1
|
Hofacker A, Knop M, Krauss‐Etschmann S, Roeder T. Time-Restricted Feeding Promotes Longevity and Gut Health Without Fitness Trade-Offs. FASEB J 2025; 39:e70627. [PMID: 40364722 PMCID: PMC12076110 DOI: 10.1096/fj.202500875r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/22/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Time-restricted feeding (TRF), a dietary intervention involving daily fasting periods, has been associated with metabolic benefits; however, its long-term physiological impact remains unclear. Using Drosophila melanogaster as a model, we investigated the effects of a 16:8 TRF regimen on lifespan, reproductive output, gut health, and microbiota composition. TRF significantly extended lifespan, even when applied only during early adulthood. Notably, this longevity benefit occurred without compromising reproductive fitness, as measured by female fecundity in life's most crucial reproductive phase. TRF promoted gut homeostasis in aged flies by reducing intestinal stem cell proliferation and enhancing epithelial barrier integrity. Furthermore, TRF induced a shift in microbiota composition, increasing the prevalence of gram-negative bacterial taxa. These results show that even short-term TRF interventions at a young age can have long-term physiological benefits. Metabolic reprogramming or increased autophagy are the most likely mechanisms mediating the health-promoting effects of this type of nutritional intervention. TRF is an effective, non-invasive strategy for promoting healthy longevity without significant adverse effects on other aspects of life.
Collapse
Affiliation(s)
- Ann‐Cathrin Hofacker
- Zoology, Department of Molecular PhysiologyChristian Albrechts University KielKielGermany
| | - Mirjam Knop
- Zoology, Department of Molecular PhysiologyChristian Albrechts University KielKielGermany
| | - Susanne Krauss‐Etschmann
- Research Center Borstel, Priority Research Area Chronic Lung Diseases, Early Life Origins of CLDBorstelGermany
- Department of MedicineChristian Albrechts UniversityKielGermany
- German Center for Lung ResearchAirway Research Center NorthKiel/BorstelGermany
| | - Thomas Roeder
- Zoology, Department of Molecular PhysiologyChristian Albrechts University KielKielGermany
- German Center for Lung ResearchAirway Research Center NorthKiel/BorstelGermany
| |
Collapse
|
2
|
He Y, Liu M, Wang Y, Liu Y. Self-Regulated Assembly and Disassembly of Gold Nanoparticles for Low-Temperature Time Indication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403216. [PMID: 39171494 DOI: 10.1002/smll.202403216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/02/2024] [Indexed: 08/23/2024]
Abstract
The color-changing self-assembly and autonomous disassembly of colloidal gold nanoparticles (AuNPs) is reported by simply mixing negatively charged phosphine ligand-capped AuNPs with partially oxidized polyethylene glycol (PEG). The assembly of AuNPs is initiated by PEG adsorption, which disrupts the hydration layer of AuNPs, leading to depletion attraction and reduction of hydration repulsion among the AuNPs. The oxidative species in PEG subsequently oxidize and remove the charged ligands from the AuNP surface, resulting in a decrease and reversal of the negative surface charge. This causes the PEG to adsorb on AuNPs in a tighter and more direct manner, providing strong steric shielding to the AuNPs, thereby triggering the disassembly of the AuNP assemblies. The self-regulated assembly-disassembly process can be tuned widely by controlling chemical conditions of PEG, nanoparticle concentration, and the environmental conditions, suggesting potential applications as colorimetric time-temperature indicators for food and medicine storage conditions. As a proof of concept, it is demonstrated that the lifetime of the color-changing assembly-disassembly process can be extended from tens of minutes to weeks when subjected to a refrigerated environment, with tunability achievable through varying polymer conditions and storage atmospheres.
Collapse
Affiliation(s)
- Yi He
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| | - Mingqin Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| | - Yuan Wang
- School of Manufacture Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, P. R. China
| | - Yiding Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| |
Collapse
|
3
|
Cooper ID, Kyriakidou Y, Edwards K, Petagine L, Seyfried TN, Duraj T, Soto-Mota A, Scarborough A, Jacome SL, Brookler K, Borgognoni V, Novaes V, Al-Faour R, Elliott BT. Ketosis Suppression and Ageing (KetoSAge): The Effects of Suppressing Ketosis in Long Term Keto-Adapted Non-Athletic Females. Int J Mol Sci 2023; 24:15621. [PMID: 37958602 PMCID: PMC10650498 DOI: 10.3390/ijms242115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Most studies on ketosis have focused on short-term effects, male athletes, or weight loss. Hereby, we studied the effects of short-term ketosis suppression in healthy women on long-standing ketosis. Ten lean (BMI 20.5 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9) maintaining nutritional ketosis (NK) for > 1 year (3.9 years ± 2.3) underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Adherence to each phase was confirmed with daily capillary D-beta-hydroxybutyrate (BHB) tests (P1 = 1.9 ± 0.7; P2 = 0.1 ± 0.1; and P3 = 1.9 ± 0.6 pmol/L). Ageing biomarkers and anthropometrics were evaluated at the end of each phase. Ketosis suppression significantly increased: insulin, 1.78-fold from 33.60 (± 8.63) to 59.80 (± 14.69) pmol/L (p = 0.0002); IGF1, 1.83-fold from 149.30 (± 32.96) to 273.40 (± 85.66) µg/L (p = 0.0045); glucose, 1.17-fold from 78.6 (± 9.5) to 92.2 (± 10.6) mg/dL (p = 0.0088); respiratory quotient (RQ), 1.09-fold 0.66 (± 0.05) to 0.72 (± 0.06; p = 0.0427); and PAI-1, 13.34 (± 6.85) to 16.69 (± 6.26) ng/mL (p = 0.0428). VEGF, EGF, and monocyte chemotactic protein also significantly increased, indicating a pro-inflammatory shift. Sustained ketosis showed no adverse health effects, and may mitigate hyperinsulinemia without impairing metabolic flexibility in metabolically healthy women.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Tomas Duraj
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- Tecnologico de Monterrey, School of Medicine, Mexico City 14380, Mexico
| | - Andrew Scarborough
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Sandra L. Jacome
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Valentina Borgognoni
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Vanusa Novaes
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Rima Al-Faour
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| |
Collapse
|
4
|
Cooper ID, Kyriakidou Y, Petagine L, Edwards K, Elliott BT. Bio-Hacking Better Health-Leveraging Metabolic Biochemistry to Maximise Healthspan. Antioxidants (Basel) 2023; 12:1749. [PMID: 37760052 PMCID: PMC10525476 DOI: 10.3390/antiox12091749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In the pursuit of longevity and healthspan, we are challenged with first overcoming chronic diseases of ageing: cardiovascular disease, hypertension, cancer, dementias, type 2 diabetes mellitus. These are hyperinsulinaemia diseases presented in different tissue types. Hyperinsulinaemia reduces endogenous antioxidants, via increased consumption and reduced synthesis. Hyperinsulinaemia enforces glucose fuelling, consuming 4 NAD+ to produce 2 acetyl moieties; beta-oxidation, ketolysis and acetoacetate consume 2, 1 and 0, respectively. This decreases sirtuin, PARPs and oxidative management capacity, leaving reactive oxygen species to diffuse to the cytosol, upregulating aerobic glycolysis, NF-kB and cell division signalling. Also, oxidising cardiolipin, reducing oxidative phosphorylation (OXPHOS) and apoptosis ability; driving a tumourigenic phenotype. Over time, increasing senescent/pathological cell populations occurs, increasing morbidity and mortality. Beta-hydroxybutyrate, an antioxidant, metabolite and signalling molecule, increases synthesis of antioxidants via preserving NAD+ availability and enhancing OXPHOS capacity. Fasting and ketogenic diets increase ketogenesis concurrently decreasing insulin secretion and demand; hyperinsulinaemia inhibits ketogenesis. Lifestyles that maintain lower insulin levels decrease antioxidant catabolism, additionally increasing their synthesis, improving oxidative stress management and mitochondrial function and, subsequently, producing healthier cells. This supports tissue and organ health, leading to a better healthspan, the first challenge that must be overcome in the pursuit of youthful longevity.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (K.E.); (B.T.E.)
| | | | | | | | | |
Collapse
|
5
|
Shibamoto A, Namisaki T, Suzuki J, Kubo T, Iwai S, Tomooka F, Takeda S, Fujimoto Y, Enomoto M, Murata K, Inoue T, Tsuji Y, Fujinaga Y, Nishimura N, Kitagawa K, Takaya H, Kaji K, Kawaratani H, Akahane T, Mitoro A, Yoshiji H. Hemoglobin levels as a surrogate marker of sarcopenia in patients with liver cirrhosis. Hepatol Res 2023; 53:713-722. [PMID: 37050844 DOI: 10.1111/hepr.13904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023]
Abstract
AIM This study aimed to elucidate a surrogate marker of sarcopenia in patients with liver cirrhosis (LC). METHODS A total of 424 patients were assessed for handgrip strength (HGS) and skeletal muscle index (SMI). They were divided into two groups: sarcopenia (Group S; n = 80) and nonsarcopenia (Group NS; n = 344). RESULTS Group S showed significantly lower HGS, SMI, and hemoglobin (Hb) levels in males and female patients, and lower serum levels of albumin, cholinesterase, and zinc (all p < 0.001), along with significantly higher serum levels of procollagen type III-N-peptide and type IV collagen 7S-domain (p < 0.001 and p < 0.0017) than Group NS. The risk factors for sarcopenia were age 65 years or older, female gender, Child-Pugh class C, and Hb levels <10.9 g/dL in women and <12.4 g/dL in men (p = 0.012, p < 0.001, p = 0.031, and p < 0.001, respectively). Significant positive correlations were found between the Hb level and the SMI and HGS (r = 0.4, p < 0.001 and r = 0.4, p < 0.001, respectively). Sarcopenia, low HGS, and low SMI were significantly associated with overall survival in patients with LC (all p < 0.001). The predictive accuracy of Hb levels for predicting sarcopenia was significantly higher than for predicting SMI and tended to be higher than for predicting HGS (p = 0.014 and p = 0.059, respectively). CONCLUSION Hemoglobin levels are predictive of sarcopenia in patients with LC and warrants further investigation as a biomarker for sarcopenia in LC.
