1
|
Mahmoudian-Hamedani S, Lotfi-Shahreza M, Nikpour P. Investigating combined hypoxia and stemness indices for prognostic transcripts in gastric cancer: Machine learning and network analysis approaches. Biochem Biophys Rep 2025; 41:101897. [PMID: 39807391 PMCID: PMC11729012 DOI: 10.1016/j.bbrep.2024.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Gastric cancer (GC) is among the deadliest malignancies globally, characterized by hypoxia-driven pathways that promote cancer progression, including stemness mechanisms facilitating invasion and metastasis. This study aimed to develop a prognostic decision tree using genes implicated in hypoxia and stemness pathways to predict outcomes in GC patients. Materials and methods GC RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed to compute hypoxia and stemness scores using Gene Set Variation Analysis (GSVA) and the mRNA expression-based stemness index (mRNAsi). Hierarchical clustering identified clusters with distinct survival outcomes, and differentially expressed genes (DEGs) between clusters were identified. Weighted Gene Co-expression Network Analysis (WGCNA) identified modules and hub genes associated with clinical traits. Overlapping DEGs and hub genes underwent functional enrichment, protein-protein interaction (PPI) network analysis, and survival analysis. A prognostic decision tree was constructed using survival-associated shared genes. Results Hierarchical clustering identified six clusters among 375 TCGA GC patients, with significant survival differences between cluster 1 (low hypoxia, high stemness) and cluster 4 (high hypoxia, high stemness). Validation in the GSE62254 dataset corroborated these findings. WGCNA revealed modules linked to clinical traits and survival, with functional enrichment highlighting pathways like cell adhesion and calcium signaling. The decision tree, based on genes such as AKAP6, GLRB, and RUNX1T1, achieved an AUC of 0.81 (training) and 0.67 (test), demonstrating the utility of combined scores in patient stratification. Conclusion This study introduces a novel hypoxia-stemness-based prognostic decision tree for GC. The identified genes show promise as prognostic biomarkers, warranting further clinical validation.
Collapse
Affiliation(s)
- Sharareh Mahmoudian-Hamedani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Lotfi-Shahreza
- Department of Computer Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Siwakoti U, Jones SA, Kumbhare D, Cui XT, Castagnola E. Recent Progress in Flexible Microelectrode Arrays for Combined Electrophysiological and Electrochemical Sensing. BIOSENSORS 2025; 15:100. [PMID: 39997002 PMCID: PMC11853293 DOI: 10.3390/bios15020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Understanding brain function requires advanced neural probes to monitor electrical and chemical signaling across multiple timescales and brain regions. Microelectrode arrays (MEAs) are widely used to record neurophysiological activity across various depths and brain regions, providing single-unit resolution for extended periods. Recent advancements in flexible MEAs, built on micrometer-thick polymer substrates, have improved integration with brain tissue by mimicking the brain's soft nature, reducing mechanical trauma and inflammation. These flexible, subcellular-scale MEAs can record stable neural signals for months, making them ideal for long-term studies. In addition to electrical recording, MEAs have been functionalized for electrochemical neurotransmitter detection. Electroactive neurotransmitters, such as dopamine, serotonin, and adenosine, can be directly measured via electrochemical methods, particularly on carbon-based surfaces. For non-electroactive neurotransmitters like acetylcholine, glutamate, and γ-aminobutyric acid, alternative strategies, such as enzyme immobilization and aptamer-based recognition, are employed to generate electrochemical signals. This review highlights recent developments in flexible MEA fabrication and functionalization to achieve both electrochemical and electrophysiological recordings, minimizing sensor fowling and brain damage when implanted long-term. It covers multi-time scale neurotransmitter detection, development of conducting polymer and nanomaterial composite coatings to enhance sensitivity, incorporation of enzyme and aptamer-based recognition methods, and the integration of carbon electrodes on flexible MEAs. Finally, it summarizes strategies to acquire electrochemical and electrophysiological measurements from the same device.
Collapse
Affiliation(s)
- Umisha Siwakoti
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
| | - Steven A. Jones
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
| | - Deepak Kumbhare
- Department of Neurosurgery, Louisiana State University Health Sciences, Shreveport, LA 71103, USA;
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburg, Pittsburgh, PA 15260, USA;
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Elisa Castagnola
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
- Department of Bioengineering, University of Pittsburg, Pittsburgh, PA 15260, USA;
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
3
|
Wu Z, Pang L, Ding M. CFI-1 functions unilaterally to restrict gap junction formation in C. elegans. Development 2025; 152:dev202955. [PMID: 39679967 PMCID: PMC11829774 DOI: 10.1242/dev.202955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
Electrical coupling is vital to neural communication, facilitating synchronized activity among neurons. Despite its significance, the precise mechanisms governing the establishment of gap junction connections between specific neurons remain elusive. Here, we identified that the PVC interneuron in Caenorhabditis elegans forms gap junction connections with the PVR interneuron. The transcriptional regulator CFI-1 (ARID3) is specifically expressed in the PVC but not PVR interneuron. Reducing cfi-1 expression in the PVC interneuron leads to enhanced gap junction formation in the PVR neuron, while ectopic expression of cfi-1 in the PVR neuron restores the proper level of gap junction connections in the PVC neuron, along with the normal touch response. These findings unveil the pivotal role of CFI-1 in bidirectionally regulating the formation of gap junctions within a specific neuronal pair, shedding light on the intricate molecular mechanisms governing neuronal connectivity in vivo.
Collapse
Affiliation(s)
- Zan Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Pang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Basal E, Gilligan M, Lesnick C, McKeon A. Autoimmune Neurobeachin Cerebellar Ataxia. Mov Disord 2024; 39:2271-2275. [PMID: 39165102 PMCID: PMC11659054 DOI: 10.1002/mds.29991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND There are more than 30 immunoglobulin G (IgG) autoantibody biomarkers of autoimmune cerebellar ataxia reported. OBJECTIVE To describe a novel IgG biomarker targeting neurobeachin, a scaffolding protein integral to synapse formation and function. METHODS Clinical and laboratory-based assessment was used for a novel diagnostic biomarker of autoimmune ataxia. RESULTS A 46-year-old woman had ataxia onset followed by bilateral knee pain, attributable to rheumatoid arthritis. She was negative for standard neural antibodies. Her ataxia stabilized and tremor initially improved after corticosteroid treatment, but she progressed to wheelchair-dependence (on methotrexate and then rituximab) over 4 years, in keeping with the trajectory encountered by many with autoimmune ataxia. In contrast, her inflammatory arthritis remitted with immunotherapy. Neurobeachin-IgG was unmasked in serum and cerebrospinal fluid using protein arrays and confirmed using neurobeachin-specific confocal immunofluorescence and Western blot. CONCLUSIONS Neurobeachin-IgG is a new neural antibody biomarker of cerebellar ataxia among a growing antibody repertoire, collectively common but often individually rare. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Eati Basal
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Gilligan
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology. University College Dublin, St Vincent’s Hospital Elm Park, Dublin, Ireland
| | - Connie Lesnick
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew McKeon
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Michel JC, Martin EA, Crow WE, Kissinger JS, Lukowicz-Bedford RM, Horrocks M, Branon TC, Ting AY, Miller AC. Electrical synapse molecular diversity revealed by proximity-based proteomic discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624763. [PMID: 39605535 PMCID: PMC11601576 DOI: 10.1101/2024.11.22.624763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuronal circuits are composed of synapses that are either chemical, where signals are transmitted via neurotransmitter release and reception, or electrical, where signals pass directly through interneuronal gap junction channels. While the molecular complexity that controls chemical synapse structure and function is well appreciated, the proteins of electrical synapses beyond the gap-junction-forming Connexins are not well defined. Yet, electrical synapses are expected to be molecularly complex beyond the gap junctions. Connexins are integral membrane proteins requiring vesicular transport and membrane insertion/retrieval to achieve function, homeostasis, and plasticity. Additionally, electron microscopy of neuronal gap junctions reveals neighboring electron dense regions termed the electrical synapse density (ESD). To reveal the molecular complexity of the electrical synapse proteome, we used proximity-dependent biotinylation (TurboID) linked to neural Connexins in zebrafish. Proteomic analysis of developing and mature nervous systems identifies hundreds of Connexin-associated proteins, with overlapping and distinct representation during development and adulthood. The identified protein classes span cell adhesion molecules, cytoplasmic scaffolds, vesicular trafficking, and proteins usually associated with the post synaptic density (PSD) of chemical synapses. Using circuits with stereotyped electrical and chemical synapses, we define molecular sub-synaptic compartments of ESD localizing proteins, we find molecular heterogeneity amongst electrical synapse populations, and we examine the synaptic intermingling of electrical and chemical synapse proteins. Taken together, these results reveal a new complexity of electrical synapse molecular diversity and highlight a novel overlap between chemical and electrical synapse proteomes. Moreover, human homologs of the electrical synapse proteins are associated with autism, epilepsy, and other neurological disorders, providing a novel framework towards understanding neuro-atypical states.
