate change, through a complex series of either direct or indirect mechanisms, including (i) pollution- and poor air quality-induced oxygen saturation variability/hypoxia, (ii) changes in light conditions and increases in the nighttime, (iii) fluctuating temperatures, warmer values, and heat due to extreme weather, and (iv) psychological distress imposed by disasters (like floods, wildfires, droughts, hurricanes, and infectious outbreaks by emerging and reemerging pathogens) may contribute to inducing mismatches between internal time and external environment, and disrupting sleep, causing poor sleep quantity and quality and sleep disorders, such as insomnia, and sleep-related breathing issues, among others. Climate change will generate relevant costs and impact more vulnerable populations in underserved areas, thus widening already existing global geographic, age-, sex-, and gender-related inequalities.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada,*Correspondence: Nicola Luigi Bragazzi
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, Genoa, Italy,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, Genoa, Italy,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Currà
- Department of Medical-Surgical Sciences and Biotechnologies, Academic Neurology Unit, Ospedale A. Fiorini, Terracina, Italy,Sapienza University of Rome, Rome, Italy
| | - Haitham Jahrami
- Ministry of Health, Manama, Bahrain,College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia,Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia
| | - Bruce Mellado
- School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Johannesburg, South Africa,Subatomic Physics, iThemba Laboratory for Accelerator Based Sciences, Somerset West, South Africa
| | - Ali Asgary
- Disaster and Emergency Management Area and Advanced Disaster, Emergency and Rapid-Response Simulation (ADERSIM), School of Administrative Studies, York University, Toronto, ON, Canada
| | - Jianhong Wu
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Jude Dzevela Kong
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| |
Collapse
|
31
|
Abstract
Sleep is a fundamental, evolutionarily conserved, plastic behavior that is regulated by circadian and homeostatic mechanisms as well as genetic factors and environmental factors, such as light, humidity, and temperature. Among environmental cues, temperature plays an important role in the regulation of sleep. This review presents an overview of thermoreception in animals and the neural circuits that link this process to sleep. Understanding the influence of temperature on sleep can provide insight into basic physiologic processes that are required for survival and guide strategies to manage sleep disorders.
Collapse
|
32
|
Reicher V, Bálint A, Újváry D, Gácsi M. Non-invasive sleep EEG measurement in hand raised wolves. Sci Rep 2022; 12:9792. [PMID: 35697910 PMCID: PMC9191399 DOI: 10.1038/s41598-022-13643-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Sleep research greatly benefits from comparative studies to understand the underlying physiological and environmental factors affecting the different features of sleep, also informing us about the possible evolutionary changes shaping them. Recently, the domestic dog became an exceedingly valuable model species in sleep studies, as the use of non-invasive polysomnography methodologies enables direct comparison with human sleep data. In this study, we applied the same polysomnography protocol to record the sleep of dog’s closest wild relative, the wolf. We measured the sleep of seven captive (six young and one senior), extensively socialized wolves using a fully non-invasive sleep EEG methodology, originally developed for family dogs. We provide the first descriptive analysis of the sleep macrostructure and NREM spectral power density of wolves using a completely non-invasive methodology. For (non-statistical) comparison, we included the same sleep data of similarly aged dogs. Although our sample size was inadequate to perform statistical analyses, we suggest that it may form the basis of an international, multi-site collection of similar samples using our methodology, allowing for generalizable, unbiased conclusions. As we managed to register both macrostructural and spectral sleep data, our procedure appears to be suitable for collecting valid data in other species too, increasing the comparability of non-invasive sleep studies.
Collapse
Affiliation(s)
- Vivien Reicher
- Department of Ethology, Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary. .,MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.
