1
|
Zhang X, Zheng W, Zhu Z, Guo X, Hu J, Xu L, Fang H, Huang Y, Ling Z, Zhu Z, Zang Y, Wu J. Transcriptomic analysis of wrinkled leaf development of Tai-cai (Brassica rapa var. tai-tsai) and its synthetic allotetraploid via RNA and miRNA sequencing. PLANT MOLECULAR BIOLOGY 2025; 115:66. [PMID: 40327156 DOI: 10.1007/s11103-025-01592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
The allotetraploid (AACC) was synthesized through wide hybridization between 'Mottle-leaf Tai-cai' (Brassica rapa var. tai-tsai Hort. AA) and 'Big Yellow Flower Chinese Kale' (B. oleracea var. alboglabra Bailey. CC) in earlier study, which owns a stronger wrinkled leaf and wave margin than Tai-cai. To analyze the structure and developmental mechanism of wrinkled leaf and wave edge, four leaf development stages were chosen for RNA-seq and their key stages for anatomical observation. As a result, the number of cell layers and compactness of AA and AACC were significantly increased in folded parts, and the enlargement of epidermal cells causes the leaf edge to curve inward. The gene expression bias of AACC showed no difference in the cotyledon stage, favored the A genome in the first leaf stage, however, favored the C genome in the third leaf and fifth leaf stages, showing an expression level advantage over the C genome parent. During the leaf development, the plant hormone signaling pathway were significantly enriched, PIN1 (BraC07g037600), AUX1 (BraC05g007870), AUX/IAA (BraC03g037630), and GH3 (BraC10g026970), which maintained high expression during the euphylla leaf stage of AA and AACC. And these genes performed different patterns in CC. In addition, the expression levels of miR319 and miR156 of AA were significantly higher than those of CC, and the expression levels of their target genes TCP and SPL were lower. These genes were jointly involved in the development of AA and AACC leaves and may be closely related to the formation of leaf folds and waves.
Collapse
Affiliation(s)
- Xinli Zhang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Wen Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiyu Zhu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Modern Agriculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaocan Guo
- School of Architecture and Art Design, Hebei Academy of Fine Arts, Shijiazhuang, 050067, Hebei, China
| | - Jinbao Hu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Li'ai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Huihui Fang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhengyan Ling
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Jianguo Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Ma M, Wang Y, Sun Z, Zhao R, Li H, Li X, Zhu H, Yang X, Zhang C, Fang Y. Regulation of transcriptional homeostasis by DNA methylation upon genome duplication in pak choi. MOLECULAR HORTICULTURE 2025; 5:22. [PMID: 40186241 PMCID: PMC11971760 DOI: 10.1186/s43897-025-00145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/14/2025] [Indexed: 04/07/2025]
Abstract
Polyploidy occurs frequently in plants and is an important force in plant evolution and crop breeding. New polyploids face various challenges due to genome duplication and subsequent changes in epigenetic modifications, nucleus/cell size and gene expression. How polyploids produce evolutionary novelty remains to be understood. In this study, a transcriptome comparison between 21-day-old diploid and autotetraploid pak choi seedlings revealed that there are few differentially expressed genes (DEGs), with a greater proportion of DEGs downregulated in response to genome duplication. Genome-wide DNA methylation analysis indicated that the level of DNA methylation is obviously increased, especially in transposable elements (TEs) and 1 kb flanking regions, upon genome doubling. The differentially methylated regions between diploid and autotetraploid pak choi were related to 12,857 differentially hypermethylated genes and 8,451 hypomethylated genes, and the DEGs were negatively correlated with the differential methylation in the regions across the DEGs. Notably, TE methylation increases significantly in regions flanking neighboring non-DEGs rather than those flanking DEGs. These results shed light on the role of DNA methylation in the transcriptional regulation of genes in polyploids and the mechanism of coping with "genome shock" due to genome doubling in cruciferous plants.
Collapse
Affiliation(s)
- Min Ma
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanda Wang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenfei Sun
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ranze Zhao
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Honghua Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxuan Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongfang Zhu
- Shanghai Key Laboratory of Facility Horticulture Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xuedong Yang
- Shanghai Key Laboratory of Facility Horticulture Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Changwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuda Fang
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Huang P, Xu T, Wang G, Zhang L, Yao Y, Zhang M, Zhang C. Morphological and metabolic changes in Changshan Huyou (Citrus changshan-huyou) following natural tetraploidization. BMC PLANT BIOLOGY 2025; 25:301. [PMID: 40055582 PMCID: PMC11889857 DOI: 10.1186/s12870-025-06293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/24/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND Polyploids in citrus are generally used to improve crop varieties. Changshan Huyou (Citrus changshan-huyou) is a native citrus species in China that is highly adaptable and has pharmaceutical value. However, the influence in Changshan Huyou following polyploidization remains unclear. Here we evaluated the adult tetraploid scions of Changshan Huyou with contemporary diploid scions as the control in the phenotypic variations, metabolic alterations of fruits and associated transcriptomic changes. RESULT The tetraploid scions had rounder and thicker leaves, larger floral organs and fruits, and satisfactory viability of pollen grains and ovules. The tetraploid fruits accumulated lower levels of soluble solids but similar levels of organic acids. Metabolic profiling of three tissues of fruits revealed that most of 2064 differentially accumulated metabolites (DAMs), including flavonoids, lignans, and coumarins, were downregulated. In contrast, the upregulated DAMs mainly included alkaloids (clausine K and 2-(1-pentenyl)quinoline), amino acids (L-asparagine and L-ornithine), and terpenoids (deacetylnomilin and evodol) in tetraploid peels, as well as, flavonoids (neohesperidin and quercetin-5-O-β-D-glucoside) and organic acids (2-methylsuccinic acid and dimethylmalonic acid) in juice sacs. The upregulated genes were associated with phenylpropanoid biosynthesis, secondary metabolite biosynthesis, and the biosynthesis of various alkaloid pathways. Pearson Correlation Analysis showed that the upregulated genes encoding PEROXIDASE and CYTOCHROME P450 (CYP450) were closely related to the higher accumulation of amino acids and alkaloids in tetraploid peels, and up-regulated neohesperidin and quercetin glucoside were positively associated with FERULATE-5-HYDROXYLASE (F5H), CYP450 81Q32, FLAVONOID 3'-MONOOXYGENASE (F3'H), 4-COUMARATE-CoA LIGASE 1 (4CL1), and UDP-GLUCOSE FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UFOG), as well as, some transcription factors in tetraploid juice sacs. CONCLUSION The tetraploid Changshan Huyou investigated here may be used in triploids breeding to produce seedless citrus, and for fruit processing on pharmaceutical purpose due to the alteration of metabolites following polyploidization.
Collapse
Affiliation(s)
- Peiru Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Tianyu Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China
| | - Gang Wang
- Agriculture and Rural Bureau of Changshan County, Quzhou, Zhejiang, 324200, People's Republic of China
| | - Lin Zhang
- Zhejiang Agricultural Technology Extension Center, Hangzhou, Zhejiang, 310020, People's Republic of China
| | - Ying Yao
- Zhejiang Agricultural Technology Extension Center, Hangzhou, Zhejiang, 310020, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China.
| | - Chi Zhang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China.
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, People's Republic of China.
| |
Collapse
|
4
|
Gao H, Yuan X, Wang J, Yan Y, Zhang X, He T, Lin X, Zhang H, Liu Z. Knockdown of Fzr inhibited the growth of Nilaparvata lugens by blocking endocycle. PEST MANAGEMENT SCIENCE 2025; 81:36-43. [PMID: 39229824 DOI: 10.1002/ps.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND The endocycle can generate cells referred to as 'polyploid'. Fizzy-related protein (Fzr) plays an important role in driving the mitosis-to-endocycle transition. The brown planthopper (BPH), Nilaparvata lugens (Stål), a serious insect pest, feeds exclusively on rice. However, polyploidy and its regulatory mechanisms are poorly understood in BPH. RESULTS Here, we found that the ploidy levels of follicles H (FH) and accessory gland (AG) significantly increased with BPH age when examining the polyploidy of FH and AG of salivary glands. Fzr was identified as an important regulator for polyploidy in BPH salivary gland. Knockdown of Fzr resulted in a decrease in cell size and DNA content in nymph salivary glands. Fzr knockdown transcriptionally upregulated cyclin-dependent kinase 1 (CDK1), CDK2, cyclin A (CycA) and CycB, and downregulated CycD, CycE, Myc and mini-chromosome maintenance protein 2-7 (MCM2-7). Phenotypically, Fzr knockdown significantly suppressed salivary protein production, feeding and survival in BPH nymphs. CONCLUSION Our results show that BPH salivary glands exhibit obvious polyploidy, and Fzr positively regulates the endocycle in nymph salivary gland. These findings provide clues for the study of the regulatory mechanisms of insect polyploidy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Yuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tianshun He
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Sanya Institute of the Nanjing Agricultural University, Sanya, China
| | - Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Borowik AK, Murach KA, Miller BF. The expanding roles of myonuclei in adult skeletal muscle health and function. Biochem Soc Trans 2024; 52:1-14. [PMID: 39700019 DOI: 10.1042/bst20241637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Skeletal muscle cells (myofibers) require multiple nuclei to support a cytoplasmic volume that is larger than other mononuclear cell types. It is dogmatic that mammalian resident myonuclei rely on stem cells (specifically satellite cells) for adding new DNA to muscle fibers to facilitate cytoplasmic expansion that occurs during muscle growth. In this review, we discuss the relationship between cell size and supporting genetic material. We present evidence that myonuclei may undergo DNA synthesis as a strategy to increase genetic material in myofibers independent from satellite cells. We then describe the details of our experiments that demonstrated that mammalian myonuclei can replicate DNA in vivo. Finally, we present our findings in the context of expanding knowledge about myonuclear heterogeneity, myonuclear mobility and shape. We also address why myonuclear replication is potentially important and provide future directions for remaining unknowns. Myonuclear DNA replication, coupled with new discoveries about myonuclear transcription, morphology, and behavior in response to stress, may provide opportunities to leverage previously unappreciated skeletal muscle biological processes for therapeutic targets that support muscle mass, function, and plasticity.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, U.S.A
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
- Oklahoma City VA Medical Center, Oklahoma City, OK, U.S.A
| |
Collapse
|
6
|
Yang Q, Wijaya F, Kapoor R, Chandrasekaran H, Jagtiani S, Moran I, Hime GR. Unusual modes of cell and nuclear divisions characterise Drosophila development. Biochem Soc Trans 2024; 52:2281-2295. [PMID: 39508395 DOI: 10.1042/bst20231341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
The growth and development of metazoan organisms is dependent upon a co-ordinated programme of cellular proliferation and differentiation, from the initial formation of the zygote through to maintenance of mature organs in adult organisms. Early studies of proliferation of ex vivo cultures and unicellular eukaryotes described a cyclic nature of cell division characterised by periods of DNA synthesis (S-phase) and segregation of newly synthesized chromosomes (M-phase) interspersed by seeming inactivity, the gap phases, G1 and G2. We now know that G1 and G2 play critical roles in regulating the cell cycle, including monitoring of favourable environmental conditions to facilitate cell division, and ensuring genomic integrity prior to DNA replication and nuclear division. M-phase is usually followed by the physical separation of nascent daughters, termed cytokinesis. These phases where G1 leads to S phase, followed by G2 prior to M phase and the subsequent cytokinesis to produce two daughters, both identical in genomic composition and cellular morphology are what might be termed an archetypal cell division. Studies of development of many different organs in different species have demonstrated that this stereotypical cell cycle is often subverted to produce specific developmental outcomes, and examples from over 100 years of analysis of the development of Drosophila melanogaster have uncovered many different modes of cell division within this one species.