Collapse
|
6
|
Huang G, Zhou S, Zhu R, Wang Y, Chai Y. Effect of internal and external chaotic stimuli on synchronization of piezoelectric auditory neurons in coupled time-delay systems. Cogn Neurodyn 2024; 18:2111-2126. [PMID: 39104671 PMCID: PMC11297885 DOI: 10.1007/s11571-023-10042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 08/07/2024] Open
Abstract
Hearing impairment is considered to be related to the damage of hair cells or synaptic terminals, which will cause varying degrees of hearing loss. Numerous studies have shown that cochlear implants can balance this damage. The human ear receives external acoustic signals mostly under complex conditions, and its biophysical mechanisms have important significance for reference in the design of cochlear implants. However, the relevant biophysical mechanisms have not yet been fully determined. Using the characteristics of special acoustoelectric conversion in piezoelectric ceramics, this paper integrates them into the traditional FitzHugh-Nagumo neuron circuit and proposes a comprehensive model with coupled auditory neurons. The model comprehensively considers the effects of synaptic coupling between neurons, information transmission delay, external noise stimulation, and internal chaotic current stimulation on the synchronization of membrane potential signals of two auditory neurons. The experimental results show that coupling strength, delay size, noise intensity, and chaotic current intensity all have a certain regulatory effect on synchronization stability. In particular, when auditory neurons are in a chaotic state, their impact on synchronization stability is sensitive. Numerical results provide a reference for exploring the biophysical mechanisms of auditory neurons. At the same time, we are committed to providing assistance in using sensors to monitor signals and repair hearing impairments.
Collapse
Affiliation(s)
- Guodong Huang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Shu Zhou
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Rui Zhu
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Yunhai Wang
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Yuan Chai
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| |
Collapse
|
7
|
Cárdenas-García SP, Ijaz S, Pereda AE. The components of an electrical synapse as revealed by expansion microscopy of a single synaptic contact. eLife 2024; 13:e91931. [PMID: 38994821 PMCID: PMC11333041 DOI: 10.7554/elife.91931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.
Collapse
Affiliation(s)
- Sandra P Cárdenas-García
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
8
|
Liu QQ, Wu GH, Wang XC, Xiong XW, Rui-Wang, Yao BL. The role of Foxo3a in neuron-mediated cognitive impairment. Front Mol Neurosci 2024; 17:1424561. [PMID: 38962803 PMCID: PMC11220205 DOI: 10.3389/fnmol.2024.1424561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Cognitive impairment (COI) is a prevalent complication across a spectrum of brain disorders, underpinned by intricate mechanisms yet to be fully elucidated. Neurons, the principal cell population of the nervous system, orchestrate cognitive processes and govern cognitive balance. Extensive inquiry has spotlighted the involvement of Foxo3a in COI. The regulatory cascade of Foxo3a transactivation implicates multiple downstream signaling pathways encompassing mitochondrial function, oxidative stress, autophagy, and apoptosis, collectively affecting neuronal activity. Notably, the expression and activity profile of neuronal Foxo3a are subject to modulation via various modalities, including methylation of promoter, phosphorylation and acetylation of protein. Furthermore, upstream pathways such as PI3K/AKT, the SIRT family, and diverse micro-RNAs intricately interface with Foxo3a, engendering alterations in neuronal function. Through several downstream routes, Foxo3a regulates neuronal dynamics, thereby modulating the onset or amelioration of COI in Alzheimer's disease, stroke, ischemic brain injury, Parkinson's disease, and traumatic brain injury. Foxo3a is a potential therapeutic cognitive target, and clinical drugs or multiple small molecules have been preliminarily shown to have cognitive-enhancing effects that indirectly affect Foxo3a. Particularly noteworthy are multiple randomized, controlled, placebo clinical trials illustrating the significant cognitive enhancement achievable through autophagy modulation. Here, we discussed the role of Foxo3a in neuron-mediated COI and common cognitively impaired diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao-Le Yao
- Department of Rehabilitation Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
9
|
Roussa E, Juda P, Laue M, Mai-Kolerus O, Meyerhof W, Sjöblom M, Nikolovska K, Seidler U, Kilimann MW. LRBA, a BEACH protein mutated in human immune deficiency, is widely expressed in epithelia, exocrine and endocrine glands, and neurons. Sci Rep 2024; 14:10678. [PMID: 38724551 PMCID: PMC11082223 DOI: 10.1038/s41598-024-60257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Mutations in LRBA, a BEACH domain protein, cause severe immune deficiency in humans. LRBA is expressed in many tissues and organs according to biochemical analysis, but little is known about its cellular and subcellular localization, and its deficiency phenotype outside the immune system. By LacZ histochemistry of Lrba gene-trap mice, we performed a comprehensive survey of LRBA expression in numerous tissues, detecting it in many if not all epithelia, in exocrine and endocrine cells, and in subpopulations of neurons. Immunofluorescence microscopy of the exocrine and endocrine pancreas, salivary glands, and intestinal segments, confirmed these patterns of cellular expression and provided information on the subcellular localizations of the LRBA protein. Immuno-electron microscopy demonstrated that in neurons and endocrine cells, which co-express LRBA and its closest relative, neurobeachin, both proteins display partial association with endomembranes in complementary, rather than overlapping, subcellular distributions. Prominent manifestations of human LRBA deficiency, such as inflammatory bowel disease or endocrinopathies, are believed to be primarily due to immune dysregulation. However, as essentially all affected tissues also express LRBA, it is possible that LRBA deficiency enhances their vulnerability and contributes to the pathogenesis.
Collapse
Affiliation(s)
- Eleni Roussa
- Department Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Pavel Juda
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Leukocyte Motility Lab, 1st Faculty of Medicine, Charles University of Prague, Vestec, Czech Republic
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - Oliver Mai-Kolerus
- Department of Molecular Genetics, German Institute for Human Nutrition, Potsdam-Rehbruecke, Germany
- Einstein Center for Neurosciences, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute for Human Nutrition, Potsdam-Rehbruecke, Germany
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Markus Sjöblom
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Medical University Hannover, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, Infectiology and Endocrinology, Medical University Hannover, Hannover, Germany
| | - Manfred W Kilimann
- Department of Molecular Neurobiology, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
10
|
Zhang L, Xiong L, An X, Shi Q. Hamilton energy balance and synchronization behaviors of two functional neurons. Cogn Neurodyn 2023; 17:1683-1702. [PMID: 37974578 PMCID: PMC10640572 DOI: 10.1007/s11571-022-09908-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022] Open
Abstract
The nervous system is composed of various functional neurons, some of which perceive sound or light, and these physical signals can be converted into bioelectrical signals. From the biophysical point of view, piezoelectric ceramic embedded in neuronal circuits can detect the external auditory waves, while phototube can capture light signals, so as to obtain two functional neurons with auditory recognition and light-dependent recognition. Considering the two identical or different functional neurons are connected by an induction coil to stimulate magnetic field coupling, and there will be energy diversity when they are driven by different initial conditions or external stimulation. Thus, synaptic connections can be activated and awakened in an adaptive manner when field energy is exchanged, and the coupling channel remains open until the energy diversity between neurons is controlled at a limited threshold. For this purpose, a criterion of the coupling strength increases exponentially is proposed to discuss the enhancement of neuronal synaptic connections. It is found that two neurons can be coupled adaptively to achieve complete synchronization, quasi-synchronization or intermittent quasi-synchronization. These results could help in designing functional assistive devices for patients with hearing or vision impairment.
Collapse
Affiliation(s)
- Li Zhang
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070 China
| | - Li Xiong
- School of Physics and Electromechanical Engineering, Hexi University, Zhangye, 734000 China
| | - Xinlei An
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070 China
- College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, 730050 China
| | - Qianqian Shi
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070 China
| |
Collapse
|
11
|
Cárdenas-García SP, Ijaz S, Pereda AE. The components of an electrical synapse as revealed by expansion microscopy of a single synaptic contact. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550347. [PMID: 37546897 PMCID: PMC10402082 DOI: 10.1101/2023.07.25.550347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact defines the anatomical limits of a synapse. Expansion microscopy of these contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area works as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of AJs. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.
Collapse
Affiliation(s)
- Sandra P. Cárdenas-García
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alberto E. Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
12
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Martin EA, Michel JC, Kissinger JS, Echeverry FA, Lin YP, O'Brien J, Pereda AE, Miller AC. Neurobeachin controls the asymmetric subcellular distribution of electrical synapse proteins. Curr Biol 2023; 33:2063-2074.e4. [PMID: 37172585 PMCID: PMC10266475 DOI: 10.1016/j.cub.2023.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/27/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
The subcellular positioning of synapses and their specialized molecular compositions form the fundamental basis of neural circuits. Like chemical synapses, electrical synapses are constructed from an assortment of adhesion, scaffolding, and regulatory molecules, yet little is known about how these molecules localize to specific neuronal compartments. Here, we investigate the relationship between the autism- and epilepsy-associated gene Neurobeachin, the neuronal gap junction channel-forming Connexins, and the electrical synapse scaffold ZO1. Using the zebrafish Mauthner circuit, we find Neurobeachin localizes to the electrical synapse independently of ZO1 and Connexins. By contrast, we show Neurobeachin is required postsynaptically for the robust localization of ZO1 and Connexins. We demonstrate that Neurobeachin binds ZO1 but not Connexins. Finally, we find Neurobeachin is required to restrict electrical postsynaptic proteins to dendrites, but not electrical presynaptic proteins to axons. Together, the results reveal an expanded understanding of electrical synapse molecular complexity and the hierarchical interactions required to build neuronal gap junctions. Further, these findings provide novel insight into the mechanisms by which neurons compartmentalize the localization of electrical synapse proteins and provide a cell biological mechanism for the subcellular specificity of electrical synapse formation and function.