Collapse
Affiliation(s)
- Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Junya Suzuki
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Takahiro Kubo
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Satoshi Iwai
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Soichi Takeda
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Takashi Inoue
- Department of Evidence-Based Medicine, Nara Medical University, Kashihara, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Akira Mitoro
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
6
|
Yu Y, Song X, Wang X, Zheng L, Ma G, Liu W, Su H, Liu X, Liu T, Cao L, Wang D. Oxidative stress impairs the Nur77-Sirt1 axis resulting in a decline in organism homeostasis during aging. Aging Cell 2023; 22:e13812. [PMID: 36883265 DOI: 10.1111/acel.13812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023] Open
Abstract
Sirt1 is an NAD+ -dependent deacetylase that protects against premature aging and cell senescence. Aging accompanied by oxidative stress leads to a decrease in Sirt1 levels and activity, but the regulatory mechanism that connects these events remains unclear. Here, we reported that Nur77, which shares similar biological pathways with Sirt1, was also decreased with age in multiple organs. Our in vivo and in vitro results revealed that Nur77 and Sirt1 decreased during aging and oxidative stress-induced cell senescence. Deletion of Nr4a1 shortened the lifespan and accelerated the aging process in multiple mouse tissues. Overexpression of Nr4a1 protected the Sirt1 protein from proteasomal degradation through negative transcriptional regulation of the E3 ligase MDM2. Our results showed that Nur77 deficiency markedly aggravated aging-related nephropathy and elucidated a key role for Nur77 in the stabilization of Sirt1 homeostasis during renal aging. We proposed a model wherein a reduction of Nur77 in response to oxidative stress promotes Sirt1 protein degradation through MDM2, which triggers cell senescence. This creates additional oxidative stress and provides positive feedback for premature aging by further decreasing Nur77 expression. Our findings reveal the mechanism by which oxidative stress reduces Sirt1 expression during aging and offers an attractive therapeutic strategy for targeting aging and homeostasis in organisms.
Collapse
Affiliation(s)
- Yang Yu
- Health Sciences Institute, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaoyu Song
- Health Sciences Institute, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaoxun Wang
- Health Sciences Institute, China Medical University, Shenyang, China.,Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Lixia Zheng
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Guojing Ma
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weiwei Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Han Su
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Xiyan Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Tingting Liu
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liu Cao
- Health Sciences Institute, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Difei Wang
- Department of Gerontology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Feng M, Gao B, Garcia LR, Sun Q. Microbiota-derived metabolites in regulating the development and physiology of Caenorhabditis elegans. Front Microbiol 2023; 14:1035582. [PMID: 36925470 PMCID: PMC10011103 DOI: 10.3389/fmicb.2023.1035582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Microbiota consist of microorganisms that provide essential health benefits and contribute to the animal's physiological homeostasis. Microbiota-derived metabolites are crucial mediators in regulating host development, system homeostasis, and overall fitness. In this review, by focusing on the animal model Caenorhabditis elegans, we summarize key microbial metabolites and their molecular mechanisms that affect animal development. We also provide, from a bacterial perspective, an overview of host-microbiota interaction networks used for maintaining host physiological homeostasis. Moreover, we discuss applicable methodologies for profiling new bacterial metabolites that modulate host developmental signaling pathways. Microbiota-derived metabolites have the potential to be diagnostic biomarkers for diseases, as well as promising targets for engineering therapeutic interventions against animal developmental or health-related defects.
Collapse
Affiliation(s)
- Min Feng
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - L Rene Garcia
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Imrie H, Viswambharan H, Haywood NJ, Bridge KI, Yuldasheva NY, Galloway S, Simmons KJ, Cubbon RM, Sukumar P, Watt NT, Lichtenstein L, Wyatt JI, Kudo H, Goldin R, Rode B, Wheatcroft SB, Kearney MT. Cixutumumab reveals a critical role for IGF-1 in adipose and hepatic tissue remodelling during the development of diet-induced obesity. Adipocyte 2022; 11:366-378. [PMID: 35734881 PMCID: PMC9235901 DOI: 10.1080/21623945.2022.2089394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
High fat diet (HFD)-induced obesity leads to perturbation in the storage function of white adipose tissue (WAT) resulting in deposition of lipids in tissues ill-equipped to deal with this challenge. The role of insulin like growth factor-1 (IGF-1) in the systemic and organ-specific responses to HFD is unclear. Using cixutumumab, a monoclonal antibody that internalizes and degrades cell surface IGF-1 receptors (IGF-1 R), leaving insulin receptor expression unchanged we aimed to establish the role of IGF-1 R in the response to a HFD. Mice treated with cixutumumab fed standard chow developed mild hyperinsulinemia with no change in WAT. When challenged by HFD mice treated with cixutumumab had reduced weight gain, reduced WAT expansion, and reduced hepatic lipid vacuole formation. In HFD-fed mice, cixutumumab led to reduced levels of genes encoding proteins important in fatty acid metabolism in WAT and liver. Cixutumumab protected against blunting of insulin-stimulated phosphorylation of Akt in liver of HFD fed mice. These data reveal an important role for IGF-1 R in the WAT and hepatic response to short-term nutrient excess. IGF-1 R inhibition during HFD leads to a lipodystrophic phenotype with a failure of WAT lipid storage and protection from HFD-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Helen Imrie
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine I Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Nadira Y Yuldasheva
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Stacey Galloway
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katie J Simmons
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Piruthivi Sukumar
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Nicole T Watt
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Laeticia Lichtenstein
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Judy I Wyatt
- Department of Pathology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Hiromi Kudo
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Robert Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Baptiste Rode
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost. Nat Commun 2022; 13:6339. [PMID: 36284093 PMCID: PMC9596710 DOI: 10.1038/s41467-022-33850-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
Twenty-nine years following the breakthrough discovery that a single-gene mutation of daf-2 doubles Caenorhabditis elegans lifespan, it remains unclear where this insulin/IGF-1 receptor gene is expressed and where it acts to regulate ageing. Using knock-in fluorescent reporters, we determined that daf-2 and its downstream transcription factor daf-16 are expressed ubiquitously. Using tissue-specific targeted protein degradation, we determined that intracellular DAF-2-to-DAF-16 signaling in the intestine plays a major role in lifespan regulation, while that in the hypodermis, neurons, and germline plays a minor role. Notably, intestine-specific loss of DAF-2 activates DAF-16 in and outside the intestine, causes almost no adverse effects on development and reproduction, and extends lifespan by 94% in a way that partly requires non-intestinal DAF-16. Consistent with intestine supplying nutrients to the entire body, evidence from this and other studies suggests that altered metabolism, particularly down-regulation of protein and RNA synthesis, mediates longevity by reduction of insulin/IGF-1 signaling.
Collapse
|
10
|
Murata K, Namisaki T, Fujimoto Y, Takeda S, Enomoto M, Takaya H, Tsuji Y, Shibamoto A, Suzuki J, Kubo T, Iwai S, Tomooka F, Tanaka M, Kaneko M, Asada S, Koizumi A, Yorioka N, Matsuda T, Ozutsumi T, Ishida K, Ogawa H, Takagi H, Fujinaga Y, Furukawa M, Sawada Y, Nishimura N, Kitagawa K, Sato S, Kaji K, Inoue T, Asada K, Kawaratani H, Moriya K, Akahane T, Mitoro A, Yoshiji H. Clinical Significance of Serum Zinc Levels on the Development of Sarcopenia in Cirrhotic Patients. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:184-193. [PMID: 35399181 PMCID: PMC8962814 DOI: 10.21873/cdp.10093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Sarcopenia increases the mortality in patients with cirrhosis. Approximately 60% of zinc is accumulated in skeletal muscle. We aimed to determine the role of subclinical zinc deficiency on sarcopenia development in patients with cirrhosis. PATIENTS AND METHODS We enrolled 151 patients with cirrhosis and divided them into the group with normal serum zinc levels (Group N: 80-130 μg/dl; n=38) and group with subclinical zinc deficiency (Group D: <80 μg/dl; n=113). The risk factors for sarcopenia were then investigated. RESULTS Group D had more sarcopenia cases than Group N (31.0% vs. 13.2%). In group D, HGS exhibited a weakly positive but significant correlation with serum zinc levels (R=0.287, p=0.00212), serum zinc levels negatively correlated with both ammonia and myostatin levels (R=-0.254, p=0.0078; R=-0.33, p<0.01), and low zinc levels were independently associated with sarcopenia development. CONCLUSION Patients with cirrhosis showing subclinical zinc deficiency have a significantly higher risk of developing sarcopenia.