Collapse
Affiliation(s)
- Qiaolin Yang
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Fernando Wijaya
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Ridam Kapoor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Harshaa Chandrasekaran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Siddhant Jagtiani
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Izaac Moran
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
7
|
Chen L, Liu J, Chen K, Su Y, Chen Y, Lei Y, Si J, Zhang J, Zhang Z, Zou W, Zhang X, Rondina MT, Wang QF, Li Y. SET domain containing 2 promotes megakaryocyte polyploidization and platelet generation through methylation of α-tubulin. J Thromb Haemost 2024; 22:1727-1741. [PMID: 38537781 DOI: 10.1016/j.jtha.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Megakaryocytes (MKs) are polyploid cells responsible for producing ∼1011 platelets daily in humans. Unraveling the mechanisms regulating megakaryopoiesis holds the promise for the production of clinical-grade platelets from stem cells, overcoming significant current limitations in platelet transfusion medicine. Previous work identified that loss of the epigenetic regulator SET domain containing 2 (SETD2) was associated with an increased platelet count in mice. However, the role of SETD2 in megakaryopoiesis remains unknown. OBJECTIVES Here, we examined how SETD2 regulated MK development and platelet production using complementary murine and human systems. METHODS We manipulated the expression of SETD2 in multiple in vitro and ex vivo models to assess the ploidy of MKs and the function of platelets. RESULTS The genetic ablation of Setd2 increased the number of high-ploidy bone marrow MKs. Peripheral platelet counts in Setd2 knockout mice were significantly increased ∼2-fold, and platelets exhibited normal size, morphology, and function. By knocking down and overexpressing SETD2 in ex vivo human cell systems, we demonstrated that SETD2 negatively regulated MK polyploidization by controlling methylation of α-tubulin, microtubule polymerization, and MK nuclear division. Small-molecule inactivation of SETD2 significantly increased the production of high-ploidy MKs and platelets from human-induced pluripotent stem cells and cord blood CD34+ cells. CONCLUSION These findings identify a previously unrecognized role for SETD2 in regulating megakaryopoiesis and highlight the potential of targeting SETD2 to increase platelet production from human cells for transfusion practices.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingkun Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kunying Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanxun Su
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yihe Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lei
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jia Si
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhaojun Zhang
- University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center of Bioinformation, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Weiguo Zou
- Shanghai Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China; State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China; National Clinical Research Center for Hematologic Disease, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Matthew T Rondina
- Departments of Internal Medicine and Pathology, Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; Department of Internal Medicine and the Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yueying Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Buddell T, Purdy AL, Patterson M. The genetics of cardiomyocyte polyploidy. Curr Top Dev Biol 2024; 156:245-295. [PMID: 38556425 DOI: 10.1016/bs.ctdb.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The regulation of ploidy in cardiomyocytes is a complex and tightly regulated aspect of cardiac development and function. Cardiomyocyte ploidy can range from diploid (2N) to 8N or even 16N, and these states change during key stages of development and disease progression. Polyploidization has been associated with cellular hypertrophy to support normal growth of the heart, increased contractile capacity, and improved stress tolerance in the heart. Conversely, alterations to ploidy also occur during cardiac pathogenesis of diseases, such as ischemic and non-ischemic heart failure and arrhythmia. Therefore, understanding which genes control and modulate cardiomyocyte ploidy may provide mechanistic insight underlying cardiac growth, regeneration, and disease. This chapter summarizes the current knowledge regarding the genes involved in the regulation of cardiomyocyte ploidy. We discuss genes that have been directly tested for their role in cardiomyocyte polyploidization, as well as methodologies used to identify ploidy alterations. These genes encode cell cycle regulators, transcription factors, metabolic proteins, nuclear scaffolding, and components of the sarcomere, among others. The general physiological and pathological phenotypes in the heart associated with the genetic manipulations described, and how they coincide with the respective cardiomyocyte ploidy alterations, are further discussed in this chapter. In addition to being candidates for genetic-based therapies for various cardiac maladies, these genes and their functions provide insightful evidence regarding the purpose of widespread polyploidization in cardiomyocytes.
Collapse
Affiliation(s)
- Tyler Buddell
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexandra L Purdy
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michaela Patterson
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
9
|
Wang S, Chen X, Jin X, Gu F, Jiang W, Qi Q, Liang Q. Creating Polyploid Escherichia Coli and Its Application in Efficient L-Threonine Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302417. [PMID: 37749873 PMCID: PMC10625114 DOI: 10.1002/advs.202302417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Prokaryotic genomes are generally organized in haploid. In synthetic biological research, efficient chassis cells must be constructed to produce bio-based products. Here, the essential division of the ftsZ gene to create functional polyploid E. coli is regulated. The artificial polyploid E. coli containing 2-4 chromosomes is confirmed through PCR amplification, terminator localization, and flow cytometry. The polyploid E. coli exhibits a larger cell size, and its low pH tolerance and acetate resistance are stronger than those of haploid E. coli. Transcriptome analysis shows that the genes of the cell's main functional pathways are significantly upregulated in the polyploid E. coli. These advantages of the polyploid E. coli results in the highest reported L-threonine yield (160.3 g L-1 ) in fed-batch fermentation to date. In summary, an easy and convenient method for constructing polyploid E. coli and demonstrated its application in L-threonine production is developed. This work provides a new approach for creating an excellent host strain for biochemical production and studying the evolution of prokaryotes and their chromosome functions.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Xuanmu Chen
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Xin Jin
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Fei Gu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Wei Jiang
- Research Center of Basic MedicineCentral Hospital Affiliated to Shandong First Medical UniversityJinan250013P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | - Quanfeng Liang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| |
Collapse
|
10
|
Tourdot E, Mauxion JP, Gonzalez N, Chevalier C. Endoreduplication in plant organogenesis: a means to boost fruit growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6269-6284. [PMID: 37343125 DOI: 10.1093/jxb/erad235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
11
|
Dehn AS, Duhaime L, Gogna N, Nishina PM, Kelley K, Losick VP. Epithelial mechanics are maintained by inhibiting cell fusion with age in Drosophila. J Cell Sci 2023; 136:jcs260974. [PMID: 37732459 PMCID: PMC10651104 DOI: 10.1242/jcs.260974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
A characteristic of normal aging and age-related diseases is the remodeling of the cellular organization of a tissue through polyploid cell growth. Polyploidy arises from an increase in nuclear ploidy or the number of nuclei per cell. However, it is not known whether age-induced polyploidy is an adaption to stressors or a precursor to degeneration. Here, we find that abdominal epithelium of the adult fruit fly becomes polyploid with age through generation of multinucleated cells by cell fusion. Inhibition of fusion does not improve the lifespan of the fly, but does enhance its biomechanical fitness, a measure of the healthspan of the animal. Remarkably, Drosophila can maintain their epithelial tension and abdominal movements with age when cell fusion is inhibited. Epithelial cell fusion also appears to be dependent on a mechanical cue, as knockdown of Rho kinase, E-cadherin or α-catenin is sufficient to induce multinucleation in young animals. Interestingly, mutations in α-catenin in mice result in retina pigment epithelial multinucleation associated with macular disease. Therefore, we have discovered that polyploid cells arise by cell fusion and contribute to the decline in the biomechanical fitness of the animal with age.
Collapse
Affiliation(s)
- Ari S. Dehn
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Levi Duhaime
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Navdeep Gogna
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Patsy M. Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Kristina Kelley
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| | - Vicki P. Losick
- Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA
| |
Collapse
|
12
|
Mello MLS. Nuclear Morphofunctional Organization and Epigenetic Characteristics in Somatic Cells of T. infestans (Klug, 1834). Pathogens 2023; 12:1030. [PMID: 37623990 PMCID: PMC10460038 DOI: 10.3390/pathogens12081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Triatoma infestans (Klug) is an insect recognized as not only an important vector of South American trypanosomiasis (Chagas disease) but also a model of specific cellular morphofunctional organization and epigenetic characteristics. The purpose of the present review is to highlight certain cellular processes that are particularly unveiled in T. infestans, such as the following: (1) somatic polyploidy involving nuclear and cell fusions that generate giant nuclei; (2) diversification of nuclear phenotypes in the Malpighian tubules during insect development; (3) heterochromatin compartmentalization into large bodies with specific spatial distribution and presumed mobility in the cell nuclei; (4) chromatin remodeling and co-occurrence of necrosis and apoptosis in the Malpighian tubules under stress conditions; (5) epigenetic markers; and (6) response of heterochromatin to valproic acid, an epidrug that inhibits histone deacetylases and induces DNA demethylation in other cell systems. These cellular processes and epigenetic characteristics emphasize the role of T. infestans as an attractive model for cellular research. A limitation of these studies is the availability of insect supply by accredited insectaries. For studies that require the injection of drugs, the operator's dexterity to perform insect manipulation is necessary, especially if young nymphs are used. For studies involving in vitro cultivation of insect organs, the culture medium should be carefully selected to avoid inconsistent results.