| | - Anna Bálint
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Dóra Újváry
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Márta Gácsi
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary.,Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
33
|
Koutsoumparis A, Welp LM, Wulf A, Urlaub H, Meierhofer D, Börno S, Timmermann B, Busack I, Bringmann H. Sleep neuron depolarization promotes protective gene expression changes and FOXO activation. Curr Biol 2022; 32:2248-2262.e9. [DOI: 10.1016/j.cub.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/09/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
|
34
|
Yamagata T, Kahn MC, Prius-Mengual J, Meijer E, Šabanović M, Guillaumin MCC, van der Vinne V, Huang YG, McKillop LE, Jagannath A, Peirson SN, Mann EO, Foster RG, Vyazovskiy VV. The hypothalamic link between arousal and sleep homeostasis in mice. Proc Natl Acad Sci U S A 2021; 118:e2101580118. [PMID: 34903646 PMCID: PMC8713782 DOI: 10.1073/pnas.2101580118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Sleep and wakefulness are not simple, homogenous all-or-none states but represent a spectrum of substates, distinguished by behavior, levels of arousal, and brain activity at the local and global levels. Until now, the role of the hypothalamic circuitry in sleep-wake control was studied primarily with respect to its contribution to rapid state transitions. In contrast, whether the hypothalamus modulates within-state dynamics (state "quality") and the functional significance thereof remains unexplored. Here, we show that photoactivation of inhibitory neurons in the lateral preoptic area (LPO) of the hypothalamus of adult male and female laboratory mice does not merely trigger awakening from sleep, but the resulting awake state is also characterized by an activated electroencephalogram (EEG) pattern, suggesting increased levels of arousal. This was associated with a faster build-up of sleep pressure, as reflected in higher EEG slow-wave activity (SWA) during subsequent sleep. In contrast, photoinhibition of inhibitory LPO neurons did not result in changes in vigilance states but was associated with persistently increased EEG SWA during spontaneous sleep. These findings suggest a role of the LPO in regulating arousal levels, which we propose as a key variable shaping the daily architecture of sleep-wake states.
Collapse
Affiliation(s)
- Tomoko Yamagata
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Martin C Kahn
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - José Prius-Mengual
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Merima Šabanović
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Mathilde C C Guillaumin
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vincent van der Vinne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Yi-Ge Huang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Edward O Mann
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3RE, United Kingdom;
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;
| |
Collapse
|
35
|
Zada D, Sela Y, Matosevich N, Monsonego A, Lerer-Goldshtein T, Nir Y, Appelbaum L. Parp1 promotes sleep, which enhances DNA repair in neurons. Mol Cell 2021; 81:4979-4993.e7. [PMID: 34798058 PMCID: PMC8688325 DOI: 10.1016/j.molcel.2021.10.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
The characteristics of the sleep drivers and the mechanisms through which sleep relieves the cellular homeostatic pressure are unclear. In flies, zebrafish, mice, and humans, DNA damage levels increase during wakefulness and decrease during sleep. Here, we show that 6 h of consolidated sleep is sufficient to reduce DNA damage in the zebrafish dorsal pallium. Induction of DNA damage by neuronal activity and mutagens triggered sleep and DNA repair. The activity of the DNA damage response (DDR) proteins Rad52 and Ku80 increased during sleep, and chromosome dynamics enhanced Rad52 activity. The activity of the DDR initiator poly(ADP-ribose) polymerase 1 (Parp1) increased following sleep deprivation. In both larva zebrafish and adult mice, Parp1 promoted sleep. Inhibition of Parp1 activity reduced sleep-dependent chromosome dynamics and repair. These results demonstrate that DNA damage is a homeostatic driver for sleep, and Parp1 pathways can sense this cellular pressure and facilitate sleep and repair activity.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaniv Sela
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Noa Matosevich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Adir Monsonego
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
36
|
Mechanosensory Stimulation via Nanchung Expressing Neurons Can Induce Daytime Sleep in Drosophila. J Neurosci 2021; 41:9403-9418. [PMID: 34635540 DOI: 10.1523/jneurosci.0400-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
The neuronal and genetic bases of sleep, a phenomenon considered crucial for well-being of organisms, has been under investigation using the model organism Drosophila melanogaster Although sleep is a state where sensory threshold for arousal is greater, it is known that certain kinds of repetitive sensory stimuli, such as rocking, can indeed promote sleep in humans. Here we report that orbital motion-aided mechanosensory stimulation promotes sleep of male and female Drosophila, independent of the circadian clock, but controlled by the homeostatic system. Mechanosensory receptor nanchung (Nan)-expressing neurons in the chordotonal organs mediate this sleep induction: flies in which these neurons are either silenced or ablated display significantly reduced sleep induction on mechanosensory stimulation. Transient activation of the Nan-expressing neurons also enhances sleep levels, confirming the role of these neurons in sleep induction. We also reveal that certain regions of the antennal mechanosensory and motor center in the brain are involved in conveying information from the mechanosensory structures to the sleep centers. Thus, we show, for the first time, that a circadian clock-independent pathway originating from peripherally distributed mechanosensors can promote daytime sleep of flies Drosophila melanogaster SIGNIFICANCE STATEMENT Our tendency to fall asleep in moving vehicles or the practice of rocking infants to sleep suggests that slow rhythmic movement can induce sleep, although we do not understand the mechanistic basis of this phenomenon. We find that gentle orbital motion can induce behavioral quiescence even in flies, a highly genetically tractable system for sleep studies. We demonstrate that this is indeed true sleep based on its rapid reversibility by sensory stimulation, enhanced arousal threshold, and homeostatic control. Furthermore, we demonstrate that mechanosensory neurons expressing a TRPV channel nanchung, located in the antennae and chordotonal organs, mediate orbital motion-induced sleep by communicating with antennal mechanosensory motor centers, which in turn may project to sleep centers in the brain.