Collapse
Affiliation(s)
- Koji Murata
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Soichi Takeda
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Masahide Enomoto
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Yuki Tsuji
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Akihiko Shibamoto
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Junya Suzuki
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takahiro Kubo
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Satoshi Iwai
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Fumimasa Tomooka
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Misako Tanaka
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Miki Kaneko
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Shohei Asada
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Aritoshi Koizumi
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takuya Matsuda
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takahiro Ozutsumi
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Koji Ishida
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Hiroyuki Ogawa
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Hirotetsu Takagi
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Masanori Furukawa
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Yasuhiko Sawada
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Koh Kitagawa
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Shinya Sato
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takashi Inoue
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Kashihara, Japan
| | - Kiyoshi Asada
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Kashihara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Kei Moriya
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Takemi Akahane
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Akira Mitoro
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology of Nara Medical University, Kashihara, Japan
| |
Collapse
|
11
|
Warne RW, Dallas J. Microbiome mediation of animal life histories
via
metabolites and insulin‐like signalling. Biol Rev Camb Philos Soc 2022; 97:1118-1130. [DOI: 10.1111/brv.12833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Robin W. Warne
- School of Biological Sciences Southern Illinois University 1125 Lincoln Dr. Carbondale IL 62901‐6501 U.S.A
| | - Jason Dallas
- School of Biological Sciences Southern Illinois University 1125 Lincoln Dr. Carbondale IL 62901‐6501 U.S.A
| |
Collapse
|
12
|
Simões LMFR, Tavares NAR, Ferreira-Pêgo C. Plant-Based Diet and IGF-1 Modulation on HER2-Positive Breast Cancer: A Lifestyle Medicine Nutrition Approach in Oncology. Am J Lifestyle Med 2022; 16:36-45. [PMID: 35185425 PMCID: PMC8848116 DOI: 10.1177/15598276211023048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Breast cancer is the second most common type of cancer in women worldwide, where nutritional intervention should be part of a multidisciplinary lifestyle approach in oncology, promoting therapeutic success. Insulin-like growth factor 1 (IGF-1), along with estrogen, can promote the development of neoplastic cells in breast tissue. Cancers that develop under IGF-1 stimulation are often resistant to therapy. This case report describes a 47-year-old woman, body mass index 27.4 kg/m2, with HER2-positive breast cancer, as well as elevated blood glucose, total cholesterol, and low-density lipoprotein cholesterol. Soon after her breast cancer diagnosis, she transitioned from a Western pattern diet (WPD) to a predominantly whole-food, plant-based diet (PWFPBD) for 1035 days, followed by 232 days of PWFPBD plus night fasting for 16 hours per day. IGF-1 decreased 22.38%, glycemia and total cholesterol decreased by -55.06% and -36.00% at the end of the first intervention and went up by 6.25%, and 3.87%, respectively, at the end of the second intervention. A PWFPBD, with or without 16-hour overnight fasting, seems to modulate plasma levels of IGF-1 on a 47-year-old woman diagnosed with breast cancer, type HER2-positive. Future research, should explore the physiologic and pathophysiological mechanisms and clarify whether this dietary strategy, may be clinically useful in preventing HER2-positive breast cancer.
Collapse
Affiliation(s)
- Laurinda M. F. R. Simões
- School of Sciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Nelson A. R. Tavares
- CBIOS-University Lusófona’s Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | - Cíntia Ferreira-Pêgo
- CBIOS-University Lusófona’s Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| |
Collapse
|
13
|
Probiotics Interactions and the Modulation of Major Signalling Pathways in Host Model Organism Caenorhabditis elegans. Indian J Microbiol 2021; 61:404-416. [PMID: 34744196 DOI: 10.1007/s12088-021-00961-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
Microorganisms live in the human digestive system and the gut microbiome constitutes part of our prime determining component for healthy aging and wellness. Gut microbiota has broad influences on its host, beginning from the digestion of food and nutrients absorption to protective roles against invading pathogens and host immune system regulation. Dysbiosis of the gut microbial composition has been linked to numerous diseases and there is a need to have a better grasp on what makes a 'good' gut microbiome. Caenorhabditis elegans (C. elegans) model organism is considered as a well-suited in-vivo model system and, is at the frontline of probiotic research because of its well-defined characteristics and prolific nature. Most importantly, C. elegans feeds on bacteria, which speeds up manipulations and investigations in probiotics research tremendously. With its unique salient features of short lifespan, and ease of propagation, different unknown probiotics biological roles can be measured at an organism level with precision in the form of worm's stress responses, survivability, and lifespan. In this review, new insights on the different mechanisms underlying the establishment of probiotics regulations of conserved signalling pathways such as p38 MAPK/SKN-1, DAF-2/DAF-16, and JNK-1/DAF-16 is highlighted based on information obtained from C. elegans studies. Along with the current state of knowledge and the uniqueness of C. elegans as a model organism, explorations of its future contribution and scope in synthetic biology and probiotics engineering strains are also addressed. This is expected to strengthen our understanding of probiotics roles and to facilitate novel discovery and applications, for specific therapeutics against age-related disorders and various pathophysiological conditions.
Collapse
|
14
|
Sato S, Namisaki T, Murata K, Fujimoto Y, Takeda S, Enomoto M, Shibamoto A, Ishida K, Ogawa H, Takagi H, Tsuji Y, Kaya D, Fujinaga Y, Furukawa M, Inoue T, Sawada Y, Nishimura N, Kitagawa K, Ozutsumi T, Takaya H, Kaji K, Shimozato N, Kawaratani H, Moriya K, Akahane T, Mitoro A, Yoshiji H. The association between sarcopenia and endotoxin in patients with alcoholic cirrhosis. Medicine (Baltimore) 2021; 100:e27212. [PMID: 34516526 PMCID: PMC8428753 DOI: 10.1097/md.0000000000027212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/10/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
We aimed to prospectively identify the risk factors of sarcopenia in patients with cirrhosis.Patients (n = 193) included in a discovery cohort (January 2011 and December 2014) were categorized into alcoholic (A1; n = 55) and non-alcoholic cirrhosis (NA; n = 138) groups, and those (n = 235) in a validation cohort (January 2015 to December 2019) were categorized into alcoholic (n = 92), non-alcoholic steatohepatitis-related (n = 27), and hepatitis C virus-related cirrhosis groups (n = 116). Skeletal muscle mass index (SMI) was determined using computed tomography (SMI-CT) and bioelectrical impedance analysis (SMI-BIA). Endotoxin activity (EA) was measured with an EA assay.SMI-CT correlated with grip strength in all the groups but significantly correlated with SMI-BIA of the men in group A1 (R = 0.64, P < .0001) and both sexes in group NA (male: R = 0.44, P = .0001; female: R = 0.35, P = .003). SMI-CT inversely correlated with the EA levels of the men in group A1 (R = -0.67, P < .0001) and myostatin levels in group NA (R = -0.53, P < .0001). Lower extremity SMI had a strong negative correlation with the EA levels of the men in group A1 (R = -0.58, P < .001), whereas upper extremity SMI showed an inverse trend with EA levels (R = -0.28, P = .08). SMI-CT also inversely correlated with the EA levels in groups A2 (R = -0.52, P = .003) and N (R = -0.67, P < .0001) and myostatin levels in group C (R = -0.65, P < .0001). Moreover, SMI-CT correlated with nutritional factors, including cholinesterase (R = 0.50, P = .005), zinc (R = 0.45, P = .01), branched amino acid-to-tyrosine ratio (R = 0.39, P = .02), and triglyceride (R = 0.33, P = .03) in group N.Sarcopenia risk factors differ among cirrhosis etiologies. Alcohol-induced, intestine-mediated peripheral endotoxemia could participate in sarcopenia development in patients with alcoholic cirrhosis.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Koji Murata
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Yuki Fujimoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Soichi Takeda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Enomoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Akihiko Shibamoto
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Koji Ishida
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroyuki Ogawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hirotetsu Takagi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Daisuke Kaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Masanori Furukawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Inoue
- Institute for Clinical and Translational Science, Nara Medical University Hospital, Shijo-cho, Kashihara, Nara, Japan
| | - Yasuhiko Sawada
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Takahiro Ozutsumi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Naotaka Shimozato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Akira Mitoro
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
15
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2021; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
16
|
Zhang AM, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab J 2021; 45:285-311. [PMID: 33775061 PMCID: PMC8164941 DOI: 10.4093/dmj.2020.0250] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The relative insufficiency of insulin secretion and/or insulin action causes diabetes. However, obesity and type 2 diabetes mellitus can be associated with an absolute increase in circulating insulin, a state known as hyperinsulinemia. Studies are beginning to elucidate the cause-effect relationships between hyperinsulinemia and numerous consequences of metabolic dysfunctions. Here, we review recent evidence demonstrating that hyperinsulinemia may play a role in inflammation, aging and development of cancers. In this review, we will focus on the consequences and mechanisms of excess insulin production and action, placing recent findings that have challenged dogma in the context of the existing body of literature. Where relevant, we elaborate on the role of specific signal transduction components in the actions of insulin and consequences of chronic hyperinsulinemia. By discussing the involvement of hyperinsulinemia in various metabolic and other chronic diseases, we may identify more effective therapeutics or lifestyle interventions for preventing or treating obesity, diabetes and cancer. We also seek to identify pertinent questions that are ripe for future investigation.
Collapse
Affiliation(s)
- Anni M.Y. Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Janel L. Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Redox regulation of the insulin signalling pathway. Redox Biol 2021; 42:101964. [PMID: 33893069 PMCID: PMC8113030 DOI: 10.1016/j.redox.2021.101964] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
The peptide hormone insulin is a key regulator of energy metabolism, proliferation and survival. Binding of insulin to its receptor activates the PI3K/AKT signalling pathway, which mediates fundamental cellular responses. Oxidants, in particular H2O2, have been recognised as insulin-mimetics. Treatment of cells with insulin leads to increased intracellular H2O2 levels affecting the activity of downstream signalling components, thereby amplifying insulin-mediated signal transduction. Specific molecular targets of insulin-stimulated H2O2 include phosphatases and kinases, whose activity can be altered via redox modifications of critical cysteine residues. Over the past decades, several of these redox-sensitive cysteines have been identified and their impact on insulin signalling evaluated. The aim of this review is to summarise the current knowledge on the redox regulation of the insulin signalling pathway.