Collapse
Affiliation(s)
- Maria Luiza S Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| |
Collapse
|
13
|
Kołodziejczyk I, Tomczyk P, Kaźmierczak A. Endoreplication-Why Are We Not Using Its Full Application Potential? Int J Mol Sci 2023; 24:11859. [PMID: 37511616 PMCID: PMC10380914 DOI: 10.3390/ijms241411859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Endoreplication-a process that is common in plants and also accompanies changes in the development of animal organisms-has been seen from a new perspective in recent years. In the paper, we not only shed light on this view, but we would also like to promote an understanding of the application potential of this phenomenon in plant cultivation. Endoreplication is a pathway for cell development, slightly different from the classical somatic cell cycle, which ends with mitosis. Since many rounds of DNA synthesis take place within its course, endoreplication is a kind of evolutionary compensation for the relatively small amount of genetic material that plants possess. It allows for its multiplication and active use through transcription and translation. The presence of endoreplication in plants has many positive consequences. In this case, repeatedly produced copies of genes, through the corresponding transcripts, help the plant acquire the favorable properties for which proteins are responsible directly or indirectly. These include features that are desirable in terms of cultivation and marketing: a greater saturation of fruit and flower colors, a stronger aroma, a sweeter fruit taste, an accumulation of nutrients, an increased resistance to biotic and abiotic stress, superior tolerance to adverse environmental conditions, and faster organ growth (and consequently the faster growth of the whole plant and its biomass). The two last features are related to the nuclear-cytoplasmic ratio-the greater the content of DNA in the nucleus, the higher the volume of cytoplasm, and thus the larger the cell size. Endoreplication not only allows cells to reach larger sizes but also to save the materials used to build organelles, which are then passed on to daughter cells after division, thus ending the classic cell cycle. However, the content of genetic material in the cell nucleus determines the number of corresponding organelles. The article also draws attention to the potential practical applications of the phenomenon and the factors currently limiting its use.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/14, 90237 Lodz, Poland
| | - Przemysław Tomczyk
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96100 Skierniewice, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90237 Lodz, Poland
| |
Collapse
|
14
|
Schvarzstein M, Alam F, Toure M, Yanowitz JL. An Emerging Animal Model for Querying the Role of Whole Genome Duplication in Development, Evolution, and Disease. J Dev Biol 2023; 11:26. [PMID: 37367480 PMCID: PMC10299280 DOI: 10.3390/jdb11020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Whole genome duplication (WGD) or polyploidization can occur at the cellular, tissue, and organismal levels. At the cellular level, tetraploidization has been proposed as a driver of aneuploidy and genome instability and correlates strongly with cancer progression, metastasis, and the development of drug resistance. WGD is also a key developmental strategy for regulating cell size, metabolism, and cellular function. In specific tissues, WGD is involved in normal development (e.g., organogenesis), tissue homeostasis, wound healing, and regeneration. At the organismal level, WGD propels evolutionary processes such as adaptation, speciation, and crop domestication. An essential strategy to further our understanding of the mechanisms promoting WGD and its effects is to compare isogenic strains that differ only in their ploidy. Caenorhabditis elegans (C. elegans) is emerging as an animal model for these comparisons, in part because relatively stable and fertile tetraploid strains can be produced rapidly from nearly any diploid strain. Here, we review the use of Caenorhabditis polyploids as tools to understand important developmental processes (e.g., sex determination, dosage compensation, and allometric relationships) and cellular processes (e.g., cell cycle regulation and chromosome dynamics during meiosis). We also discuss how the unique characteristics of the C. elegans WGD model will enable significant advances in our understanding of the mechanisms of polyploidization and its role in development and disease.
Collapse
Affiliation(s)
- Mara Schvarzstein
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
- Biology Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
- Biochemistry Department, The Graduate Center at the City University of New York, New York, NY 10016, USA
| | - Fatema Alam
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Muhammad Toure
- Biology Department, Brooklyn College at the City University of New York, Brooklyn, NY 11210, USA
| | - Judith L. Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA;
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Gallardo M, Gomez-Jimenez MC. Characterization of Transcriptome Dynamics during Early Fruit Development in Olive ( Olea europaea L.). Int J Mol Sci 2023; 24:961. [PMID: 36674474 PMCID: PMC9864153 DOI: 10.3390/ijms24020961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
In the olive (Olea europaea L.), an economically leading oil crop worldwide, fruit size and yield are determined by the early stages of fruit development. However, few detailed analyses of this stage of fruit development are available. This study offers an extensive characterization of the various processes involved in early olive fruit growth (cell division, cell cycle regulation, and cell expansion). For this, cytological, hormonal, and transcriptional changes characterizing the phases of early fruit development were analyzed in olive fruit of the cv. 'Picual'. First, the surface area and mitotic activity (by flow cytometry) of fruit cells were investigated during early olive fruit development, from 0 to 42 days post-anthesis (DPA). The results demonstrate that the cell division phase extends up to 21 DPA, during which the maximal proportion of 4C cells in olive fruits was reached at 14 DPA, indicating that intensive cell division was activated in olive fruits at that time. Subsequently, fruit cell expansion lasted as long as 3 weeks more before endocarp lignification. Finally, the molecular mechanisms controlling the early fruit development were investigated by analyzing the transcriptome of olive flowers at anthesis (fruit set) as well as olive fruits at 14 DPA (cell division phase) and at 28 DPA (cell expansion phase). Sequential induction of the cell cycle regulating genes is associated with the upregulation of genes involved in cell wall remodeling and ion fluxes, and with a shift in plant hormone metabolism and signaling genes during early olive fruit development. This occurs together with transcriptional activity of subtilisin-like protease proteins together with transcription factors potentially involved in early fruit growth signaling. This gene expression profile, together with hormonal regulators, offers new insights for understanding the processes that regulate cell division and expansion, and ultimately fruit yield and olive size.
Collapse
Affiliation(s)
- Maria C. Camarero
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Beatriz Briegas
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Jorge Corbacho
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Juana Labrador
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| | - Mercedes Gallardo
- Laboratory of Plant Physiology, University of Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, University of Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
16
|
Davies DM, van den Handel K, Bharadwaj S, Lengefeld J. Cellular enlargement - A new hallmark of aging? Front Cell Dev Biol 2022; 10:1036602. [PMID: 36438561 PMCID: PMC9688412 DOI: 10.3389/fcell.2022.1036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2023] Open
Abstract
Years of important research has revealed that cells heavily invest in regulating their size. Nevertheless, it has remained unclear why accurate size control is so important. Our recent study using hematopoietic stem cells (HSCs) in vivo indicates that cellular enlargement is causally associated with aging. Here, we present an overview of these findings and their implications. Furthermore, we performed a broad literature analysis to evaluate the potential of cellular enlargement as a new aging hallmark and to examine its connection to previously described aging hallmarks. Finally, we highlight interesting work presenting a correlation between cell size and age-related diseases. Taken together, we found mounting evidence linking cellular enlargement to aging and age-related diseases. Therefore, we encourage researchers from seemingly unrelated areas to take a fresh look at their data from the perspective of cell size.
Collapse
Affiliation(s)
- Daniel M. Davies
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kim van den Handel
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Soham Bharadwaj
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jette Lengefeld
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Zhang Y, Zhang L, Xiao Q, Wu C, Zhang J, Xu Q, Yu Z, Bao S, Wang J, Li Y, Wang L, Wang J. Two independent allohexaploidizations and genomic fractionation in Solanales. FRONTIERS IN PLANT SCIENCE 2022; 13:1001402. [PMID: 36212355 PMCID: PMC9538396 DOI: 10.3389/fpls.2022.1001402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Solanales, an order of flowering plants, contains the most economically important vegetables among all plant orders. To date, many Solanales genomes have been sequenced. However, the evolutionary processes of polyploidization events in Solanales and the impact of polyploidy on species diversity remain poorly understood. We compared two representative Solanales genomes (Solanum lycopersicum L. and Ipomoea triloba L.) and the Vitis vinifera L. genome and confirmed two independent polyploidization events. Solanaceae common hexaploidization (SCH) and Convolvulaceae common hexaploidization (CCH) occurred ∼43-49 and ∼40-46 million years ago (Mya), respectively. Moreover, we identified homologous genes related to polyploidization and speciation and constructed multiple genomic alignments with V. vinifera genome, providing a genomic homology framework for future Solanales research. Notably, the three polyploidization-produced subgenomes in both S. lycopersicum and I. triloba showed significant genomic fractionation bias, suggesting the allohexaploid nature of the SCH and CCH events. However, we found that the higher genomic fractionation bias of polyploidization-produced subgenomes in Solanaceae was likely responsible for their more abundant species diversity than that in Convolvulaceae. Furthermore, through genomic fractionation and chromosomal structural variation comparisons, we revealed the allohexaploid natures of SCH and CCH, both of which were formed by two-step duplications. In addition, we found that the second step of two paleohexaploidization events promoted the expansion and diversity of β-amylase (BMY) genes in Solanales. These current efforts provide a solid foundation for future genomic and functional exploration of Solanales.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qimeng Xiao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chunyang Wu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jiaqi Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qiang Xu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zijian Yu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Shoutong Bao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianyu Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yu Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Li Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Rujano MA, Briand D, Ðelić B, Marc J, Spéder P. An interplay between cellular growth and atypical fusion defines morphogenesis of a modular glial niche in Drosophila. Nat Commun 2022; 13:4999. [PMID: 36008397 PMCID: PMC9411534 DOI: 10.1038/s41467-022-32685-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Neural stem cells (NSCs) live in an intricate cellular microenvironment supporting their activity, the niche. Whilst shape and function are inseparable, the morphogenetic aspects of niche development are poorly understood. Here, we use the formation of a glial niche to investigate acquisition of architectural complexity. Cortex glia (CG) in Drosophila regulate neurogenesis and build a reticular structure around NSCs. We first show that individual CG cells grow tremendously to ensheath several NSC lineages, employing elaborate proliferative mechanisms which convert these cells into syncytia rich in cytoplasmic bridges. CG syncytia further undergo homotypic cell-cell fusion, using defined cell surface receptors and actin regulators. Cellular exchange is however dynamic in space and time. This atypical cell fusion remodels cellular borders, restructuring the CG syncytia. Ultimately, combined growth and fusion builds the multi-level architecture of the niche, and creates a modular, spatial partition of the NSC population. Our findings provide insights into how a niche forms and organises while developing intimate contacts with a stem cell population.
