1
|
Wang J, Liu Q, Huang S, Mertens KN, Pospelova V, Shen X, Gu H. High-resolution DNA metabarcoding of modern surface sediments uncovers a diverse assemblage of dinoflagellate cysts in the Pacific and Arctic Oceans. MARINE POLLUTION BULLETIN 2025; 215:117899. [PMID: 40199003 DOI: 10.1016/j.marpolbul.2025.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Resting cysts of dinoflagellates can persist in sediments, seeding harmful algal blooms (HABs). A DNA metabarcoding approach was employed, targeting the large subunit ribosomal (LSU D1-D2) and the internal transcribed spacer (ITS1) to investigate the diversity and biogeography of dinoflagellate cysts from the South China Sea to the Chukchi Sea. The LSU and ITS1 datasets identified 196 and 118 species, respectively, with only 59 dinoflagellate cyst species revealed by both approaches. Eleven cyst species of potentially toxic dinoflagellates and 82 species previously unknown as cyst producers were detected. Cysts of Heterocapsa cf. horiguchii, Heterocapsa minima, Heterocapsa iwatakii, Heterocapsa rotundata, and Heterocapsa steinii were documented through germination for the first time, with the latter three species also detected via metabarcoding. This study provides critical insights into the diversity and biogeography of dinoflagellate cysts by highlighting the complementary detection capabilities of LSU and ITS1 molecular markers and their trans-latitudinal distribution patterns. The identification of potentially toxic cysts and their ecological distributions offers crucial information on the ecology of harmful dinoflagellates. These findings underscore the importance of molecular techniques in monitoring dinoflagellate cysts.
Collapse
Affiliation(s)
- Junyue Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Qian Liu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Shuning Huang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | | | - Vera Pospelova
- Department of Earth and Environmental Sciences, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
2
|
Minne AJP, Vranken S, Wheeler D, Wood G, Batley J, Wernberg T, Coleman MA. Strong Environmental and Genome-Wide Population Differentiation Underpins Adaptation and High Genomic Vulnerability in the Dominant Australian Kelp ( Ecklonia radiata). Ecol Evol 2025; 15:e71158. [PMID: 40365477 PMCID: PMC12068950 DOI: 10.1002/ece3.71158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 05/15/2025] Open
Abstract
Ongoing and predicted range loss of kelp forests in response to climatic stressors is pressing marine managers to look into the adaptive capacity of populations to inform conservation strategies. Characterising how adaptive genetic diversity and structure relate to present and future environmental variation represents an emerging approach to quantifying kelp vulnerability to environmental change and identifying populations with genotypes that potentially confer an adaptive advantage in future ocean conditions. The dominant Australian kelp, Ecklonia radiata, was genotyped from 10 locations spanning 2000 km of coastline and a 9.5°C average temperature gradient along the east coast of Australia, a global warming hotspot. ddRAD sequencing generated 10,700 high-quality single nucleotide polymorphisms (SNPs) and characterized levels of neutral and adaptive genomic diversity and structure. The adaptive dataset, reflecting portions of the genome putatively under selection, was used to infer genomic vulnerability by 2050 under the RCP 8.5 scenario. There was strong neutral genetic differentiation between Australia mainland and Tasmanian populations, but only weak genetic structure among mainland populations within the main path of the East Australian Current. Genetic diversity was highest in the center of the range and lowest in the warm-edge population. The adaptive SNP candidates revealed similar genetic structure patterns, with a spread of adaptive alleles across most warm (northern) populations. The lowest, but most unique, adaptive genetic diversity values were found in both warm and cool population edges, suggesting local adaptation but low evolutionary potential. Critically, genomic vulnerability modeling identified high levels of vulnerability to future environmental conditions in Tasmanian populations. Populations of kelp at range edges are unlikely to adapt and keep pace with predicted climate change. Ensuring the persistence of these kelp forests, by boosting resilience to climate change, may require active management strategies with assisted adaptation in warm-edge (northern) populations and assisted gene flow in cool-edge (Tasmania) populations.
Collapse
Affiliation(s)
- Antoine J. P. Minne
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Sofie Vranken
- Biology Department, Research Group PhycologyGhent UniversityGhentBelgium
| | - David Wheeler
- New South Wales Department of Primary IndustriesOrange Agricultural InstituteOrangeNew South WalesAustralia
| | - Georgina Wood
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- Flinders UniversityAdelaideSouth AustraliaAustralia
| | - Jacqueline Batley
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Thomas Wernberg
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Institute of Marine ResearchHisNorway
| | - Melinda A. Coleman
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- New South Wales FisheriesNational Marine Science CentreCoffs HarbourNew South WalesAustralia
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| |
Collapse
|
3
|
Denoeud F, Godfroy O, Cruaud C, Heesch S, Nehr Z, Tadrent N, Couloux A, Brillet-Guéguen L, Delage L, Mckeown D, Motomura T, Sussfeld D, Fan X, Mazéas L, Terrapon N, Barrera-Redondo J, Petroll R, Reynes L, Choi SW, Jo J, Uthanumallian K, Bogaert K, Duc C, Ratchinski P, Lipinska A, Noel B, Murphy EA, Lohr M, Khatei A, Hamon-Giraud P, Vieira C, Avia K, Akerfors SS, Akita S, Badis Y, Barbeyron T, Belcour A, Berrabah W, Blanquart S, Bouguerba-Collin A, Bringloe T, Cattolico RA, Cormier A, Cruz de Carvalho H, Dallet R, De Clerck O, Debit A, Denis E, Destombe C, Dinatale E, Dittami S, Drula E, Faugeron S, Got J, Graf L, Groisillier A, Guillemin ML, Harms L, Hatchett WJ, Henrissat B, Hoarau G, Jollivet C, Jueterbock A, Kayal E, Knoll AH, Kogame K, Le Bars A, Leblanc C, Le Gall L, Ley R, Liu X, LoDuca ST, Lopez PJ, Lopez P, Manirakiza E, Massau K, Mauger S, Mest L, Michel G, Monteiro C, Nagasato C, Nègre D, Pelletier E, Phillips N, Potin P, Rensing SA, Rousselot E, Rousvoal S, Schroeder D, Scornet D, Siegel A, Tirichine L, Tonon T, Valentin K, Verbruggen H, Weinberger F, Wheeler G, Kawai H, Peters AF, Yoon HS, et alDenoeud F, Godfroy O, Cruaud C, Heesch S, Nehr Z, Tadrent N, Couloux A, Brillet-Guéguen L, Delage L, Mckeown D, Motomura T, Sussfeld D, Fan X, Mazéas L, Terrapon N, Barrera-Redondo J, Petroll R, Reynes L, Choi SW, Jo J, Uthanumallian K, Bogaert K, Duc C, Ratchinski P, Lipinska A, Noel B, Murphy EA, Lohr M, Khatei A, Hamon-Giraud P, Vieira C, Avia K, Akerfors SS, Akita S, Badis Y, Barbeyron T, Belcour A, Berrabah W, Blanquart S, Bouguerba-Collin A, Bringloe T, Cattolico RA, Cormier A, Cruz de Carvalho H, Dallet R, De Clerck O, Debit A, Denis E, Destombe C, Dinatale E, Dittami S, Drula E, Faugeron S, Got J, Graf L, Groisillier A, Guillemin ML, Harms L, Hatchett WJ, Henrissat B, Hoarau G, Jollivet C, Jueterbock A, Kayal E, Knoll AH, Kogame K, Le Bars A, Leblanc C, Le Gall L, Ley R, Liu X, LoDuca ST, Lopez PJ, Lopez P, Manirakiza E, Massau K, Mauger S, Mest L, Michel G, Monteiro C, Nagasato C, Nègre D, Pelletier E, Phillips N, Potin P, Rensing SA, Rousselot E, Rousvoal S, Schroeder D, Scornet D, Siegel A, Tirichine L, Tonon T, Valentin K, Verbruggen H, Weinberger F, Wheeler G, Kawai H, Peters AF, Yoon HS, Hervé C, Ye N, Bapteste E, Valero M, Markov GV, Corre E, Coelho SM, Wincker P, Aury JM, Cock JM. Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems. Cell 2024; 187:6943-6965.e39. [PMID: 39571576 DOI: 10.1016/j.cell.2024.10.049] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/20/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Brown seaweeds are keystone species of coastal ecosystems, often forming extensive underwater forests, and are under considerable threat from climate change. In this study, analysis of multiple genomes has provided insights across the entire evolutionary history of this lineage, from initial emergence, through later diversification of the brown algal orders, down to microevolutionary events at the genus level. Emergence of the brown algal lineage was associated with a marked gain of new orthologous gene families, enhanced protein domain rearrangement, increased horizontal gene transfer events, and the acquisition of novel signaling molecules and key metabolic pathways, the latter notably related to biosynthesis of the alginate-based extracellular matrix, and halogen and phlorotannin biosynthesis. We show that brown algal genome diversification is tightly linked to phenotypic divergence, including changes in life cycle strategy and zoid flagellar structure. The study also showed that integration of large viral genomes has had a significant impact on brown algal genome content throughout the emergence of the lineage.
Collapse
Affiliation(s)
- France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Olivier Godfroy
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Svenja Heesch
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Zofia Nehr
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Nachida Tadrent
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Loraine Brillet-Guéguen
- CNRS, UMR 8227, Laboratory of Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Dean Mckeown
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Taizo Motomura
- Muroran Marine Station, Hokkaido University, Muroran, Japan
| | - Duncan Sussfeld
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France; Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France
| | - Xiao Fan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China
| | - Lisa Mazéas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Terrapon
- Aix Marseille University, CNRS, UMR 7257 AFMB, Marseille, France; INRAE, USC 1408 AFMB, Marseille, France
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lauric Reynes
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France
| | - Seok-Wan Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihoon Jo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Kenny Bogaert
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Céline Duc
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Pélagie Ratchinski
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka Lipinska
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France; Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Eleanor A Murphy
- University of Bristol, Bristol, UK; Marine Biological Association, Plymouth, UK
| | - Martin Lohr
- Johannes Gutenberg University, Mainz, Germany
| | - Ananya Khatei
- Algal and Microbial Biotechnology Division, Nord University, Bodø, Norway
| | | | - Christophe Vieira
- Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Komlan Avia
- INRAE, Université de Strasbourg, UMR SVQV, 68000 Colmar, France
| | | | - Shingo Akita
- Faculty of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan
| | - Yacine Badis
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Arnaud Belcour
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Wahiba Berrabah
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Samuel Blanquart
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Ahlem Bouguerba-Collin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | | | - Alexandre Cormier
- Ifremer, IRSI, SeBiMER Service de Bioinformatique de l'Ifremer, 29280 Plouzané, France
| | - Helena Cruz de Carvalho
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Université Paris Est-Créteil (UPEC), Faculté des Sciences et Technologie, 61, Avenue du Général De Gaulle, 94000 Créteil, France
| | - Romain Dallet
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
| | - Ahmed Debit
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Erwan Denis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Christophe Destombe
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France
| | - Erica Dinatale
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Simon Dittami
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Elodie Drula
- Aix Marseille University, CNRS, UMR 7257 AFMB, Marseille, France; INRAE, USC 1408 AFMB, Marseille, France
| | - Sylvain Faugeron
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeanne Got
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Marie-Laure Guillemin
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France; Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Lars Harms
- Alfred Wegener Institute (AWI), Bremenhaven, Germany
| | | | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Chloé Jollivet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Ehsan Kayal
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kazuhiro Kogame
- Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Arthur Le Bars
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France; CNRS, Institut Français de Bioinformatique, IFB-core, Évry, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Line Le Gall
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France
| | - Ronja Ley
- Johannes Gutenberg University, Mainz, Germany
| | - Xi Liu
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Steven T LoDuca
- Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Pascal Jean Lopez
- Centre National de la Recherche Scientifique, UMR BOREA MNHN/CNRS-8067/SU/IRD/Université de Caen Normandie/Université des Antilles, Plouzané, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France
| | - Eric Manirakiza
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Karine Massau
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Stéphane Mauger
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France
| | - Laetitia Mest
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Catia Monteiro
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Delphine Nègre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France
| | - Naomi Phillips
- Biology Department, Arcadia University, Glenside, PA, USA
| | - Philippe Potin
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Ellyn Rousselot
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Sylvie Rousvoal
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | | | - Delphine Scornet
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France
| | - Anne Siegel
- University of Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France
| | - Thierry Tonon
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | | | | | | | | | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Kobe, Japan.
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Cécile Hervé
- Sorbonne Université, CNRS, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France.
| | - Naihao Ye
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong 266237, China.