Collapse
|
37
|
Tomita J, Ban G, Kato YS, Kume K. Protocerebral Bridge Neurons That Regulate Sleep in Drosophila melanogaster. Front Neurosci 2021; 15:647117. [PMID: 34720844 PMCID: PMC8554056 DOI: 10.3389/fnins.2021.647117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
The central complex is one of the major brain regions that control sleep in Drosophila. However, the circuitry details of sleep regulation have not been elucidated yet. Here, we show a novel sleep-regulating neuronal circuit in the protocerebral bridge (PB) of the central complex. Activation of the PB interneurons labeled by the R59E08-Gal4 and the PB columnar neurons with R52B10-Gal4 promoted sleep and wakefulness, respectively. A targeted GFP reconstitution across synaptic partners (t-GRASP) analysis demonstrated synaptic contact between these two groups of sleep-regulating PB neurons. Furthermore, we found that activation of a pair of dopaminergic (DA) neurons projecting to the PB (T1 DA neurons) decreased sleep. The wake-promoting T1 DA neurons and the sleep-promoting PB interneurons formed close associations. Dopamine 2-like receptor (Dop2R) knockdown in the sleep-promoting PB interneurons increased sleep. These results indicated that the neuronal circuit in the PB, regulated by dopamine signaling, mediates sleep-wakefulness.
Collapse
Affiliation(s)
- Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Gosuke Ban
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki S Kato
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
38
|
Geuther B, Chen M, Galante RJ, Han O, Lian J, George J, Pack AI, Kumar V. High-throughput visual assessment of sleep stages in mice using machine learning. Sleep 2021; 45:6414386. [PMID: 34718812 DOI: 10.1093/sleep/zsab260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Sleep is an important biological process that is perturbed in numerous diseases, and assessment its substages currently requires implantation of electrodes to carry out electroencephalogram/electromyogram (EEG/EMG) analysis. Although accurate, this method comes at a high cost of invasive surgery and experts trained to score EEG/EMG data. Here, we leverage modern computer vision methods to directly classify sleep substages from video data. This bypasses the need for surgery and expert scoring, provides a path to high-throughput studies of sleep in mice. METHODS We collected synchronized high-resolution video and EEG/EMG data in 16 male C57BL/6J mice. We extracted features from the video that are time and frequency-based and used the human expert-scored EEG/EMG data to train a visual classifier. We investigated several classifiers and data augmentation methods. RESULTS Our visual sleep classifier proved to be highly accurate in classifying wake, non-rapid eye movement sleep (NREM), and rapid eye movement sleep (REM) states, and achieves an overall accuracy of 0.92 +/- 0.05 (mean +/- SD). We discover and genetically validate video features that correlate with breathing rates, and show low and high variability in NREM and REM sleep, respectively. Finally, we apply our methods to non-invasively detect that sleep stage disturbances induced by amphetamine administration. CONCLUSIONS We conclude that machine learning based visual classification of sleep is a viable alternative to EEG/EMG based scoring. Our results will enable non-invasive high-throughput sleep studies and will greatly reduce the barrier to screening mutant mice for abnormalities in sleep.