Collapse
Affiliation(s)
| | | | - Bojana Ðelić
- Institut Pasteur, CNRS UMR3738, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Cell Division and Neurogenesis, Ecole Normale Supérieure, CNRS, Inserm, PSL Université Paris, Paris, France
| | - Julie Marc
- Institut Pasteur, CNRS UMR3738, Paris, France
| | | |
Collapse
|
19
|
Cadart C, Heald R. Scaling of biosynthesis and metabolism with cell size. Mol Biol Cell 2022; 33:pe5. [PMID: 35862496 PMCID: PMC9582640 DOI: 10.1091/mbc.e21-12-0627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cells adopt a size that is optimal for their function, and pushing them beyond this limit can cause cell aging and death by senescence or reduce proliferative potential. However, by increasing their genome copy number (ploidy), cells can increase their size dramatically and homeostatically maintain physiological properties such as biosynthesis rate. Recent studies investigating the relationship between cell size and rates of biosynthesis and metabolism under normal, polyploid, and pathological conditions are revealing new insights into how cells attain the best function or fitness for their size by tuning processes including transcription, translation, and mitochondrial respiration. A new frontier is to connect single-cell scaling relationships with tissue and whole-organism physiology, which promises to reveal molecular and evolutionary principles underlying the astonishing diversity of size observed across the tree of life.
Collapse
Affiliation(s)
- Clotilde Cadart
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| | - Rebecca Heald
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720-3200
| |
Collapse
|
20
|
Zhao H, Liu H, Jin J, Ma X, Li K. Physiological and Transcriptome Analysis on Diploid and Polyploid Populus ussuriensis Kom. under Salt Stress. Int J Mol Sci 2022; 23:ijms23147529. [PMID: 35886879 PMCID: PMC9319462 DOI: 10.3390/ijms23147529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022] Open
Abstract
Populus ussuriensis Kom. is a valuable forest regeneration tree species in the eastern mountainous region of Northeast China. It is known that diploid P. ussuriensis (CK) performed barely satisfactorily under salt stress, but the salt stress tolerance of polyploid (i.e., triploid (T12) and tetraploid (F20)) P. ussuriensis is still unknown. In order to compare the salt stress tolerance and salt stress response mechanism between diploid and polyploid P. ussuriensis, phenotypic observation, biological and biochemistry index detections, and transcriptome sequencing (RNA-seq) were performed on CK, T12, and F20. Phenotypic observation and leaf salt injury index analysis indicated CK suffered more severe salt injury than T12 and F20. SOD and POD activity detections indicated the salt stress response capacity of T12 was stronger than that of CK and F20. MDA content, proline content and relative electric conductivity detections indicated CK suffered the most severe cell-membrane damage, and T12 exhibited the strongest osmoprotective capacity under salt stress. Transcriptome analysis indicated the DEGs of CK, T12, and F20 under salt stress were different in category and change trend, and there were abundant WRKY, NAM, MYB and AP2/ERF genes among the DEGs in CK, T12, and F20 under salt stress. GO term enrichment indicated the basic growth progresses of CK, and F20 was obviously influenced, while T12 immediately launched more salt stress response processes in 36 h after salt stress. KEGG enrichment indicated the DEGs of CK mainly involved in plant−pathogen interaction, ribosome biogenesis in eukaryotes, protein processing in endoplasmic reticulum, degradation of aromatic compounds, plant hormone signal transduction, photosynthesis, and carbon metabolism pathways. The DEGs of T12 were mainly involved in plant−pathogen interaction, cysteine and methionine metabolism, phagosomes, biosynthesis of amino acids, phenylalanine, tyrosine and tryptophan biosynthesis, plant hormone signal transduction, and starch and sucrose metabolism pathways. The DEGs of F20 were mainly involved in plant hormone signal transduction, plant−pathogen interaction, zeatin biosynthesis, and glutathione metabolism pathways. In conclusion, triploid exhibited stronger salt stress tolerance than tetraploid and diploid P. ussuriensis (i.e., T12 > F20 > CK). The differences between the DEGs of CK, T12, and F20 probably are the key clues for discovering the salt stress response signal transduction network in P. Ussuriensis.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Huanzhen Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
| | - Jiaojiao Jin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
| | - Xiaoyu Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
- Correspondence:
| |
Collapse
|
21
|
Wang J, Zhang L, Wang J, Hao Y, Xiao Q, Teng J, Shen S, Zhang Y, Feng Y, Bao S, Li Y, Yan Z, Wei C, Wang L, Wang J. Conversion between duplicated genes generated by polyploidization contributes to the divergence of poplar and willow. BMC PLANT BIOLOGY 2022; 22:298. [PMID: 35710333 PMCID: PMC9205023 DOI: 10.1186/s12870-022-03684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gene conversion has an important effect on duplicate genes produced by polyploidization. Poplar (Populus trichocarpa) and willow (Salix brachista) are leading models and excellent green plants in the Salicaceae. Although much attention has been paid to the evolution of duplicated genes in poplar and willow, the role of conversion between duplicates generated from polyploidization remains poorly understood. RESULTS Here, through genomic synteny analyses, we identified duplicate genes generated by the Salicaceae common tetraploidization (SCT) in the poplar and willow genomes. We estimated that at least 0.58% and 0.25% of poplar and willow duplicates were affected by whole-gene conversion after the poplar-willow divergence, with more (5.73% and 2.66%) affected by partial-gene conversion. Moreover, we found that the converted duplicated genes were unevenly distributed on each chromosome in the two genomes, and the well-preserved homoeologous chromosome regions may facilitate the conversion of duplicates. Notably, we found that conversion maintained the similarity of duplicates, likely contributing to the conservation of certain sequences, but is essentially accelerated the rate of evolution and increased species divergence. In addition, we found that converted duplicates tended to have more similar expression patterns than nonconverted duplicates. We found that genes associated with multigene families were preferentially converted. We also found that the genes encoding conserved structural domains associated with specific traits exhibited a high frequency of conversion. CONCLUSIONS Extensive conversion between duplicate genes generated from the SCT contributes to the diversification of the family Salicaceae and has had long-lasting effects on those genes with important biological functions.
Collapse
Affiliation(s)
- Jianyu Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Lan Zhang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Jiaqi Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yanan Hao
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Qimeng Xiao
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Jia Teng
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Shaoqi Shen
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yan Zhang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yishan Feng
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Shoutong Bao
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yu Li
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Zimo Yan
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Chendan Wei
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Li Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China.
| | - Jinpeng Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China.
| |
Collapse
|
22
|
Sciandra T, Forget MH, Bruyant F, Béguin M, Lacour T, Bowler C, Babin M. The possible fates of Fragilariopsis cylindrus (polar diatom) cells exposed to prolonged darkness. JOURNAL OF PHYCOLOGY 2022; 58:281-296. [PMID: 34989409 DOI: 10.1111/jpy.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
At high latitudes, the polar night poses a great challenge to photosynthetic organisms that must survive up to six months without light. Numerous studies have already shed light on the physiological changes involved in the acclimation of microalgae to prolonged darkness and subsequent re-illumination. However, these studies have never considered inter-individual variability because they have mainly been conducted with bulk measurements. On the other hand, such long periods are likely to impact within-population selection processes. In this study, we hypothesized that distinct subpopulations with specific traits may emerge during acclimation of a population of diatoms to darkness. We addressed this hypothesis using flow cytometry (FCM), which allow to individually characterize large numbers of cells. The ecologically dominant polar pennate diatom Fragilariopsis cylindrus was subjected to three dark acclimation (DA) experiments of one, three, and five months duration, during which all cultures showed signs of recovery once light became available again. Our results suggest that darkness survival of F. cylindrus relies on reduction of metabolic activity and consumption of carbon reserves. In addition, FCM allowed us to record three different causes of death, each shared by significant numbers of individuals. The first rendered cells were unable to survive the stress caused by the return to light, probably due to a lack of sufficient photoprotective defenses. The other two were observed in two subpopulations of cells whose physiological state deviated from the original population. The data suggest that starvation and failure to maintain dormancy were the cause of cell mortality in these two subpopulations.