Collapse
|
18
|
Lovisari F, Roncon P, Soukoupova M, Paolone G, Labasque M, Ingusci S, Falcicchia C, Marino P, Johnson M, Rossetti T, Petretto E, Leclercq K, Kaminski RM, Moyon B, Webster Z, Simonato M, Zucchini S. Implication of sestrin3 in epilepsy and its comorbidities. Brain Commun 2021; 3:fcaa130. [PMID: 33758823 PMCID: PMC7966953 DOI: 10.1093/braincomms/fcaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a serious neurological disorder affecting about 1% of the population worldwide. Epilepsy may arise as a result of acquired brain injury, or as a consequence of genetic predisposition. To date, genome-wide association studies and exome sequencing approaches have provided limited insights into the mechanisms of acquired brain injury. We have previously reported a pro-epileptic gene network, which is conserved across species, encoding inflammatory processes and positively regulated by sestrin3 (SESN3). In this study, we investigated the phenotype of SESN3 knock-out rats in terms of susceptibility to seizures and observed a significant delay in status epilepticus onset in SESN3 knock-out compared to control rats. This finding confirms previous in vitro and in vivo evidence indicating that SESN3 may favour occurrence and/or severity of seizures. We also analysed the phenotype of SESN3 knock-out rats for common comorbidities of epilepsy, i.e., anxiety, depression and cognitive impairment. SESN3 knock-out rats proved less anxious compared to control rats in a selection of behavioural tests. Taken together, the present results suggest that SESN3 may regulate mechanisms involved in the pathogenesis of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Francesca Lovisari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Italy
| | - Paolo Roncon
- Division of Neuroscience, School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukoupova
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Italy
| | - Giovanna Paolone
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Italy
| | - Marilyne Labasque
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Italy
| | - Selene Ingusci
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Italy
| | - Chiara Falcicchia
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Italy
| | - Pietro Marino
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Italy
| | | | | | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore.,MRC London Institute of Medical Sciences (LMC), Imperial College London, UK
| | - Karine Leclercq
- Neuroscience TA, UCB Biopharma SPRL, Braine l'Alleud, Belgium
| | | | - Ben Moyon
- Es Cell and Transgenics, Medical Research Council, Imperial College London, UK
| | - Zoe Webster
- Es Cell and Transgenics, Medical Research Council, Imperial College London, UK
| | - Michele Simonato
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Italy.,Division of Neuroscience, School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Zucchini
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Italy
| |
Collapse
|
19
|
Mortz M, Levivier A, Lartillot N, Dufresne F, Blier PU. Long-Lived Species of Bivalves Exhibit Low MT-DNA Substitution Rates. Front Mol Biosci 2021; 8:626042. [PMID: 33791336 PMCID: PMC8005583 DOI: 10.3389/fmolb.2021.626042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023] Open
Abstract
Bivalves represent valuable taxonomic group for aging studies given their wide variation in longevity (from 1–2 to >500 years). It is well known that aging is associated to the maintenance of Reactive Oxygen Species homeostasis and that mitochondria phenotype and genotype dysfunctions accumulation is a hallmark of these processes. Previous studies have shown that mitochondrial DNA mutation rates are linked to lifespan in vertebrate species, but no study has explored this in invertebrates. To this end, we performed a Bayesian Phylogenetic Covariance model of evolution analysis using 12 mitochondrial protein-coding genes of 76 bivalve species. Three life history traits (maximum longevity, generation time and mean temperature tolerance) were tested against 1) synonymous substitution rates (dS), 2) conservative amino acid replacement rates (Kc) and 3) ratios of radical over conservative amino acid replacement rates (Kr/Kc). Our results confirm the already known correlation between longevity and generation time and show, for the first time in an invertebrate class, a significant negative correlation between dS and longevity. This correlation was not as strong when generation time and mean temperature tolerance variations were also considered in our model (marginal correlation), suggesting a confounding effect of these traits on the relationship between longevity and mtDNA substitution rate. By confirming the negative correlation between dS and longevity previously documented in birds and mammals, our results provide support for a general pattern in substitution rates.
Collapse
Affiliation(s)
- Mathieu Mortz
- Institut Des Sciences De La Mer De Rimouski, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Aurore Levivier
- Institut Des Sciences De La Mer De Rimouski, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Nicolas Lartillot
- Laboratoire De Biométrie et Biologie Evolutive, UMR CNRS, Université Lyon 1, Villeurbanne, France
| | - France Dufresne
- Laboratoire D'écologie Moléculaire, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada.,Laboratoire De Physiologie Intégrative Et Evolutive, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Pierre U Blier
- Laboratoire De Physiologie Intégrative Et Evolutive, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada
| |
Collapse
|
20
|
Negroni MA, Segers FHID, Vogelweith F, Foitzik S. Immune challenge reduces gut microbial diversity and triggers fertility-dependent gene expression changes in a social insect. BMC Genomics 2020; 21:816. [PMID: 33225893 PMCID: PMC7682046 DOI: 10.1186/s12864-020-07191-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
Background The gut microbiome can influence life history traits associated with host fitness such as fecundity and longevity. In most organisms, these two life history traits are traded-off, while they are positively linked in social insects. In ants, highly fecund queens can live for decades, while their non-reproducing workers exhibit much shorter lifespans. Yet, when fertility is induced in workers by death or removal of the queen, worker lifespan can increase. It is unclear how this positive link between fecundity and longevity is achieved and what role the gut microbiome and the immune system play in this. To gain insights into the molecular regulation of lifespan in social insects, we investigated fat body gene expression and gut microbiome composition in workers of the ant Temnothorax rugatulus in response to an experimental induction of fertility and an immune challenge. Results Fertile workers upregulated several molecular repair mechanisms, which could explain their extended lifespan. The immune challenge altered the expression of several thousand genes in the fat body, including many immune genes, and, interestingly, this transcriptomic response depended on worker fertility. For example, only fertile, immune-challenged workers upregulated genes involved in the synthesis of alpha-ketoglutarate, an immune system regulator, which extends the lifespan in Caenorhabditis elegans by down-regulating the TOR pathway and reducing oxidant production. Additionally, we observed a dramatic loss in bacterial diversity in the guts of the ants within a day of the immune challenge. Yet, bacterial density did not change, so that the gut microbiomes of many immune challenged workers consisted of only a single or a few bacterial strains. Moreover, the expression of immune genes was linked to the gut microbiome composition, suggesting that the ant host can regulate the microbiome in its gut. Conclusions Immune system flare-ups can have negative consequence on gut microbiome diversity, pointing to a previously underrated cost of immunity. Moreover, our results provide important insights into shifts in the molecular regulation of fertility and longevity associated with insect sociality.
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Francisca H I D Segers
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,Department for Applied Bioinformatics, Inst. of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Fanny Vogelweith
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,M2i Biocontrol, Parnac, France
| | - Susanne Foitzik
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| |
Collapse
|
21
|
Pinto C, Ninfole E, Gaggiano L, Benedetti A, Marzioni M, Maroni L. Aging and the Biological Response to Liver Injury. Semin Liver Dis 2020; 40:225-232. [PMID: 31887774 DOI: 10.1055/s-0039-3402033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interest in understanding the aging process has recently risen in the scientific community. Aging, commonly defined as the functional decline in the function of organs and tissues, is indeed the major risk factor for the development of many chronic diseases, such as cardiovascular diseases, pathologies of nervous system, or cancer. To date, the influence of aging in the pathophysiology of liver and biliary diseases is not fully understood. Although liver cells have a high regenerative capacity, hepatocytes and cholangiocytes undergo extensive molecular changes in response to aging. Following time-dependent damage induced by aging, liver cells initially activate compensatory mechanisms that, if hyperstimulated, may lead to the decline of regenerative capacity and the development of pathologies. A deeper understanding of molecular aging has undoubtedly the potential to improve the clinical management of patients, possibly unveiling new pathways for selective drug treatment.
Collapse
Affiliation(s)
- Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Elisabetta Ninfole
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Gaggiano
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
22
|
von Frieling J, Roeder T. Factors that affect the translation of dietary restriction into a longer life. IUBMB Life 2019; 72:814-824. [PMID: 31889425 DOI: 10.1002/iub.2224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Nutritional interventions, such as dietary or calorie restriction, are known to have a variety of health-promoting effects. The most impressive are the direct effects on life expectancy, which have been reproduced in many animal models. A variety of dietary restriction protocols have been described, which differ either in their macronutrient composition or in the time window for consumption. Mechanistically, the effects of dietary restriction are mediated mainly through signaling pathways that have central roles in the maintenance of cellular energy balance. Among these, target of rapamycin and insulin signaling appear to be the most important. Such nutritional interventions can have their effects in two different ways: either by direct interaction with the metabolism of the host organism, or by modulating the composition and performance of its endogenous microbiome. Various dietary restriction regimens have been identified that significantly alter the microbiome and thus profoundly modulate host metabolism. This review aims to discuss the mechanisms by which dietary restriction can affect life expectancy, and in particular the role of the microbiome.
Collapse
Affiliation(s)
- Jakob von Frieling
- Department of Zoology, Molecular Physiology, Kiel University, Kiel, Germany
| | - Thomas Roeder
- Department of Zoology, Molecular Physiology, Kiel University, Kiel, Germany.,DZL, German Center for Lung Research, ARCN, Kiel, Germany
| |
Collapse
|
23
|
Song J, Chen M, Li Z, Zhang J, Hu H, Tong X, Dai F. Astragalus Polysaccharide Extends Lifespan via Mitigating Endoplasmic Reticulum Stress in the Silkworm, Bombyx mori. Aging Dis 2019; 10:1187-1198. [PMID: 31788331 PMCID: PMC6844597 DOI: 10.14336/ad.2019.0515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
The traditional Chinese medicine Astragalus polysaccharide (APS) has been widely used to improve glucose homeostasis and immunoregulator properties. In recent years, it has also been shown to extend the lifespan of Caenorhabditis elegans; however, the underlying molecular mechanisms are not fully understood. Here, our study shows that APS could significantly extend adult stage, mean, and maximum lifespan of the silkworm, Bombyx mori and increase body weight without affecting food intake and fecundity. Meanwhile, the activities of glutathione S-transferase and superoxide dismutase are significantly enhanced, and the reaction oxygen species content is reduced concomitantly. Moreover, the activity of lysozyme is increased dramatically. In addition, APS rescues the shortened lifespan by Bacillus thuringiensis infection in silkworm. Furthermore, the transcription of the crucial genes involved in endoplasmic reticulum stress is upregulated upon the endoplasmic reticulum stress stimulation. APS also significantly ameliorates endoplasmic reticulum stress in silkworm cell line and in vivo. Together, the results of this study indicate that APS can prolong the silkworm lifespan by mitigating endoplasmic reticulum stress. This study improves our understanding of the molecular mechanism of APS-induced lifespan extension and highlights the importance of the silkworm as an experimental animal for evaluating the effects and revealing the mechanisms in lifespan extension of traditional Chinese medicine.