Collapse
Affiliation(s)
- Brian Geuther
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME
| | - Mandy Chen
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME
| | - Raymond J Galante
- University of Pennsylvania, John Miclot Professor of Medicine, Division of Sleep Medicine/Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA
| | - Owen Han
- University of Pennsylvania, John Miclot Professor of Medicine, Division of Sleep Medicine/Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA
| | - Jie Lian
- University of Pennsylvania, John Miclot Professor of Medicine, Division of Sleep Medicine/Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA
| | - Joshy George
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME
| | - Allan I Pack
- University of Pennsylvania, John Miclot Professor of Medicine, Division of Sleep Medicine/Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, 125 South 31st Street, Suite 2100, Philadelphia, PA
| | - Vivek Kumar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME
| |
Collapse
|
39
|
Integrative Role of 14-3-3ε in Sleep Regulation. Int J Mol Sci 2021; 22:ijms22189748. [PMID: 34575915 PMCID: PMC8467329 DOI: 10.3390/ijms22189748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Sleep is a crucial factor for health and survival in all animals. In this study, we found by proteomic analysis that some cancer related proteins were impacted by the circadian clock. The 14-3-3ε protein, expression of which is activated by the circadian transcription factor Clock, regulates adult sleep of Drosophila independent of circadian rhythm. Detailed analysis of the sleep regulatory mechanism shows that 14-3-3ε directly targets the Ultrabithorax (Ubx) gene to activate transcription of the pigment dispersing factor (PDF). The dopamine receptor (Dop1R1) and the octopamine receptor (Oamb), are also involved in the 14-3-3ε pathway, which in 14-3-3ε mutant flies causes increases in the dopR1 and OAMB, while downregulation of the DopR1 and Oamb can restore the sleep phenotype caused by the 14-3-3ε mutation. In conclusion, 14-3-3ε is necessary for sleep regulation in Drosophila.
Collapse
|
40
|
Murakami K, Palermo J, Stanhope BA, Gibbs AG, Keene AC. A screen for sleep and starvation resistance identifies a wake-promoting role for the auxiliary channel unc79. G3 (BETHESDA, MD.) 2021; 11:6300522. [PMID: 34849820 PMCID: PMC8496288 DOI: 10.1093/g3journal/jkab199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022]
Abstract
The regulation of sleep and metabolism are highly interconnected, and dysregulation of sleep is linked to metabolic diseases that include obesity, diabetes, and heart disease. Furthermore, both acute and long-term changes in diet potently impact sleep duration and quality. To identify novel factors that modulate interactions between sleep and metabolic state, we performed a genetic screen for their roles in regulating sleep duration, starvation resistance, and starvation-dependent modulation of sleep. This screen identified a number of genes with potential roles in regulating sleep, metabolism, or both processes. One such gene encodes the auxiliary ion channel UNC79, which was implicated in both the regulation of sleep and starvation resistance. Genetic knockdown or mutation of unc79 results in flies with increased sleep duration, as well as increased starvation resistance. Previous findings have shown that unc79 is required in pacemaker for 24-hours circadian rhythms. Here, we find that unc79 functions in the mushroom body, but not pacemaker neurons, to regulate sleep duration and starvation resistance. Together, these findings reveal spatially localized separable functions of unc79 in the regulation of circadian behavior, sleep, and metabolic function.
Collapse
Affiliation(s)
- Kazuma Murakami
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Justin Palermo
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bethany A Stanhope
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Allen G Gibbs
- Department of Biological Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
41
|
Eagleman DM, Vaughn DA. The Defensive Activation Theory: REM Sleep as a Mechanism to Prevent Takeover of the Visual Cortex. Front Neurosci 2021; 15:632853. [PMID: 34093109 PMCID: PMC8176926 DOI: 10.3389/fnins.2021.632853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Regions of the brain maintain their territory with continuous activity: if activity slows or stops (e.g., because of blindness), the territory tends to be taken over by its neighbors. A surprise in recent years has been the speed of takeover, which is measurable within an hour. These findings lead us to a new hypothesis on the origin of REM sleep. We hypothesize that the circuitry underlying REM sleep serves to amplify the visual system's activity periodically throughout the night, allowing it to defend its territory against takeover from other senses. We find that measures of plasticity across 25 species of primates correlate positively with the proportion of rapid eye movement (REM) sleep. We further find that plasticity and REM sleep increase in lockstep with evolutionary recency to humans. Finally, our hypothesis is consistent with the decrease in REM sleep and parallel decrease in neuroplasticity with aging.