Collapse
Affiliation(s)
- Théo Sciandra
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, Canada
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Marie-Hélène Forget
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, Canada
| | - Flavienne Bruyant
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, Canada
| | - Marine Béguin
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, Canada
| | - Thomas Lacour
- Ifremer, PBA, Rue de l'Ile d'Yeu, BP21105, Nantes Cedex 03, 44311, France
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Marcel Babin
- Takuvik International Research Laboratory, Université Laval (Canada) & CNRS (France), Département de Biologie and Québec-Océan, Université Laval, Québec, Canada
| |
Collapse
|
23
|
Gemble S, Wardenaar R, Keuper K, Srivastava N, Nano M, Macé AS, Tijhuis AE, Bernhard SV, Spierings DCJ, Simon A, Goundiam O, Hochegger H, Piel M, Foijer F, Storchová Z, Basto R. Genetic instability from a single S phase after whole-genome duplication. Nature 2022; 604:146-151. [PMID: 35355016 PMCID: PMC8986533 DOI: 10.1038/s41586-022-04578-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/23/2022] [Indexed: 12/23/2022]
Abstract
Diploid and stable karyotypes are associated with health and fitness in animals. By contrast, whole-genome duplications—doublings of the entire complement of chromosomes—are linked to genetic instability and frequently found in human cancers1–3. It has been established that whole-genome duplications fuel chromosome instability through abnormal mitosis4–8; however, the immediate consequences of tetraploidy in the first interphase are not known. This is a key question because single whole-genome duplication events such as cytokinesis failure can promote tumorigenesis9 and DNA double-strand breaks10. Here we find that human cells undergo high rates of DNA damage during DNA replication in the first S phase following induction of tetraploidy. Using DNA combing and single-cell sequencing, we show that DNA replication dynamics is perturbed, generating under- and over-replicated regions. Mechanistically, we find that these defects result from a shortage of proteins during the G1/S transition, which impairs the fidelity of DNA replication. This work shows that within a single interphase, unscheduled tetraploid cells can acquire highly abnormal karyotypes. These findings provide an explanation for the genetic instability landscape that favours tumorigenesis after tetraploidization. Extensive DNA damage occurs during the first interphase following induction of tetraploidy in human cells, largely as a result of the lower amount of protein relative to DNA.
Collapse
Affiliation(s)
- Simon Gemble
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France.
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kristina Keuper
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | - Nishit Srivastava
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Systems Biology of Cell Polarity and Cell Division, Paris, France
| | - Maddalena Nano
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France.,Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, USA
| | - Anne-Sophie Macé
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Paris, France
| | - Andréa E Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anthony Simon
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Oumou Goundiam
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Systems Biology of Cell Polarity and Cell Division, Paris, France
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Zuzana Storchová
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS, UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France.
| |
Collapse
|
24
|
Bischof C, Mirtschink P, Yuan T, Wu M, Zhu C, Kaur J, Pham MD, Gonzalez-Gonoggia S, Hammer M, Rogg EM, Sharma R, Bottermann K, Gercken B, Hagag E, Berthonneche C, Sossalla S, Stehr SN, Maxeiner J, Duda MA, Latreille M, Zamboni N, Martelli F, Pedrazzini T, Dimmeler S, Krishnan J. Mitochondrial-cell cycle cross-talk drives endoreplication in heart disease. Sci Transl Med 2021; 13:eabi7964. [PMID: 34878823 DOI: 10.1126/scitranslmed.abi7964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Corinne Bischof
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.,Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Fetscherstasse 74, 01307 Dresden, Germany
| | - Ting Yuan
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Meiqian Wu
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Chaonan Zhu
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jaskiran Kaur
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Minh Duc Pham
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Genome Biologics, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | - Marie Hammer
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Eva-Maria Rogg
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Rahul Sharma
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Katharina Bottermann
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Bettina Gercken
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Fetscherstasse 74, 01307 Dresden, Germany
| | - Eman Hagag
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Fetscherstasse 74, 01307 Dresden, Germany
| | - Corinne Berthonneche
- Cardiovascular Assessment Facility, University of Lausanne, CHUV, CH-1011 Lausanne, Switzerland
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany.,Klinik für Kardiologie und Pneumologie, Georg-August-Universität Goettingen, DZHK (German Centre for Cardiovascular Research), Robert-Koch Str. 40, D-37075 Goettingen, Germany
| | - Sebastian N Stehr
- Department of Anesthesiology and Critical Care Medicine, University Hospital Leipzig, Liebigstrasse 20, D-04103 Leipzig, Germany
| | - Joachim Maxeiner
- Genome Biologics, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Maria Anna Duda
- Genome Biologics, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Mathieu Latreille
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, 20097, San Donato Milanese, Milan, Italy
| | - Thierry Pedrazzini
- Department of Medicine, University of Lausanne Medical School, CHUV, MP14-220, 1011 Lausanne, Switzerland
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,DZHK Partner Site RheinMain, Mainz, Germany.,Cardio-Pulmonary Institute, Giessen, Germany
| | - Jaya Krishnan
- MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.,Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Department of Medicine III, Division of Cardiology/Nephrology/Angiology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.,Cardio-Pulmonary Institute, Giessen, Germany
| |
Collapse
|
25
|
Williams JH. Consequences of whole genome duplication for 2n pollen performance. PLANT REPRODUCTION 2021; 34:321-334. [PMID: 34302535 DOI: 10.1007/s00497-021-00426-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both genetic and epigenetic effects on cell-level phenotypes. To disentangle historical effects of WGD on pollen performance, studies can compare 1n pollen from diploids to neo-2n pollen from diploids and synthetic autotetraploids to older 2n pollen from established neo-autotetraploids. WGD doubles both gene number and bulk nuclear DNA mass, and a substantial proportion of diploid and autotetraploid heterozygosity can be transmitted to 2n pollen. Relative to 1n pollen, 2n pollen can exhibit heterosis due to higher gene dosage, higher heterozygosity and new allelic interactions. Doubled genome size also has consequences for gene regulation and expression as well as epigenetic effects on cell architecture. Pollen volume doubling is a universal effect of WGD, whereas an increase in aperture number is common among taxa with simultaneous microsporogenesis and pored apertures, mostly eudicots. WGD instantly affects numerous evolved compromises among mature pollen functional traits and these are rapidly shaped by highly diverse tissue interactions and pollen competitive environments in the early post-WGD generations. 2n pollen phenotypes generally incur higher performance costs, and the degree to which these are met or evolve by scaling up provisioning and metabolic vigor needs further study.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
26
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
27
|
Losick VP, Duhaime LG. The endocycle restores tissue tension in the Drosophila abdomen post wound repair. Cell Rep 2021; 37:109827. [PMID: 34644579 PMCID: PMC8567445 DOI: 10.1016/j.celrep.2021.109827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/16/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023] Open
Abstract
Polyploidy frequently arises in response to injury, aging, and disease. Despite its prevalence, major gaps exist in our understanding of how polyploid cells alter tissue function. In the adult Drosophila epithelium, wound healing is dependent on the generation of multinucleated polyploid cells resulting in a permanent change in the epithelial architecture. Here, we study how the wound-induced polyploid cells affect tissue function by altering epithelial mechanics. The mechanosensor nonmuscle myosin II is activated and upregulated in wound-induced polyploid cells and persists after healing completes. Polyploidy enhances relative epithelial tension, which is dependent on the endocycle and not cell fusion post injury. Remarkably, the enhanced epithelial tension mimics the relative tension of the lateral muscle fibers, which are permanently severed by the injury. As a result, we found that the wound-induced polyploid cells remodel the epithelium to maintain fly abdominal movements, which may help compensate for lost tissue tension. Losick and Duhaime show that the generation of polyploid cells by the endocycle induces myosin expression resulting in enhanced epithelial tension after wound repair. This change in epithelial mechanics appears to compensate for the permanent loss of muscle fibers, which is necessary for efficient abdominal bending in the fruit fly.
Collapse
Affiliation(s)
- Vicki P Losick
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA.
| | - Levi G Duhaime
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
28
|
The Serine Protease Homolog, Scarface, Is Sensitive to Nutrient Availability and Modulates the Development of the Drosophila Blood-Brain Barrier. J Neurosci 2021; 41:6430-6448. [PMID: 34210781 PMCID: PMC8318086 DOI: 10.1523/jneurosci.0452-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 02/08/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023] Open
Abstract
The adaptable transcriptional response to changes in food availability not only ensures animal survival but also lets embryonic development progress. Interestingly, the CNS is preferentially protected from periods of malnutrition, a phenomenon known as “brain sparing.” However, the mechanisms that mediate this response remain poorly understood. To get a better understanding of this, we used Drosophila melanogaster as a model, analyzing the transcriptional response of neural stem cells (neuroblasts) and glia of the blood–brain barrier (BBB) from larvae of both sexes during nutrient restriction using targeted DamID. We found differentially expressed genes in both neuroblasts and glia of the BBB, although the effect of nutrient deficiency was primarily observed in the BBB. We characterized the function of a nutritional sensitive gene expressed in the BBB, the serine protease homolog, scarface (scaf). Scaf is expressed in subperineurial glia in the BBB in response to nutrition. Tissue-specific knockdown of scaf increases subperineurial glia endoreplication and proliferation of perineurial glia in the blood–brain barrier. Furthermore, neuroblast proliferation is diminished on scaf knockdown in subperineurial glia. Interestingly, reexpression of Scaf in subperineurial glia is able to enhance neuroblast proliferation and brain growth of animals in starvation. Finally, we show that loss of scaf in the blood–brain barrier increases sensitivity to drugs in adulthood, suggesting a physiological impairment. We propose that Scaf integrates the nutrient status to modulate the balance between neurogenesis and growth of the BBB, preserving the proper equilibrium between the size of the barrier and the brain. SIGNIFICANCE STATEMENT The Drosophila BBB separates the CNS from the open circulatory system. The BBB glia are not only acting as a physical segregation of tissues but participate in the regulation of the metabolism and neurogenesis during development. Here we analyze the transcriptional response of the BBB glia to nutrient deprivation during larval development, a condition in which protective mechanisms are switched on in the brain. Our findings show that the gene scarface reduces growth in the BBB while promoting the proliferation of neural stem, assuring the balanced growth of the larval brain. Thus, Scarface would link animal nutrition with brain development, coordinating neurogenesis with the growth of the BBB.