Collapse
Affiliation(s)
| | | | - Zhiquan Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Jianfei Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400716, China
| |
Collapse
|
24
|
Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in Caenorhabditis elegans. Front Physiol 2019; 10:1067. [PMID: 31551797 PMCID: PMC6736625 DOI: 10.3389/fphys.2019.01067] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenins are a family of yolk proteins that are by far the most abundant among oviparous animals. In the model nematode Caenorhabditis elegans, the 6 vitellogenins are among the most highly expressed genes in the adult hermaphrodite intestine, which produces copious yolk to provision eggs. In this article we review what is known about the vitellogenin genes and proteins in C. elegans, in comparison with vitellogenins in other taxa. We argue that the primary purpose of abundant vitellogenesis in C. elegans is to support post-embryonic development and fertility, rather than embryogenesis, especially in harsh environments. Increasing vitellogenin provisioning underlies several post-embryonic phenotypic alterations associated with advancing maternal age, demonstrating that vitellogenins can act as an intergenerational signal mediating the influence of parental physiology on progeny. We also review what is known about vitellogenin regulation - how tissue-, sex- and stage-specificity of expression is achieved, how vitellogenins are regulated by major signaling pathways, how vitellogenin expression is affected by extra-intestinal tissues and how environmental experience affects vitellogenesis. Lastly, we speculate whether C. elegans vitellogenins may play other roles in worm physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
25
|
ROS-mediated relationships between metabolism and DAF-16 subcellular localization in Caenorhabditis elegans revealed by a novel fluorometric method. Cell Signal 2019; 62:109330. [PMID: 31152844 DOI: 10.1016/j.cellsig.2019.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/21/2022]
Abstract
Signalling pathways provide a fine-tuned control network for catabolic and anabolic cellular processes under changing environmental conditions (e.g. changes in oxygen partial pressure, Po2). These pathways frequently activate or deactivate transcription factors (TFs) in the cytoplasm, with the subsequent nuclear translocation of activated TFs constituting a prerequisite for gene control and expression. This study introduces a newly developed fluorometric method for the quantification of relationships between environmental factors and the subcellular localization of reporter-coupled TFs in Caenorhabditis elegans (and possibly other transparent organisms). We applied this method to determine and analyse the relationship between Po2 and the subcellular localization of the GFP-coupled transcription factor DAF-16 (FoxO) of the DAF-2 (insulin/IGF-1) signalling pathway via the DAF-16::GFP fluorescence intensity of whole worms (Po2 characteristic). The Po2 characteristic resembled the Po2-specific metabolic rate of C. elegans, with a critical Po2 (Pco2) of 3.6 kPa separating two Po2 ranges, where either anaerobic metabolism and DAF-16::GFP nuclear occupancy strongly increased (i.e. decreasing DAF-16::GFP fluorescence intensity) (Po2 < Pco2) or aerobic metabolism and DAF-16::GFP cytoplasmic localization prevailed (Po2 > Pco2). These results and other data, which included the Po2-specific mitochondrial oxidation-reduction state of whole worms (as determined using the endogenous NADH fluorescence) and the effects of higher levels of reactive oxygen species (ROS) or RNAi-mediated knockdowns of catabolic or anabolic control genes (aak-2 or let-363) on the Po2 characteristic, suggest that ROS play a decisive role for DAF-16 nuclear translocation due to tissue hypoxia or higher anabolic activity induced by aak-2(RNAi). As DAF-16 and its target genes are of central importance for the cellular stress resistance, ROS-mediated relationships between metabolism and DAF-16 subcellular (i.e. nuclear) localization provide protection of the cell machinery against elevated ROS formation under challenging metabolic conditions.
Collapse
|
26
|
Mughal RS, Bridge K, Buza I, Slaaby R, Worm J, Klitgaard-Povlsen G, Hvid H, Schiødt M, Cubbon R, Yuldasheva N, Skromna A, Makava N, Skytte-Olsen G, Kearney MT. Effects of obesity on insulin: insulin-like growth factor 1 hybrid receptor expression and Akt phosphorylation in conduit and resistance arteries. Diab Vasc Dis Res 2019; 16:160-170. [PMID: 30295509 PMCID: PMC6484231 DOI: 10.1177/1479164118802550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insulin and insulin-like growth factor-1 stimulate specific responses in arteries, which may be disrupted by diet-induced obesity. We examined (1) temporal effects of high-fat diet compared to low-fat diet in mice on insulin receptor, insulin-like growth factor-1 receptor, insulin receptor/insulin-like growth factor-1 receptor hybrid receptor expression and insulin/insulin-like growth factor-1-mediated Akt phosphorylation in aorta; and (2) effects of high-fat diet on insulin and insulin-like growth factor-1-mediated Akt phosphorylation and vascular tone in resistance arteries. Medium-term high-fat diet (5 weeks) decreased insulin-like growth factor-1 receptor expression and increased hybrid expression (~30%) only. After long-term (16 weeks) high-fat diet, insulin receptor expression was reduced by ~30%, insulin-like growth factor-1 receptor expression decreased a further ~40% and hybrid expression increased a further ~60%. Independent correlates of hybrid receptor expression were high-fat diet, duration of high-fat diet and plasma insulin-like growth factor-1 (all p < 0.05). In aorta, insulin was a more potent activator of Akt than insulin-like growth factor-1, whereas in resistance arteries, insulin-like growth factor-1 was more potent than insulin. High-fat diet blunted insulin-mediated vasorelaxation ( p < 0.01) but had no effect on insulin-like growth factor-1-mediated vasorelaxation in resistance arteries. Our findings support the possibility that hybrid receptor level is influenced by nutritional and metabolic cues. Moreover, vessel-dependent effects of insulin and insulin-like growth factor-1 on vascular tone and Akt activation may have implications in treating obesity-related vascular disease.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Aorta/drug effects
- Aorta/enzymology
- Cells, Cultured
- Diet, Fat-Restricted
- Diet, High-Fat
- Disease Models, Animal
- Enzyme Activation
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/enzymology
- Humans
- Insulin/pharmacology
- Insulin-Like Growth Factor I/pharmacology
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/enzymology
- Mesenteric Arteries/physiopathology
- Mice, Inbred C57BL
- Obesity/blood
- Obesity/enzymology
- Obesity/physiopathology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/metabolism
- Receptors, Somatomedin/metabolism
- Signal Transduction/drug effects
- Vascular Resistance/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Romana S Mughal
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Katherine Bridge
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Irma Buza
- Global Research, Novo Nordisk A/S, Malov, Denmark
| | - Rita Slaaby
- Global Research, Novo Nordisk A/S, Malov, Denmark
| | - Jesper Worm
- Global Research, Novo Nordisk A/S, Malov, Denmark
| | | | - Henning Hvid
- Global Research, Novo Nordisk A/S, Malov, Denmark
| | | | - Richard Cubbon
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Nadira Yuldasheva
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Anna Skromna
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | - Natallia Makava
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
| | | | - Mark T Kearney
- Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK
- Mark T Kearney, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
27
|
Song R, Sarnoski EA, Acar M. The Systems Biology of Single-Cell Aging. iScience 2018; 7:154-169. [PMID: 30267677 PMCID: PMC6153419 DOI: 10.1016/j.isci.2018.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/30/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Aging is a leading cause of human morbidity and mortality, but efforts to slow or reverse its effects are hampered by an incomplete understanding of its multi-faceted origins. Systems biology, the use of quantitative and computational methods to understand complex biological systems, offers a toolkit well suited to elucidating the root cause of aging. We describe the known components of the aging network and outline innovative techniques that open new avenues of investigation to the aging research community. We propose integration of the systems biology and aging fields, identifying areas of complementarity based on existing and impending technological capabilities.
Collapse
Affiliation(s)
- Ruijie Song
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA
| | - Ethan A Sarnoski
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA
| | - Murat Acar
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT 06511, USA; Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT 06516, USA; Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06511, USA; Department of Physics, Yale University, 217 Prospect Street, New Haven, CT 06511, USA.
| |
Collapse
|
28
|
Roles of long noncoding RNAs in aging and aging complications. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1763-1771. [PMID: 31109449 DOI: 10.1016/j.bbadis.2018.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Aging is a universal and time dependent complex biological process, characterized by a progressive physiological dysfunction and an increased vulnerability to death. Though the physiological process of aging is still not fully understood, several cellular and molecular mechanisms have been identified. Long noncoding RNAs is a class of regulatory ncRNAs with transcript lengths >200 nucleotides. Discovery of this vast pool of regulators in mammalian genome supplies a new dimension to study and explore the aging process. In this review, we discuss the contribution of lncRNAs in aging and aging complications, and raise interest of serving lncRNAs as biomarkers and potential therapeutic targets to prolong health and ameliorate age-associated diseases. We hope understanding the roles of these high specificity and low conservation regulators in generating age-associated phenotypes might benefit human lifespan.
Collapse
|
29
|
Çelen İ, Doh JH, Sabanayagam CR. Effects of liquid cultivation on gene expression and phenotype of C. elegans. BMC Genomics 2018; 19:562. [PMID: 30064382 PMCID: PMC6069985 DOI: 10.1186/s12864-018-4948-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Liquid cultures have been commonly used in space, toxicology, and pharmacology studies of Caenorhabditis elegans. However, the knowledge about transcriptomic alterations caused by liquid cultivation remains limited. Moreover, the impact of different genotypes in rapid adaptive responses to environmental changes (e.g., liquid cultivation) is often overlooked. Here, we report the transcriptomic and phenotypic responses of laboratory N2 and the wild-isolate AB1 strains after culturing P0 worms on agar plates, F1 in liquid cultures, and F2 back on agar plates. RESULTS Significant variations were found in the gene expressions between the N2 and AB1 strains in response to liquid cultivation. The results demonstrated that 8-34% of the environmental change-induced transcriptional responses are transmitted to the subsequent generation. By categorizing the gene expressions for genotype, environment, and genotype-environment interactions, we identified that the genotype has a substantial impact on the adaptive responses. Functional analysis of the transcriptome showed correlation with phenotypical changes. For example, the N2 strain exhibited alterations in both phenotype and gene expressions for germline and cuticle in axenic liquid cultivation. We found transcript evidence to approximately 21% of the computationally predicted genes in C. elegans by exposing the worms to environmental changes. CONCLUSIONS The presented study reveals substantial differences between N2 and AB1 strains for transcriptomic and phenotypical responses to rapid environmental changes. Our data can provide standard controls for future studies for the liquid cultivation of C. elegans and enable the discovery of condition-specific genes.