Collapse
Affiliation(s)
- David M. Eagleman
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Don A. Vaughn
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
42
|
Fritz EM, Kreuzer M, Altunkaya A, Singewald N, Fenzl T. Altered sleep behavior in a genetic mouse model of impaired fear extinction. Sci Rep 2021; 11:8978. [PMID: 33903668 PMCID: PMC8076259 DOI: 10.1038/s41598-021-88475-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Sleep disturbances are a common complaint of anxiety patients and constitute a hallmark feature of post-traumatic stress disorder (PTSD). Emerging evidence suggests that poor sleep is not only a secondary symptom of anxiety- and trauma-related disorders but represents a risk factor in their development, for example by interfering with emotional memory processing. Fear extinction is a critical mechanism for the attenuation of fearful and traumatic memories and multiple studies suggest that healthy sleep is crucial for the formation of extinction memories. However, fear extinction is often impaired in anxiety- and trauma-related disorders-an endophenotype that is perfectly modelled in the 129S1/SvImJ inbred mouse strain. To investigate whether these mice exhibit altered sleep at baseline that could predispose them towards maladaptive fear processing, we compared their circadian sleep/wake patterns to those of typically extinction-competent C57BL/6 mice. We found significant differences regarding diurnal distribution of sleep and wakefulness, but also sleep architecture, spectral features and sleep spindle events. With regard to sleep disturbances reported by anxiety- and PTSD patients, our findings strengthen the 129S1/SvImJ mouse models' face validity and highlight it as a platform to investigate novel, sleep-focused diagnostic and therapeutic strategies. Whether the identified alterations causally contribute to its pathological anxiety/PTSD-like phenotype will, however, have to be addressed in future studies.
Collapse
Affiliation(s)
- Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Alp Altunkaya
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria
| | - Thomas Fenzl
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, University of Innsbruck, Innsbruck, Austria.
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
| |
Collapse
|
43
|
Giri S, Ranjan A, Kumar A, Amar M, Mallick BN. Rapid eye movement sleep deprivation impairs neuronal plasticity and reduces hippocampal neuronal arborization in male albino rats: Noradrenaline is involved in the process. J Neurosci Res 2021; 99:1815-1834. [PMID: 33819353 DOI: 10.1002/jnr.24838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
Abstract
Rapid eye movement sleep (REMS) favors brain development and memory, while it is decreased in neurodegenerative diseases. REMS deprivation (REMSD) affects several physiological processes including memory consolidation; however, its detailed mechanism(s) of action was unknown. REMS reduces, while REMSD elevates noradrenaline (NA) level in the brain; the latter induces several deficiencies and disorders, including changes in neuronal cytomorphology and apoptosis. Therefore, we proposed that REMS- and REMSD-associated modulation of NA level might affect neuronal plasticity and affect brain functions. Male albino rats were REMS deprived by flower-pot method for 6 days, and its effects were compared with home cage and large platform controls as well as post-REMSD recovered and REMS-deprived prazosin (α1-adrenoceptor antagonist)-treated rats. We observed that REMSD reduced CA1 and CA3 neuronal dendritic length, branching, arborization, and spine density, while length of active zone and expressions of pre- as well as post-synaptic proteins were increased as compared to controls; interestingly, prazosin prevented most of the effects in vivo. Studies on primary culture of neurons from chick embryo brain confirmed that NA at lower concentration(s) induced neuronal branching and arborization, while higher doses were destructive. The findings support our contention that REMSD adversely affects neuronal plasticity, branching, and synaptic scaffold, which explain the underlying cytoarchitectural basis of REMSD-associated patho-physio-behavioral changes. Consolidation of findings of this study along with that of our previous reports suggest that the neuronal disintegration could be due to either withdrawal of direct protective and proliferative role of low dose of NA or indirect effect of high dose of NA or both.