Collapse
Affiliation(s)
- E Anne Martin
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | | | - Jane S Kissinger
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ya-Ping Lin
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - John O'Brien
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
14
|
Kim H, Choo H, Cha J, Jang M, Son J, Jeong T, Choi BH, Lim Y, Chai HH, Lee J, Lim D, Shin D, Park W, Park JE. Blood transcriptome comparison between sexes and their function in 4-week Rhode Island red chickens. Anim Cells Syst (Seoul) 2022; 26:358-368. [PMID: 36605592 PMCID: PMC9809412 DOI: 10.1080/19768354.2022.2146187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sex is a major biological factor in the development and physiology of a sexual reproductive organism, and its role in the growing process is needed to be investigated in various species. We compare blood transcriptome between 5 males and 5 females in 4-week-old Rhode Island Red chickens and perform functional annotation of differentially expressed genes (DEGs). The results are as follows. 141 and 109 DEGs were located in autosomes and sex chromosomes, respectively. The gene ontology (GO) terms are significantly (p < 0.05) enriched, which were limb development, inner ear development, positive regulation of dendrite development, the KEGG pathway the TGF-beta signaling pathway, and melanogenesis (p < 0.05). These pathways are related to morphological maintenance and growth of the tissues. In addition, the SMAD2W and the BMP5 were involved in the TGF-beta signaling pathway, and both play an important role in maintaining tissue development. The major DEGs related to the development of neurons and synapses include the up-regulated NRN1, GDF10, SLC1A1, BMP5, NBEA, and NRXN1. Also, 7 DEGs were validated using RT-qPCR with high correlation (r 2 = 0.74). In conclusion, the differential expression of blood tissue in the early growing chicken was enriched in TGF-beta signaling and related to the development of neurons and synapses including SMAD2W and BMP5. These results suggest that blood in the early growing stage is differentially affected in tissue development, nervous system, and pigmentation by sex. For future research, experimental characterization of DEGs and a holistic investigation of various tissues and growth stages will be required.
Collapse
Affiliation(s)
- Hana Kim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Hyojun Choo
- Poultry Research Institute, National Institute of Animal Science, Pyeongchang, Korea
| | - Jihye Cha
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Myoungjin Jang
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Juhwan Son
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Taejoon Jeong
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Bong-Hwan Choi
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Youngjo Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Han-Ha Chai
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Jungjae Lee
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Korea
| | - Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
| | - Woncheoul Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, Korea, Jong-Eun Park Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, 63243, Korea; Woncheoul Park Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, 55365, Korea
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, Korea, Jong-Eun Park Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, 63243, Korea; Woncheoul Park Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Wanju, 55365, Korea
| |
Collapse
|
15
|
Segal D, Mazloom-Farsibaf H, Chang BJ, Roudot P, Rajendran D, Daetwyler S, Fiolka R, Warren M, Amatruda JF, Danuser G. In vivo 3D profiling of site-specific human cancer cell morphotypes in zebrafish. J Cell Biol 2022; 221:213501. [PMID: 36155740 PMCID: PMC9516844 DOI: 10.1083/jcb.202109100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022] Open
Abstract
Tissue microenvironments affect the functional states of cancer cells, but determining these influences in vivo has remained a challenge. We present a quantitative high-resolution imaging assay of single cancer cells in zebrafish xenografts to probe functional adaptation to variable cell-extrinsic cues and molecular interventions. Using cell morphology as a surrogate readout of cell functional states, we examine environmental influences on the morphotype distribution of Ewing Sarcoma, a pediatric cancer associated with the oncogene EWSR1-FLI1 and whose plasticity is thought to determine disease outcome through non-genomic mechanisms. Computer vision analysis reveals systematic shifts in the distribution of 3D morphotypes as a function of cell type and seeding site, as well as tissue-specific cellular organizations that recapitulate those observed in human tumors. Reduced expression of the EWSR1-FLI1 protein product causes a shift to more protrusive cells and decreased tissue specificity of the morphotype distribution. Overall, this work establishes a framework for a statistically robust study of cancer cell plasticity in diverse tissue microenvironments.
Collapse
Affiliation(s)
- Dagan Segal
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Hanieh Mazloom-Farsibaf
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Philippe Roudot
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - James F Amatruda
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
16
|
Menelaou E, Kishore S, McLean DL. Mixed synapses reconcile violations of the size principle in zebrafish spinal cord. eLife 2022; 11:64063. [PMID: 36166290 PMCID: PMC9514842 DOI: 10.7554/elife.64063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Mixed electrical-chemical synapses potentially complicate electrophysiological interpretations of neuronal excitability and connectivity. Here, we disentangle the impact of mixed synapses within the spinal locomotor circuitry of larval zebrafish. We demonstrate that soma size is not linked to input resistance for interneurons, contrary to the biophysical predictions of the ‘size principle’ for motor neurons. Next, we show that time constants are faster, excitatory currents stronger, and mixed potentials larger in lower resistance neurons, linking mixed synapse density to resting excitability. Using a computational model, we verify the impact of weighted electrical synapses on membrane properties, synaptic integration and the low-pass filtering and distribution of coupling potentials. We conclude differences in mixed synapse density can contribute to excitability underestimations and connectivity overestimations. The contribution of mixed synaptic inputs to resting excitability helps explain ‘violations’ of the size principle, where neuron size, resistance and recruitment order are unrelated.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Sandeep Kishore
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
17
|
Dougnon G, Matsui H. Modelling Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) Using Mice and Zebrafish. Int J Mol Sci 2022; 23:ijms23147550. [PMID: 35886894 PMCID: PMC9319972 DOI: 10.3390/ijms23147550] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two debilitating neurodevelopmental disorders. The former is associated with social impairments whereas the latter is associated with inattentiveness, hyperactivity, and impulsivity. There is recent evidence that both disorders are somehow related and that genes may play a large role in these disorders. Despite mounting human and animal research, the neurological pathways underlying ASD and ADHD are still not well understood. Scientists investigate neurodevelopmental disorders by using animal models that have high similarities in genetics and behaviours with humans. Mice have been utilized in neuroscience research as an excellent animal model for a long time; however, the zebrafish has attracted much attention recently, with an increasingly large number of studies using this model. In this review, we first discuss ASD and ADHD aetiology from a general point of view to their characteristics and treatments. We also compare mice and zebrafish for their similarities and discuss their advantages and limitations in neuroscience. Finally, we summarize the most recent and existing research on zebrafish and mouse models of ASD and ADHD. We believe that this review will serve as a unique document providing interesting information to date about these models, thus facilitating research on ASD and ADHD.
Collapse
|
18
|
Michel JC, Lasseigne AM, Marsh AJ, Miller AC. The disconnect2 mutation disrupts the tjp1b gene that is required for electrical synapse formation. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000593. [PMID: 35855444 PMCID: PMC9288654 DOI: 10.17912/micropub.biology.000593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/01/1970] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
To investigate electrical synapse formation in vivo we used forward genetics to disrupt genes affecting Mauthner cell electrical synapses in larval zebrafish. We identify the disconnect2 ( dis2 ) mutation for its failure to localize neural gap junction channels at electrical synapses. We mapped this mutation to chromosome 25 and identified a splice-altering mutation in the tjp1b gene. We demonstrated that the dis2 mutation disrupts tjp1b function using complementation analysis with CRISPR generated mutants. We conclude that the dis2 mutation disrupts the tjp1b gene that is required for electrical synapse formation.
Collapse
Affiliation(s)
| | | | - Audrey J. Marsh
- Institute of Neuroscience, University of Oregon, Eugene, OR USA
| | - Adam C. Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR USA
| |
Collapse
|
19
|
Echeverry FA, Ijaz S, Pereda AE. Recording Synaptic Transmission from Auditory Mixed Synapses on the Mauthner Cells of Developing Zebrafish. eNeuro 2022; 9:ENEURO.0021-22.2022. [PMID: 35641226 PMCID: PMC9215698 DOI: 10.1523/eneuro.0021-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/14/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022] Open
Abstract
The Mauthner cells are a pair of large reticulospinal neurons that organize sensory-evoked tail flip responses in fishes. An identifiable group of auditory "mixed" (electrical and chemical) synaptic contacts known as "Large Myelinated Club endings" on these cells have provided a valuable model for the study of synaptic transmission in the vertebrate brain. While most of studies were performed in adult fish, we describe here methods that make possible recording synaptic transmission from these contacts in developing zebrafish, a genetically tractable vertebrate species which is uniquely amenable for combining synaptic physiology with live imaging and behavioral analysis.