Collapse
|
29
|
Evaluation of endopolyploidy patterns in selected Capsicum and Nicotiana species (Solanaceae). Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00704-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Nandakumar S, Rozich E, Buttitta L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front Cell Dev Biol 2021; 9:698661. [PMID: 34249947 PMCID: PMC8264763 DOI: 10.3389/fcell.2021.698661] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Terminally differentiated cells of the nervous system have long been considered to be in a stable non-cycling state and are often considered to be permanently in G0. Exit from the cell cycle during development is often coincident with the differentiation of neurons, and is critical for neuronal function. But what happens in long lived postmitotic tissues that accumulate cell damage or suffer cell loss during aging? In other contexts, cells that are normally non-dividing or postmitotic can or re-enter the cell cycle and begin replicating their DNA to facilitate cellular growth in response to cell loss. This leads to a state called polyploidy, where cells contain multiple copies of the genome. A growing body of literature from several vertebrate and invertebrate model organisms has shown that polyploidy in the nervous system may be more common than previously appreciated and occurs under normal physiological conditions. Moreover, it has been found that neuronal polyploidization can play a protective role when cells are challenged with DNA damage or oxidative stress. By contrast, work over the last two and a half decades has discovered a link between cell-cycle reentry in neurons and several neurodegenerative conditions. In this context, neuronal cell cycle re-entry is widely considered to be aberrant and deleterious to neuronal health. In this review, we highlight historical and emerging reports of polyploidy in the nervous systems of various vertebrate and invertebrate organisms. We discuss the potential functions of polyploidization in the nervous system, particularly in the context of long-lived cells and age-associated polyploidization. Finally, we attempt to reconcile the seemingly disparate associations of neuronal polyploidy with both neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
| | | | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Sáenz Rodríguez MN, Cassab GI. Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface. PLANTS (BASEL, SWITZERLAND) 2021; 10:1274. [PMID: 34201525 PMCID: PMC8309072 DOI: 10.3390/plants10071274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Maize illustrates one of the most complex cases of embryogenesis in higher plants that results in the development of early embryo with distinctive organs such as the mesocotyl, seminal and primary roots, coleoptile, and plumule. After seed germination, the elongation of root and mesocotyl follows opposite directions in response to specific tropisms (positive and negative gravitropism and hydrotropism). Tropisms represent the differential growth of an organ directed toward several stimuli. Although the life cycle of roots and mesocotyl takes place in darkness, their growth and functions are controlled by different mechanisms. Roots ramify through the soil following the direction of the gravity vector, spreading their tips into new territories looking for water; when water availability is low, the root hydrotropic response is triggered toward the zone with higher moisture. Nonetheless, there is a high range of hydrotropic curvatures (angles) in maize. The processes that control root hydrotropism and mesocotyl elongation remain unclear; however, they are influenced by genetic and environmental cues to guide their growth for optimizing early seedling vigor. Roots and mesocotyls are crucial for the establishment, growth, and development of the plant since both help to forage water in the soil. Mesocotyl elongation is associated with an ancient agriculture practice known as deep planting. This tradition takes advantage of residual soil humidity and continues to be used in semiarid regions of Mexico and USA. Due to the genetic diversity of maize, some lines have developed long mesocotyls capable of deep planting while others are unable to do it. Hence, the genetic and phenetic interaction of maize lines with a robust hydrotropic response and higher mesocotyl elongation in response to water scarcity in time of global heating might be used for developing more resilient maize plants.
Collapse
Affiliation(s)
- Mery Nair Sáenz Rodríguez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Av. Universidad 2001, Col. Chamilpa, Morelos, Cuernavaca 62210, Mexico;
| | | |
Collapse
|
32
|
Wei C, Wang Z, Wang J, Teng J, Shen S, Xiao Q, Bao S, Feng Y, Zhang Y, Li Y, Sun S, Yue Y, Wu C, Wang Y, Zhou T, Xu W, Yu J, Wang L, Wang J. Conversion between 100-million-year-old duplicated genes contributes to rice subspecies divergence. BMC Genomics 2021; 22:460. [PMID: 34147070 PMCID: PMC8214281 DOI: 10.1186/s12864-021-07776-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Duplicated gene pairs produced by ancient polyploidy maintain high sequence similarity over a long period of time and may result from illegitimate recombination between homeologous chromosomes. The genomes of Asian cultivated rice Oryza sativa ssp. indica (XI) and Oryza sativa ssp. japonica (GJ) have recently been updated, providing new opportunities for investigating ongoing gene conversion events and their impact on genome evolution. RESULTS Using comparative genomics and phylogenetic analyses, we evaluated gene conversion rates between duplicated genes produced by polyploidization 100 million years ago (mya) in GJ and XI. At least 5.19-5.77% of genes duplicated across the three rice genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~ 0.4 mya, with more (7.77-9.53%) showing conversion of only portions of genes. Independently converted duplicates surviving in the genomes of different subspecies often use the same donor genes. The ongoing gene conversion frequency was higher near chromosome termini, with a single pair of homoeologous chromosomes, 11 and 12, in each rice genome being most affected. Notably, ongoing gene conversion has maintained similarity between very ancient duplicates, provided opportunities for further gene conversion, and accelerated rice divergence. Chromosome rearrangements after polyploidization are associated with ongoing gene conversion events, and they directly restrict recombination and inhibit duplicated gene conversion between homeologous regions. Furthermore, we found that the converted genes tended to have more similar expression patterns than nonconverted duplicates. Gene conversion affects biological functions associated with multiple genes, such as catalytic activity, implying opportunities for interaction among members of large gene families, such as NBS-LRR disease-resistance genes, contributing to the occurrence of the gene conversion. CONCLUSION Duplicated genes in rice subspecies generated by grass polyploidization ~ 100 mya remain affected by gene conversion at high frequency, with important implications for the divergence of rice subspecies.
Collapse
Affiliation(s)
- Chendan Wei
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Zhenyi Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Jianyu Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Jia Teng
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Shaoqi Shen
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Qimeng Xiao
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Shoutong Bao
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yishan Feng
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yan Zhang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yuxian Li
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Sangrong Sun
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yuanshuai Yue
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Chunyang Wu
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yanli Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Tianning Zhou
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Wenbo Xu
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Jigao Yu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Li Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China.
| | - Jinpeng Wang
- School of Life Sciences, and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, Hebei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China.
| |
Collapse
|
33
|
Nguyen PD, de Bakker DEM, Bakkers J. Cardiac regenerative capacity: an evolutionary afterthought? Cell Mol Life Sci 2021; 78:5107-5122. [PMID: 33950316 PMCID: PMC8254703 DOI: 10.1007/s00018-021-03831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
Cardiac regeneration is the outcome of the highly regulated interplay of multiple processes, including the inflammatory response, cardiomyocyte dedifferentiation and proliferation, neovascularization and extracellular matrix turnover. Species-specific traits affect these injury-induced processes, resulting in a wide variety of cardiac regenerative potential between species. Indeed, while mammals are generally considered poor regenerators, certain amphibian and fish species like the zebrafish display robust regenerative capacity post heart injury. The species-specific traits underlying these differential injury responses are poorly understood. In this review, we will compare the injury induced processes of the mammalian and zebrafish heart, describing where these processes overlap and diverge. Additionally, by examining multiple species across the animal kingdom, we will highlight particular traits that either positively or negatively affect heart regeneration. Last, we will discuss the possibility of overcoming regeneration-limiting traits to induce heart regeneration in mammals.
Collapse
Affiliation(s)
- Phong D Nguyen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Dennis E M de Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
34
|
Machado M, Steinke S, Ganter M. Plasmodium Reproduction, Cell Size, and Transcription: How to Cope With Increasing DNA Content? Front Cell Infect Microbiol 2021; 11:660679. [PMID: 33898332 PMCID: PMC8062723 DOI: 10.3389/fcimb.2021.660679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium, the unicellular parasite that causes malaria, evolved a highly unusual mode of reproduction. During its complex life cycle, invasive or transmissive stages alternate with proliferating stages, where a single parasite can produce tens of thousands of progeny. In the clinically relevant blood stage of infection, the parasite replicates its genome up to thirty times and forms a multinucleated cell before daughter cells are assembled. Thus, within a single cell cycle, Plasmodium develops from a haploid to a polypoid cell, harboring multiple copies of its genome. Polyploidy creates several biological challenges, such as imbalances in genome output, and cells can respond to this by changing their size and/or alter the production of RNA species and protein to achieve expression homeostasis. However, the effects and possible adaptations of Plasmodium to the massively increasing DNA content are unknown. Here, we revisit and embed current Plasmodium literature in the context of polyploidy and propose potential mechanisms of the parasite to cope with the increasing gene dosage.
Collapse
Affiliation(s)
- Marta Machado
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Salome Steinke
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
35
|
Yip EC, Mikó I, Ulmer JM, Cherim NA, Townley MA, Poltak S, Helms AM, De Moraes CM, Mescher MC, Tooker JF. Giant polyploid epidermal cells and male pheromone production in the tephritid fruit fly Eurosta solidaginis (Diptera: Tephritidae). JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104210. [PMID: 33610542 DOI: 10.1016/j.jinsphys.2021.104210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Eurosta solidaginis males produce large amounts of putative sex pheromone compared to other insect species; however, neither the site of pheromone production nor the release mechanism has been characterized. We compared E. solidaginis males and females, focusing on sexually dimorphic structures that are known to be involved in pheromone production in other tephritid species. Morphological and chemical analyses indicated that the rectum and pleural epidermis are involved in male E. solidaginis pheromone production, storage, or emission. We detected large quantities of pheromone in the enlarged rectum, suggesting that it stores pheromone for subsequent release through the anus. However, pheromone might also discharge through the pleural cuticle with the involvement of unusual pleural attachments of the tergosternal muscles, which, when contracted in males, realign specialized cuticular surface elements and expose less-sclerotized areas of cuticle. In males, pheromone components were also detected in epidermal cells of the pleuron. These cells were 60-100 times larger in mature males than in females and, to our knowledge, are the largest animal epithelial cells ever recorded. Furthermore, because these large cells in males are multinucleated, we presume that they develop through somatic polyploidization by endomitosis. Consequently, the pheromone-associated multinuclear pleural epidermal cells of Eurosta solidaginis may provide an interesting new system for understanding polyploidization.
Collapse
Affiliation(s)
- Eric C Yip
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - István Mikó
- UNH Collection of Insects and other Arthropods, Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Jonah M Ulmer
- Department of Entomology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Nancy A Cherim
- University Instrumentation Center, University of New Hampshire, Durham, NH, USA
| | - Mark A Townley
- University Instrumentation Center, University of New Hampshire, Durham, NH, USA
| | - Steffen Poltak
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - John F Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
36
|
Glazier DS. Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. BIOLOGY 2021; 10:270. [PMID: 33810583 PMCID: PMC8067107 DOI: 10.3390/biology10040270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.
