1
|
Bass AH. A tale of two males: Behavioral and neural mechanisms of alternative reproductive tactics in midshipman fish. Horm Behav 2024; 161:105507. [PMID: 38479349 DOI: 10.1016/j.yhbeh.2024.105507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 05/04/2024]
Abstract
An amalgam of investigations at the interface of neuroethology and behavioral neuroendocrinology first established the most basic behavioral, neuroanatomical, and neurophysiological characters of vocal-acoustic communication morphs in the plainfin midshipman fish, Porichthys notatus Girard. This foundation has led, in turn, to the repeated demonstration that neuro-behavioral mechanisms driving reproductive-related, vocal-acoustic behaviors can be uncoupled from gonadal state for two adult male phenotypes that follow alternative reproductive tactics (ARTs).
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Jha NA, Taufique SKT, Kumar V. Constant light and pinealectomy disrupt daily rhythm in song production and negatively impact reproductive performance in zebra finches. Photochem Photobiol Sci 2024; 23:731-746. [PMID: 38441848 DOI: 10.1007/s43630-024-00548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/05/2024] [Indexed: 04/16/2024]
Abstract
We assessed the circadian clock control of singing and reproductive performance in zebra finches. Experiment 1 examined changes in body mass, testis size, and plasma corticosterone and testosterone levels in male birds exposed to constant light (LL, 100 lx) and constant darkness (DD, 0.5 lx), with controls on 12L:12D (L = 100 lx, D = 0.5 lx). There was a significant increase in the body mass and testis size under LL and a decrease in testis size under the DD. Using a similar design, experiment 2 assessed the persistence of the circadian rhythm in singing along with activity-rest pattern in cohort I birds that were entrained to 12L:12D and subsequently released in DD or LL, and in cohort II birds that were entrained to 12L:12D and following pinealectomy were released in DD. Both activity and singing patterns were synchronized with the light phase under 12L:12D, free-ran with a circadian period under DD, and were arrhythmic under the LL. There was an overall decreased and increased effect on singing under DD and LL, respectively, albeit with differences in various song parameters. The pinealectomy disrupted both activity and singing rhythms but did not affect singing or the overall song features. Pinealectomized bird pairs also exhibited a significant reduction in their nest-building and breeding efforts, resulting in a compromised reproductive performance. These results suggest a circadian clock control of singing and more importantly demonstrate a role of the pineal clock in breeding behaviors, leading to a compromised reproductive performance in diurnal zebra finches.
Collapse
Affiliation(s)
- Neelu Anand Jha
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, 110 007, India
- Jindal School of Environment and Sustainability, O.P. Jindal Global University, Sonipat, Haryana, 131 001, India
| | - S K Tahajjul Taufique
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, 110 007, India
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vinod Kumar
- Department of Zoology, IndoUS Center in Chronobiology, University of Delhi, Delhi, 110 007, India.
- Department of Physiology, King George's Medical University, Lucknow, 226 003, India.
| |
Collapse
|
3
|
Schuppe ER, Ballagh I, Akbari N, Fang W, Perelmuter JT, Radtke CH, Marchaterre MA, Bass AH. Midbrain node for context-specific vocalisation in fish. Nat Commun 2024; 15:189. [PMID: 38167237 PMCID: PMC10762186 DOI: 10.1038/s41467-023-43794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Vocalizations communicate information indicative of behavioural state across divergent social contexts. Yet, how brain regions actively pattern the acoustic features of context-specific vocal signals remains largely unexplored. The midbrain periaqueductal gray (PAG) is a major site for initiating vocalization among mammals, including primates. We show that PAG neurons in a highly vocal fish species (Porichthys notatus) are activated in distinct patterns during agonistic versus courtship calling by males, with few co-activated during a non-vocal behaviour, foraging. Pharmacological manipulations within vocally active PAG, but not hindbrain, sites evoke vocal network output to sonic muscles matching the temporal features of courtship and agonistic calls, showing that a balance of inhibitory and excitatory dynamics is likely necessary for patterning different call types. Collectively, these findings support the hypothesis that vocal species of fish and mammals share functionally comparable PAG nodes that in some species can influence the acoustic structure of social context-specific vocal signals.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Department of Physiology, University of California San Francisco School of Medicine, San Francisco, CA, 94305, USA