Collapse
Affiliation(s)
- Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
20
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
21
|
Tayanloo-Beik A, Hamidpour SK, Abedi M, Shojaei H, Tavirani MR, Namazi N, Larijani B, Arjmand B. Zebrafish Modeling of Autism Spectrum Disorders, Current Status and Future Prospective. Front Psychiatry 2022; 13:911770. [PMID: 35911241 PMCID: PMC9329562 DOI: 10.3389/fpsyt.2022.911770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a complicated range of childhood neurodevelopmental disorders which can occur via genetic or non-genetic factors. Clinically, ASD is associated with problems in relationships, social interactions, and behaviors that pose many challenges for children with ASD and their families. Due to the complexity, heterogeneity, and association of symptoms with some neuropsychiatric disorders such as ADHD, anxiety, and sleep disorders, clinical trials have not yielded reliable results and there still remain challenges in drug discovery and development pipeline for ASD patients. One of the main steps in promoting lead compounds to the suitable drug for commercialization is preclinical animal testing, in which the efficacy and toxicity of candidate drugs are examined in vivo. In recent years, zebrafish have been able to attract the attention of many researchers in the field of neurological disorders such as ASD due to their outstanding features. The presence of orthologous genes for ASD modeling, the anatomical similarities of parts of the brain, and similar neurotransmitter systems between zebrafish and humans are some of the main reasons why scientists draw attention to zebrafish as a prominent animal model in preclinical studies to discover highly effective treatment approaches for the ASD through genetic and non-genetic modeling methods.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamide Shojaei
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Palumbos SD, Skelton R, McWhirter R, Mitchell A, Swann I, Heifner S, Von Stetina S, Miller DM. cAMP controls a trafficking mechanism that maintains the neuron specificity and subcellular placement of electrical synapses. Dev Cell 2021; 56:3235-3249.e4. [PMID: 34741804 DOI: 10.1016/j.devcel.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Electrical synapses are established between specific neurons and within distinct subcellular compartments, but the mechanisms that direct gap junction assembly in the nervous system are largely unknown. Here, we show that a developmental program tunes cAMP signaling to direct the neuron-specific assembly and placement of electrical synapses in the C. elegans motor circuit. We use live-cell imaging to visualize electrical synapses in vivo and an optogenetic assay to confirm that they are functional. In ventral A class (VA) motor neurons, the UNC-4 transcription factor blocks expression of cAMP antagonists that promote gap junction miswiring. In unc-4 mutants, VA electrical synapses are established with an alternative synaptic partner and are repositioned from the VA axon to soma. cAMP counters these effects by driving gap junction trafficking into the VA axon for electrical synapse assembly. Thus, our experiments establish that cAMP regulates gap junction trafficking for the biogenesis of functional electrical synapses.
Collapse
Affiliation(s)
- Sierra D Palumbos
- Neuroscience Program, Vanderbilt University, Nashville, TN 37212, USA
| | - Rachel Skelton
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - Amanda Mitchell
- Vanderbilt Summer Science Academy, Vanderbilt University, Nashville, TN 37212, USA
| | - Isaiah Swann
- Vanderbilt Summer Science Academy, Vanderbilt University, Nashville, TN 37212, USA
| | | | - Stephen Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA
| | - David M Miller
- Neuroscience Program, Vanderbilt University, Nashville, TN 37212, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37212, USA.
| |
Collapse
|
23
|
Liang Q, Xu H, Liu Y, Zhang W, Sun C, Hu M, Zhu Y, Tan S, Xu X, Wang S, Liu L. Coexistence of a novel NBEA-ALK, EML4-ALK double-fusion in a lung adenocarcinoma patient and response to alectinib: A case report. Lung Cancer 2021; 162:86-89. [PMID: 34763158 DOI: 10.1016/j.lungcan.2021.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The echinoderm microtubule-associated protein-like 4 gene (EML4) and anaplastic lymphoma kinase gene (ALK) fusion is the most common ALK rearrangements in non-small cell lung cancer (NSCLC). Herein, we firstly report that coexistence of a novel Neurobeachin (NBEA)-ALK, EML4-ALK double-fusion is sensitive to alectinib. MATERIALS AND METHODS Hematoxylin-eosin staining (HE), fluorescent in situ hybridization (FISH), and next-generation sequencing (NGS) was performed on the biopsy sample. RESULTS The patient responded to alectinib as a second-line treatment and achieved stable disease for 11 months, without significant symptoms of toxicity. Significantly, the liquid biopsy also validated clinical benefit, with the disappearance of NBEA-ALK and EML4-ALK fusion variants. We also provided a comprehensive review of all 50 ALK fusion genes in NSCLC. CONCLUSION This is the first report on one patient with a novel NBEA-ALK, EML4-ALK double-ALK fusion beneficial from alectinib. Alectinib may be a viable therapeutic option for NSCLC patients with double-ALK fusion, and liquid biopsy could dynamically monitor clinical curative effect.
Collapse
Affiliation(s)
- Qi Liang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huanhuan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiqian Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weiming Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chongqi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Meng Hu
- Department of Oncology, Liyang People's Hospital, Liyang 213300, China
| | - Yizhi Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shanyue Tan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xian Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sumeng Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
24
|
Boulin T, Itani O, El Mouridi S, Leclercq-Blondel A, Gendrel M, Macnamara E, Soldatos A, Murphy JL, Gorman MP, Lindsey A, Shimada S, Turner D, Silverman GA, Baldridge D, Malicdan MC, Schedl T, Pak SC. Functional analysis of a de novo variant in the neurodevelopment and generalized epilepsy disease gene NBEA. Mol Genet Metab 2021; 134:195-202. [PMID: 34412939 PMCID: PMC10626981 DOI: 10.1016/j.ymgme.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/21/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023]
Abstract
Neurobeachin (NBEA) was initially identified as a candidate gene for autism. Recently, variants in NBEA have been associated with neurodevelopmental delay and childhood epilepsy. Here, we report on a novel NBEA missense variant (c.5899G > A, p.Gly1967Arg) in the Domain of Unknown Function 1088 (DUF1088) identified in a child enrolled in the Undiagnosed Diseases Network (UDN), who presented with neurodevelopmental delay and seizures. Modeling of this variant in the Caenorhabditis elegans NBEA ortholog, sel-2, indicated that the variant was damaging to in vivo function as evidenced by altered cell fate determination and trafficking of potassium channels in neurons. The variant effect was indistinguishable from that of the reference null mutation suggesting that the variant is a strong hypomorph or a complete loss-of-function. Our experimental data provide strong support for the molecular diagnosis and pathogenicity of the NBEA p.Gly1967Arg variant and the importance of the DUF1088 for NBEA function.
Collapse
Affiliation(s)
- Thomas Boulin
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Omar Itani
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Sonia El Mouridi
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Alice Leclercq-Blondel
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Marie Gendrel
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France; Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université Paris Sciences et Lettres Research University, Paris 75005, France
| | - Ellen Macnamara
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariane Soldatos
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer L Murphy
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark P Gorman
- Department of Neurology, Neuroimmunology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anika Lindsey
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Shino Shimada
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darian Turner
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Gary A Silverman
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Dustin Baldridge
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - May C Malicdan
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tim Schedl
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Genetics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Stephen C Pak
- C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
25
|
Lasseigne AM, Echeverry FA, Ijaz S, Michel JC, Martin EA, Marsh AJ, Trujillo E, Marsden KC, Pereda AE, Miller AC. Electrical synaptic transmission requires a postsynaptic scaffolding protein. eLife 2021; 10:e66898. [PMID: 33908867 PMCID: PMC8081524 DOI: 10.7554/elife.66898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Electrical synaptic transmission relies on neuronal gap junctions containing channels constructed by Connexins. While at chemical synapses neurotransmitter-gated ion channels are critically supported by scaffolding proteins, it is unknown if channels at electrical synapses require similar scaffold support. Here, we investigated the functional relationship between neuronal Connexins and Zonula Occludens 1 (ZO1), an intracellular scaffolding protein localized to electrical synapses. Using model electrical synapses in zebrafish Mauthner cells, we demonstrated that ZO1 is required for robust synaptic Connexin localization, but Connexins are dispensable for ZO1 localization. Disrupting this hierarchical ZO1/Connexin relationship abolishes electrical transmission and disrupts Mauthner cell-initiated escape responses. We found that ZO1 is asymmetrically localized exclusively postsynaptically at neuronal contacts where it functions to assemble intercellular channels. Thus, forming functional neuronal gap junctions requires a postsynaptic scaffolding protein. The critical function of a scaffolding molecule reveals an unanticipated complexity of molecular and functional organization at electrical synapses.