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, CNRS, Museum, Paris, France.
| | - Myriam Valero
- IRL 3614, UMR 7144, DISEEM, CNRS, Sorbonne Université, Station Biologique de Roscoff, Roscoff 29688, France.
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, ABIE Team, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France.
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS-IFB, Station Biologique, Roscoff, France.
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France.
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry 91057, France.
| | - J Mark Cock
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models Laboratory, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
4
|
Hernández S, D-C Martínez B, Olabarria C. Predicting habitat suitability for alien macroalgae in relation to thermal niche occupancy. MARINE POLLUTION BULLETIN 2024; 208:116953. [PMID: 39303553 DOI: 10.1016/j.marpolbul.2024.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
Invasive species are a major threat to global diversity and can interact synergistically or antagonistically with various components of climate change. Using species distribution models (SDMs) at different spatial scales and resolutions, we determined the main variables affecting the distribution of six invasive macroalgae present on European coasts. We also studied occupation of the thermal realized niche and predicted areas potentially at risk of invasion. The climatic variables related to warming had a greater influence on distribution at large scales, while non-climatic variables related to river influence and maritime transport at regional scale. Invaders often seemed to occupy colder areas than in their native area. The combination of SDMs with thermal niche of species is a useful way of clarifying the invasion process. This approach will help in the development of preventive strategies whereby the responsible authorities can implement early detection systems and respond swiftly to the appearance of biopollutants.
Collapse
Affiliation(s)
- Sandra Hernández
- CIM-Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias del Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310 Vigo, Spain.
| | - Brezo D-C Martínez
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos (URJC), Tulipán s/n, 28933 Móstoles, Spain; Instituto de Investigación en Cambio Global (IICG-URJC), Universidad Rey Juan Carlos (URJC), Tulipán s/n, 28933 Móstoles, Spain
| | - Celia Olabarria
- CIM-Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias del Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
5
|
Hung CC, Chang JS, Liao CH, Lee TM. Exploring the impact of ocean warming and nutrient overload on macroalgal blooms and carbon sequestration in deep-sea sediments of the subtropical western North Pacific. MARINE POLLUTION BULLETIN 2024; 208:116918. [PMID: 39265309 DOI: 10.1016/j.marpolbul.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The role of macroalgae as blue carbon (BC) under changing climate was investigated in the subtropical western North Pacific. Sea surface temperatures (SSTs) and nutrient influx increased over the past two decades (2001-2021). The proliferation of climate-resilient macroalgae was facilitated. Using Pterocladiella capillacea and Turbinaria ornata, outdoor laboratory experiments and elemental assays underscored the influence of nutrient enrichment on their resilience under ocean warming and low salinity. Macroalgal incorporation into marine sediments, indicated by environmental DNA barcoding, total organic carbon (TOC), and stable isotope analysis. Over time, an increase in δ13C and δ15N values, particularly at greater depths, suggests a tendency of carbon signature towards macroalgaeand nitrogen pollution or high tropic levels. eDNA analysis revealed selective deposition of these species. The species-dependent nature of macroalgae in deep-sea sediments highlights the role of nutrients on climate-resilient macroalgal blooms as carbon sinks in the western North Pacific.
Collapse
Affiliation(s)
- Chin-Chang Hung
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jui-Sheng Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20234, Taiwan
| | - Chin-Hsin Liao
- Department of Marine Biotechnology and Resource, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resource, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
6
|
Caley A, Marzinelli EM, Byrne M, Mayer‐Pinto M. Antagonistic Effects of Light Pollution and Warming on Habitat-Forming Seaweeds. Ecol Evol 2024; 14:e70420. [PMID: 39421325 PMCID: PMC11483544 DOI: 10.1002/ece3.70420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Artificial Light at Night (ALAN) is an emerging global stressor that is likely to interact with other stressors such as warming, affecting habitat-forming species and ecological functions. Seaweeds are dominant habitat-forming species in temperate marine ecosystems, where they support primary productivity and diverse ecological communities. Warming is a major stressor affecting seaweed forests, but effects of ALAN on seaweeds are largely unknown. We manipulated ALAN (0 lx vs. 25 lx at night) and temperature (ambient vs. +1.54°C warming) to test their independent and interactive effects on the survival, growth (biomass, total-, blade- and stipe-length) and function (photosynthesis, primary productivity and respiration) on the juveniles of two habitat-forming seaweeds, the kelp Ecklonia radiata and the fucoid Sargassum sp. Warming significantly increased Ecklonia mortality; however, ALAN did not affect mortality. ALAN had positive effects on Ecklonia biomass, total and blade growth rates and gross primary productivity; however, warming largely counterbalanced these effects. We found no significant effects of warming or ALAN on Ecklonia photosynthetic yield, stipe length, net primary productivity or respiration rates. We found no effects of ALAN or warming on Sargassum for any of the measured variables. Synthesis. Our findings indicate that ALAN can have positive effects on seaweed growth and functioning, but such effects are likely species-specific and can be counterbalanced by warming, suggesting an antagonistic interaction between these global stressors. These findings can help us to predict and manage the effects of these stressors on seaweeds, which underpin coastal biodiversity.
Collapse
Affiliation(s)
- Amelia Caley
- Centre for Marine Science and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ezequiel M. Marzinelli
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Maria Byrne
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Mariana Mayer‐Pinto
- Centre for Marine Science and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
7
|
Earp HS, Smale DA, Almond PM, Catherall HJN, Gouraguine A, Wilding C, Moore PJ. Temporal variation in the structure, abundance, and composition of Laminaria hyperborea forests and their associated understorey assemblages over an intense storm season. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106652. [PMID: 39088885 DOI: 10.1016/j.marenvres.2024.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
Kelp species function as important foundation organisms in coastal marine ecosystems where they provide biogenic habitat and ameliorate environmental conditions, often facilitating the development of diverse understorey assemblages. The structure of kelp forests is influenced by a variety of environmental factors, changes in which can result in profound shifts in ecological structure and functioning. Intense storm-induced wave action in particular, can severely impact kelp forest ecosystems. Given that storms are anticipated to increase in frequency and intensity in response to anthropogenic climate change, it is critical to understand their potential impacts on kelp forest ecosystems. During the 2021/22 northeast Atlantic storm season, the United Kingdom (UK) was subject to several intense storms, of which the first and most severe was Storm Arwen. Due to the unusual northerly wind direction, the greatest impacts of Storm Arwen were felt along the northeast coast of the UK where wind gusts exceeded 90 km/h, and inshore significant wave heights of 7.2 m and wave periods of 9.3 s were recorded. Here, we investigated temporal and spatial variation in the structure of L. hyperborea forests and associated understorey assemblages along the northeast coast of the UK over the 2021/22 storm season. We found significant changes in the cover, density, length, biomass, and age structure of L. hyperborea populations and the composition of understorey assemblages following the storm season, particularly at our most north facing site. We suggest continuous monitoring of these systems to further our understanding of temporal variation and potential recovery trajectories, alongside enhanced management to promote resilience to future perturbations.
Collapse
Affiliation(s)
- Hannah S Earp
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK; The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK; Institute of Marine Research, 4817 His, Norway.
| | - Dan A Smale
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Peter M Almond
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Harry J N Catherall
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Adam Gouraguine
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Catherine Wilding
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Pippa J Moore
- The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| |
Collapse
|
8
|
Suskiewicz TS, Byrnes JEK, Steneck RS, Russell R, Wilson CJ, Rasher DB. Ocean warming undermines the recovery resilience of New England kelp forests following a fishery-induced trophic cascade. Ecology 2024; 105:e4334. [PMID: 38887829 DOI: 10.1002/ecy.4334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 06/20/2024]
Abstract
Ecological theory predicts that kelp forests structured by trophic cascades should experience recovery and persistence of their foundation species when herbivores become rare. Yet, climate change may be altering the outcomes of top-down forcing in kelp forests, especially those located in regions that have rapidly warmed in recent decades, such as the Gulf of Maine. Here, using data collected annually from 30+ sites spanning >350 km of coastline, we explored the dynamics of Maine's kelp forests in the ~20 years after a fishery-induced elimination of sea urchin herbivores. Although forests (Saccharina latissima and Laminaria digitata) had broadly returned to Maine in the late 20th century, we found that forests in northeast Maine have since experienced slow but significant declines in kelp, and forest persistence in the northeast was juxtaposed by a rapid, widespread collapse in the southwest. Forests collapsed in the southwest apparently because ocean warming has-directly and indirectly-made this area inhospitable to kelp. Indeed, when modeling drivers of change using causal techniques from econometrics, we discovered that unusually high summer seawater temperatures the year prior, unusually high spring seawater temperatures, and high sea urchin densities each negatively impacted kelp abundance. Furthermore, the relative power and absolute impact of these drivers varied geographically. Our findings reveal that ocean warming is redefining the outcomes of top-down forcing in this system, whereby herbivore removal no longer predictably leads to a sustained dominance of foundational kelps but instead has led to a waning dominance (northeast) or the rise of a novel phase state defined by "turf" algae (southwest). Such findings indicate that limiting climate change and managing for low herbivore abundances will be essential for preventing further loss of the vast forests that still exist in northeast Maine. They also more broadly highlight that climate change is "rewriting the rules" of nature, and thus that ecological theory and practice must be revised to account for shifting species and processes.
Collapse
Affiliation(s)
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | - Robert S Steneck
- School of Marine Sciences, University of Maine, Walpole, Maine, USA
| | - Robert Russell
- Maine Department of Marine Resources, West Boothbay Harbor, Maine, USA
| | - Carl J Wilson
- Maine Department of Marine Resources, West Boothbay Harbor, Maine, USA
| | - Douglas B Rasher
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
9
|
Manca F, Benedetti-Cecchi L, Bradshaw CJA, Cabeza M, Gustafsson C, Norkko AM, Roslin TV, Thomas DN, White L, Strona G. Projected loss of brown macroalgae and seagrasses with global environmental change. Nat Commun 2024; 15:5344. [PMID: 38914573 PMCID: PMC11196678 DOI: 10.1038/s41467-024-48273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2024] [Indexed: 06/26/2024] Open
Abstract
Although many studies predict extensive future biodiversity loss and redistribution in the terrestrial realm, future changes in marine biodiversity remain relatively unexplored. In this work, we model global shifts in one of the most important marine functional groups-ecosystem-structuring macrophytes-and predict substantial end-of-century change. By modelling the future distribution of 207 brown macroalgae and seagrass species at high temporal and spatial resolution under different climate-change projections, we estimate that by 2100, local macrophyte diversity will decline by 3-4% on average, with 17 to 22% of localities losing at least 10% of their macrophyte species. The current range of macrophytes will be eroded by 5-6%, and highly suitable macrophyte habitat will be substantially reduced globally (78-96%). Global macrophyte habitat will shift among marine regions, with a high potential for expansion in polar regions.
Collapse
Affiliation(s)
- Federica Manca
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.
| | | | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (EpicAustralia.org.au), Wollongong, NSW, Australia
| | - Mar Cabeza
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Camilla Gustafsson
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Alf M Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Tomas V Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 5, 00014, Helsinki, Finland
| | - David N Thomas
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
| | - Lydia White
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | | |
Collapse
|
10
|
Fricke A, Bast F, Moreira-Saporiti A, Martins Bussanello G, Msuya FE, Teichberg M. Tropical bloom-forming mesoalgae Cladophoropsis sp. and Laurencia sp.-responses to ammonium enrichment and a simulated heatwave. JOURNAL OF PHYCOLOGY 2024; 60:554-573. [PMID: 38402562 DOI: 10.1111/jpy.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/26/2024]
Abstract
Algal blooms are increasing worldwide, driven by elevated nutrient inputs. However, it is still unknown how tropical benthic algae will respond to heatwaves, which are expected to be more frequent under global warming. In the present study, a multifactorial experiment was carried out to investigate the potential synergistic effects of increased ammonium inputs (25 μM, control at 2.5 μM) and a heatwave (31°C, control at 25°C) on the growth and physiology (e.g., ammonium uptake, nutrient assimilation, photosynthetic performance, and pigment concentrations) of two bloom-forming algal species, Cladophoropsis sp. and Laurencia sp. Both algae positively responded to elevated ammonium concentrations with higher growth and chlorophyll a and lutein concentrations. Increased temperature was generally a less important driver, interacting with elevated ammonium by decreasing the algaes' %N content and N:P ratios. Interestingly, this stress response was not captured by the photosynthetic yield (Fv/Fm) nor by the carbon assimilation (%C), which increased for both algae at higher temperatures. The negative effects of higher temperature were, however, buffered by nutrient inputs, showing an antagonistic response in the combined treatment for the concentration of VAZ (violaxanthin, antheraxanthin, zeaxanthin) and thalli growth. Ammonium uptake was initially higher for Cladophoropsis sp. and increased for Laurencia sp. over experimental time, showing an acclimation capacity even in a short time interval. This experiment shows that both algae benefited from increased ammonium pulses and were able to overcome the otherwise detrimental stress of increasingly emerging temperature anomalies, which provide them a strong competitive advantage and might support their further expansions in tropical marine systems.