| | - Irene Ballagh
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Department of Zoology, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | - Najva Akbari
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
- Department of Biology, Stanford University, Palo Alto, CA, 94305, USA
| | - Wenxuan Fang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, V6T 1Z4, BC, Canada
| | | | - Caleb H Radtke
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | | | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Vasconcelos RO, Bolgan M, Matos AB, Van-Dunem SP, Penim J, Amorim MCP. Characterization of the vocal behavior of the miniature and transparent fish model, Danionella cerebruma). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:781-789. [PMID: 38289152 DOI: 10.1121/10.0024346] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Danionella cerebrum has recently been proposed as a promising model to investigate the structure and function of the adult vertebrate brain, including the development of vocal-auditory neural pathways. This genetically tractable and transparent cypriniform is highly vocal, but limited information is available on its acoustic behavior and underlying biological function. Our main goal was to characterize the acoustic repertoire and diel variation in sound production of D. cerebrum, as well as to investigate the relationship between vocal behavior and reproduction. Sound recordings demonstrated high vocal activity, with sounds varying from short sequences of pulses known as "bursts" (comprising up to 15 pulses) to notably longer sounds, termed "long bursts", which extended up to 349 pulses with over 2.7 s. Vocal activity peaked at midday and it was very low at night with only a few bursts. While the number of pulses was higher during the daytime, the interpulse interval was longer at night. In addition, calling time was positively associated with the number of viable eggs, suggesting that acoustic communication is important for reproduction. These preliminary findings reveal the potential of using D. cerebrum to investigate vocal plasticity and the implications for sexual selection and reproduction in a novel vertebrate model for neuroscience.
Collapse
Affiliation(s)
- Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao, Special Administrative Region, China
- Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- EPCV - Department of Life Sciences, Lusófona University, Lisbon, Portugal
| | - Marta Bolgan
- Ocean Science Consulting Limited, Dunbar, United Kingdom
| | - André B Matos
- Institute of Science and Environment, University of Saint Joseph, Macao, Special Administrative Region, China
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Sheila P Van-Dunem
- EPCV - Department of Life Sciences, Lusófona University, Lisbon, Portugal
| | - Jorge Penim
- EPCV - Department of Life Sciences, Lusófona University, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - M Clara P Amorim
- Marine and Environmental Sciences Centre/ARNET Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Vazquez JI, Gascue V, Quintana L, Migliaro A. Understanding daily rhythms in weakly electric fish: the role of melatonin on the electric behavior of Brachyhypopomus gauderio. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:7-18. [PMID: 37002418 DOI: 10.1007/s00359-023-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Living organisms display molecular, physiological and behavioral rhythms synchronized with natural environmental cycles. Understanding the interaction between environment, physiology and behavior requires taking into account the complexity of natural habitats and the diversity of behavioral and physiological adaptations. Brachyhypopomus gauderio is characterized by the emission of electric organ discharges (EOD), with a very stable rate modulated by social and environmental cues. The nocturnal arousal in B. gauderio coincides with a melatonin-dependent EOD rate increase. Here, we first show a daily cycle in both the EOD basal rate (EOD-BR) and EOD-BR variability of B. gauderio in nature. We approached the understanding of the role of melatonin in this natural behavior through both behavioral pharmacology and in vitro assays. We report, for the first time in gymnotiformes, a direct effect of melatonin on the pacemaker nucleus (PN) in in vitro preparation. Melatonin treatment lowered EOD-BR in freely moving fish and PN basal rate, while increasing the variability of both. These results show that melatonin plays a key role in modulating the electric behavior of B. gauderio through its effect on rate and variability, both of which must be under a tight temporal regulation to prepare the animal for the challenging nocturnal environment.