Collapse
Affiliation(s)
- Shatrunjai Giri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amit Ranjan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Awanish Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Megha Amar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
44
|
Abstract
Sleep is critical for diverse aspects of brain function in animals ranging from invertebrates to humans. Powerful genetic tools in the fruit fly Drosophila melanogaster have identified - at an unprecedented level of detail - genes and neural circuits that regulate sleep. This research has revealed that the functions and neural principles of sleep regulation are largely conserved from flies to mammals. Further, genetic approaches to studying sleep have uncovered mechanisms underlying the integration of sleep and many different biological processes, including circadian timekeeping, metabolism, social interactions, and aging. These findings show that in flies, as in mammals, sleep is not a single state, but instead consists of multiple physiological and behavioral states that change in response to the environment, and is shaped by life history. Here, we review advances in the study of sleep in Drosophila, discuss their implications for understanding the fundamental functions of sleep that are likely to be conserved among animal species, and identify important unanswered questions in the field.
Collapse
Affiliation(s)
- Orie T Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA.
| | - Alex C Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
45
|
Yamazaki R, Toda H, Libourel PA, Hayashi Y, Vogt KE, Sakurai T. Evolutionary Origin of Distinct NREM and REM Sleep. Front Psychol 2021; 11:567618. [PMID: 33381062 PMCID: PMC7767968 DOI: 10.3389/fpsyg.2020.567618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep is mandatory in most animals that have the nervous system and is universally observed in model organisms ranging from the nematodes, zebrafish, to mammals. However, it is unclear whether different sleep states fulfill common functions and are driven by shared mechanisms in these different animal species. Mammals and birds exhibit two obviously distinct states of sleep, i.e., non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep, but it is unknown why sleep should be so segregated. Studying sleep in other animal models might give us clues that help solve this puzzle. Recent studies suggest that REM sleep, or ancestral forms of REM sleep might be found in non-mammalian or -avian species such as reptiles. These observations suggest that REM sleep and NREM sleep evolved earlier than previously thought. In this review, we discuss the evolutionary origin of the distinct REM/NREM sleep states to gain insight into the mechanistic and functional reason for these two different types of sleep.
Collapse
Affiliation(s)
- Risa Yamazaki
- CNRS UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Hirofumi Toda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Paul-Antoine Libourel
- CNRS UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
46
|
Sasidharan S, Dhillon H. A pilot study of antidepressant therapy on sleep architecture in patients with depression in Congo. TAIWANESE JOURNAL OF PSYCHIATRY 2021. [DOI: 10.4103/tpsy.tpsy_17_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Blum ID, Keleş MF, Baz ES, Han E, Park K, Luu S, Issa H, Brown M, Ho MCW, Tabuchi M, Liu S, Wu MN. Astroglial Calcium Signaling Encodes Sleep Need in Drosophila. Curr Biol 2020; 31:150-162.e7. [PMID: 33186550 DOI: 10.1016/j.cub.2020.10.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Sleep is under homeostatic control, whereby increasing wakefulness generates sleep need and triggers sleep drive. However, the molecular and cellular pathways by which sleep need is encoded are poorly understood. In addition, the mechanisms underlying both how and when sleep need is transformed to sleep drive are unknown. Here, using ex vivo and in vivo imaging, we show in Drosophila that astroglial Ca2+ signaling increases with sleep need. We demonstrate that this signaling is dependent on a specific L-type Ca2+ channel and is necessary for homeostatic sleep rebound. Thermogenetically increasing Ca2+ in astrocytes induces persistent sleep behavior, and we exploit this phenotype to conduct a genetic screen for genes required for the homeostatic regulation of sleep. From this large-scale screen, we identify TyrRII, a monoaminergic receptor required in astrocytes for sleep homeostasis. TyrRII levels rise following sleep deprivation in a Ca2+-dependent manner, promoting further increases in astrocytic Ca2+ and resulting in a positive-feedback loop. Moreover, our findings suggest that astrocytes then transmit this sleep need to a sleep drive circuit by upregulating and releasing the interleukin-1 analog Spätzle, which then acts on Toll receptors on R5 neurons. These findings define astroglial Ca2+ signaling mechanisms encoding sleep need and reveal dynamic properties of the sleep homeostatic control system.
Collapse
Affiliation(s)
- Ian D Blum
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mehmet F Keleş
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - El-Sayed Baz
- VIB Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Emily Han
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kristen Park
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Skylar Luu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Habon Issa
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Matt Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Margaret C W Ho
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Masashi Tabuchi
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sha Liu
- VIB Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven 3000, Belgium.