Collapse
Affiliation(s)
- İrem Çelen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711 USA
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Jung H. Doh
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| | - Chandran R. Sabanayagam
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| |
Collapse
|
30
|
Bareja A, Hodgkinson CP, Soderblom E, Waitt G, Dzau VJ. The proximity-labeling technique BioID identifies sorting nexin 6 as a member of the insulin-like growth factor 1 (IGF1)-IGF1 receptor pathway. J Biol Chem 2018. [PMID: 29530981 DOI: 10.1074/jbc.ra118.002406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The insulin-like growth factor 1 receptor (IGF1R) is a receptor tyrosine kinase with critical roles in various biological processes. Recent results from clinical trials targeting IGF1R indicate that IGF1R signaling pathways are more complex than previously thought. Moreover, it has become increasingly clear that the function of many proteins can be understood only in the context of a network of interactions. To that end, we sought to profile IGF1R-protein interactions with the proximity-labeling technique BioID. We applied BioID by generating a HEK293A cell line that stably expressed the BirA* biotin ligase fused to the IGF1R. Following stimulation by IGF1, biotinylated proteins were analyzed by MS. This screen identified both known and previously unknown interactors of IGF1R. One of the novel interactors was sorting nexin 6 (SNX6), a protein that forms part of the retromer complex, which is involved in intracellular protein sorting. Using co-immunoprecipitation, we confirmed that IGF1R and SNX6 physically interact. SNX6 knockdown resulted in a dramatic diminution of IGF1-mediated ERK1/2 phosphorylation, but did not affect IGF1R internalization. Bioluminescence resonance energy transfer experiments indicated that the SNX6 knockdown perturbed the association between IGF1R and the key adaptor proteins insulin receptor substrate 1 (IRS1) and SHC adaptor protein 1 (SHC1). Intriguingly, even in the absence of stimuli, SNX6 overexpression significantly increased Akt phosphorylation. Our study confirms the utility of proximity-labeling methods, such as BioID, to screen for interactors of cell-surface receptors and has uncovered a role of one of these interactors, SNX6, in the IGF1R signaling cascade.
Collapse
Affiliation(s)
- Akshay Bareja
- From the Duke Cardiovascular Research Center, the Mandel Center for Hypertension and Atherosclerosis Research, and
| | - Conrad P Hodgkinson
- From the Duke Cardiovascular Research Center, the Mandel Center for Hypertension and Atherosclerosis Research, and
| | - Erik Soderblom
- the Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27710
| | - Greg Waitt
- the Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27710
| | - Victor J Dzau
- From the Duke Cardiovascular Research Center, the Mandel Center for Hypertension and Atherosclerosis Research, and
| |
Collapse
|
31
|
Bareja A, Patel S, Hodgkinson CP, Payne A, Dzau VJ. Understanding the mechanism of bias signaling of the insulin-like growth factor 1 receptor: Effects of LL37 and HASF. Cell Signal 2018; 46:113-119. [PMID: 29499305 DOI: 10.1016/j.cellsig.2018.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
Abstract
The development of biased agonist drugs is widely recognized to be important for the treatment of many diseases, including cardiovascular disease. While GPCR biased agonism has been heavily characterized there is a distinct lack of information with respect to RTK biased agonism both in the identification of biased agonists as well as their attendant mechanisms. One such RTK, the Insulin-like Growth Factor 1 Receptor (IGF1R) plays an important role in a range of biological and disease processes. The micropeptide LL37 has been described as a biased agonist of the IGF1R. We were interested to further understand the mechanism by which LL37 promotes biased signaling through the IGF1R. We found that LL37 biased agonism is dependent on β-arrestin 2. Moreover, BRET assays indicated that LL37 biased agonism is explained by the inability of LL37 to promote the recruitment of IRS1 to the IGF1R compared to IGF1. LL37 promotes an altered association of IGF1R with GRK6, which could also serve as an explanation for bias. We also demonstrated a functional consequence of this bias by showing that while LL37 can promote cell proliferation, it does not induce protein synthesis, unlike IGF1, which does both. We have recently identified HASF, a natural protein released by mesenchymal stem cells, as a novel ligand of the IGF1R. HASF is a paracrine factor with potent cardioprotective and cardio-regenerative properties which also acts via IGF1R biased signaling, preferentially activated ERK over Akt.
Collapse
Affiliation(s)
- Akshay Bareja
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA
| | - Shubham Patel
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA
| | - Conrad P Hodgkinson
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA
| | - Alan Payne
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA
| | - Victor J Dzau
- Duke Cardiovascular Research Center, and Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, NC 27710, USA.
| |
Collapse
|
32
|
Abstract
In Caenorhabditis elegans, there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple signaling pathways, DAF-16 integrates these signals which results in modulation of several biological processes including longevity, development, fat storage, stress resistance, innate immunity, and reproduction. Using C. elegans allows for studies of FOXO in the context of the whole animal. Therefore, manipulating levels or the activity of daf-16 results in phenotypic changes. Genetic and molecular analysis revealed that similar to other systems, DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway; a PI 3-kinase/AKT signaling cascade that ultimately controls the regulation of DAF-16 nuclear localization. In this chapter, I will focus on understanding how a single gene daf-16 can incorporate signals from multiple upstream pathways and in turn modulate different phenotypes as well as the study of FOXO in the context of a whole organism.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
33
|
Rai N, Kumar R, Desai GR, Venugopalan G, Shekhar S, Chatterjee P, Tripathi M, Upadhyay AD, Dwivedi S, Dey AB, Dey S. Relative Alterations in Blood-Based Levels of Sestrin in Alzheimer's Disease and Mild Cognitive Impairment Patients. J Alzheimers Dis 2018; 54:1147-1155. [PMID: 27567861 DOI: 10.3233/jad-160479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sestrins (sesn) are highly conserved proteins that play an important neuroprotective role, in part as a consequence of their antioxidative capacity, which prevents reactive oxygen species formation. In this study, we evaluated the concentrations of sesn1 and sesn2 in the serum of 41 Alzheimer's disease (AD) patients, 27 mild cognitive impairment (MCI), and 60 elderly controls, by surface plasmon resonance, which was validated by using western blot. Moreover, the mRNA level of sestrins in all the study groups was determined by real time polymerase chain reaction. The results showed significant overexpression of serum sesn2 protein and mRNA levels in the AD group compared to MCI and elderly control groups. A difference in serum sesn2 concentration between MCI and the control group was also evident. ROC analysis showed highly sensitive, selective cutoff values for sens2 in the differentiation of AD, MCI, and controls. No significant difference in sesn1 level was observed among the study groups. This study highlights the important role of sesn2 in the progression of the AD, indicating its potential utility as a protein marker in this devastating disease.
Collapse
Affiliation(s)
- Nitish Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Gaurav Rajesh Desai
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - G Venugopalan
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Shekhar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Datt Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Sadanand Dwivedi
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Aparajit B Dey
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Empirical verification of evolutionary theories of aging. Aging (Albany NY) 2017; 8:2568-2589. [PMID: 27783562 PMCID: PMC5115907 DOI: 10.18632/aging.101090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023]
Abstract
We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence that the dominant polygenic trait extending longevity of each of these mutants 1) does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity; and 2) enhances such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. These findings validate evolutionary theories of programmed aging. We also demonstrate that under laboratory conditions that imitate the process of natural selection within an ecosystem, each of these long-lived mutant strains is forced out of the ecosystem by the parental wild-type strain exhibiting shorter lifespan. We therefore concluded that yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age. These mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast chronological lifespan within ecosystems.
Collapse
|
35
|
Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 2017; 455:131-147. [PMID: 28062199 PMCID: PMC5724961 DOI: 10.1016/j.mce.2016.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/10/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals.
Collapse
Affiliation(s)
- Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA.
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes. Florida Hospital, 301 East Princeton St, Orlando, FL 32804, USA.
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866, Poznan, Poland.
| |
Collapse
|
36
|
Jenwitheesuk A, Park S, Wongchitrat P, Tocharus J, Mukda S, Shimokawa I, Govitrapong P. Comparing the Effects of Melatonin with Caloric Restriction in the Hippocampus of Aging Mice: Involvement of Sirtuin1 and the FOXOs Pathway. Neurochem Res 2017; 43:153-161. [PMID: 28770437 DOI: 10.1007/s11064-017-2369-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022]
Abstract
It has been suggested that age-related neurodegeneration might be associated with neuropeptide Y (NPY); sirtuin1 (SIRT1) and forkhead box transcription factors O subfamily (FOXOs) pathways. Melatonin, a hormone mainly secreted by the pineal gland, is another anti-aging agent associated with the SIRT1-FOXOs pathway. This study aimed to compare the effects of melatonin (Mel) and caloric restriction (CR) on the expression of Sirt1, FoxO1, FoxO3a and FOXOs target genes in the aging mouse hippocampus. Neuropeptide Y-knockout (NpyKO) and wild-type (WT) male mice aged 19 months were previously treated either with food ad libitum or CR for 16 months. WT old animals were divided into four groups: control, CR, Mel and CR+Mel treated groups. The Mel and CR+Mel were treated with melatonin 10 mg/kg, daily, subcutaneously for 7 consecutive days. Mel treatment upregulated the mRNA expression of Sirt1, FOXOs (FoxO1 and FoxO3a) target genes that regulated the cell cycle [e.g., cyclin-dependent kinase inhibitor 1B (p27)], Wingless and INT-1 (Wnt1) and inducible signaling pathway protein 1 (Wisp1) in the aged mouse hippocampus. CR treatment also showed the similar actions. However, the mRNA expression of Sirt1, FoxO1, FoxO3a, p27 or Wisp1 did not alter in the CR+Mel group when compared with CR or Mel group. Melatonin could not produce any additive effect on the CR treatment group, suggesting that both treatments mimicked the effect, possibly via the same pathway. NPY which mediates physiological adaptations to energy deficits is an essential link between CR and longevity in mice. In order to focus on the role of Npy in mediating the effects of melatonin, the gene expression between NpyKO and WT male mice were compared. Our data showed that, in the absence of Npy, melatonin could not mediate effects on those gene expressions, suggesting that Npy was required for melatonin to mediate the effect, possibly, on life extension.