Collapse
Affiliation(s)
- Anna Fricke
- WG Algae and Seagrass Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Felix Bast
- WG Algae and Seagrass Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Department of Botany, Central University of Punjab, Ghudda VPO, Punjab, India
| | - Agustín Moreira-Saporiti
- WG Algae and Seagrass Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole, Massachusetts, USA
| | - Giovanni Martins Bussanello
- Florianópolis (UFSC), R. Eng. Agronômico Andrei Cristian Ferreira, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Flower E Msuya
- Zanzibar Seaweed Cluster Initiative (ZaSCI), Zanzibar, Tanzania
| | - Mirta Teichberg
- WG Algae and Seagrass Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole, Massachusetts, USA
| |
Collapse
|
11
|
James C, Layton C, Hurd CL, Britton D. The endemic kelp Lessonia corrugata is being pushed above its thermal limits in an ocean warming hotspot. JOURNAL OF PHYCOLOGY 2024; 60:503-516. [PMID: 38426571 DOI: 10.1111/jpy.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Kelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co-occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range-restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4-22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22-23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 μmol · d-1) and high (90 μmol · d-1) nitrate conditions at and above the thermal optimum (16-23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20-21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean-warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.
Collapse
Affiliation(s)
- Cody James
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Cayne Layton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Damon Britton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
12
|
Hurd CL, Gattuso JP, Boyd PW. Air-sea carbon dioxide equilibrium: Will it be possible to use seaweeds for carbon removal offsets? JOURNAL OF PHYCOLOGY 2024; 60:4-14. [PMID: 37943584 DOI: 10.1111/jpy.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
To limit global warming below 2°C by 2100, we must drastically reduce greenhouse gas emissions and additionally remove ~100-900 Gt CO2 from the atmosphere (carbon dioxide removal, CDR) to compensate for unavoidable emissions. Seaweeds (marine macroalgae) naturally grow in coastal regions worldwide where they are crucial for primary production and carbon cycling. They are being considered as a biological method for CDR and for use in carbon trading schemes as offsets. To use seaweeds in carbon trading schemes requires verification that seaweed photosynthesis that fixes CO2 into organic carbon results in CDR, along with the safe and secure storage of the carbon removed from the atmosphere for more than 100 years (sequestration). There is much ongoing research into the magnitude of seaweed carbon storage pools (e.g., as living biomass and as particulate and dissolved organic carbon in sediments and the deep ocean), but these pools do not equate to CDR unless the amount of CO2 removed from the atmosphere as a result of seaweed primary production can be quantified and verified. The draw-down of atmospheric CO2 into seawater is via air-sea CO2 equilibrium, which operates on time scales of weeks to years depending upon the ecosystem considered. Here, we explain why quantifying air-sea CO2 equilibrium and linking this process to seaweed carbon storage pools is the critical step needed to verify CDR by discrete seaweed beds and nearshore and open ocean aquaculture systems prior to their use in carbon trading.
Collapse
Affiliation(s)
- C L Hurd
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - J-P Gattuso
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
- Institute for Sustainable Development and International Relations, Paris, France
| | - P W Boyd
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
13
|
Wernberg T, Thomsen MS, Baum JK, Bishop MJ, Bruno JF, Coleman MA, Filbee-Dexter K, Gagnon K, He Q, Murdiyarso D, Rogers K, Silliman BR, Smale DA, Starko S, Vanderklift MA. Impacts of Climate Change on Marine Foundation Species. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:247-282. [PMID: 37683273 DOI: 10.1146/annurev-marine-042023-093037] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.
Collapse
Affiliation(s)
- Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Mads S Thomsen
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Julia K Baum
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Melanie J Bishop
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda A Coleman
- National Marine Science Centre, New South Wales Department of Primary Industries, Coffs Harbour, New South Wales, Australia
| | - Karen Filbee-Dexter
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Karine Gagnon
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Daniel Murdiyarso
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Bogor, Indonesia
- Department of Geophysics and Meteorology, IPB University, Bogor, Indonesia
| | - Kerrylee Rogers
- School of Earth, Atmospheric, and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom
| | - Samuel Starko
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
| | - Mathew A Vanderklift
- Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, Western Australia, Australia
| |
Collapse
|
14
|
Kosek K, Kukliński P. Impact of kelp forest on seawater chemistry - A review. MARINE POLLUTION BULLETIN 2023; 196:115655. [PMID: 37839130 DOI: 10.1016/j.marpolbul.2023.115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Kelp forests, globally distributed in cool temperate and polar waters, are renowned for their pivotal role in supporting species diversity and fostering macroalgae productivity. These high-canopy algal ecosystems dynamically influence their surroundings, particularly by altering the physicochemical properties of seawater. This review article aims to underscore the significance of kelp forests in modifying water masses. By serving as effective carbon sinks through the absorption of bicarbonate (HCO3-) and carbon dioxide (CO2) for photosynthesis, kelp forests mitigate nearby acidity levels while enhancing dissolved oxygen concentrations, essential for sustaining diverse marine communities. Additionally, kelp beds have exhibited the need to use inorganic ions (NO3-, NO2-, PO43-) from seawater in order to grow, albeit with associated increases in NH4+ concentrations. Specific examples and findings from relevant studies will be presented to illustrate the profound impact of kelp forests on seawater chemistry, emphasizing their vital role in marine ecosystems.
Collapse
Affiliation(s)
- Klaudia Kosek
- Marine Ecology Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Piotr Kukliński
- Marine Ecology Department, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
15
|
Montie S, Thomsen MS. Facilitation of animals is stronger during summer marine heatwaves and around morphologically complex foundation species. Ecol Evol 2023; 13:e10512. [PMID: 37727775 PMCID: PMC10505761 DOI: 10.1002/ece3.10512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Foundation species create biogenic habitats, modify environmental conditions, augment biodiversity, and control animal community structures. In recent decades, marine heatwaves (MHWs) have affected the ecology of foundation species worldwide, and perhaps also their associated animal communities. However, no realistic field experiment has tested how MHWs affect animals that live in and around these foundation species. We therefore tested, in a four-factorial field experiment, if colonisation by small mobile marine animals (epifauna) onto plates with attached single versus co-occurring foundation species of different morphological complexities, were affected by 3-5°C heating (that mirrored a recent extreme MHW in the study area) and if the heating effect on the epifauna varied within and between seasons. For this experiment mimics of turf seaweed represented the single foundation species and holdfasts of seven common canopy-forming seaweed represented the co-occurring foundation species with different morphological complexities. We found that the taxonomic richness and total abundance of epifauna, dominated by copepods, generally were higher on heated plates with complex seaweed holdfasts in warmer summer trials. Furthermore, several interactions between test-factors were significant, e.g., epifaunal abundances, were, across taxonomic groups, generally higher in warmer than colder summer trials. These results suggest that, in temperate ecosystems, small, mobile, short-lived, and fast-growing marine epifauna can be facilitated by warmer oceans and morphologically complex foundation species, implying that future MHWs may increase secondary production and trophic transfers between primary producers and fish. Future studies should test whether these results can be scaled to other ecological species-interactions, across latitudes and biogeographical regions, and if similar results are found after longer MHWs or within live foundation species under real MHW conditions.
Collapse
Affiliation(s)
- Shinae Montie
- Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Mads S. Thomsen
- Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Aarhus UniversityDepartment of EcoscienceRoskildeDenmark
| |
Collapse
|
16
|
Delva S, De Baets B, Baetens JM, De Clerck O, Stock W. No bacterial-mediated alleviation of thermal stress in a brown seaweed suggests the absence of ecological bacterial rescue effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162532. [PMID: 36870499 DOI: 10.1016/j.scitotenv.2023.162532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
While microbiome alterations are increasingly proposed as a rapid mechanism to buffer organisms under changing environmental conditions, studies of these processes in the marine realm are lagging far behind their terrestrial counterparts. Here, we used a controlled laboratory experiment to examine whether the thermal tolerance of the brown seaweed Dictyota dichotoma, a common species in European coastal ecosystems, could be enhanced by the repeated addition of bacteria from its natural environment. Juvenile algae from three genotypes were subjected for two weeks to a temperature gradient, spanning almost the entire thermal range that can be tolerated by the species (11-30 °C). At the start of the experiment and again in the middle of the experiment, the algae were inoculated with bacteria from their natural environment or left untouched as a control. Relative growth rate was measured over the two-week period, and we assessed bacterial community composition prior to and at the end of the experiment. Since the growth of D. dichotoma over the full thermal gradient was not affected by supplementing bacteria, our results indicate no scope for bacterial-mediated stress alleviation. The minimal changes in the bacterial communities linked to bacterial addition, particularly at temperatures above the thermal optimum (22-23 °C), suggest the existence of a barrier to bacterial recruitment. These findings indicate that ecological bacterial rescue is unlikely to play a role in mitigating the effects of ocean warming on this brown seaweed.
Collapse
Affiliation(s)
- Soria Delva
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium; Research Unit Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Bernard De Baets
- Research Unit Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Jan M Baetens
- Research Unit Knowledge-Based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium.
| | - Willem Stock
- Phycology Research Group, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Whalen MA, Starko S, Lindstrom SC, Martone PT. Heatwave restructures marine intertidal communities across a stress gradient. Ecology 2023; 104:e4027. [PMID: 36897574 DOI: 10.1002/ecy.4027] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Significant questions remain about how ecosystems that are structured by abiotic stress will be affected by climate change. Warmer temperatures are hypothesized to shift species along abiotic gradients such that distributions track changing environments where physical conditions allow. However, community-scale impacts of extreme warming in heterogeneous landscapes are likely to be more complex. We investigated the impacts of a multiyear marine heatwave on intertidal community dynamics and zonation on a wave-swept rocky coastline along the Central Coast of British Columbia, Canada. Leveraging an 8-year time series with high seaweed taxonomic resolution (116 taxa) that was established 3 years prior to the heatwave, we document major shifts in zonation and abundance of populations that led to substantial reorganization at the community level. The heatwave was associated with shifts in primary production away from upper elevations through declines in seaweed cover and partial replacement by invertebrates. At low elevations, seaweed cover remained stable or recovered rapidly following decline, being balanced by increases in some species and decreases in others. These results illustrate that, rather than shifting community zonation uniformly along abiotic stress gradients, intense and lasting warming events may restructure patterns of ecological dominance and reduce total habitability of ecosystems, especially at extreme ends of pre-existing abiotic gradients.
Collapse
Affiliation(s)
- Matthew A Whalen
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC, Canada
| | - Samuel Starko
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- UWA Ocean Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Sandra C Lindstrom
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC, Canada
| | - Patrick T Martone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC, Canada
| |
Collapse
|
18
|
Whitaker SG, Ambrose RF, Anderson LM, Fales RJ, Smith JR, Sutton S, Miller RJ. Ecological restoration using intertidal foundation species: Considerations and potential for rockweed restoration. Ecosphere 2023. [DOI: 10.1002/ecs2.4411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Affiliation(s)
- Stephen G. Whitaker
- Bren School of Environmental Science and Management University of California Santa Barbara California USA
- Channel Islands National Park, U.S. National Park Service Ventura California USA
| | - Richard F. Ambrose
- Department of Environmental Health Sciences University of California Los Angeles California USA
| | - Laura M. Anderson
- Ecology and Evolutionary Biology Department University of California Santa Cruz California USA
| | - Robin J. Fales
- Department of Biology University of Washington Seattle Washington USA
| | - Jayson R. Smith
- Biological Sciences Department California State Polytechnic University Pomona California USA
| | - Sierra Sutton
- Biological Sciences Department California State Polytechnic University Pomona California USA
| | - Robert J. Miller
- Marine Science Institute University of California Santa Barbara California USA
| |
Collapse
|
19
|
Bermejo R, Galindo-Ponce M, Golden N, Linderhoff C, Heesch S, Hernández I, Morrison L. Two bloom-forming species of Ulva (Chlorophyta) show different responses to seawater temperature and no antagonistic interaction. JOURNAL OF PHYCOLOGY 2023; 59:167-178. [PMID: 36371650 DOI: 10.1111/jpy.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The generalized use of molecular identification tools indicated that multispecific green tides are more common than previously thought. Temporal successions between bloom-forming species on a seasonal basis were also revealed in different cold temperate estuaries, suggesting a key role of photoperiod and temperature controlling bloom development and composition. According to the Intergovernmental Panel on Climate Change, water temperatures are predicted to increase around 4°C by 2100 in Ireland, especially during late spring coinciding with early green tide development. Considering current and predicted temperatures, and photoperiods during bloom development, different eco-physiological experiments were developed. These experiments indicated that the growth of Ulva lacinulata was controlled by temperature, while U. compressa was unresponsive to the photoperiod and temperatures assayed. Considering a scenario of global warming for Irish waters, an earlier development of bloom is expected in the case of U. lacinulata. This could have significant consequences for biomass balance in Irish estuaries and the maximum accumulated biomass during peak bloom. The observed seasonal patterns and experiments also indicated that U. compressa may facilitate U. lacinulata development. When both species were co-cultivated, the culture performance showed intermediate responses to experimental treatments in comparison with monospecific cultures of both species.