Collapse
Affiliation(s)
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Sundas Ijaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | | | - E Anne Martin
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Audrey J Marsh
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Elisa Trujillo
- Institute of Neuroscience, University of OregonEugeneUnited States
| | - Kurt C Marsden
- Department of Biological Sciences, NC State UniversityRaleighUnited States
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronxUnited States
| | - Adam C Miller
- Institute of Neuroscience, University of OregonEugeneUnited States
| |
Collapse
|
26
|
Miura S, Shimojo T, Morikawa T, Kamada T, Uchiyama Y, Kurata S, Fujioka R, Shibata H. Familial paroxysmal kinesigenic dyskinesia with a novel missense variant (Arg2866Trp) in NBEA. J Hum Genet 2021; 66:805-811. [PMID: 33692494 DOI: 10.1038/s10038-021-00914-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022]
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a movement disorder characterized by episodic involuntary movement attacks triggered by sudden movements, acceleration, or intention to move. We ascertained two Japanese familial cases with PKD. The proband is a 22-year-old woman who had noted sudden brief (<30 s) of involuntary movements provoked by kinesigenic trigger such as starting to run, getting on a train, picking up a telephone receiver and so on at the age of 14. Interictal brain single photon emission computed tomography (SPECT) showed hyperperfusion in the left thalamus. A 46-year-old woman, the mother of the proband was also suffering from brief attacks triggered by starting to run in her high school days. On neurological examination, both showed no abnormality. Whole exome sequencing combined with rigorous filtering revealed two heterozygous nonsynonymous variants (NM_001447: c.8976G > C [p.Gln2992His] in FAT2 and NM_015678: c.8596C > T [p.Arg2866Trp] in NBEA). Real time quantitative PCR analysis of Nbea mRNA levels in the developing rat brain revealed peak at postnatal day 28 and decline at postnatal day 56. This result might match the most common clinical course of PKD from the point of view of the most common age at remission. NBEA has been reported to be responsible for neurodevelopmental disease accompanied by epilepsy. We concluded the variant in NBEA most likely to be responsible for our familial cases of PKD.
Collapse
Affiliation(s)
- Shiroh Miura
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan.,Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomofumi Shimojo
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takuya Morikawa
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takashi Kamada
- Department of Neurology, Fukuoka Sanno Hospital, Fukuoka, 814-0001, Japan
| | - Yusuke Uchiyama
- Department of Radiology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Seiji Kurata
- Department of Radiology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Ryuta Fujioka
- Department of Food and Nutrition, Beppu University Junior College, Beppu, 874-8501, Japan
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
27
|
Pensado-López A, Veiga-Rúa S, Carracedo Á, Allegue C, Sánchez L. Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish. Genes (Basel) 2020; 11:E1376. [PMID: 33233737 PMCID: PMC7699923 DOI: 10.3390/genes11111376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorders (ASD) affect around 1.5% of the global population, which manifest alterations in communication and socialization, as well as repetitive behaviors or restricted interests. ASD is a complex disorder with known environmental and genetic contributors; however, ASD etiology is far from being clear. In the past decades, many efforts have been put into developing new models to study ASD, both in vitro and in vivo. These models have a lot of potential to help to validate some of the previously associated risk factors to the development of the disorder, and to test new potential therapies that help to alleviate ASD symptoms. The present review is focused on the recent advances towards the generation of models for the study of ASD, which would be a useful tool to decipher the bases of the disorder, as well as to conduct drug screenings that hopefully lead to the identification of useful compounds to help patients deal with the symptoms of ASD.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (S.V.-R.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Sara Veiga-Rúa
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (S.V.-R.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Ángel Carracedo
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIMUS, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Catarina Allegue
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (S.V.-R.)
| |
Collapse
|
28
|
Martin EA, Lasseigne AM, Miller AC. Understanding the Molecular and Cell Biological Mechanisms of Electrical Synapse Formation. Front Neuroanat 2020; 14:12. [PMID: 32372919 PMCID: PMC7179694 DOI: 10.3389/fnana.2020.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In this review article, we will describe the recent advances made towards understanding the molecular and cell biological mechanisms of electrical synapse formation. New evidence indicates that electrical synapses, which are gap junctions between neurons, can have complex molecular compositions including protein asymmetries across joined cells, diverse morphological arrangements, and overlooked similarities with other junctions, all of which indicate new potential roles in neurodevelopmental disease. Aquatic organisms, and in particular the vertebrate zebrafish, have proven to be excellent models for elucidating the molecular mechanisms of electrical synapse formation. Zebrafish will serve as our main exemplar throughout this review and will be compared with other model organisms. We highlight the known cell biological processes that build neuronal gap junctions and compare these with the assemblies of adherens junctions, tight junctions, non-neuronal gap junctions, and chemical synapses to explore the unknown frontiers remaining in our understanding of the critical and ubiquitous electrical synapse.
Collapse
Affiliation(s)
| | | | - Adam C. Miller
- Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
29
|
Riley D, Mantilla-Rojas C, Miller R, Nicholson K, Gill C, Herring A, Riggs P, Sawyer J, Savell J, Sanders J. Genome association of carcass and palatability traits from Bos indicus-Bos taurus crossbred steers within electrical stimulation status and correspondence with steer temperament 3. Aroma and flavor attributes of cooked steaks. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Abstract
The complete description of the expression of gap junction proteins in the nervous system of the worm reveals a great complexity of their distribution amongst different neuronal classes, opening an unprecedented opportunity to expose the functional diversity of electrical synapses.
Collapse
Affiliation(s)
- Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
31
|
Alcamí P, Pereda AE. Beyond plasticity: the dynamic impact of electrical synapses on neural circuits. Nat Rev Neurosci 2019; 20:253-271. [PMID: 30824857 DOI: 10.1038/s41583-019-0133-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrical synapses are found in vertebrate and invertebrate nervous systems. The cellular basis of these synapses is the gap junction, a group of intercellular channels that mediate direct communication between adjacent neurons. Similar to chemical synapses, electrical connections are modifiable and their variations in strength provide a mechanism for reconfiguring neural circuits. In addition, electrical synapses dynamically regulate neural circuits through properties without equivalence in chemical transmission. Because of their continuous nature and bidirectionality, electrical synapses allow electrical currents underlying changes in membrane potential to leak to 'coupled' partners, dampening neuronal excitability and altering their integrative properties. Remarkably, this effect can be transiently alleviated when comparable changes in membrane potential simultaneously occur in each of the coupled neurons, a phenomenon that is dynamically dictated by the timing of arriving signals such as synaptic potentials. By way of this mechanism, electrical synapses influence synaptic integration and action potential generation, imparting an additional layer of dynamic complexity to neural circuits.
Collapse
Affiliation(s)
- Pepe Alcamí
- Max Planck Institute for Ornithology, Seewiesen, Germany
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universitaet Munich, Martinsried, Germany
- Marine Biological Laboratory, Woods Hole, MA, USA
| | - Alberto E Pereda
- Marine Biological Laboratory, Woods Hole, MA, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
32
|
Vaz R, Hofmeister W, Lindstrand A. Zebrafish Models of Neurodevelopmental Disorders: Limitations and Benefits of Current Tools and Techniques. Int J Mol Sci 2019; 20:ijms20061296. [PMID: 30875831 PMCID: PMC6471844 DOI: 10.3390/ijms20061296] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
For the past few years there has been an exponential increase in the use of animal models to confirm the pathogenicity of candidate disease-causing genetic variants found in patients. One such animal model is the zebrafish. Despite being a non-mammalian animal, the zebrafish model has proven its potential in recapitulating the phenotypes of many different human genetic disorders. This review will focus on recent advances in the modeling of neurodevelopmental disorders in zebrafish, covering aspects from early brain development to techniques used for modulating gene expression, as well as how to best characterize the resulting phenotypes. We also review other existing models of neurodevelopmental disorders, and the current efforts in developing and testing compounds with potential therapeutic value.
Collapse
Affiliation(s)
- Raquel Vaz
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden.
| | - Wolfgang Hofmeister
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark and the Novo Nordisk Foundation for Stem cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| |
Collapse
|
33
|
Mulhern MS, Stumpel C, Stong N, Brunner HG, Bier L, Lippa N, Riviello J, Rouhl RPW, Kempers M, Pfundt R, Stegmann APA, Kukolich MK, Telegrafi A, Lehman A, Lopez-Rangel E, Houcinat N, Barth M, den Hollander N, Hoffer MJV, Weckhuysen S, Roovers J, Djemie T, Barca D, Ceulemans B, Craiu D, Lemke JR, Korff C, Mefford HC, Meyers CT, Siegler Z, Hiatt SM, Cooper GM, Bebin EM, Snijders Blok L, Veenstra-Knol HE, Baugh EH, Brilstra EH, Volker-Touw CML, van Binsbergen E, Revah-Politi A, Pereira E, McBrian D, Pacault M, Isidor B, Le Caignec C, Gilbert-Dussardier B, Bilan F, Heinzen EL, Goldstein DB, Stevens SJC, Sands TT. NBEA: Developmental disease gene with early generalized epilepsy phenotypes. Ann Neurol 2018; 84:788-795. [PMID: 30269351 DOI: 10.1002/ana.25350] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/27/2018] [Accepted: 09/23/2018] [Indexed: 12/14/2022]
Abstract
NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803.