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
48
|
Ajayi OM, Eilerts DF, Bailey ST, Vinauger C, Benoit JB. Do Mosquitoes Sleep? Trends Parasitol 2020; 36:888-897. [PMID: 32952061 PMCID: PMC8094063 DOI: 10.1016/j.pt.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 10/23/2022]
Abstract
Sleep is a phenomenon conserved across the animal kingdom, where studies on Drosophila melanogaster have revealed that sleep phenotypes and molecular underpinnings are similar to those in mammals. However, little is known about sleep in blood-feeding arthropods, which have a critical role in public health as disease vectors. Specifically, sleep studies in mosquitoes are lacking despite considerable focus on how circadian processes, which have a central role in regulating sleep/wake cycles, impact activity, feeding, and immunity. Here, we review observations which suggest that sleep-like states likely occur in mosquitoes and discuss the potential role of sleep in relation to mosquito biology and their ability to function as disease vectors.
Collapse
Affiliation(s)
- Oluwaseun M Ajayi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA. @mail.uc.edu
| | - Diane F Eilerts
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA. @uc.edu
| |
Collapse
|
49
|
Mascetti GG. Adaptation and survival: hypotheses about the neural mechanisms of unihemispheric sleep. Laterality 2020; 26:71-93. [PMID: 33054668 DOI: 10.1080/1357650x.2020.1828446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sleep and wakefulness are opposite brain and body conditions that accomplish different but complementary functions. However, these opposing conditions have been combined in some animals by the adoption of a sleep/wake strategy that allows them to survive, while maintaining both an interaction with the environment at the same time as enabling brain and body recovery. They sleep with half of the brain while keeping the other half awake: a state known as unihemispheric sleep (US). Sleep of cetaceans is exclusively in the form of US; therefore, they experience neither bihemispheric sleep (BS) nor REM sleep. US episodes have also been recorded in eared seals and some species of birds. In those animals, US episodes are intermingled with episodes of BS and REM sleep. Studies have reported both a lateralized release of some neurotransmitters and a drop of brain temperature during US. The aims of this article are to formulate hypotheses about the neural mechanisms of unihemispheric sleep(US) based on findings regarding the neural mechanisms of the sleep/wake cycle of mammals. The neural mechanisms of the sleep/wake cycle are largely preserved across species, allowing to hypothesize about those triggering and regulating US.
Collapse
|
50
|
Kanaya HJ, Park S, Kim JH, Kusumi J, Krenenou S, Sawatari E, Sato A, Lee J, Bang H, Kobayakawa Y, Lim C, Itoh TQ. A sleep-like state in Hydra unravels conserved sleep mechanisms during the evolutionary development of the central nervous system. SCIENCE ADVANCES 2020; 6:6/41/eabb9415. [PMID: 33028524 PMCID: PMC7541080 DOI: 10.1126/sciadv.abb9415] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/19/2020] [Indexed: 06/08/2023]
Abstract
Sleep behaviors are observed even in nematodes and arthropods, yet little is known about how sleep-regulatory mechanisms have emerged during evolution. Here, we report a sleep-like state in the cnidarian Hydra vulgaris with a primitive nervous organization. Hydra sleep was shaped by homeostasis and necessary for cell proliferation, but it lacked free-running circadian rhythms. Instead, we detected 4-hour rhythms that might be generated by ultradian oscillators underlying Hydra sleep. Microarray analysis in sleep-deprived Hydra revealed sleep-dependent expression of 212 genes, including cGMP-dependent protein kinase 1 (PRKG1) and ornithine aminotransferase. Sleep-promoting effects of melatonin, GABA, and PRKG1 were conserved in Hydra However, arousing dopamine unexpectedly induced Hydra sleep. Opposing effects of ornithine metabolism on sleep were also evident between Hydra and Drosophila, suggesting the evolutionary switch of their sleep-regulatory functions. Thus, sleep-relevant physiology and sleep-regulatory components may have already been acquired at molecular levels in a brain-less metazoan phylum and reprogrammed accordingly.
Collapse
Affiliation(s)
- Hiroyuki J Kanaya
- Department of Biology, School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Sungeon Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ji-Hyung Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junko Kusumi
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Etsuko Sawatari
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Aya Sato
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Jongbin Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyunwoo Bang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | | | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Taichi Q Itoh
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|