Collapse
Affiliation(s)
- Ricardo Bermejo
- Department of Ecology and Geology, University of Malaga. Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), University Campus of Teatinos, E29010, Malaga, Spain
| | - Maria Galindo-Ponce
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, E11510, Puerto Real, Spain
| | - Nessa Golden
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
| | | | - Svenja Heesch
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29688, Roscoff cedex, France
| | - Ignacio Hernández
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, E11510, Puerto Real, Spain
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
20
|
Davis CL, Guralnick RP, Zipkin EF. Challenges and opportunities for using natural history collections to estimate insect population trends. J Anim Ecol 2023; 92:237-249. [PMID: 35716080 DOI: 10.1111/1365-2656.13763] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Natural history collections (NHC) provide a wealth of information that can be used to understand the impacts of global change on biodiversity. As such, there is growing interest in using NHC data to estimate changes in species' distributions and abundance trends over historic time horizons when contemporary survey data are limited or unavailable. However, museum specimens were not collected with the purpose of estimating population trends and thus can exhibit spatiotemporal and collector-specific biases that can impose severe limitations to using NHC data for evaluating population trajectories. Here we review the challenges associated with using museum records to track long-term insect population trends, including spatiotemporal biases in sampling effort and sparse temporal coverage within and across years. We highlight recent methodological advancements that aim to overcome these challenges and discuss emerging research opportunities. Specifically, we examine the potential of integrating museum records and other contemporary data sources (e.g. collected via structured, designed surveys and opportunistic citizen science programs) in a unified analytical framework that accounts for the sampling biases associated with each data source. The emerging field of integrated modelling provides a promising framework for leveraging the wealth of collections data to accurately estimate long-term trends of insect populations and identify cases where that is not possible using existing data sources.
Collapse
Affiliation(s)
- Courtney L Davis
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA.,Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA.,Biodiversity Institute, University of Florida, Gainesville, Florida, USA
| | - Elise F Zipkin
- Department of Integrative Biology; Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
21
|
Huang Y, Cui J, Wang S, Chen X, Liao J, Guo Y, Xin R, Huang B, Xie E. Transcriptome analysis reveals the molecular mechanisms of adaptation to high temperatures in Gracilaria bailinae. FRONTIERS IN PLANT SCIENCE 2023; 14:1125324. [PMID: 37123824 PMCID: PMC10140531 DOI: 10.3389/fpls.2023.1125324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Global warming causes great thermal stress to macroalgae and those species that can adapt to it are thought to be better able to cope with warmer oceans. Gracilaria bailinae, a macroalgae with high economic and ecological values, can survive through the hot summer in the South China Sea, but the molecular mechanisms underlying its adaptation to high temperatures are unclear. To address this issue, the present study analyzed the growth and transcriptome of G. bailinae after a 7-day exposure to 15°C (LT: low temperature), 25°C (MT: middle temperature), and 35°C (HT: high temperature). Growth analysis showed that the HT group had the highest relative growth rate (RGR = 2.1%) with the maximum photochemical quantum yield of PSII (F v/F m = 0.62) remaining within the normal range. Transcriptome analysis showed more differentially expressed genes (DEGs) in the comparison between MT and HT groups than in that between MT and LT, and most of these DEGs tended to be downregulated at higher temperatures. The KEGG pathway enrichment analysis showed that the DEGs were mainly enriched in the carbohydrate, energy, and lipid metabolisms. In addition, the genes involved in NADPH and ATP synthesis, which are associated with photosynthesis, the Calvin cycle, pyruvate metabolism, and the citrate cycle, were downregulated. Downregulation was also observed in genes that encode enzymes involved in fatty acid desaturation and alpha-linolenic acid metabolism. In summary, G. bailinae regulated the synthesis of NADPH and ATP, which are involved in the above-mentioned processes, to reduce unnecessary energy consumption, and limited the synthesis of enzymes in the metabolism of unsaturated fatty acids and alpha-linolenic acid to adapt to high environmental temperatures. The results of this study improve our understanding of the molecular mechanisms underlying the adaptation of G. bailinae to high temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enyi Xie
- *Correspondence: Jianjun Cui, ; Enyi Xie,
| |
Collapse
|
22
|
Cheung-Wong RWY, Kotta J, Hemraj DA, Russell BD. Persistence in a tropical transition zone? Sargassum forests alternate seasonal growth forms to maintain productivity in warming waters at the expense of annual biomass production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158154. [PMID: 35995150 DOI: 10.1016/j.scitotenv.2022.158154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Macroalgal forests provide productivity and biomass that underpins the function of many coastal ecosystems globally. The phenology of forests is seasonally driven by environmental conditions, with the environment-productivity relationship understood for most coastlines of the world. Climatic transition zones, however, have characteristics of temperate and tropical regions, creating large fluctuations in environmental conditions, and potentially limiting productivity and the persistence of macroalgal forests. The response of a forest-forming, dimorphic seaweed (Sargassum hemiphyllum) to seasonal temperature and light conditions in a rapidly warming tropical-temperate transitional zone (Hong Kong) was quantified by measuring in situ growth, net primary productivity (NPP), respiration, and photosynthetic potential. These physiological responses of S. hemiphyllum were then experimentally tested in response to changing temperatures (16.5-27 °C) and irradiances (20, 110, and 300 μmol m-2 s-1) in laboratory mesocosms. In contrast to predictions, S. hemiphyllum demonstrated asynchronous NPP and growth patterns, with growth maximized in cooler conditions but, counter-intuitively, highest photosynthetic rates in summer after annual senescence and dormancy were established. This discrepancy between peak photosynthetic rates and growth may provide regional populations of S. hemiphyllum the ability to survive higher temperatures in the near future, resisting the predicted range shifts under ocean warming. In contrast, warming is likely to drive a shorter growth season, longer dormancy, and reduced annual biomass production in bi-phasic seaweeds inhabiting climatic transition zones, potentially reducing system-wide productivity of these algal forests.
Collapse
Affiliation(s)
- Rhyn W Y Cheung-Wong
- Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China
| | - Jonne Kotta
- Estonian Marine Institute, University of Tartu, Tallinn, Estonia
| | - Deevesh A Hemraj
- Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China
| | - Bayden D Russell
- Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China; Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China; The Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
23
|
Vergés A, Lanham BS, Kono M, Okumura S, Nakamura Y. Differences in fish herbivory among tropical and temperate seaweeds and annual patterns in kelp consumption influence the tropicalisation of temperate reefs. Sci Rep 2022; 12:21202. [PMID: 36482196 PMCID: PMC9731966 DOI: 10.1038/s41598-022-24666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Climate change is leading to novel species interactions and profoundly altering ecosystems. In marine systems, tropical and subtropical species are increasing in higher latitudes. This has been linked to the deforestation of temperate coastlines, as direct effects of ocean warming combine with increased herbivory from tropical and sub-tropical fishes and lead to the decline of canopy-forming kelp. Here, we tested the hypothesis that this deforestation may be facilitated by greater palatability of temperate kelp and other canopy seaweeds compared to tropical taxa. We used multiple-choice filmed feeding field experiments and chemical analyses to measure the palatability of temperate and tropical seaweeds from Tosa Bay (southeastern Japan) and we used single-species feeding assays to measure changes in consumption of the kelp Ecklonia cava throughout the year. We found no evidence that temperate seaweeds are more palatable to herbivorous fish. In the multiple-choice assays, consumption was concentrated on both tropical and temperate Sargassum species, which are ephemeral and peak in abundance in the spring/early summer. Consumption of the kelp Ecklonia cava peaked during the autumn, when Sargassum species are absent. The highest levels of kelp herbivory coincide with the reproductive season for E. cava and may contribute to the long-term decline of these kelp forests in southern Japan.
Collapse
Affiliation(s)
- Adriana Vergés
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
- Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia.
| | - Brendan S Lanham
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia
- National Centre for Coasts and Climate, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Madoka Kono
- Graduate School of Integrated Arts and Sciences, Kochi University, Monobe 200, Nankoku, Kochi, Japan
| | - Satoru Okumura
- Faculty of Agriculture, Kochi University, Monobe 200, Nankoku, Kochi, Japan
| | - Yohei Nakamura
- Graduate School of Integrated Arts and Sciences, Kochi University, Monobe 200, Nankoku, Kochi, Japan
- Faculty of Agriculture, Kochi University, Monobe 200, Nankoku, Kochi, Japan
| |
Collapse
|
24
|
Pessarrodona A, Grimaldi CM. On the ecology of Cystophora spp. forests. JOURNAL OF PHYCOLOGY 2022; 58:760-772. [PMID: 36054376 PMCID: PMC10092567 DOI: 10.1111/jpy.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Cystophora is the second largest genus of fucoids worldwide and, like many other forest-forming macroalgae, is increasingly threatened by a range of anthropogenic impacts including ocean warming. Yet, limited ecological information is available from the warm portion of their range (SW Western Australia), where severe range contractions are predicted to occur. Here, we provide the first insights on the abundance, diversity, productivity, and stand structure of Cystophora forests in this region. Forests were ubiquitous over more than 800 km of coastline and dominated sheltered and moderately-exposed reefs. Stand biomass and productivity were similar or greater than that of kelp forests in the temperate reef communities examined, suggesting that Cystophora spp. play a similarly important ecological role. The stand structure of Cystophora forests was, however, different than those of kelp forests, with most stands featuring an abundant bank of sub-canopy juveniles and only a few plants forming the canopy layer. Stand productivity followed an opposite seasonal pattern than that of kelps, with maximal growth in late autumn through early winter and net biomass loss in summer. Annually, stands contributed between 2.2 and 5.7 kg · m-2 (fresh biomass) to reef productivity depending on the dominant stand species. We propose that Cystophora forests play an important and unique role in supporting subtidal temperate diversity and productivity throughout temperate Australia, and urge a better understanding of their ecology and responses to anthropogenic threats.
Collapse
Affiliation(s)
- Albert Pessarrodona
- UWA Oceans Institute and School of Biological SciencesUniversity of Western AustraliaCrawleyWestern Australia6009Australia
| | - Camille M. Grimaldi
- UWA Oceans Institute and Oceans Graduate SchoolUniversity of Western AustraliaCrawleyWestern Australia6009Australia
| |
Collapse
|
25
|
Izquierdo P, Taboada FG, González-Gil R, Arrontes J, Rico JM. Alongshore upwelling modulates the intensity of marine heatwaves in a temperate coastal sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155478. [PMID: 35472353 DOI: 10.1016/j.scitotenv.2022.155478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Analyses of long-term temperature records based on satellite data have revealed an increase in the frequency and intensity of marine heatwaves (MHWs) in the world oceans, a trend directly associated with global change according to climate model simulations. However, these analyses often target open ocean pelagic systems and rarely include local scale, field temperature records that are more adequate to assess the impact of MHWs close to the land-sea interface. Here, we compared the incidence and characteristics of open ocean MHWs detected by satellites with those observed in the field over two decades (1998-2019) at two temperate intertidal locations in the central Cantabrian Sea, southern Bay of Biscay. Satellite retrievals tended to smooth out cooling events associated with intermittent, alongshore upwelling, especially during summer. These biases propagated to the characterization of MHWs and resulted in an overestimation of their incidence and duration close to the coast. To reconcile satellite and field records, we developed a downscaling approach based on regression modeling that enabled the reconstruction of past temperatures and analyze MHW trends. Despite the cooling effect due to upwelling, the temperature reconstructions revealed a six-fold increase in the incidence of MHWs in the Cantabrian Sea over the last four decades. A comparison between static (no trend) vs. dynamic (featuring a linear warming trend) MHW detection thresholds allowed us to attribute over half of the increase in MHW incidence to the ocean warming trend. Our results highlight the importance of local processes to fully characterize the complexity and impacts of MHWs on marine coastal ecosystems and call for the conservation of climate refugia associated with coastal upwelling to counter the impacts of climate warming.