Collapse
|
37
|
Chanthra N, Uosaki H. Maturity of Pluripotent Stem Cell-Derived Cardiomyocytes and Future Perspectives for Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Heng J, Heng HH. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 2020; 81:160-175. [PMID: 33189848 DOI: 10.1016/j.semcancer.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Cancer research has traditionally focused on the characterization of individual molecular mechanisms that can contribute to cancer. Due to the multiple levels of genomic and non-genomic heterogeneity, however, overwhelming molecular mechanisms have been identified, most with low clinical predictability. It is thus necessary to search for new concepts to unify these diverse mechanisms and develop better strategies to understand and treat cancer. In recent years, two-phased cancer evolution (comprised of the genome reorganization-mediated punctuated phase and gene mutation-mediated stepwise phase), initially described by tracing karyotype evolution, was confirmed by the Cancer Genome Project. In particular, genome chaos, the process of rapid and massive genome reorganization, has been commonly detected in various cancers-especially during key phase transitions, including cellular transformation, metastasis, and drug resistance-suggesting the importance of genome-level changes in cancer evolution. In this Perspective, genome chaos is used as a discussion point to illustrate new genome-mediated somatic evolutionary frameworks. By rephrasing cancer as a new system emergent from normal tissue, we present the multiple levels (or scales) of genomic and non-genomic information. Of these levels, evolutionary studies at the chromosomal level are determined to be of ultimate importance, since altered genomes change the karyotype coding and karyotype change is the key event for punctuated cellular macroevolution. Using this lens, we differentiate and analyze developmental processes and cancer evolution, as well as compare the informational relationship between genome chaos and its various subtypes in the context of macroevolution under crisis. Furthermore, the process of deterministic genome chaos is discussed to interpret apparently random events (including stressors, chromosomal variation subtypes, surviving cells with new karyotypes, and emergent stable cellular populations) as nonrandom patterns, which supports the new cancer evolutionary model that unifies genome and gene contributions during different phases of cancer evolution. Finally, the new perspective of using cancer as a model for organismal evolution is briefly addressed, emphasizing the Genome Theory as a new and necessary conceptual framework for future research and its practical implications, not only in cancer but evolutionary biology as a whole.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
39
|
Wear EE, Song J, Zynda GJ, Mickelson-Young L, LeBlanc C, Lee TJ, Deppong DO, Allen GC, Martienssen RA, Vaughn MW, Hanley-Bowdoin L, Thompson WF. Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots. PLoS Genet 2020; 16:e1008623. [PMID: 33052904 PMCID: PMC7588055 DOI: 10.1371/journal.pgen.1008623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/26/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Plant cells undergo two types of cell cycles–the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2’-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed. In traditional cell division, or mitosis, a cell’s genetic material is duplicated and then split between two daughter cells. In contrast, in some specialized cell types, the DNA is duplicated a second time without an intervening division step, resulting in cells that carry twice as much DNA. This phenomenon, which is called the endocycle, is common during plant development. At each step, DNA replication follows an ordered program in which highly compacted DNA is unraveled and replicated in sections at different times during the synthesis (S) phase. In plants, it is unclear whether traditional and endocycle programs are the same, especially since endocycling cells are typically in the process of differentiation. Using root tips of maize, we found that in comparison to replication in the mitotic cell cycle, there is a small portion of the genome whose replication in the endocycle is shifted in time, usually to later in S phase. Some of these regions are scattered around the genome and mostly coincide with active genes. However, the most prominent shifts occur in centromeres. The shift to later replication in centromeres is noteworthy because they orchestrate the process of separating duplicated chromosomes into daughter cells, a function that is not needed in the endocycle.
Collapse
Affiliation(s)
- Emily E. Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, Texas, United States of America
| | - Gregory J. Zynda
- Texas Advanced Computing Center, University of Texas, Austin, Texas, United States of America
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Chantal LeBlanc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Tae-Jin Lee
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David O. Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - George C. Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, Texas, United States of America
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - William F. Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
40
|
Tang K, Yang S, Feng X, Wu T, Leng J, Zhou H, Zhang Y, Yu H, Gao J, Ma J, Feng X. GmNAP1 is essential for trichome and leaf epidermal cell development in soybean. PLANT MOLECULAR BIOLOGY 2020; 103:609-621. [PMID: 32415514 PMCID: PMC7385028 DOI: 10.1007/s11103-020-01013-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/04/2020] [Indexed: 05/31/2023]
Abstract
KEY MESSAGE Map-based cloning revealed that two novel soybean distorted trichome mutants were due to loss function of GmNAP1 gene, which affected the trichome morphology and pavement cell ploidy by regulating actin filament assembly. Trichomes increase both biotic and abiotic stress resistance in soybean. In this study, Gmdtm1-1 and Gmdtm1-2 mutants with shorter trichomes and bigger epidermal pavement cells were isolated from an ethyl methylsulfonate mutagenized population. Both of them had reduced plant height and smaller seeds. Map-based cloning and bulked segregant analysis identified that a G-A transition at the 3' boundary of the sixth intron of Glyma.20G019300 in the Gmdtm1-1 mutant and another G-A transition mutation at the 5' boundary of the fourteenth intron of Glyma.20G019300 in Gmdtm1-2; these mutations disrupted spliceosome recognition sites creating truncated proteins. Glyma.20G019300 encodes a Glycine max NCK-associated protein 1 homolog (GmNAP1) in soybean. Further analysis revealed that the GmNAP1 involved in actin filament assembling and genetic information processing pathways during trichome and pavement cell development. This study shows that GmNAP1 plays an important role in soybean growth and development and agronomic traits.
Collapse
Affiliation(s)
- Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China.
| | - Xingxing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Huangkai Zhou
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, 130102, Jilin, China
| |
Collapse
|
41
|
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biol 2020; 21:178. [PMID: 32698836 PMCID: PMC7375004 DOI: 10.1186/s13059-020-02094-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Polyploidy provides new genetic material that facilitates evolutionary novelty, species adaptation, and crop domestication. Polyploidy often leads to an increase in cell or organism size, which may affect transcript abundance or transcriptome size, but the relationship between polyploidy and transcriptome changes remains poorly understood. Plant cells often undergo endoreduplication, confounding the polyploid effect. RESULTS To mitigate these effects, we select female gametic cells that are developmentally stable and void of endoreduplication. Using single-cell RNA sequencing (scRNA-seq) in Arabidopsis thaliana tetraploid lines and isogenic diploids, we show that transcriptome abundance doubles in the egg cell and increases approximately 1.6-fold in the central cell, consistent with cell size changes. In the central cell of tetraploid plants, DEMETER (DME) is upregulated, which can activate PRC2 family members FIS2 and MEA, and may suppress the expression of other genes. Upregulation of cell size regulators in tetraploids, including TOR and OSR2, may increase the size of reproductive cells. In diploids, the order of transcriptome abundance is central cell, synergid cell, and egg cell, consistent with their cell size variation. Remarkably, we uncover new sets of female gametophytic cell-specific transcripts with predicted biological roles; the most abundant transcripts encode families of cysteine-rich peptides, implying roles in cell-cell recognition during double fertilization. CONCLUSIONS Transcriptome in single cells doubles in tetraploid plants compared to diploid, while the degree of change and relationship to the cell size depends on cell types. These scRNA-seq resources are free of cross-contamination and are uniquely valuable for advancing plant hybridization, reproductive biology, and polyploid genomics.
Collapse
Affiliation(s)
- Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Atsumi Ando
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ning Jiang
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station C0800, Austin, TX, 78712, USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
42
|
Mamun MA, Albergante L, J Blow J, Newman TJ. 3 tera-basepairs as a fundamental limit for robust DNA replication. Phys Biol 2020; 17:046002. [PMID: 32320972 DOI: 10.1088/1478-3975/ab8c2f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In order to maintain functional robustness and species integrity, organisms must ensure high fidelity of the genome duplication process. This is particularly true during early development, where cell division is often occurring both rapidly and coherently. By studying the extreme limits of suppressing DNA replication failure due to double fork stall errors, we uncover a fundamental constant that describes a trade-off between genome size and architectural complexity of the developing organism. This constant has the approximate value N U ≈ 3 × 1012 basepairs, and depends only on two highly conserved molecular properties of DNA biology. We show that our theory is successful in interpreting a diverse range of data across the Eukaryota.
Collapse
Affiliation(s)
- M Al Mamun
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom. CIB-CSIC, Madrid 28040, Spain
| | | | | | | |
Collapse
|
43
|
Ren D, Song J, Ni M, Kang L, Guo W. Regulatory Mechanisms of Cell Polyploidy in Insects. Front Cell Dev Biol 2020; 8:361. [PMID: 32548115 PMCID: PMC7272692 DOI: 10.3389/fcell.2020.00361] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Polyploidy cells undergo the endocycle to generate DNA amplification without cell division and have important biological functions in growth, development, reproduction, immune response, nutrient support, and conferring resistance to DNA damage in animals. In this paper, we have specially summarized current research progresses in the regulatory mechanisms of cell polyploidy in insects. First, insect hormones including juvenile hormone and 20-hydroxyecdysone regulate the endocycle of variant cells in diverse insect species. Second, cells skip mitotic division in response to developmental programming and conditional stimuli such as wound healing, regeneration, and aging. Third, the reported regulatory pathways of mitotic to endocycle switch (MES), including Notch, Hippo, and JNK signaling pathways, are summarized and constructed into genetic network. Thus, we think that the studies in crosstalk of hormones and their effects on canonical pathways will shed light on the mechanism of cell polyploidy and elucidate the evolutionary adaptions of MES through diverse insect species.