Collapse
Affiliation(s)
- Anorut Jenwitheesuk
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Seongjoon Park
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan
| | - Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Isao Shimokawa
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand. .,Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Salaya, Thailand. .,Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand.
| |
Collapse
|
37
|
Angiostrongylus cantonensis daf-2 regulates dauer, longevity and stress in Caenorhabditis elegans. Vet Parasitol 2017; 240:1-10. [PMID: 28576337 DOI: 10.1016/j.vetpar.2017.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 11/22/2022]
Abstract
The insulin-like signaling (IIS) pathway is considered to be significant in regulating fat metabolism, dauer formation, stress response and longevity in Caenorhabditis elegans. "Dauer hypothesis" indicates that similar IIS transduction mechanism regulates dauer development in free-living nematode C. elegans and the development of infective third-stage larvae (iL3) in parasitic nematodes, and this is bolstered by a few researches on structures and functions of the homologous genes in the IIS pathway cloned from several parasitic nematodes. In this study, we identified the insulin-like receptor encoding gene, Acan-daf-2, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. The sequence of Acan-DAF-2, consisting of 1413 amino acids, contained all of the characteristic domains of insulin-like receptors from other taxa. The expression patterns of Acan-daf-2 in the C. elegans surrogate system showed that pAcan-daf-2:gfp was only expressed in intestine, compared with the orthologue in C. elegans, Ce-daf-2 in both intestine and neurons. In addition to the similar genomic organization to Ce-daf-2, Acan-DAF-2 could also negatively regulate Ce-DAF-16A through nuclear/cytosolic translocation and partially restore the C. elegans daf-2(e1370) mutation in longevity, dauer formation and stress resistance. These findings provided further evidence of the functional conservation of DAF-2 between parasitic nematodes and the free-living nematode C. elegans, and might be significant in understanding the developmental biology of nematode parasites, particularly in the infective process and the host-specificity.
Collapse
|
38
|
Brooks RC, Garratt MG. Life history evolution, reproduction, and the origins of sex-dependent aging and longevity. Ann N Y Acad Sci 2016; 1389:92-107. [PMID: 28009055 DOI: 10.1111/nyas.13302] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022]
Abstract
Males and females in many species differ in how they age and how long they live. These differences have motivated much research, concerning both their evolution and the underlying mechanisms that cause them. We review how differences in male and female life histories have evolved to shape patterns of aging and some of the mechanisms and pathways involved. We pay particular attention to three areas where considerable potential for synergy between mechanistic and evolutionary research exists: (1) the role of estrogens, androgens, the growth hormone/insulin-like growth factor 1 pathway, and the mechanistic target of rapamycin signaling pathway in sex-dependent growth and reproduction; (2) sexual conflict over mating rate and fertility, and how mate presence or mating can become an avenue for males and females to directly affect each other's life span; and (3) the link between dietary restriction and aging, and the emerging understanding that only the restriction of certain nutrients is involved and that this is linked to reproduction. We suggest that ideas about life histories, sex-dependent selection, and sexual conflict can inform and be informed by the ever more refined and complex understanding of the mechanisms that cause aging.
Collapse
Affiliation(s)
- Robert C Brooks
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia
| | - Michael G Garratt
- Evolution & Ecology Research Centre, and School of Biological, Earth and Environmental Sciences, UNSW Australia, Kensington, Sydney, New South Wales, Australia.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
39
|
Structural and functional characterisation of FOXO/Acan-DAF-16 from the parasitic nematode Angiostrongylus cantonensis. Acta Trop 2016; 164:125-136. [PMID: 27619188 DOI: 10.1016/j.actatropica.2016.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/15/2022]
Abstract
Fork head box transcription factors subfamily O (FoxO) is regarded to be significant in cell-cycle control, cell differentiation, ageing, stress response, apoptosis, tumour formation and DNA damage repair. In the free-living nematode Caenorhabditis elegans, the FoxO transcription factor is encoded by Ce-daf-16, which is negatively regulated by insulin-like signaling (IIS) and involved in promoting dauer formation through bringing about its hundreds of downstream genes expression. In nematode parasites, orthologues of daf-16 from several species have been identified, with functions in rescue of dauer phenotypes determined in a surrogate system C. elegans. In this study, we identified the FoxO encoding gene, Acan-daf-16, from the parasitic nematode Angiostrongylus cantonensis, and determined the genomic structures, transcripts and functions far more thorough in longevity, stress resistance and dauer formation. Acan-daf-16 encodes two proteins, Acan-DAF-16A and Acan-DAF-16B, consisting of 555 and 491 amino acids, respectively. Both isoforms possess the highly conserved fork head domains. Acan-daf-16A and Acan-daf-16B are expressed from distinct promoters. The expression patterns of Acan-daf-16 isoforms in the C. elegans surrogate system showed that p Acan-daf-16a:gfp was expressed in all cells of C. elegans, including the pharynx, and the expression of p Acan-daf-16b:gfp was restricted to the pharynx. In addition to the same genomic organization to the orthologue in C. elegans, Ce-daf-16, both Acan-DAF-16 isoforms could restore the C. elegans daf-16(mg54) mutation in longevity, dauer formation and stress resistance, in spite of the partial complementation of Acan-DAF-16B isoform in longevity. These findings provide further evidence of the functional conservation of DAF-16s between parasitic nematodes and the free-living nematode C. elegans.
Collapse
|
40
|
Li Y, Hoffmann J, Li Y, Stephano F, Bruchhaus I, Fink C, Roeder T. Octopamine controls starvation resistance, life span and metabolic traits in Drosophila. Sci Rep 2016; 6:35359. [PMID: 27759117 PMCID: PMC5069482 DOI: 10.1038/srep35359] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
The monoamines octopamine (OA) and tyramine (TA) modulate numerous behaviours and physiological processes in invertebrates. Nevertheless, it is not clear whether these invertebrate counterparts of norepinephrine are important regulators of metabolic and life history traits. We show that flies (Drosophila melanogaster) lacking OA are more resistant to starvation, while their overall life span is substantially reduced compared with control flies. In addition, these animals have increased body fat deposits, reduced physical activity and a reduced metabolic resting rate. Increasing the release of OA from internal stores induced the opposite effects. Flies devoid of both OA and TA had normal body fat and metabolic rates, suggesting that OA and TA act antagonistically. Moreover, OA-deficient flies show increased insulin release rates. We inferred that the OA-mediated control of insulin release accounts for a substantial proportion of the alterations observed in these flies. Apparently, OA levels control the balance between thrifty and expenditure metabolic modes. Thus, changes in OA levels in response to external and internal signals orchestrate behaviour and metabolic processes to meet physiological needs. Moreover, chronic deregulation of the corresponding signalling systems in humans may be associated with metabolic disorders, such as obesity or diabetes.
Collapse
Affiliation(s)
- Yong Li
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Julia Hoffmann
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Yang Li
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Flora Stephano
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Fink
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Thomas Roeder
- Christian-Albrechts University Kiel, Zoology, Molecular Physiology, 24098 Kiel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
41
|
Murillo-Maldonado JM, Riesgo-Escovar JR. Development and diabetes on the fly. Mech Dev 2016; 144:150-155. [PMID: 27702607 DOI: 10.1016/j.mod.2016.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
We review the use of a model organism to study the effects of a slow course, degenerative disease: namely, diabetes mellitus. Development and aging are biological phenomena entailing reproduction, growth, and differentiation, and then decline and progressive loss of functionality leading ultimately to failure and death. It occurs at all biological levels of organization, from molecular interactions to organismal well being and homeostasis. Yet very few models capable of addressing the different levels of complexity in these chronic, developmental phenomena are available to study, and model organisms are an exception and a welcome opportunity for these approaches. Genetic model organisms, like the common fruit fly, Drosophila melanogaster, offer the possibility of studying the panoply of life processes in normal and diseased states like diabetes mellitus, from a plethora of different perspectives. These long-term aspects are now beginning to be characterized.
Collapse
Affiliation(s)
- Juan Manuel Murillo-Maldonado
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Juan Rafael Riesgo-Escovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Boulevard Juriquilla #3001, Querétaro 76230, Mexico.
| |
Collapse
|
42
|
Xiao J, Kim SJ, Cohen P, Yen K. Humanin: Functional Interfaces with IGF-I. Growth Horm IGF Res 2016; 29:21-27. [PMID: 27082450 PMCID: PMC4961574 DOI: 10.1016/j.ghir.2016.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023]
Abstract
Humanin is the first newly discovered peptide encoded in the mitochondrial genome in over three decades. It is the first member of a novel class of mitochondrial derived peptides. This small, 24 amino acid peptide was initially discovered to have neuroprotective effects and subsequent experiments have shown that it is beneficial in a diverse number of disease models including stroke, cardiovascular disease, and cancer. Over a decade ago, our lab found that humanin bound IGFBP-3 and more recent studies have found it to decrease circulating IGF-I levels. In turn, IGF-I also seems to regulate humanin levels and in this review, we cover the known interaction between humanin and IGF-I. Although the exact mechanism for how humanin and IGF-I regulate each other still needs to be elucidated, it is clear that humanin is a new player in IGF-I signaling.