Collapse
Affiliation(s)
- Paula Izquierdo
- Departamento de Biología de Organismos y Sistemas, Unidad de Ecología, Universidad de Oviedo, C/ Catedrático Rodrigo Uría s/n, 33071 Oviedo, Spain.
| | - Fernando González Taboada
- Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08540, USA; AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi Ugartea z/g, 48395 Sukarrieta, Spain
| | | | - Julio Arrontes
- Departamento de Biología de Organismos y Sistemas, Unidad de Ecología, Universidad de Oviedo, C/ Catedrático Rodrigo Uría s/n, 33071 Oviedo, Spain
| | - José M Rico
- Departamento de Biología de Organismos y Sistemas, Unidad de Ecología, Universidad de Oviedo, C/ Catedrático Rodrigo Uría s/n, 33071 Oviedo, Spain
| |
Collapse
|
26
|
Liu A, Hou X, Zhang J, Wang W, Dong X, Li J, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Tissue-Specific and Time-Dependent Expressions of PC4s in Bay Scallop ( Argopecten irradians irradians) Reveal Function Allocation in Thermal Response. Genes (Basel) 2022; 13:genes13061057. [PMID: 35741819 PMCID: PMC9223095 DOI: 10.3390/genes13061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
Transcriptional coactivator p15 (PC4) encodes a structurally conserved but functionally diverse protein that plays crucial roles in RNAP-II-mediated transcription, DNA replication and damage repair. Although structures and functions of PC4 have been reported in most vertebrates and some invertebrates, the PC4 genes were less systematically identified and characterized in the bay scallop Argopecten irradians irradians. In this study, five PC4 genes (AiPC4s) were successfully identified in bay scallops via whole-genome scanning through in silico analysis. Protein structure and phylogenetic analyses of AiPC4s were conducted to determine the identities and evolutionary relationships of these genes. Expression levels of AiPC4s were assessed in embryos/larvae at all developmental stages, in healthy adult tissues and in different tissues (mantles, gills, hemocytes and hearts) being processed under 32 °C stress with different time durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Spatiotemporal expression profiles of AiPC4s suggested the functional roles of the genes in embryos/larvae at all developmental stages and in healthy adult tissues in bay scallop. Expression regulations (up- and down-) of AiPC4s under high-temperature stress displayed both tissue-specific and time-dependent patterns with function allocations, revealing that AiPC4s performed differentiated functions in response to thermal stress. This work provides clues of molecular function allocation of PC4 in scallops in response to thermal stress and helps in illustrating how marine bivalves resist elevated seawater temperature.
Collapse
Affiliation(s)
- Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Jianshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82031969
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Yushan Campus, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; (A.L.); (X.H.); (J.Z.); (W.W.); (X.D.); (J.L.); (X.Z.); (X.H.); (J.H.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
27
|
Dolliver J, O’Connor N. Whole System Analysis Is Required To Determine The Fate Of Macroalgal Carbon: A Systematic Review. JOURNAL OF PHYCOLOGY 2022; 58:364-376. [PMID: 35397178 PMCID: PMC9325415 DOI: 10.1111/jpy.13251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The role of marine primary producers in capturing atmospheric CO2 has received increased attention in the global mission to mitigate climate change. Yet, our understanding of carbon sequestration performed by macroalgae has been limited to a relatively small number of studies that have estimated the ultimate fate of macroalgal-derived carbon. This systematic review was conducted to provide a timely synthesis of the methods used to determine the fate of macroalgal carbon in this rapidly expanding research area. It also aimed to provide suggestions for more effective future research. We found that the most common methods to estimate the fate of macroalgal carbon can be categorized into groups based on those that quantify: (i) export of macroalgal carbon to other environments-known as horizontal transport; (ii) sequestration of macroalgal carbon into deep-sea sediments-known as vertical transport; (iii) burial of macroalgal carbon directly beneath a benthic community; (iv) the loss of macroalgal carbon as particulate carbon or dissolved carbon to the water column; (v) the loss of macroalgal carbon to primary consumers; and finally (vi) those studies that combined multiple methods in one location. Based on this review, several recommendations for future research were formulated, which require the combination of multiple methods in a whole system analysis approach.
Collapse
Affiliation(s)
- Jessie Dolliver
- Department of ZoologyTrinity College DublinDublinD02 F6N2Ireland
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| | - Nessa O’Connor
- Department of ZoologyTrinity College DublinDublinD02 F6N2Ireland
| |
Collapse
|
28
|
Muguerza N, Arriaga O, Díez I, Becerro MA, Quintano E, Gorostiaga JM. A spatially-modelled snapshot of future marine macroalgal assemblages in southern Europe: Towards a broader Mediterranean region? MARINE ENVIRONMENTAL RESEARCH 2022; 176:105592. [PMID: 35272245 DOI: 10.1016/j.marenvres.2022.105592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The effect of climate change on species distribution has been the focus of much recent research, but the community-level approach remains poorly studied. Our investigation applies a present assemblage-environment relationship model for the first time to the predict changes in subtidal macroalgal assemblages in the northern Iberian Peninsula under the RCP 4.5 and RCP 8.5 climate scenarios by 2100. Water temperature is the most relevant factor in shaping assemblage distribution, whilst nutrient availability plays a secondary role. The results partially support our hypothesis that there may well be a potential meridionalisation of northern Iberian assemblages in the future. Under the most pessimistic scenario, the model projects that the north-western assemblages will remain distinct from the rest, whereas the central and eastern assemblages of the north coast of the Iberian Peninsula will come to resemble those of the Mediterranean region more closely than those of the northwest coast. This research may help predict how the biodiversity of the coastal ecosystem will respond to new environmental conditions. This is essential information for developing proper management and conservation policies.
Collapse
Affiliation(s)
- N Muguerza
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain.
| | - O Arriaga
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - I Díez
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - M A Becerro
- The BITES Lab, Center for Advanced Studies of Blanes (CEAB-CSIC), Access Cala S Francesc 14, 17300, Blanes (Girona), Spain
| | - E Quintano
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - J M Gorostiaga
- Laboratory of Botany, Department of Plant Biology and Ecology, Fac. of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| |
Collapse
|
29
|
Alfonso B, Sansón M, Sangil C, Expósito FJ, Díaz JP, Hernández JC. Herbarium macroalgae specimens reveal a rapid reduction of thallus size and reproductive effort related with climate change. MARINE ENVIRONMENTAL RESEARCH 2022; 174:105546. [PMID: 34968841 DOI: 10.1016/j.marenvres.2021.105546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Understanding and forecasting the effects of climate changes on vulnerable species are leading concerns for ecologists and conservation biologists. Herbaria are invaluable for use in long-term data series, and one of the few available methods for quantifying biodiversity changes over large periods of time. Gelidium canariense is an endemic and habitat-forming macroalga of the Canary Islands that coexists with two other habitat-forming Gelidiales: G. arbuscula and Pterocladiella capillacea. This study assesses long-term changes in thallus size and reproductive effort of all specimens deposited in the Herbarium of Universidad de La Laguna of these three Gelidiales species. Also assessed were the effects of seawater temperature and increased incident light on net primary production (NPP), and the effects of extreme desiccation conditions on the relative water content and NPP of the three Gelidiales species. The length of the thallus of the endemic species G. canariense was halved during the past 40 years. The shortening of the thallus coincided with a significant decrease in the number of reproductive structures in both Gelidium species. These morphological changes coincide with a significant increase of the sea surface temperature, air temperature above sea surface and ultraviolet radiation in the studied area. The experiments have revealed the deleterious effects of extreme desiccation and extreme irradiance on all three species. Hence, these results suggest that air temperature and irradiance are related with these morphological changes over time in the habitat-forming Gelidium species and that are most likely compromising the survival of their populations which are already declining.
Collapse
Affiliation(s)
- B Alfonso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain.
| | - M Sansón
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain
| | - C Sangil
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain
| | - F J Expósito
- Departamento de Física, Universidad de La Laguna, Canary Islands, Spain
| | - J P Díaz
- Departamento de Física, Universidad de La Laguna, Canary Islands, Spain
| | - J C Hernández
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Canary Islands, Spain
| |
Collapse
|
30
|
Straub SC, Wernberg T, Marzinelli EM, Vergés A, Kelaher BP, Coleman MA. Persistence of seaweed forests in the anthropocene will depend on warming and marine heatwave profiles. JOURNAL OF PHYCOLOGY 2022; 58:22-35. [PMID: 34800039 DOI: 10.1111/jpy.13222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Marine heatwaves (MHWs), discrete periods of extreme warm water temperatures superimposed onto persistent ocean warming, have increased in frequency and significantly disrupted marine ecosystems. While field observations on the ecological consequences of MHWs are growing, a mechanistic understanding of their direct effects is rare. We conducted an outdoor tank experiment testing how different thermal stressor profiles impacted the ecophysiological performance of three dominant forest-forming seaweeds. Four thermal scenarios were tested: contemporary summer temperature (22°C), low persistent warming (24°C), a discrete MHW (22-27°C), and temperature variability followed by a MHW (22-24°C, 22-27°C). The physiological performance of seaweeds was strongly related to thermal profile and varied among species, with the highest temperature not always having the strongest effect. MHWs were highly detrimental for the fucoid Phyllospora comosa, whereas the laminarian kelp Ecklonia radiata showed sensitivity to extended thermal stress and demonstrated a cumulative temperature threshold. The fucoid Sargassum linearifolium showed resilience, albeit with signs of decline with bleached and degraded fronds, under all conditions, with stronger decline under stable control and warming conditions. The varying responses of these three co-occurring forest-forming seaweeds under different temperature scenarios suggests that the impact of ocean warming on near shore ecosystems may be complex and will depend on the specific thermal profile of rising water temperatures relative to the vulnerability of different species.
Collapse
Affiliation(s)
- Sandra C Straub
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Australia
- Institute of Marine Research, Flødevigen Research Station, His, Norway
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Adriana Vergés
- Sydney Institute of Marine Science, Mosman, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Brendan P Kelaher
- National Marine Science Centre, Southern Cross University, Coffs Harbour, Australia
| | - Melinda A Coleman
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Australia
- National Marine Science Centre, Southern Cross University, Coffs Harbour, Australia
- Department of Primary Industries, NSW Fisheries, Coffs Harbour, Australia
| |
Collapse
|
31
|
Abstract
The recent development and miniaturization of hyperspectral sensors embedded in drones has allowed the acquisition of hyperspectral images with high spectral and spatial resolution. The characteristics of both the embedded sensors and drones (viewing angle, flying altitude, resolution) create opportunities to consider the use of hyperspectral imagery to map and monitor macroalgae communities. In general, the overflight of the areas to be mapped is conconmittently associated accompanied with measurements carried out in the field to acquire the spectra of previously identified objects. An alternative to these simultaneous acquisitions is to use a hyperspectral library made up of pure spectra of the different species in place, that would spare field acquisition of spectra during each flight. However, the use of such a technique requires developed appropriate procedure for testing the level of species classification that can be achieved, as well as the reproducibility of the classification over time. This study presents a novel classification approach based on the use of reflectance spectra of macroalgae acquired in controlled conditions. This overall approach developed is based on both the use of the spectral angle mapper (SAM) algorithm applied on first derivative hyperspectral data. The efficiency of this approach has been tested on a hyperspectral library composed of 16 macroalgae species, and its temporal reproducibility has been tested on a monthly survey of the spectral response of different macro-algae species. In addition, the classification results obtained with this new approach were also compared to the results obtained through the use of the most recent and robust procedure published. The classification obtained shows that the developed approach allows to perfectly discriminate the different phyla, whatever the period. At the species level, the classification approach is less effective when the individuals studied belong to phylogenetically close species (i.e., Fucus spiralis and Fucus serratus).