Collapse
Affiliation(s)
- Maureen S Mulhern
- Columbia University Medical Center, Institute for Genomic Medicine, New York, NY
| | - Constance Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Nicholas Stong
- Columbia University Medical Center, Institute for Genomic Medicine, New York, NY
| | - Han G Brunner
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Louise Bier
- Columbia University Medical Center, Institute for Genomic Medicine, New York, NY
| | - Natalie Lippa
- Columbia University Medical Center, Institute for Genomic Medicine, New York, NY
| | - James Riviello
- Department of Neurology, Columbia University Department of Neurology, New York, NY
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands.,Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Marlies Kempers
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | - Anna Lehman
- Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Elena Lopez-Rangel
- Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nada Houcinat
- University of Burgundy-Franche-Comté, UMR1231 GAD, INSERM, Dijon, France.,Dijon Bourgogne University Hospital Center, Rare Diseases Reference Center "Developmental Anomalies and Informational Syndromes," Genetic Center, FHU-TRANSLAD, Dijon, France
| | - Magalie Barth
- Department of Biochemistry and Genetics, Angers University Hospital Center, Angers, France
| | | | - Mariette J V Hoffer
- Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarah Weckhuysen
- Center for Molecular Neurology, VIB, Neurogenetics Group, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | | | - Jolien Roovers
- Center for Molecular Neurology, VIB, Neurogenetics Group, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Tania Djemie
- Center for Molecular Neurology, VIB, Neurogenetics Group, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Diana Barca
- Pediatric Neurology Clinic, Al Obregia Hospital, Carol Davila University of Medicine, Bucharest, Romania
| | - Berten Ceulemans
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Dana Craiu
- Pediatric Neurology Clinic, Al Obregia Hospital, Carol Davila University of Medicine, Bucharest, Romania
| | - Johannes R Lemke
- Institute for Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Christian Korff
- Pediatric Neurology Unit, Child and Adolescent Department, University Hospitals, Geneva, Switzerland
| | | | | | - Zsuzsanna Siegler
- Bethesda Children's Hospital, Department of Neurology, Budapest, Hungary
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | | | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Lot Snijders Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.,Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Hermine E Veenstra-Knol
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Evan H Baugh
- Columbia University Medical Center, Institute for Genomic Medicine, New York, NY
| | - Eva H Brilstra
- University Medical Center Utrecht, Department of Genetics, Utrecht, the Netherlands
| | | | - Ellen van Binsbergen
- University Medical Center Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Anya Revah-Politi
- Columbia University Medical Center, Institute for Genomic Medicine, New York, NY
| | - Elaine Pereira
- Division of Clinical Genetics, Department of Pediatrics, New York-Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, NY
| | - Danielle McBrian
- Department of Neurology, Columbia University Department of Neurology, New York, NY
| | - Mathilde Pacault
- Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Bertrand Isidor
- Genetics Service, Nantes University Hospital Center, Nantes, France
| | | | - Brigitte Gilbert-Dussardier
- Genetics Service, Poitiers University Hospital Center, Poitiers, France.,University of Poitiers, EA3808 NEUVACOD, Poitiers, France
| | - Frederic Bilan
- Genetics Service, Poitiers University Hospital Center, Poitiers, France.,University of Poitiers, EA3808 NEUVACOD, Poitiers, France
| | - Erin L Heinzen
- Columbia University Medical Center, Institute for Genomic Medicine, New York, NY.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| | - David B Goldstein
- Columbia University Medical Center, Institute for Genomic Medicine, New York, NY
| | - Servi J C Stevens
- Department of Clinical Genetics and School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tristan T Sands
- Columbia University Medical Center, Institute for Genomic Medicine, New York, NY.,Department of Neurology, Columbia University Department of Neurology, New York, NY
| |
Collapse
|
34
|
The Possible Role of Neurobeachin in Extinction of Contextual Fear Memory. Sci Rep 2018; 8:13752. [PMID: 30213954 PMCID: PMC6137154 DOI: 10.1038/s41598-018-30589-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/02/2018] [Indexed: 11/18/2022] Open
Abstract
Established fear memory becomes vulnerable to disruption after memory retrieval and extinction; this labile state is critical for inhibiting the return of fear memory. However, the labile state has a very narrow time window after retrieval, and underlying molecular mechanisms are not well known. To that end, we isolated the hippocampus immediately after fear memory retrieval and performed proteomics. We identified Neurobeachin (NBEA), an autism-related regulator of synaptic protein trafficking, to be upregulated after contextual fear memory retrieval. NBEA protein expression was rapid and transient after fear memory retrieval at the synapse. Nbea mRNA was enriched at the synapses, and the rapid induction of NBEA expression was blocked by inhibition of the mammalian target of rapamycin (mTOR)-dependent signaling pathway. Mice with cornu ammonis 1 (CA1)-specific Nbea shRNA knockdown showed normal fear acquisition and contextual fear memory but impaired extinction, suggesting an important role of Nbea in fear memory extinction processes. Consistently, Nbea heterozygotes showed normal fear acquisition and fear memory recall but showed impairment in extinction. Our data suggest that NBEA is necessary either for induction of memory lability or for the physiological process of memory extinction.
Collapse
|
35
|
Repetto D, Brockhaus J, Rhee HJ, Lee C, Kilimann MW, Rhee J, Northoff LM, Guo W, Reissner C, Missler M. Molecular Dissection of Neurobeachin Function at Excitatory Synapses. Front Synaptic Neurosci 2018; 10:28. [PMID: 30158865 PMCID: PMC6104133 DOI: 10.3389/fnsyn.2018.00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 11/13/2022] Open
Abstract
Spines are small protrusions from dendrites where most excitatory synapses reside. Changes in number, shape, and size of dendritic spines often reflect changes of neural activity in entire circuits or at individual synapses, making spines key structures of synaptic plasticity. Neurobeachin is a multidomain protein with roles in spine formation, postsynaptic neurotransmitter receptor targeting and actin distribution. However, the contributions of individual domains of Neurobeachin to these functions is poorly understood. Here, we used mostly live cell imaging and patch-clamp electrophysiology to monitor morphology and function of spinous synapses in primary hippocampal neurons. We demonstrate that a recombinant full-length Neurobeachin from humans can restore mushroom spine density and excitatory postsynaptic currents in neurons of Neurobeachin-deficient mice. We then probed the role of individual domains of Neurobeachin by comparing them to the full-length molecule in rescue experiments of knockout neurons. We show that the combined PH-BEACH domain complex is highly localized in spine heads, and that it is sufficient to restore normal spine density and surface targeting of postsynaptic AMPA receptors. In addition, we report that the Armadillo domain facilitates the formation of filopodia, long dendritic protrusions which often precede the development of mature spines, whereas the PKA-binding site appears as a negative regulator of filopodial extension. Thus, our results indicate that individual domains of Neurobeachin sustain important and specific roles in the regulation of spinous synapses. Since heterozygous mutations in Neurobeachin occur in autistic patients, the results will also improve our understanding of pathomechanism in neuropsychiatric disorders associated with impairments of spine function.
Collapse
Affiliation(s)
- Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Hong J Rhee
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Chungku Lee
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Manfred W Kilimann
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jeongseop Rhee
- Synaptic Physiology Group, Max-Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Lisa M Northoff
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Wenjia Guo
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| |
Collapse
|
36
|
Jabeen S, Thirumalai V. The interplay between electrical and chemical synaptogenesis. J Neurophysiol 2018; 120:1914-1922. [PMID: 30067121 PMCID: PMC6230774 DOI: 10.1152/jn.00398.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurons communicate with each other via electrical or chemical synaptic connections. The pattern and strength of connections between neurons are critical for generating appropriate output. What mechanisms govern the formation of electrical and/or chemical synapses between two neurons? Recent studies indicate that common molecular players could regulate the formation of both of these classes of synapses. In addition, electrical and chemical synapses can mutually coregulate each other’s formation. Electrical activity, generated spontaneously by the nervous system or initiated from sensory experience, plays an important role in this process, leading to the selection of appropriate connections and the elimination of inappropriate ones. In this review, we discuss recent studies that shed light on the formation and developmental interactions of chemical and electrical synapses.
Collapse
Affiliation(s)
- Shaista Jabeen
- National Centre for Biological Sciences, Tata Institute for Fundamental Research , Bangalore , India.,Manipal Academy of Higher Education, Madhav Nagar, Manipal , India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute for Fundamental Research , Bangalore , India
| |
Collapse
|
37
|
Roh-Johnson M, Shah AN, Stonick JA, Poudel KR, Kargl J, Yang GH, di Martino J, Hernandez RE, Gast CE, Zarour LR, Antoku S, Houghton AM, Bravo-Cordero JJ, Wong MH, Condeelis J, Moens CB. Macrophage-Dependent Cytoplasmic Transfer during Melanoma Invasion In Vivo. Dev Cell 2018; 43:549-562.e6. [PMID: 29207258 DOI: 10.1016/j.devcel.2017.11.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/15/2017] [Accepted: 11/04/2017] [Indexed: 12/31/2022]
Abstract
Interactions between tumor cells and tumor-associated macrophages play critical roles in the initiation of tumor cell motility. To capture the cellular interactions of the tumor microenvironment with high-resolution imaging, we directly visualized tumor cells and their interactions with macrophages in zebrafish. Live imaging in zebrafish revealed that macrophages are dynamic, yet maintain sustained contact with tumor cells. In addition, the recruitment of macrophages to tumor cells promotes tumor cell dissemination. Using a Cre/LoxP strategy, we found that macrophages transfer cytoplasm to tumor cells in zebrafish and mouse models. Remarkably, macrophage cytoplasmic transfer correlated with melanoma cell dissemination. We further found that macrophages transfer cytoplasm to tumor cells upon cell contact in vitro. Thus, we present a model in which macrophage/tumor cell contact allows for the transfer of cytoplasmic molecules from macrophages to tumor cells corresponding to increased tumor cell motility and dissemination.