Collapse
Affiliation(s)
- Juan I Vazquez
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Valentina Gascue
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Quintana
- Dpto de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Adriana Migliaro
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Rogers LS, Lozier NR, Sapozhnikova YP, Diamond KM, Davis JL, Sisneros JA. Functional plasticity of the swim bladder as an acoustic organ for communication in a vocal fish. Proc Biol Sci 2023; 290:20231839. [PMID: 38087920 PMCID: PMC10716664 DOI: 10.1098/rspb.2023.1839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Teleost fishes have evolved a number of sound-producing mechanisms, including vibrations of the swim bladder. In addition to sound production, the swim bladder also aids in sound reception. While the production and reception of sound by the swim bladder has been described separately in fishes, the extent to which it operates for both in a single species is unknown. Here, using morphological, electrophysiological and modelling approaches, we show that the swim bladder of male plainfin midshipman fish (Porichthys notatus) exhibits reproductive state-dependent changes in morphology and function for sound production and reception. Non-reproductive males possess rostral 'horn-like' swim bladder extensions that enhance low-frequency (less than 800 Hz) sound pressure sensitivity by decreasing the distance between the swim bladder and inner ear, thus enabling pressure-induced swim bladder vibrations to be transduced to the inner ear. By contrast, reproductive males display enlarged swim bladder sonic muscles that enable the production of advertisement calls but also alter swim bladder morphology and increase the swim bladder to inner ear distance, effectively reducing sound pressure sensitivity. Taken together, we show that the swim bladder exhibits a seasonal functional plasticity that allows it to effectively mediate both the production and reception of sound in a vocal teleost fish.
Collapse
Affiliation(s)
| | | | - Yulia P. Sapozhnikova
- Department of Psychology, University of Washington, Seattle, WA, USA
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Kelly M. Diamond
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
| | - Julian Ly Davis
- Department of Engineering, University of Southern Indiana, Evansville, IN, USA
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA, USA
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Feybesse C, Chokron S, Tordjman S. Melatonin in Neurodevelopmental Disorders: A Critical Literature Review. Antioxidants (Basel) 2023; 12:2017. [PMID: 38001870 PMCID: PMC10669594 DOI: 10.3390/antiox12112017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The article presents a review of the relationships between melatonin and neurodevelopmental disorders. First, the antioxidant properties of melatonin and its physiological effects are considered to understand better the role of melatonin in typical and atypical neurodevelopment. Then, several neurodevelopmental disorders occurring during infancy, such as autism spectrum disorder or neurogenetic disorders associated with autism (including Smith-Magenis syndrome, Angelman syndrome, Rett's syndrome, Tuberous sclerosis, or Williams-Beuren syndrome) and neurodevelopmental disorders occurring later in adulthood like bipolar disorder and schizophrenia, are discussed with regard to impaired melatonin production and circadian rhythms, in particular, sleep-wake rhythms. This article addresses the issue of overlapping symptoms that are commonly observed within these different mental conditions and debates the role of abnormal melatonin production and altered circadian rhythms in the pathophysiology and behavioral expression of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cyrille Feybesse
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
- Faculté de Médecine, Université de Rennes, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| |
Collapse
|
8
|
Wang W, Dai S, Liu L, Fu Z, Yang R, Yu G, Ma Z, Zong H. Daily Rhythmicity of Muscle-Related and Rhythm Genes Expression in Mackerel Tuna ( Euthynnus affinis). BIOLOGY 2023; 12:1211. [PMID: 37759610 PMCID: PMC10525508 DOI: 10.3390/biology12091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
The aim of this study was to investigate the circadian rhythm of muscle-related gene expression in mackerel tuna under different weather conditions. The experiment was carried out under two weather conditions at four sampling times (6:00, 12:00, 18:00, and 24:00) to determine the expression of growth, function, and rhythm genes: white muscle rhythm genes were rhythmic on sunny and cloudy days, except for PER3 and RORA; all functional genes had daily rhythmicity. Red muscle had daily rhythmicity on both sunny and cloudy days; functional genes had daily rhythmicity except for MBNL. The expression levels of the rhythm gene PER1 were determined to be significantly different by independent t-test samples in white muscle at 6:00, 12:00, 18:00, and 24:00 under different weather conditions; the expression levels of the functional genes MBNL and MSTN were both significantly different. In the red muscle, the expression of the rhythm genes PER3, REVERBA, and BMAL1 was determined by independent t-test samples at 6:00, 12:00, 18:00, and 24:00 on cloudy and sunny days; the functional gene MBNL was significantly different. The present study showed that mackerel tuna muscle rhythm genes and functional genes varied significantly in expression levels depending on weather, time of day, and light intensity and that the expression levels of myogenic genes were closely related to clock gene expression. The fish were also able to adapt to changes in light intensity in different weather conditions through positive physiological regulation.