Collapse
|
32
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
33
|
Mulders Y, Filbee‐Dexter K, Bell S, Bosch NE, Pessarrodona A, Sahin D, Vranken S, Zarco‐Perello S, Wernberg T. Intergrading reef communities across discrete seaweed habitats in a temperate-tropical transition zone: Lessons for species reshuffling in a warming ocean. Ecol Evol 2022; 12:e8538. [PMID: 35127041 PMCID: PMC8796930 DOI: 10.1002/ece3.8538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/15/2022] Open
Abstract
Temperate reefs are increasingly affected by the direct and indirect effects of climate change. At many of their warm range edges, cool-water kelps are decreasing, while seaweeds with warm-water affinities are increasing. These habitat-forming species provide different ecological functions, and shifts to warm-affinity seaweeds are expected to modify the structure of associated communities. Predicting the nature of such shifts at the ecosystem level is, however, challenging, as they often occur gradually over large geographical areas. Here, we take advantage of a climatic transition zone, where cool-affinity (kelp) and warm-affinity (Sargassum) seaweed forests occur adjacently under similar environmental conditions, to test whether these seaweed habitats support different associated seaweed, invertebrate, coral, and fish assemblages. We found clear differences in associated seaweed assemblages between habitats characterized by kelp and Sargassum abundance, with kelp having higher biomass and seaweed diversity and more cool-affinity species than Sargassum habitats. The multivariate invertebrate and fish assemblages were not different between habitats, despite a higher diversity of fish species in the Sargassum habitat. No pattern in temperature affinity of the invertebrate or fish assemblages in each habitat was found, and few fish species were exclusive to one habitat or the other. These findings suggest that, as ocean warming continues to replace kelps with Sargassum, the abundance and diversity of associated seaweeds could decrease, whereas fish could increase. Nevertheless, the more tropicalized seaweed habitats may provide a degree of functional redundancy to associated fauna in temperate seaweed habitats.
Collapse
Affiliation(s)
- Yannick Mulders
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | - Karen Filbee‐Dexter
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
- Institute of Marine ResearchBergenNorway
| | - Sahira Bell
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | - Nestor E. Bosch
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | | | - Defne Sahin
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | - Sofie Vranken
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
| | | | - Thomas Wernberg
- UWA Oceans Institute and School of Biological SciencesPerthWAAustralia
- Institute of Marine ResearchBergenNorway
- Department of Science and EnvironmentRoskilde UniversityRoskildeDenmark
| |
Collapse
|
34
|
Pereira J, Ribeiro PA, Santos AM, Monteiro C, Seabra R, Lima FP. A comprehensive assessment of the intertidal biodiversity along the Portuguese coast in the early 2000s. Biodivers Data J 2021; 9:e72961. [PMID: 34720639 PMCID: PMC8520032 DOI: 10.3897/bdj.9.e72961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background The unprecedented rates of current biodiversity loss have motivated a renewed interest in environmental and biodiversity monitoring. The need for sustained monitoring strategies has prompted not only the establisment of new long-term monitoring programmes, but also the rescue of data from historical or otherwise archived sources. Amongst the most valuable datasets are those containing information on intertidal systems, as they are particularly well suited for studying the biological effects of climate change. The Portuguese rocky coast is quite interesting for studying the effects of climate change on the distribution of species due to its geographical orientation, latitudinal patterns in temperature, species richness, species' distribution patterns and availability of historical information. This work aims at providing a comprehensive picture of the distribution and abundance of intertidal macro-invertebrates and macro-algae along the Portuguese rocky coast in the early 2000s. New information This study provides a description of the rocky shore intertidal biodiversity of the mainland Portuguese coast in the early 2000s. The spatial distribution and semi-quantitative abundance of a total of 238 taxa were assessed at 49 wave-exposed locations. These data provide a comprehensive baseline against which biodiversity changes can be effectively and objectively evaluated.
Collapse
Affiliation(s)
- Joana Pereira
- CIBIO/InBIO, University of Porto, Porto, Portugal CIBIO/InBIO, University of Porto Porto Portugal
| | - Pedro A Ribeiro
- Department of Biological Sciences, University of Bergen, Bergen, Norway Department of Biological Sciences, University of Bergen Bergen Norway
| | - António Múrias Santos
- University of Porto, Porto, Portugal University of Porto Porto Portugal.,CIBIO/InBIO, University of Porto, Porto, Portugal CIBIO/InBIO, University of Porto Porto Portugal
| | - Cátia Monteiro
- CIBIO/InBIO, University of Porto, Porto, Portugal CIBIO/InBIO, University of Porto Porto Portugal
| | - Rui Seabra
- CIBIO/InBIO, University of Porto, Porto, Portugal CIBIO/InBIO, University of Porto Porto Portugal
| | - Fernando P Lima
- CIBIO/InBIO, University of Porto, Porto, Portugal CIBIO/InBIO, University of Porto Porto Portugal
| |
Collapse
|
35
|
Bevilacqua S, Airoldi L, Ballesteros E, Benedetti-Cecchi L, Boero F, Bulleri F, Cebrian E, Cerrano C, Claudet J, Colloca F, Coppari M, Di Franco A, Fraschetti S, Garrabou J, Guarnieri G, Guerranti C, Guidetti P, Halpern BS, Katsanevakis S, Mangano MC, Micheli F, Milazzo M, Pusceddu A, Renzi M, Rilov G, Sarà G, Terlizzi A. Mediterranean rocky reefs in the Anthropocene: Present status and future concerns. ADVANCES IN MARINE BIOLOGY 2021; 89:1-51. [PMID: 34583814 DOI: 10.1016/bs.amb.2021.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.
Collapse
Affiliation(s)
- Stanislao Bevilacqua
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy.
| | - Laura Airoldi
- Stazione Idrobiologica di Chioggia "Umberto D'Ancona", Dipartimento di Biologia, University of Padova, Padova, Italy; Dipartimento di Beni Culturali, University of Bologna, Ravenna, Italy
| | | | - Lisandro Benedetti-Cecchi
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Ferdinando Boero
- Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy; National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Emma Cebrian
- Centre d'Estudis Avançats de Blanes-CSIC, Girona, Spain
| | - Carlo Cerrano
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy; Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, USR 3278 CNRS-EPHE-UPVD, Maison des Océans, Paris, France
| | - Francesco Colloca
- Department of Integrative Ecology, Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Rome, Italy
| | - Martina Coppari
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Di Franco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily, Palermo, Italy
| | - Simonetta Fraschetti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Joaquim Garrabou
- Institut de Ciències del Mar, CSIC, Barcelona, Spain; Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Giuseppe Guarnieri
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
| | | | - Paolo Guidetti
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy; Department of Integrative Marine Ecology, Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Benjamin S Halpern
- National Center for Ecological Analysis & Synthesis, University of California, Santa Barbara, CA, United States; Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, United States
| | | | - Maria Cristina Mangano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily, Palermo, Italy
| | - Fiorenza Micheli
- Hopkins Marine Station and Center for Ocean Solutions, Stanford University, Pacific Grove, CA, United States
| | - Marco Milazzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Antonio Pusceddu
- Dipartimento di Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Monia Renzi
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Gianluca Sarà
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Antonio Terlizzi
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
36
|
Pansini A, La Manna G, Pinna F, Stipcich P, Ceccherelli G. Trait gradients inform predictions of seagrass meadows changes to future warming. Sci Rep 2021; 11:18107. [PMID: 34518602 PMCID: PMC8438026 DOI: 10.1038/s41598-021-97611-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
Comparing populations across temperature gradients can inform how global warming will impact the structure and function of ecosystems. Shoot density, morphometry and productivity of the seagrass Posidonia oceanica to temperature variation was quantified at eight locations in Sardinia (western Mediterranean Sea) along a natural sea surface temperature (SST) gradient. The locations are spanned for a narrow range of latitude (1.5°), allowing the minimization of the effect of eventual photoperiod variability. Mean SST predicted P. oceanica meadow structure, with increased temperature correlated with higher shoot density, but lower leaf and rhizome width, and rhizome biomass. Chlorophyll a (Chl-a) strongly impacted seagrass traits independent of SST. Disentangling the effects of SST and Chl-a on seagrass meadow shoot density revealed that they work independently, but in the same direction with potential synergism. Space-for-time substitution predicts that global warming will trigger denser seagrass meadows with slender shoots, fewer leaves, and strongly impact seagrass ecosystem. Future investigations should evaluate if global warming will erode the ecosystem services provided by seagrass meadows.
Collapse
Affiliation(s)
- Arianna Pansini
- grid.11450.310000 0001 2097 9138Dipartimento di Architettura, Design, Urbanistica, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy
| | - Gabriella La Manna
- MareTerra Onlus-Environmental Research and Conservation, Regione Sa Londra 9, 07041 Alghero, Italy
| | - Federico Pinna
- grid.11450.310000 0001 2097 9138Dipartimento di Architettura, Design, Urbanistica, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy
| | - Patrizia Stipcich
- grid.11450.310000 0001 2097 9138Dipartimento di Architettura, Design, Urbanistica, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy
| | - Giulia Ceccherelli
- grid.11450.310000 0001 2097 9138Dipartimento di Chimica e Farmacia, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy
| |
Collapse
|
37
|
Gervais CR, Champion C, Pecl GT. Species on the move around the Australian coastline: A continental-scale review of climate-driven species redistribution in marine systems. GLOBAL CHANGE BIOLOGY 2021; 27:3200-3217. [PMID: 33835618 PMCID: PMC8251616 DOI: 10.1111/gcb.15634] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/23/2021] [Indexed: 05/02/2023]
Abstract
Climate-driven changes in the distribution of species are a pervasive and accelerating impact of climate change, and despite increasing research effort in this rapidly emerging field, much remains unknown or poorly understood. We lack a holistic understanding of patterns and processes at local, regional and global scales, with detailed explorations of range shifts in the southern hemisphere particularly under-represented. Australian waters encompass the world's third largest marine jurisdiction, extending from tropical to sub-Antarctic climate zones, and have waters warming at rates twice the global average in the north and two to four times in the south. Here, we report the results of a multi-taxon continent-wide review describing observed and predicted species redistribution around the Australian coastline, and highlight critical gaps in knowledge impeding our understanding of, and response to, these considerable changes. Since range shifts were first reported in the region in 2003, 198 species from nine Phyla have been documented shifting their distribution, 87.3% of which are shifting poleward. However, there is little standardization of methods or metrics reported in observed or predicted shifts, and both are hindered by a lack of baseline data. Our results demonstrate the importance of historical data sets and underwater visual surveys, and also highlight that approximately one-fifth of studies incorporated citizen science. These findings emphasize the important role the public has had, and can continue to play, in understanding the impact of climate change. Most documented shifts are of coastal fish species in sub-tropical and temperate systems, while tropical systems in general were poorly explored. Moreover, most distributional changes are only described at the poleward boundary, with few studies considering changes at the warmer, equatorward range limit. Through identifying knowledge gaps and research limitations, this review highlights future opportunities for strategic research effort to improve the representation of Australian marine species and systems in climate-impact research.
Collapse
Affiliation(s)
- Connor R. Gervais
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Curtis Champion
- Fisheries ResearchNSW Department of Primary IndustriesCoffs HarbourNSWAustralia
- Southern Cross UniversityNational Marine Science CentreCoffs HarbourNSWAustralia
| | - Gretta T. Pecl
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasAustralia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTasAustralia
| |
Collapse
|
38
|
Díaz-Acosta L, Barreiro R, Provera I, Piñeiro-Corbeira C. Physiological response to warming in intertidal macroalgae with different thermal affinity. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105350. [PMID: 34004421 DOI: 10.1016/j.marenvres.2021.105350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Changes in the abundance and distribution of seaweeds have been reported worldwide. In Northwest Iberia, cold and warm affinity seaweeds have respectively decreased and increased their abundance. To improve our understanding of their vulnerability to future warming scenarios, the effects of warming on the photosynthetic and respiratory performance of seaweeds with cold-water (Fucus serratus and Vertebrata lanosa) and warm-water (Padina pavonica and Gigartina pistillata) affinities were compared in a highly resolved temperature gradient (7-31 °C) under controlled laboratory conditions. While neither the optimum temperature nor the photosynthetic rate at the optimum temperature showed consistent differences between water affinity groups, the temperature dependence of net photosynthesis was significantly higher in the warm-affinity group. Photosynthesis was less responsive than respiration to warming in cold-affinity seaweeds while both rates showed similar responsiveness in warm-affinity ones, suggesting that the relative responsiveness of respiration and photosynthesis to temperature may be indicative of warming susceptibility.