Collapse
Affiliation(s)
- Minna Roh-Johnson
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, WA 98109, USA.
| | - Arish N Shah
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, WA 98109, USA
| | - Jason A Stonick
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, WA 98109, USA
| | - Kumud R Poudel
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, WA 98109, USA
| | - Julia Kargl
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA; Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz 8036, Austria
| | - Grace H Yang
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA
| | - Julie di Martino
- Icahn School of Medicine at Mount Sinai, Division of Hematology and Oncology, Department of Medicine, New York, NY 10029, USA
| | | | - Charles E Gast
- Oregon Health & Science University, Department of Cell, Developmental, and Cancer Biology, The Knight Cancer Institute, Portland, OR 97239, USA
| | - Luai R Zarour
- Oregon Health & Science University, Department of Surgery, Portland, OR 97239, USA
| | - Susumu Antoku
- Columbia University, Department of Pathology and Cell Biology, New York, NY 10027, USA
| | - A McGarry Houghton
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA 98109, USA
| | - Jose Javier Bravo-Cordero
- Icahn School of Medicine at Mount Sinai, Division of Hematology and Oncology, Department of Medicine, New York, NY 10029, USA
| | - Melissa H Wong
- Oregon Health & Science University, Department of Cell, Developmental, and Cancer Biology, The Knight Cancer Institute, Portland, OR 97239, USA
| | - John Condeelis
- Albert Einstein College of Medicine, Department of Anatomy and Structural Biology, Bronx, NY 10461, USA
| | - Cecilia B Moens
- Fred Hutchinson Cancer Research Center, Basic Sciences Division, Seattle, WA 98109, USA
| |
Collapse
|
38
|
Zebrafish models of autism spectrum disorder. Exp Neurol 2018; 299:207-216. [DOI: 10.1016/j.expneurol.2017.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 11/19/2022]
|
39
|
Marsh AJ, Michel JC, Adke AP, Heckman EL, Miller AC. Asymmetry of an Intracellular Scaffold at Vertebrate Electrical Synapses. Curr Biol 2017; 27:3561-3567.e4. [PMID: 29103941 PMCID: PMC5698123 DOI: 10.1016/j.cub.2017.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022]
Abstract
Neuronal synaptic connections are either chemical or electrical, and these two types of synapses work together to dynamically define neural circuit function [1]. Although we know a great deal about the molecules that support chemical synapse formation and function, we know little about the macromolecular complexes that regulate electrical synapses. Electrical synapses are created by gap junction (GJ) channels that provide direct ionic communication between neurons [2]. Although they are often molecularly and functionally symmetric, recent work has found that pre- and postsynaptic neurons can contribute different GJ-forming proteins, creating molecularly asymmetric channels that are correlated with functional asymmetry at the synapse [3, 4]. Associated with the GJs are structures observed by electron microscopy termed the electrical synapse density (ESD) [5]. The ESD has been suggested to be critical for the formation and function of the electrical synapse, yet the biochemical makeup of these structures is poorly understood. Here we find that electrical synapse formation in vivo requires an intracellular scaffold called Tight Junction Protein 1b (Tjp1b). Tjp1b is localized to the electrical synapse, where it is required for the stabilization of the GJs and for electrical synapse function. Strikingly, we find that Tjp1b protein localizes and functions asymmetrically, exclusively on the postsynaptic side of the synapse. Our findings support a novel model of electrical synapse molecular asymmetry at the level of an intracellular scaffold that is required for building the electrical synapse. We propose that such ESD asymmetries could be used by all nervous systems to support molecular and functional asymmetries at electrical synapses.
Collapse
Affiliation(s)
- Audrey J Marsh
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Jennifer Carlisle Michel
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Anisha P Adke
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Emily L Heckman
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- University of Oregon, Institute of Neuroscience, Department of Biology, 1254 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
40
|
Sarrouilhe D, Dejean C, Mesnil M. Connexin43- and Pannexin-Based Channels in Neuroinflammation and Cerebral Neuropathies. Front Mol Neurosci 2017; 10:320. [PMID: 29066951 PMCID: PMC5641369 DOI: 10.3389/fnmol.2017.00320] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Connexins (Cx) are largely represented in the central nervous system (CNS) with 11 Cx isoforms forming intercellular channels. Moreover, in the CNS, Cx43 can form hemichannels (HCs) at non-junctional membrane as does the related channel-forming Pannexin1 (Panx1) and Panx2. Opening of Panx1 channels and Cx43 HCs appears to be involved in inflammation and has been documented in various CNS pathologies. Over recent years, evidence has accumulated supporting a link between inflammation and cerebral neuropathies (migraine, Alzheimer’s disease (AD), Parkinson’s disease (PD), major depressive disorder, autism spectrum disorder (ASD), epilepsy, schizophrenia, bipolar disorder). Involvement of Panx channels and Cx43 HCs has been also proposed in pathophysiology of neurological diseases and psychiatric disorders. Other studies showed that following inflammatory injury of the CNS, Panx1 activators are released and prolonged opening of Panx1 channels triggers neuronal death. In neuropsychiatric diseases, comorbidities are frequently present and can aggravate the symptoms and make therapeutic management more complex. The high comorbidity between some neuropathies can be partially understood by the fact that these diseases share a common etiology involving inflammatory pathways and Panx1 channels or Cx43 HCs. Thus, anti-inflammatory therapy opens perspectives of targets for new treatments and could have real potential in controlling a cerebral neuropathy and some of its comorbidities. The purpose of this mini review is to provide information of our knowledge on the link between Cx43- and Panx-based channels, inflammation and cerebral neuropathies.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Marc Mesnil
- STIM Laboratory, ERL 7368-CNRS, Université de Poitiers, Pôle Biologie Santé, Poitiers, France
| |
Collapse
|
41
|
Richards EJ, Martin CH. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. PLoS Genet 2017; 13:e1006919. [PMID: 28796803 PMCID: PMC5552031 DOI: 10.1371/journal.pgen.1006919] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated with species phenotypes across 42 whole genomes from a sympatric adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas and several outgroup pupfish species in order to understand the rarity of these trophic specialists within the larger radiation of Cyprinodon. 82% of the genome depicts close evolutionary relationships among the San Salvador Island species reflecting their geographic proximity, but the vast majority of variants fixed between specialist species lie in regions with discordant topologies. Top candidate adaptive introgression regions include signatures of selective sweeps and adaptive introgression of genetic variation from a single population in the northwestern Bahamas into each of the specialist species. Hard selective sweeps of genetic variation on San Salvador Island contributed 5 times more to speciation of trophic specialists than adaptive introgression of Caribbean genetic variation; however, four of the 11 introgressed regions came from a single distant island and were associated with the primary axis of oral jaw divergence within the radiation. For example, standing variation in a proto-oncogene (ski) known to have effects on jaw size introgressed into one San Salvador Island specialist from an island 300 km away approximately 10 kya. The complex emerging picture of the origins of adaptive radiation on San Salvador Island indicates that multiple sources of genetic variation contributed to the adaptive phenotypes of novel trophic specialists on the island. Our findings suggest that a suite of factors, including rare adaptive introgression, may be necessary for adaptive radiation in addition to ecological opportunity.
Collapse
Affiliation(s)
- Emilie J. Richards
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christopher H. Martin
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
42
|
Miller AC, Whitebirch AC, Shah AN, Marsden KC, Granato M, O'Brien J, Moens CB. A genetic basis for molecular asymmetry at vertebrate electrical synapses. eLife 2017; 6. [PMID: 28530549 PMCID: PMC5462537 DOI: 10.7554/elife.25364] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/20/2017] [Indexed: 01/18/2023] Open
Abstract
Neural network function is based upon the patterns and types of connections made between neurons. Neuronal synapses are adhesions specialized for communication and they come in two types, chemical and electrical. Communication at chemical synapses occurs via neurotransmitter release whereas electrical synapses utilize gap junctions for direct ionic and metabolic coupling. Electrical synapses are often viewed as symmetrical structures, with the same components making both sides of the gap junction. By contrast, we show that a broad set of electrical synapses in zebrafish, Danio rerio, require two gap-junction-forming Connexins for formation and function. We find that one Connexin functions presynaptically while the other functions postsynaptically in forming the channels. We also show that these synapses are required for the speed and coordination of escape responses. Our data identify a genetic basis for molecular asymmetry at vertebrate electrical synapses and show they are required for appropriate behavioral performance. DOI:http://dx.doi.org/10.7554/eLife.25364.001
Collapse
Affiliation(s)
- Adam C Miller
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Alex C Whitebirch
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Arish N Shah
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Kurt C Marsden
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - John O'Brien
- Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, United States
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
43
|
Schmeisser K, Parker JA. Worms on the spectrum - C. elegans models in autism research. Exp Neurol 2017; 299:199-206. [PMID: 28434869 DOI: 10.1016/j.expneurol.2017.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
The small non-parasitic nematode Caenorhabditis elegans is widely used in neuroscience thanks to its well-understood development and lineage of the nervous system. Furthermore, C. elegans has been used to model many human developmental and neurological conditions to better understand disease mechanisms and identify potential therapeutic strategies. Autism spectrum disorder (ASD) is the most prevalent of all neurodevelopmental disorders, and the C. elegans system may provide opportunities to learn more about this complex disorder. Since basic cell biology and biochemistry of the C. elegans nervous system is generally very similar to mammals, cellular or molecular phenotypes can be investigated, along with a repertoire of behaviours. For instance, worms have contributed greatly to the understanding of mechanisms underlying mutations in genes coding for synaptic proteins such as neuroligin and neurexin. Using worms to model neurodevelopmental disorders like ASD is an emerging topic that harbours great, untapped potential. This review summarizes the numerous contributions of C. elegans to the field of neurodevelopment and introduces the nematode system as a potential research tool to study essential roles of genes associated with ASD.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Centre de Recherche du Centre Hospitalier de l'Université de Montreál (CRCHUM), 900 St-Denis Street, Montreál, Queb́ec H2X 0A9, Canada
| | - J Alex Parker
- Centre de Recherche du Centre Hospitalier de l'Université de Montreál (CRCHUM), 900 St-Denis Street, Montreál, Queb́ec H2X 0A9, Canada; Department of Neuroscience, Université de Montreál, 2960 Chemin de la Tour, Montreál, Queb́ec H3T 1J4, Canada.