Collapse
Affiliation(s)
- Wenwen Wang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Shiming Dai
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Longlong Liu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Humin Zong
- National Marine Environmental Center, Dalian 116023, China
| |
Collapse
|
9
|
Zigler A, Straw S, Tokuda I, Bronson E, Riede T. Critical calls: Circadian and seasonal periodicity in vocal activity in a breeding colony of Panamanian golden frogs (Atelopus zeteki). PLoS One 2023; 18:e0286582. [PMID: 37590183 PMCID: PMC10434951 DOI: 10.1371/journal.pone.0286582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/18/2023] [Indexed: 08/19/2023] Open
Abstract
The Panamanian golden frog (Atelopus zeteki) is a critically endangered species and currently is believed to survive and reproduce only in human care. Panamanian golden frog males are considerably vocal which may be an important component in their successful reproduction, though little is currently known about their calls. To better understand the behavior and vocal patterns of this species and to improve breeding efforts in the assurance colony, we employed individual sound recording of male advertisement calls and acoustic monitoring of a breeding colony to investigate variation in the vocal behavior of Panamanian golden frogs. The goal was to capture variability within and among frogs as well as patterns of periodicity over time. First, the advertisement calls from individual male Panamanian golden frogs were recorded, and acoustic parameters were analyzed for individual differences. Results suggest that male advertisement calls demonstrate individual- and population specificity. Second, data collected through a year-long acoustic monitoring of the breeding colony were investigated for circadian and circannual periodicity. Male vocal activity revealed a circadian periodicity entrained by the daily light schedule. Seasonal periodicity was also found with highest vocal activities between December and March. The finding of a seasonal periodicity is worth noting given that the population had been bred for 20 years under constant environmental conditions. Finally, results suggest that vocal activity was responsive to daily animal care activity. Vocal activity decreased substantially when personnel entered the room and engaged in animal husbandry activities. The findings illustrate the usefulness of acoustic monitoring to provide insight into animal behavior in a zoo setting in a key breeding colony of endangered animals, and calling pattern observations may be utilized to modify husbandry practices to improve Panamanian golden frog breeding success and general care.
Collapse
Affiliation(s)
- Alan Zigler
- The Maryland Zoo in Baltimore, Baltimore, Maryland, United States of America
| | - Stephanie Straw
- College of Veterinary Medicine, Midwestern University, Glendale, Arizona, United States of America
| | - Isao Tokuda
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ellen Bronson
- The Maryland Zoo in Baltimore, Baltimore, Maryland, United States of America
| | - Tobias Riede
- Department of Physiology, Midwestern University, Glendale, Arizona, United States of America
| |
Collapse
|
10
|
Abstract
Bass describes the fascinating life history, behavior, and neurobiology of the California singing fish, including its remarkable vocal abilities.
Collapse
Affiliation(s)
- Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
11
|
Tan MK, Robillard T, ter Hofstede H. The circadian calling activity of a lebinthine cricket with high-frequency calls is unaffected by cicada choruses in the day. PeerJ 2023; 11:e14641. [PMID: 36650831 PMCID: PMC9840852 DOI: 10.7717/peerj.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023] Open
Abstract
Background Many factors can influence circadian rhythms in animals. For acoustically communicating species, both abiotic cues (such as light and temperature) and biotic cues (such as the activity of other animals), can influence the timing of signalling activity. Here we compare the 24-h singing activity of the cricket Lebinthus luae in the laboratory and field to assess whether the presence of other singing insects influences circadian rhythm. Methods Acoustic monitors were placed in four localities in Singapore and the number of L. luae calls were counted for 10 min of each hour. Individuals from the same localities were captured and recorded in the laboratory in silence but with similar abiotic conditions (temperature and light cycle) as they experience in the field, and the number of calls over 24 h was quantified. Results The 24-h pattern of L. luae singing was not significantly different between laboratory and field recordings. Singing activity peaked in the morning, with a secondary peak in the afternoon and a smaller peak at night. In the field, L. luae sang in the same locations and at the same time as diurnally singing cicadas, suggesting that the sympatric cicada chorus did not affect the circadian rhythm of communication in this species. Acoustic niche partitioning could potentially explain the ability of this cricket to call alongside cicadas: L. luae sings at higher frequencies than sympatric cicadas, unlike nocturnally singing cricket species that overlap with cicadas in frequency.