Collapse
Affiliation(s)
- Dani Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Ni
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Hebei University, Baoding, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Hebei University, Baoding, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Williams JH, Oliveira PE. For things to stay the same, things must change: polyploidy and pollen tube growth rates. ANNALS OF BOTANY 2020; 125:925-935. [PMID: 31957784 PMCID: PMC7218811 DOI: 10.1093/aob/mcaa007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/17/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Pollen tube growth rate (PTGR) is an important single-cell performance trait that may evolve rapidly under haploid selection. Angiosperms have experienced repeated cycles of polyploidy (whole genome duplication), and polyploidy has cell-level phenotypic consequences arising from increased bulk DNA amount and numbers of genes and their interactions. We sought to understand potential effects of polyploidy on several underlying determinants of PTGR - pollen tube dimensions and construction rates - by comparing diploid-polyploid near-relatives in Betula (Betulaceae) and Handroanthus (Bignoniaceae). METHODS We performed intraspecific, outcrossed hand-pollinations on pairs of flowers. In one flower, PTGR was calculated from the longest pollen tube per time of tube elongation. In the other, styles were embedded in glycol methacrylate, serial-sectioned in transverse orientation, stained and viewed at 1000× to measure tube wall thicknesses (W) and circumferences (C). Volumetric growth rate (VGR) and wall production rate (WPR) were then calculated for each tube by multiplying cross-sectional tube area (πr2) or wall area (W × C), by the mean PTGR of each maternal replicate respectively. KEY RESULTS In Betula and Handroanthus, the hexaploid species had significantly wider pollen tubes (13 and 25 %, respectively) and significantly higher WPRs (22 and 18 %, respectively) than their diploid congeners. PTGRs were not significantly different in both pairs, even though wider polyploid tubes were predicted to decrease PTGRs by 16 and 20 %, respectively. CONCLUSIONS The larger tube sizes of polyploids imposed a substantial materials cost on PTGR, but polyploids also exhibited higher VGRs and WPRs, probably reflecting the evolution of increased metabolic activity. Recurrent cycles of polyploidy followed by genome reorganization may have been important for the evolution of fast PTGRs in angiosperms, involving a complex interplay between correlated changes in ploidy level, genome size, cell size and pollen tube energetics.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Paulo E Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Campus Umuarama, Uberlândia, Minas Gerais 38405-320 Brazil
| |
Collapse
|
45
|
Abstract
Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent pumping throughout the mammal's lifespan. This process is characterized by structural, gene expression, metabolic, and functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained increased attention recently due to the maturation defects in pluripotent stem cell-derived cardiomyocyte, its antagonistic effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell-derived cardiomyocyte and novel therapeutic strategies for heart disease.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - William Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
46
|
Goupil A, Nano M, Letort G, Gemble S, Edwards F, Goundiam O, Gogendeau D, Pennetier C, Basto R. Chromosomes function as a barrier to mitotic spindle bipolarity in polyploid cells. J Cell Biol 2020; 219:133854. [PMID: 32328633 PMCID: PMC7147111 DOI: 10.1083/jcb.201908006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/13/2019] [Accepted: 01/24/2020] [Indexed: 01/22/2023] Open
Abstract
Ploidy variations such as genome doubling are frequent in human tumors and have been associated with genetic instability favoring tumor progression. How polyploid cells deal with increased centrosome numbers and DNA content remains unknown. Using Drosophila neuroblasts and human cancer cells to study mitotic spindle assembly in polyploid cells, we found that most polyploid cells divide in a multipolar manner. We show that even if an initial centrosome clustering step can occur at mitotic entry, the establishment of kinetochore-microtubule attachments leads to spatial chromosome configurations, whereby the final coalescence of supernumerary poles into a bipolar array is inhibited. Using in silico approaches and various spindle and DNA perturbations, we show that chromosomes act as a physical barrier blocking spindle pole coalescence and bipolarity. Importantly, microtubule stabilization suppressed multipolarity by improving both centrosome clustering and pole coalescence. This work identifies inhibitors of bipolar division in polyploid cells and provides a rationale to understand chromosome instability typical of polyploid cancer cells.
Collapse
Affiliation(s)
- Alix Goupil
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Maddalena Nano
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Gaëlle Letort
- Center for Interdisciplinary Research in Biology, Collège de France, UMR7241/U1050, Paris, France
| | - Simon Gemble
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Frances Edwards
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Oumou Goundiam
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France.,Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Delphine Gogendeau
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Carole Pennetier
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| | - Renata Basto
- Institut Curie, Paris Science et Lettres Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche UMR144, Biology of Centrosomes and Genetic Instability Laboratory, Paris, France
| |
Collapse
|
47
|
Zeng J, Huynh N, Phelps B, King-Jones K. Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint. PLoS Biol 2020; 18:e3000609. [PMID: 32097403 PMCID: PMC7041797 DOI: 10.1371/journal.pbio.3000609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment. During Drosophila development, the time window when larvae assess their readiness for metamorphosis is marked by slowing of cell growth in the prothoracic gland that produces the molting hormone; cell growth (via DNA endoreplication) then increases, allowing the production of the amount of hormone required to trigger metamorphosis. This study shows that these processes depend on the transcription factor Snail.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nhan Huynh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Brian Phelps
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
48
|
Drelon C, Rogers MF, Belalcazar HM, Secombe J. The histone demethylase KDM5 controls developmental timing in Drosophila by promoting prothoracic gland endocycles. Development 2019; 146:dev.182568. [PMID: 31862793 PMCID: PMC6955219 DOI: 10.1242/dev.182568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
In Drosophila, the larval prothoracic gland integrates nutritional status with developmental signals to regulate growth and maturation through the secretion of the steroid hormone ecdysone. While the nutritional signals and cellular pathways that regulate prothoracic gland function are relatively well studied, the transcriptional regulators that orchestrate the activity of this tissue remain less characterized. Here, we show that lysine demethylase 5 (KDM5) is essential for prothoracic gland function. Indeed, restoring kdm5 expression only in the prothoracic gland in an otherwise kdm5 null mutant animal is sufficient to rescue both the larval developmental delay and the pupal lethality caused by loss of KDM5. Our studies show that KDM5 functions by promoting the endoreplication of prothoracic gland cells, a process that increases ploidy and is rate limiting for the expression of ecdysone biosynthetic genes. Molecularly, we show that KDM5 activates the expression of the receptor tyrosine kinase torso, which then promotes polyploidization and growth through activation of the MAPK signaling pathway. Taken together, our studies provide key insights into the biological processes regulated by KDM5 and expand our understanding of the transcriptional regulators that coordinate animal development. Summary: Identification of KDM5 as a new transcriptional regulator of the MAPK signaling cascade provides insights into the molecular mechanisms governing the regulation of ecdysone production and developmental growth control.
Collapse
Affiliation(s)
- Coralie Drelon
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael F Rogers
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA .,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| |
Collapse
|
49
|
Wang J, Batourina E, Schneider K, Souza S, Swayne T, Liu C, George CD, Tate T, Dan H, Wiessner G, Zhuravlev Y, Canman JC, Mysorekar IU, Mendelsohn CL. Polyploid Superficial Cells that Maintain the Urothelial Barrier Are Produced via Incomplete Cytokinesis and Endoreplication. Cell Rep 2019; 25:464-477.e4. [PMID: 30304685 PMCID: PMC6351079 DOI: 10.1016/j.celrep.2018.09.042] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/28/2018] [Accepted: 09/12/2018] [Indexed: 01/26/2023] Open
Abstract
The urothelium is an epithelia barrier lined by a luminal layer of binucleated, octoploid, superficial cells. Superficial cells are critical for production and transport of uroplakins, a family of proteins that assemble into a waterproof crystalline plaque that helps protect against infection and toxic substances. Adult urothelium is nearly quiescent, but rapidly regenerates in response to injury. Yet the mechanism by which binucleated, polyploid, superficial cells are produced remains unclear. Here, we show that superficial cells are likely to be derived from a population of binucleated intermediate cells, which are produced from mononucleated intermediate cells via incomplete cytokinesis. We show that binucleated intermediate and superficial cells increase DNA content via endoreplication, passing through S phase without entering mitosis. The urothelium can be permanently damaged by repetitive or chronic injury or disease. Identification of the mechanism by which superficial cells are produced may be important for developing strategies for urothelial repair.
Collapse
Affiliation(s)
- Jia Wang
- Department of Urology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Ekatherina Batourina
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Kerry Schneider
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Spenser Souza
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Theresa Swayne
- Confocal and Specialized Microscopy Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Chang Liu
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Christopher D George
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Tiffany Tate
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Hanbin Dan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Gregory Wiessner
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Yelena Zhuravlev
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Indira U Mysorekar
- Departments of Obstetrics and Gynecology and Pathology and Immunology and Center for Reproductive Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cathy Lee Mendelsohn
- Department of Urology, Genetics, and Development and Pathology and Cell Biology, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
50
|
Patterson M, Swift SK. Residual Diploidy in Polyploid Tissues: A Cellular State with Enhanced Proliferative Capacity for Tissue Regeneration? Stem Cells Dev 2019; 28:1527-1539. [PMID: 31608782 PMCID: PMC11001963 DOI: 10.1089/scd.2019.0193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/09/2019] [Indexed: 01/07/2023] Open
Abstract
A major objective of modern biomedical research aims to promote tissue self-regeneration after injury, obviating the need for whole organ transplantation and avoiding mortality due to organ failure. Identifying the population of cells capable of regeneration, alongside understanding the molecular mechanisms that activate that population to re-enter the cell cycle, are two important steps to advancing the field of endogenous tissue regeneration toward the clinic. In recent years, an emerging trend has been observed, whereby polyploidy of relevant parenchymal cells, arising from alternative cell cycles as part of a normal developmental process, is linked to restricted proliferative capacity of those cells. An accompanying hypothesis, therefore, is that a residual subpopulation of diploid parenchymal cells retains proliferative competence and is the major driver for any detected postnatal cell turnover. In this perspective review, we examine the emerging literature on residual diploid parenchymal cells and the possible link of this population to endogenous tissue regeneration, in the context of both heart and liver. We speculate on additional cell types that may play a similar role in their respective tissues and discuss outstanding questions for the field.
Collapse
Affiliation(s)
- Michaela Patterson
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Samantha K. Swift
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|