| |
Collapse
|
44
|
Miller AC, Pereda AE. The electrical synapse: Molecular complexities at the gap and beyond. Dev Neurobiol 2017; 77:562-574. [PMID: 28170151 DOI: 10.1002/dneu.22484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
Gap junctions underlie electrical synaptic transmission between neurons. Generally perceived as simple intercellular channels, "electrical synapses" have demonstrated to be more functionally sophisticated and structurally complex than initially anticipated. Electrical synapses represent an assembly of multiple molecules, consisting of channels, adhesion complexes, scaffolds, regulatory machinery, and trafficking proteins, all required for their proper function and plasticity. Additionally, while electrical synapses are often viewed as strictly symmetric structures, emerging evidence has shown that some components forming electrical synapses can be differentially distributed at each side of the junction. We propose that the molecular complexity and asymmetric distribution of proteins at the electrical synapse provides rich potential for functional diversity. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 562-574, 2017.
Collapse
Affiliation(s)
- Adam C Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, Oregon
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
45
|
Park JS, Ryu JH, Choi TI, Bae YK, Lee S, Kang HJ, Kim CH. Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses. Mol Cells 2016; 39:750-755. [PMID: 27802373 PMCID: PMC5104883 DOI: 10.14348/molcells.2016.0173] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 10/12/2016] [Indexed: 11/27/2022] Open
Abstract
Although innate color preference of motile organisms may provide clues to behavioral biases, it has remained a longstanding question. In this study, we investigated innate color preference of zebrafish larvae. A cross maze with different color sleeves around each arm was used for the color preference test (R; red, G; green, B; blue, Y; yellow). The findings showed that 5 dpf zebrafish larvae preferred blue over other colors (B > R > G > Y). To study innate color recognition further, tyrosinase mutants were generated using CRISPR/Cas9 system. As a model for oculocutaneous albinism (OCA) and color vision impairment, tyrosinase mutants demonstrated diminished color sensation, indicated mainly by hypopigmentation of the retinal pigment epithelium (RPE). Due to its relative simplicity and ease, color preference screening using zebrafish larvae is suitable for high-throughput screening applications. This system may potentially be applied to the analysis of drug effects on larval behavior or the detection of sensory deficits in neurological disorder models, such as autism-related disorders, using mutant larvae generated by the CRISPR/Cas9 technique.
Collapse
Affiliation(s)
- Jong-Su Park
- Department of Biology, Chungnam National University, Daejeon 34134,
Korea
| | - Jae-Ho Ryu
- Department of Biology, Chungnam National University, Daejeon 34134,
Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134,
Korea
| | - Young-Ki Bae
- Comparative Biomedicine Research Branch, National Cancer Center, Goyang 10408,
Korea
| | - Suman Lee
- Division of Structural and Functional Genomics, Center for Genome Science, National Research Institute of Health, Osong 28159,
Korea
| | - Hae Jin Kang
- Department of Biology, Chungnam National University, Daejeon 34134,
Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
46
|
Patak J, Zhang-James Y, Faraone SV. Endosomal system genetics and autism spectrum disorders: A literature review. Neurosci Biobehav Rev 2016; 65:95-112. [PMID: 27048963 PMCID: PMC4866511 DOI: 10.1016/j.neubiorev.2016.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of debilitating neurodevelopmental disorders thought to have genetic etiology, due to their high heritability. The endosomal system has become increasingly implicated in ASD pathophysiology. In an attempt to summarize the association between endosomal system genes and ASDs we performed a systematic review of the literature. We searched PubMed for relevant articles. Simons Foundation Autism Research Initiative (SFARI) gene database was used to exclude articles regarding genes with less than minimal evidence for association with ASDs. Our search retained 55 articles reviewed in two categories: genes that regulate and genes that are regulated by the endosomal system. Our review shows that the endosomal system is a novel pathway implicated in ASDs as well as other neuropsychiatric disorders. It plays a central role in aspects of cellular physiology on which neurons and glial cells are particularly reliant, due to their unique metabolic and functional demands. The system shows potential for biomarkers and pharmacological intervention and thus more research into this pathway is warranted.
Collapse
Affiliation(s)
- Jameson Patak
- Dept. of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, United States.
| | - Yanli Zhang-James
- Dept of Psychiatry, Upstate Medical University, Syracuse, NY, United States.
| | - Stephen V Faraone
- Dept. of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, United States; Dept of Psychiatry, Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
47
|
Meng L, Chen CH, Yan D. Regulation of Gap Junction Dynamics by UNC-44/ankyrin and UNC-33/CRMP through VAB-8 in C. elegans Neurons. PLoS Genet 2016; 12:e1005948. [PMID: 27015090 PMCID: PMC4807823 DOI: 10.1371/journal.pgen.1005948] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/01/2016] [Indexed: 11/18/2022] Open
Abstract
Gap junctions are present in both vertebrates and invertebrates from nematodes to mammals. Although the importance of gap junctions has been documented in many biological processes, the molecular mechanisms underlying gap junction dynamics remain unclear. Here, using the C. elegans PLM neurons as a model, we show that UNC-44/ankyrin acts upstream of UNC-33/CRMP in regulation of a potential kinesin VAB-8 to control gap junction dynamics, and loss-of-function in the UNC-44/UNC-33/VAB-8 pathway suppresses the turnover of gap junction channels. Therefore, we first show a signal pathway including ankyrin, CRMP, and kinesin in regulating gap junctions.
Collapse
Affiliation(s)
- Lingfeng Meng
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Chia-hui Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
48
|
Tuand K, Stijnen P, Volders K, Declercq J, Nuytens K, Meulemans S, Creemers J. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription. PLoS One 2016; 11:e0151954. [PMID: 26999814 PMCID: PMC4801420 DOI: 10.1371/journal.pone.0151954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. METHODS Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. RESULTS Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. CONCLUSION Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for neural development.
Collapse
Affiliation(s)
- Krizia Tuand
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | - Pieter Stijnen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Karolien Volders
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | | | - Kim Nuytens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Leuven Autism Research consortium (LAuRes), KU Leuven, Leuven, Belgium
| | | | - John Creemers
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
49
|
β-Amyloid precursor protein-b is essential for Mauthner cell development in the zebrafish in a Notch-dependent manner. Dev Biol 2016; 413:26-38. [PMID: 26994945 DOI: 10.1016/j.ydbio.2016.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
Abstract
Amyloid precursor protein (APP) is a transmembrane glycoprotein that has been the subject of intense research because of its implication in Alzheimer's disease. However, the physiological function of APP in the development and maintenance of the central nervous system remains largely unknown. We have previously shown that the APP homologue in zebrafish (Danio rerio), Appb, is required for motor neuron patterning and formation. Here we study the function of Appb during neurogenesis in the zebrafish hindbrain. Partial knockdown of Appb using antisense morpholino oligonucleotides blocked the formation of the Mauthner neurons, uni- or bilaterally, with an aberrant behavior as a consequence of this cellular change. The Appb morphants had decreased neurogenesis, increased notch signaling and notch1a expression at the expense of deltaA/D expression. The Mauthner cell development could be restored either by a general decrease in Notch signaling through γ-secretase inhibition or by a partial knock down of Notch1a. Together, this demonstrates the importance of Appb in neurogenesis and for the first time shows the essential requirement of Appb in the formation of a specific cell type, the Mauthner cell, in the hindbrain during development. Our results suggest that Appb-regulated neurogenesis is mediated through balancing the Notch1a signaling pathway and provide new insights into the development of the Mauthner cell.
Collapse
|
50
|
The scales and tales of myelination: using zebrafish and mouse to study myelinating glia. Brain Res 2015; 1641:79-91. [PMID: 26498880 DOI: 10.1016/j.brainres.2015.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin, the lipid-rich sheath that insulates axons to facilitate rapid conduction of action potentials, is an evolutionary innovation of the jawed-vertebrate lineage. Research efforts aimed at understanding the molecular mechanisms governing myelination have primarily focused on rodent models; however, with the advent of the zebrafish model system in the late twentieth century, the use of this genetically tractable, yet simpler vertebrate for studying myelination has steadily increased. In this review, we compare myelinating glial cell biology during development and regeneration in zebrafish and mouse and enumerate the advantages and disadvantages of using each model to study myelination. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
|