Collapse
Affiliation(s)
- J Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - S-J Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - P Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - K Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
43
|
Chriett S, Le Huërou-Luron I, Vidal H, Pirola L. Dysregulation of sirtuins and key metabolic genes in skeletal muscle of pigs with spontaneous intrauterine growth restriction is associated with alterations of circulating IGF-1. Gen Comp Endocrinol 2016; 232:76-85. [PMID: 26769588 DOI: 10.1016/j.ygcen.2015.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/04/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
Prenatal and early postnatal life determines future health, and intrauterine growth restriction (IUGR) - associated low birth weight predisposes to metabolic syndrome in adulthood. We hypothesize here that IUGR might induce hormonal and gene expression alterations predisposing to metabolic disease. Using a porcine model of spontaneous IUGR, we determined in utero (71, 112days post-conception) and early-postnatal (2days post-birth) IGF-1, insulin and leptin levels, and in parallel we investigated, in skeletal muscle, the developmental expression patterns of sirtuins and metabolic and signaling genes IRS1, GLUT4, HK2 and GAPDH. IUGR was associated with impaired IGF-1 plasmatic levels. Gene expression of sirtuin 1, 5, 6, 7, GLUT4 and HK2 exhibited significant correlations with gestational age or body weight. SIRT1 and HK2 expression displayed an age- and weight-dependent downregulation in controls, which was lost in IUGR pigs. Conversely, SIRT2 and GLUT4 were upregulated in IUGR pigs. Within the set of genes studied, we found a significant correlation between IGF-1 levels and gene expression in control, but not IUGR samples, indicating that lower IGF-1 may be a limiting factor in IUGR. IUGR-dependent gene alterations were partly linked to epigenetic changes on histone H3 acetylation and methylation. Overall, our data indicate that several sirtuins and metabolic genes display specific gene expression trajectories during fetal and early postnatal life. Gene expression alterations observed in IUGR are correlated to IGF-1 dysregulation. Given the importance of the genes studied in metabolic control, their perinatal alterations might contribute to the predisposition to metabolic disease of adulthood.
Collapse
Affiliation(s)
- Sabrina Chriett
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, Lyon-1 University, South Lyon Medical Faculty, 69921 Oullins, France
| | | | - Hubert Vidal
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, Lyon-1 University, South Lyon Medical Faculty, 69921 Oullins, France
| | - Luciano Pirola
- Carmen (Cardiology, Metabolism and Nutrition) Laboratory, INSERM U1060, Lyon-1 University, South Lyon Medical Faculty, 69921 Oullins, France.
| |
Collapse
|
44
|
Derous D, Mitchell SE, Green CL, Chen L, Han JJ, Wang Y, Promislow DE, Lusseau D, Speakman JR, Douglas A. The effects of graded levels of calorie restriction: VI. Impact of short-term graded calorie restriction on transcriptomic responses of the hypothalamic hunger and circadian signaling pathways. Aging (Albany NY) 2016; 8:642-63. [PMID: 26945906 PMCID: PMC4925820 DOI: 10.18632/aging.100895] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 01/03/2023]
Abstract
Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.
Collapse
Affiliation(s)
- Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Cara L. Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing‐Dong J. Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Daniel E.L. Promislow
- Department of Pathology and Department of Biology, University of Washington at Seattle, Seattle, WA 98195, USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, AB24 2TZ, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, Scotland, AB24 3RL, UK
| |
Collapse
|
45
|
|
46
|
Pomatto LCD, Raynes R, Davies KJA. The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc 2016; 92:739-753. [PMID: 26852705 DOI: 10.1111/brv.12253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 01/24/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles with the primary role of breaking down very long- and branched-chain fatty acids for subsequent β-oxidation in the mitochondrion. Like mitochondria, peroxisomes are major sites for oxygen utilization and potential contributors to cellular oxidative stress. The accumulation of oxidatively damaged proteins, which often develop into inclusion bodies (of oxidized, aggregated, and cross-linked proteins) within both mitochondria and peroxisomes, results in loss of organelle function that may contribute to the aging process. Both organelles possess an isoform of the Lon protease that is responsible for degrading proteins damaged by oxidation. While the importance of mitochondrial Lon (LonP1) in relation to oxidative stress and aging has been established, little is known regarding the role of LonP2 and aging-related changes in the peroxisome. Recently, peroxisome dysfunction has been associated with aging-related diseases indicating that peroxisome maintenance is a critical component of 'healthy aging'. Although mitochondria and peroxisomes are both needed for fatty acid metabolism, little work has focused on understanding the relationship between these two organelles including how age-dependent changes in one organelle may be detrimental for the other. Herein, we summarize findings that establish proteolytic degradation of damaged proteins by the Lon protease as a vital mechanism to maintain protein homeostasis within the peroxisome. Due to the metabolic coordination between peroxisomes and mitochondria, understanding the role of Lon in the aging peroxisome may help to elucidate cellular causes for both peroxisome and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| | - Rachel Raynes
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| |
Collapse
|
47
|
Rathor L, Akhoon BA, Pandey S, Srivastava S, Pandey R. Folic acid supplementation at lower doses increases oxidative stress resistance and longevity in Caenorhabditis elegans. AGE (DORDRECHT, NETHERLANDS) 2015; 37:113. [PMID: 26546011 PMCID: PMC5005867 DOI: 10.1007/s11357-015-9850-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/23/2015] [Indexed: 05/12/2023]
Abstract
Folic acid (FA) is an essential nutrient that the human body needs but cannot be synthesized on its own. Fortified foods and plant food sources such as green leafy vegetables, beans, fruits, and juices are good sources of FA to meet the daily requirements of the body. The aim was to evaluate the effect of dietary FA levels on the longevity of well-known experimental aging model Caenorhabditis elegans. Here, we show for first time that FA extends organism life span and causes a delay in aging. We observed that FA inhibits mechanistic target of rapamycin (mTOR) and insulin/insulin growth factor 1 (IGF-1) signaling pathways to control both oxidative stress levels and life span. The expression levels of stress- and life span-relevant gerontogenes, viz. daf-16, skn-1, and sir. 2.1, and oxidative enzymes, such as glutathione S-transferase 4 (GST-4) and superoxide dismutase 3 (SOD-3), were also found to be highly enhanced to attenuate the intracellular reactive oxygen species (ROS) damage and to delay the aging process. Our study promotes the use of FA to mitigate abiotic stresses and other aging-related ailments.
Collapse
Affiliation(s)
- Laxmi Rathor
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Bashir Akhlaq Akhoon
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Swapnil Pandey
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Swati Srivastava
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Rakesh Pandey
- Microbial Technology and Nematology Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
| |
Collapse
|
48
|
Seo M, Seo K, Hwang W, Koo HJ, Hahm JH, Yang JS, Han SK, Hwang D, Kim S, Jang SK, Lee Y, Nam HG, Lee SJV. RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2015; 112:E4246-55. [PMID: 26195740 PMCID: PMC4534234 DOI: 10.1073/pnas.1505451112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The homeostatic maintenance of the genomic DNA is crucial for regulating aging processes. However, the role of RNA homeostasis in aging processes remains unknown. RNA helicases are a large family of enzymes that regulate the biogenesis and homeostasis of RNA. However, the functional significance of RNA helicases in aging has not been explored. Here, we report that a large fraction of RNA helicases regulate the lifespan of Caenorhabditis elegans. In particular, we show that a DEAD-box RNA helicase, helicase 1 (HEL-1), promotes longevity by specifically activating the DAF-16/forkhead box O (FOXO) transcription factor signaling pathway. We find that HEL-1 is required for the longevity conferred by reduced insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) and is sufficient for extending lifespan. We further show that the expression of HEL-1 in the intestine and neurons contributes to longevity. HEL-1 enhances the induction of a large fraction of DAF-16 target genes. Thus, the RNA helicase HEL-1 appears to promote longevity in response to decreased IIS as a transcription coregulator of DAF-16. Because HEL-1 and IIS are evolutionarily well conserved, a similar mechanism for longevity regulation via an RNA helicase-dependent regulation of FOXO signaling may operate in mammals, including humans.
Collapse
Affiliation(s)
- Mihwa Seo
- Center for Plant Aging Research, Institute for Basic Science, Daegu 711-873, Korea; School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hee Jung Koo
- Center for Plant Aging Research, Institute for Basic Science, Daegu 711-873, Korea; School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jeong-Hoon Hahm
- Center for Plant Aging Research, Institute for Basic Science, Daegu 711-873, Korea
| | - Jae-Seong Yang
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Daehee Hwang
- Center for Plant Aging Research, Institute for Basic Science, Daegu 711-873, Korea; Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Sanguk Kim
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 711-873, Korea; Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea;
| | - Seung-Jae V Lee
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea; Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
49
|
A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab 2015; 22:86-99. [PMID: 26094889 PMCID: PMC4509734 DOI: 10.1016/j.cmet.2015.05.012] [Citation(s) in RCA: 602] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
Prolonged fasting (PF) promotes stress resistance, but its effects on longevity are poorly understood. We show that alternating PF and nutrient-rich medium extended yeast lifespan independently of established pro-longevity genes. In mice, 4 days of a diet that mimics fasting (FMD), developed to minimize the burden of PF, decreased the size of multiple organs/systems, an effect followed upon re-feeding by an elevated number of progenitor and stem cells and regeneration. Bi-monthly FMD cycles started at middle age extended longevity, lowered visceral fat, reduced cancer incidence and skin lesions, rejuvenated the immune system, and retarded bone mineral density loss. In old mice, FMD cycles promoted hippocampal neurogenesis, lowered IGF-1 levels and PKA activity, elevated NeuroD1, and improved cognitive performance. In a pilot clinical trial, three FMD cycles decreased risk factors/biomarkers for aging, diabetes, cardiovascular disease, and cancer without major adverse effects, providing support for the use of FMDs to promote healthspan.
Collapse
|
50
|
Abstract
Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|