Collapse
Affiliation(s)
- Laura Díaz-Acosta
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Rodolfo Barreiro
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Isabella Provera
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
39
|
Lanham BS, Poore AGB, Gribben PE. Fine-scale responses of mobile invertebrates and mesopredatory fish to habitat configuration. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105319. [PMID: 33845258 DOI: 10.1016/j.marenvres.2021.105319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
As habitat-forming species continue to decline globally, it is important to understand how associated communities respond to habitat loss and fragmentation. Changes in the density and spatial configuration of habitat have important consequences for associated communities. However, tests of these factors are often confounded by morphological variation of habitat-formers, which can be resolved by using standardised habitat-mimics. Furthermore, few studies have incorporated the role of predators in mediating the observed effects. To test whether predators mediate the abundance of invertebrates among algal habitats of varying configuration (isolated vs patches, and positions within patches), we placed macroalgal mimics into subtidal estuarine habitats for one month to sample epifaunal communities. At the same time, we conducted underwater video surveys of fish communities to quantify fish communities and their feeding behaviour among the artificial habitats. Isolated habitats did not differ from patch habitats, however, patch edges had the highest epifaunal abundance, where fish were least commonly observed. Observed fish feeding was highest in the middle of patches and increased fish observations and feeding in habitats with reduced epifaunal communities suggest that mesopredatory fish are mediating epifauna in patches, with predation pressure altered by the spatial configuration of the habitat. This contrasts to previous studies that focus on predators that congregate outside patches and suggest that fragmentation leads to reduced invertebrate abundance at habitat edges in contrast to centres. However, this study highlights that in habitat patches housing small mesopredators that also benefit from the increased structure, the centre of the patch experiences higher predation and therefore fewer epifauna in contrast to patch edges and individual algal mimics.
Collapse
Affiliation(s)
- Brendan S Lanham
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, Australia.
| | - Alistair G B Poore
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, Australia; Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Paul E Gribben
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW, Australia; Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, NSW, 2088, Australia
| |
Collapse
|
40
|
Kang EJ, Han AR, Kim JH, Kim IN, Lee S, Min JO, Nam BR, Choi YJ, Edwards MS, Diaz-Pulido G, Kim C. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144443. [PMID: 33493906 DOI: 10.1016/j.scitotenv.2020.144443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The occurrence of green-tides, whose bloom potential may be increased by various human activities and biogeochemical process, results in enormous economic losses and ecosystem collapse. In this study, we investigated the ecophysiology of the subtropical green-tide forming alga, Ulva ohnoi complex (hereafter: U. ohnoi), under simulated future ocean conditions in order to predict its bloom potential using photosynthesis and growth measurements, and stable isotope analyses. Our mesocosm system included four experimental conditions that simulated the individual and combined effects of elevated CO2 and temperature, namely control (450 μatm CO2 & 20 °C), acidification (900 μatm CO2 & 20 °C), warming (450 μatm CO2 & 25 °C), and greenhouse (900 μatm CO2 & 25 °C). Photosynthetic electron transport rates (rETR) increased significantly under acidification conditions, but net photosynthesis and growth were not affected. In contrast, rETR, net photosynthesis, and growth all decreased significantly under elevated temperature conditions (i.e. both warming and greenhouse). These results represent the imbalance of energy metabolism between electron transport and O2 production that may be expected under ocean acidification conditions. This imbalance appears to be related to carbon and nitrogen assimilation by U. ohnoi. In particular, 13C and 15N discrimination data suggest U. ohnoi prefers CO2 and NH4+ over HCO3- and NO3- as sources of carbon and nitrogen, respectively, and this results in increased N content in the thallus under ocean acidification conditions. Together, our results suggest a trade-off in which the bloom potential of U. ohnoi could increase under ocean acidification due to greater N accumulation and through the saving of energy during carbon and nitrogen metabolism, but that elevated temperatures could decrease U. ohnoi's bloom potential through a decrease in photosynthesis and growth.
Collapse
Affiliation(s)
- Eun Ju Kang
- Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea
| | - A-Reum Han
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Republic of Korea; Jeolla High School, Jeollabukdo Office of Education, Jeonju 54863, Republic of Korea
| | - Ju-Hyoung Kim
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Republic of Korea.
| | - Il-Nam Kim
- Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea
| | - Sukyeon Lee
- Faculty of Marine Applied Biosciences, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Jun-Oh Min
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Bo-Ra Nam
- Department of Biology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Young-Joon Choi
- Department of Biology, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Matthew S Edwards
- Department of Biology, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA
| | - Guillermo Diaz-Pulido
- School of Environment and Science and Australian Rivers Institute-Coast & Estuaries, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Changsin Kim
- Fisheries Resource Management Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| |
Collapse
|
41
|
Wood G, Marzinelli EM, Campbell AH, Steinberg PD, Vergés A, Coleman MA. Genomic vulnerability of a dominant seaweed points to future-proofing pathways for Australia's underwater forests. GLOBAL CHANGE BIOLOGY 2021; 27:2200-2212. [PMID: 33511779 DOI: 10.1111/gcb.15534] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Globally, critical habitats are in decline, threatening ecological, economic and social values and prompting calls for 'future proofing' efforts that enhance resilience to climate change. Such efforts rely on predicting how neutral and adaptive genomic patterns across a species' distribution will change under future climate scenarios, but data is scant for most species of conservation concern. Here, we use seascape genomics to characterise genetic diversity, structure and gene-environmental associations in a dominant forest-forming seaweed, Phyllospora comosa, along its entire latitudinal (12° latitude), and thermal (~14°C) range. Phyllospora showed high connectivity throughout its central range, with evidence of genetic structure and potential selection associated with sea surface temperatures (SSTs) at its rear and leading edges. Rear and leading-edge populations harboured only half the genetic diversity of central populations. By modelling genetic turnover as a function of SST, we assessed the genomic vulnerability across Phyllospora's distributional range under climate change scenarios. Despite low diversity, range-edge populations were predicted to harbour beneficial adaptations to marginal conditions and overall adaptability of the species may be compromised by their loss. Assisted gene flow from range edge populations may be required to enhance adaptation and increase resilience of central and leading-edge populations under warming oceans. Understanding genomic vulnerability can inform proactive restoration and future-proofing strategies for underwater forests and ensure their persistence in changing oceans.
Collapse
Affiliation(s)
- Georgina Wood
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Sydney, NSW, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Alexandra H Campbell
- USC Seaweed Research Group, University of the Sunshine Coast, Sunshine Coast, Qld, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Sydney, NSW, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Adriana Vergés
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Melinda A Coleman
- Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW, Australia
| |
Collapse
|
42
|
Ewers-Saucedo C, Allspach A, Barilaro C, Bick A, Brandt A, Fiege D, Füting S, Hausdorf B, Hayer S, Husemann M, Joger U, Kamcke C, Küster M, Lohrmann V, Martin I, Michalik P, Reinicke GB, Schwentner M, Stiller M, Brandis D. Natural history collections recapitulate 200 years of faunal change. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201983. [PMID: 33996123 PMCID: PMC8059531 DOI: 10.1098/rsos.201983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Changing species assemblages represent major challenges to ecosystems around the world. Retracing these changes is limited by our knowledge of past biodiversity. Natural history collections represent archives of biodiversity and are therefore an unparalleled source to study biodiversity changes. In the present study, we tested the value of natural history collections for reconstructing changes in the abundance and presence of species over time. In total, we scrutinized 17 080 quality-checked records for 242 epibenthic invertebrate species from the North and Baltic Seas collected throughout the last 200 years. Our approaches identified eight previously reported species introductions, 10 range expansions, six of which are new to science, as well as the long-term decline of 51 marine invertebrate species. The cross-validation of our results with published accounts of endangered species and neozoa of the area confirmed the results for two of the approaches for 49 to 55% of the identified species, and contradicted our results for 9 to 10%. The results based on relative record trends were less validated. We conclude that, with the proper approaches, natural history collections are an unmatched resource for recovering early species introductions and declines.
Collapse
Affiliation(s)
- Christine Ewers-Saucedo
- Zoologisches Museum, Christian-Albrechts-Universität zu Kiel, Hegewischstraße 3, 24105 Kiel, Germany
| | - Andreas Allspach
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Christina Barilaro
- Landesmuseum Natur und Mensch Oldenburg, Damm 38-44, 26135 Oldenburg, Germany
| | - Andreas Bick
- Zoological Collections of the University of Rostock, Institute for Biological Sciences, General and Systematic Zoology, Universitätsplatz 2, 18055 Rostock, Germany
| | - Angelika Brandt
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Goethe-University of Frankfurt, FB 15, Institute for Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
| | - Dieter Fiege
- Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Susanne Füting
- Museum für Natur und Umwelt Lübeck, Musterbahn 8, 23552 Lübeck, Germany
| | - Bernhard Hausdorf
- Centrum für Naturkunde (CeNak), Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Sarah Hayer
- Zoologisches Museum, Christian-Albrechts-Universität zu Kiel, Hegewischstraße 3, 24105 Kiel, Germany
| | - Martin Husemann
- Centrum für Naturkunde (CeNak), Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Ulrich Joger
- Staatliches Naturhistorisches Museum, Pockelsstraße 10, 38106 Braunschweig, Germany
| | - Claudia Kamcke
- Staatliches Naturhistorisches Museum, Pockelsstraße 10, 38106 Braunschweig, Germany
| | - Mathias Küster
- Müritzeum, Zur Steinmole 1, 17192 Waren (Müritz), Germany
| | - Volker Lohrmann
- Übersee-Museum Bremen, Bahnhofsplatz 13, 28195 Bremen, Germany
| | - Ines Martin
- Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund, Germany
| | - Peter Michalik
- Zoologisches Museum der Universität Greifswald, Loitzer Straße 26, 17489 Greifswald, Germany
| | | | - Martin Schwentner
- Centrum für Naturkunde (CeNak), Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Naturhistorisches Museum Wien, Burgring 7, 1140 Wien, Austria
| | - Michael Stiller
- Übersee-Museum Bremen, Bahnhofsplatz 13, 28195 Bremen, Germany
| | - Dirk Brandis
- Zoologisches Museum, Christian-Albrechts-Universität zu Kiel, Hegewischstraße 3, 24105 Kiel, Germany
| |
Collapse
|
43
|
Taheri S, Naimi B, Rahbek C, Araújo MB. Improvements in reports of species redistribution under climate change are required. SCIENCE ADVANCES 2021; 7:eabe1110. [PMID: 33827813 PMCID: PMC8026129 DOI: 10.1126/sciadv.abe1110] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/11/2021] [Indexed: 05/13/2023]
Abstract
Studies have documented climate change-induced shifts in species distributions but uncertainties associated with data and methods are typically unexplored. We reviewed 240 reports of climate-related species-range shifts and classified them based on three criteria. We ask whether observed distributional shifts are compared against random expectations, whether multicausal factors are examined on equal footing, and whether studies provide sufficient documentation to enable replication. We found that only ~12.1% of studies compare distributional shifts across multiple directions, ~1.6% distinguish observed patterns from random expectations, and ~19.66% examine multicausal factors. Last, ~75.5% of studies report sufficient data and results to allow replication. We show that despite gradual improvements over time, there is scope for raising standards in data and methods within reports of climate-change induced shifts in species distribution. Accurate reporting is important because policy responses depend on them. Flawed assessments can fuel criticism and divert scarce resources for biodiversity to competing priorities.
Collapse
Affiliation(s)
- Shirin Taheri
- Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC, Calle Jose Gutierrez Abascal, 2, 28006 Madrid, Spain.
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, c/Tulipán s/n, Móstoles 28933, Spain
| | - Babak Naimi
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense M, Denmark
- Institute of Ecology, Peking University, Beijing 100871, China
| | - Miguel B Araújo
- Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC, Calle Jose Gutierrez Abascal, 2, 28006 Madrid, Spain.
- Rui Nabeiro Biodiversity Chair, MED Institute, University of Évora, Largo dos Colegiais, 7000 Évora, Portugal
| |
Collapse
|
44
|
Bradshaw CJA, Meagher P, Thiele MJ, Harcourt RG, Huveneers C. Predicting potential future reduction in shark bites on people. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201197. [PMID: 34035935 PMCID: PMC8101541 DOI: 10.1098/rsos.201197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Despite the low chance of a person being bitten by a shark, there are serious associated costs. Electronic deterrents are currently the only types of personal deterrent with empirical evidence of a substantial reduction in the probability of being bitten by a shark. We aimed to predict the number of people who could potentially avoid being bitten by sharks in Australia if they wear personal electronic deterrents. We used the Australian Shark Attack File from 1900 to 2020 to develop sinusoidal time-series models of per capita incidents, and then stochastically projected these to 2066. We predicted that up to 1063 people (range: 185-2118) could potentially avoid being bitten across Australia by 2066 if all people used the devices. Avoiding death and injury of people over the next half-century is of course highly desirable, especially when considering the additional costs associated with the loss of recreational, commercial and tourism revenue potentially in the tens to hundreds of millions of dollars following clusters of shark-bite events.
Collapse
Affiliation(s)
- Corey J. A. Bradshaw
- Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Phoebe Meagher
- Taronga Conservation Society Australia, Taronga Zoo, Sydney, New South Wales, Australia
| | - Madeline J. Thiele
- Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Robert G. Harcourt
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Charlie Huveneers
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|
45
|
Coastal ocean acidification and nitrogen loading facilitate invasions of the non-indigenous red macroalga, Dasysiphonia japonica. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02445-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractCoastal ecosystems are prone to multiple anthropogenic and natural stressors including eutrophication, acidification, and invasive species. While the growth of some macroalgae can be promoted by excessive nutrient loading and/or elevated pCO2, responses differ among species and ecosystems. Native to the western Pacific Ocean, the filamentous, turf-forming rhodophyte, Dasysiphonia japonica, appeared in estuaries of the northeastern Atlantic Ocean during the 1980s and the northwestern Atlantic Ocean during the late 2000s. Here, we report on the southernmost expansion of the D. japonica in North America and the effects of elevated nutrients and elevated pCO2 on the growth of D. japonica over an annual cycle in Long Island, New York, USA. Growth limitation of the macroalga varied seasonally. During winter and spring, when water temperatures were < 15 °C, growth was significantly enhanced by elevated pCO2 (p < 0.05). During summer and fall, when the water temperature was 15–24 °C, growth was significantly higher under elevated nutrient treatments (p < 0.05). When temperatures reached 28 °C, the macroalga grew poorly and was unaffected by nutrients or pCO2. The δ13C content of regional populations of D. japonica was −30‰, indicating the macroalga is an obligate CO2-user. This result, coupled with significantly increased growth under elevated pCO2 when temperatures were < 15 °C, indicates this macroalga is carbon-limited during colder months, when in situ pCO2 was significantly lower in Long Island estuaries compared to warmer months when estuaries are enriched in metabolically derived CO2. The δ15N content of this macroalga (9‰) indicated it utilized wastewater-derived N and its N limitation during warmer months coincided with lower concentrations of dissolved inorganic N in the water column. Given the stimulatory effect of nutrients on this macroalga and that eutrophication can promote seasonally elevated pCO2, this study suggests that eutrophic estuaries subject to peak annual temperatures < 28 °C may be particularly vulnerable to future invasions of D. japonica as ocean acidification intensifies. Conversely, nutrient reductions would serve as a management approach that would make coastal regions more resilient to invasions by this macroalga.
Collapse
|
46
|
Yang Y, Li W, Li Y, Xu N. Photophysiological responses of the marine macroalga Gracilariopsis lemaneiformis to ocean acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105204. [PMID: 33213860 DOI: 10.1016/j.marenvres.2020.105204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
To study the combined effects of ocean acidification (OA) and warming on the growth and photosynthetic performance of the economically important marine macroalga Gracilariopsis lemaneiformis, thalli were grown under ambient low CO2 (390 μatm, LC) and elevated high CO2 (1000 μatm, HC) conditions with culture temperatures of 20 °C and 24 °C. Based on the evaluation of growth and photosynthetic responses to light and dissolved inorganic carbon (DIC), HC decreased the growth rate and phycoerythrin (PE) and phycocyanin (PC) levels but increased contents of UV-absorbing compounds (UVACs) in G. lemaneiformis at 20 °C, and high temperature counteracted these effects. Photosynthetic responses such as chlorophyll fluorescence parameters (maximum relative electron transport rate, rETRmax; light use efficiency, α; saturation light intensity, Ik; maximum quantum yield, FV/FM; effective quantum yield, Y(II) and non-photochemical quenching, NPQ) were not different among the treatments. However, increased oxygen evolution (Pn) and dark respiration (Rd) rates were observed at 20 °C in the HC treatment. No significant effects of HC on apparent carboxylation efficiency (ACE), maximum oxygen evolution rate (Vmax) and DIC affinity for oxygen evolution (K1/2DIC) were found, and HC synergy with high temperature increased K1/2DIC. A lower C/N ratio with decreased tissue carbon but increased nitrogen was observed under HC and high-temperature treatment. Our results indicate that high temperature may counteract the negative effects of OA on the growth and pigment characteristics of G. lemaneiformis and improve food quality, as evidenced by enhanced N per biomass.
Collapse
Affiliation(s)
- Yuling Yang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China; College of Life and Environmental Sciences, Huangshan University, Huangshan, 245021, China
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245021, China.
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
47
|
Ji Y, Gao K. Effects of climate change factors on marine macroalgae: A review. ADVANCES IN MARINE BIOLOGY 2020; 88:91-136. [PMID: 34119047 DOI: 10.1016/bs.amb.2020.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Marine macroalgae, the main primary producers in coastal waters, play important roles in the fishery industry and global carbon cycles. With progressive ocean global changes, however, they are increasingly exposed to enhanced levels of multiple environmental drivers, such as ocean acidification, warming, heatwaves, UV radiation and deoxygenation. While most macroalgae have developed physiological strategies against variations of these drivers, their eco-physiological responses to each or combinations of the drivers differ spatiotemporally and species-specifically. Many freshwater macroalgae are tolerant of pH drop and its diel fluctuations and capable of acclimating to changes in carbonate chemistry. However, calcifying species, such as coralline algae, are very sensitive to acidification of seawater, which reduces their calcification, and additionally, temperature rise and UV further decrease their physiological performance. Except for these calcifying species, both economically important and harmful macroalgae can benefit from elevated CO2 concentrations and moderate temperature rise, which might be responsible for increasing events of harmful macroalgal blooms including green macroalgal blooms caused by Ulva spp. and golden tides caused by Sargassum spp. Upper intertidal macroalgae, especially those tolerant of dehydration during low tide, increase their photosynthesis under elevated CO2 concentrations during the initial dehydration period, however, these species might be endangered by heatwaves, which can expose them to high temperature levels above their thermal windows' upper limit. On the other hand, since macroalgae are distributed in shallow waters, they are inevitably exposed to solar UV radiation. The effects of UV radiation, depending on weather conditions and species, can be harmful as well as beneficial to many species. Moderate levels of UV-A (315-400nm) can enhance photosynthesis of green, brown and red algae, while UV-B (280-315nm) mainly show inhibitory impacts. Although little has been documented on the combined effects of elevated CO2, temperature or heatwaves with UV radiation, exposures to heatwaves during midday under high levels of UV radiation can be detrimental to most species, especially to their microscopic stages which are less tolerant of climate change induced stress. In parallel, reduced availability of dissolved O2 in coastal water along with eutrophication might favour the macroalgae's carboxylation process by suppressing their oxygenation or photorespiration. In this review, we analyse effects of climate change-relevant drivers individually and/or jointly on different macroalgal groups and different life cycle stages based on the literatures surveyed, and provide perspectives for future studies.
Collapse
Affiliation(s)
- Yan Ji
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; School of Biological & Chemical Engineering, Qingdao Technical College, Qingdao, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University/College of Ocean and Earth Sciences, Xiamen, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
48
|
Medrano A, Hereu B, Mariani S, Neiva J, Pagès-Escolà M, Paulino C, Rovira GL, Serrão EA, Linares C. Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Sci Rep 2020; 10:19219. [PMID: 33154466 PMCID: PMC7644675 DOI: 10.1038/s41598-020-76066-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
The widespread decline of canopy-forming macroalgal assemblages has been documented in many regions during the last decades. This pattern is often followed by the replacement of structurally complex algal canopies by more simplified habitats (e.g., turfs or sea urchin barren grounds). Against all odds, the fucoid Treptacantha elegans, a large Mediterranean brown macroalga, broadened its depth range to deeper and exposed environments and displayed an unexpected range expansion along the northern coast of Catalonia over the last two decades. Here, we reconstruct the spread of T. elegans in time and space and unravel ecological and demographic traits such as population dynamics and genetic patterns to provide a comprehensive and integrated view of the current status and geographical expansion for this species. Fast-growing dynamics, early fertile maturity, and high turnover rate are the main competitive advantages that allow the exposed populations of T. elegans to colonize available substrata and maintain dense and patchy populations. We also provided evidence that the deeper and exposed populations of T. elegans constitute a single group across the Catalan coast, with little genetic differentiation among populations. This seems to support the hypothesis of a unique source of spread in the last decades from the Medes Islands No-Take Zone towards both southern and northern waters.
Collapse
Affiliation(s)
- Alba Medrano
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.
| | - Bernat Hereu
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Simone Mariani
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Centre d'Estudis Avançats de Blanes - CSIC, Accés Cala Sant Francesc 14, Blanes, 17300, Girona, Spain
| | - João Neiva
- Center of Marine Science (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Marta Pagès-Escolà
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Cristina Paulino
- Center of Marine Science (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Graciel la Rovira
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Ester A Serrão
- Center of Marine Science (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cristina Linares
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Institut de Recerca de La Biodiversitat (IRBIO), University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
49
|
Beas-Luna R, Micheli F, Woodson CB, Carr M, Malone D, Torre J, Boch C, Caselle JE, Edwards M, Freiwald J, Hamilton SL, Hernandez A, Konar B, Kroeker KJ, Lorda J, Montaño-Moctezuma G, Torres-Moye G. Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes. GLOBAL CHANGE BIOLOGY 2020; 26:6457-6473. [PMID: 32902090 DOI: 10.1111/gcb.15273] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large-scale, long-term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long-term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long-term (2006-2016) change and a recent marine heatwave (2014-2016) associated with two atmospheric and oceanographic anomalies, the "Blob" and extreme El Niño Southern Oscillation (ENSO). Canopy-forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region-wide changes in productive coastal marine ecosystems in response to large-scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.
Collapse
Affiliation(s)
| | - Fiorenza Micheli
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| | - C Brock Woodson
- College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Carr
- University of California, Santa Cruz, CA, USA
| | - Dan Malone
- University of California, Santa Cruz, CA, USA
| | - Jorge Torre
- Comunidad y Biodiversidad A.C., La Paz, Mexico
| | - Charles Boch
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
- Southwest Fisheries Science Center, NOAA, San Diego, CA, USA
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, CA, USA
| | | | - Jan Freiwald
- University of California, Santa Cruz, CA, USA
- Reef Check California, Marina del Rey, CA, USA
| | - Scott L Hamilton
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | | | | | | | - Julio Lorda
- Universidad Autónoma de Baja California, Ensenada, Mexico
- Tijuana River National Estuarine Research Reserve, Imperial Beach, CA, USA
| | | | | |
Collapse
|
50
|
Cappelatti L, Mauffrey ARL, Griffin JN. Functional diversity of habitat formers declines scale-dependently across an environmental stress gradient. Oecologia 2020; 194:135-149. [PMID: 32895733 PMCID: PMC7561580 DOI: 10.1007/s00442-020-04746-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
Marine habitat formers such as seaweeds and corals are lynchpins of coastal ecosystems, but their functional diversity and how it varies with scale and context remains poorly studied. Here, we investigate the functional diversity of seaweed assemblages across the rocky intertidal stress gradient at large (zones) and small (quadrat) scales. We quantified complementary metrics of emergent group richness, functional richness (functional space occupied) and functional dispersion (trait complementarity of dominant species). With increasing shore height, under species loss and turnover, responses of functional diversity were scale- and metric-dependent. At the large scale, functional richness contracted while—notwithstanding a decline in redundancy—emergent group richness and functional dispersion were both invariant. At the small scale, all measures declined, with the strongest responses evident for functional and emergent group richness. Comparisons of observed versus expected values based on null models revealed that functional richness and dispersion were greater than expected in the low shore but converged with expected values higher on the shore. These results show that functional diversity of assemblages of marine habitat formers can be especially responsive to environmental stress gradients at small scales and for richness measures. Furthermore, niche-based processes at the small—neighbourhood—scale can favour co-occurrence of functionally distinctive species under low, but not high, stress, magnifying differences in functional diversity across environmental gradients. As assemblages of marine habitat formers face accelerating environmental change, further studies examining multiple aspects of functional diversity are needed to elucidate patterns, processes, and ecosystem consequences of community (dis-)assembly across diverse groups.
Collapse
Affiliation(s)
- Laura Cappelatti
- Biosciences Department, Swansea University, Wallace Building, Swansea, SA2 8PP, Wales, UK.
| | - Alizée R L Mauffrey
- Biosciences Department, Swansea University, Wallace Building, Swansea, SA2 8PP, Wales, UK
| | - John N Griffin
- Biosciences Department, Swansea University, Wallace Building, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|