Collapse
Affiliation(s)
- Ming Kai Tan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Tony Robillard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Hannah ter Hofstede
- Dartmouth College, Department of Biological Sciences, New Hampshire, United States of America,Graduate Program in Ecology, Evolution, Environment and Society, Dartmouth College, New Hampshire, United States of America
| |
Collapse
|
12
|
Zhang Y, Zhou L, Zuo J, Wang S, Meng W. Analogies of human speech and bird song: From vocal learning behavior to its neural basis. Front Psychol 2023; 14:1100969. [PMID: 36910811 PMCID: PMC9992734 DOI: 10.3389/fpsyg.2023.1100969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Vocal learning is a complex acquired social behavior that has been found only in very few animals. The process of animal vocal learning requires the participation of sensorimotor function. By accepting external auditory input and cooperating with repeated vocal imitation practice, a stable pattern of vocal information output is eventually formed. In parallel evolutionary branches, humans and songbirds share striking similarities in vocal learning behavior. For example, their vocal learning processes involve auditory feedback, complex syntactic structures, and sensitive periods. At the same time, they have evolved the hierarchical structure of special forebrain regions related to vocal motor control and vocal learning, which are organized and closely associated to the auditory cortex. By comparing the location, function, genome, and transcriptome of vocal learning-related brain regions, it was confirmed that songbird singing and human language-related neural control pathways have certain analogy. These common characteristics make songbirds an ideal animal model for studying the neural mechanisms of vocal learning behavior. The neural process of human language learning may be explained through similar neural mechanisms, and it can provide important insights for the treatment of language disorders.
Collapse
Affiliation(s)
- Yutao Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lifang Zhou
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiachun Zuo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
13
|
Rogers LS, Coffin AB, Sisneros JA. Reproductive state modulates utricular auditory sensitivity in a vocal fish. J Neurophysiol 2022; 128:1344-1354. [PMID: 36286323 PMCID: PMC9678424 DOI: 10.1152/jn.00315.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022] Open
Abstract
The plainfin midshipman, Porichthys notatus, is a seasonally breeding vocal fish that relies on acoustic communication to mediate nocturnal reproductive behaviors. Reproductive females use their auditory senses to detect and localize "singing" males that produce multiharmonic advertisement (mate) calls during the breeding season. Previous work showed that the midshipman saccule, which is considered the primary end organ used for hearing in midshipman and most other fishes, exhibits reproductive state and hormone-dependent changes that enhance saccular auditory sensitivity. In contrast, the utricle was previously posited to serve primarily a vestibular function, but recent evidence in midshipman and related toadfish suggests that it may also serve an auditory function and aid in the detection of behaviorally relevant acoustic stimuli. Here, we characterized the auditory-evoked potentials recorded from utricular hair cells in reproductive and nonreproductive female midshipman in response to underwater sound to test the hypothesis that variation in reproductive state affects utricular auditory sensitivity. We show that utricular hair cells in reproductive females exhibit up to a sixfold increase in the utricular potential magnitude and have thresholds based on measures of particle acceleration (re: 1 ms-2) that are 7-10 dB lower than nonreproductive females across a broad range of frequencies, which include the dominant harmonics of male advertisement calls. This enhanced auditory sensitivity of the utricle likely plays an essential role in facilitating midshipman social and reproductive acoustic communication.NEW & NOTEWORTHY In many animals, vocal-acoustic communication is fundamental for facilitating social behaviors. For the vocal plainfin midshipman fish, the detection and localization of social acoustic signals are critical to the species' reproductive success. Here, we show that the utricle, an inner ear end organ often thought to primarily serve a vestibular function, serves an auditory function that is seasonally plastic and modulated by the animal's reproductive state effectively enhancing auditory sensitivity to courting male advertisement calls.
Collapse
Affiliation(s)
- Loranzie S Rogers
- Department of Psychology, University of Washington, Seattle, Washington
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, Washington
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, Washington
- Department of Biology, University of Washington, Seattle, Washington
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Banerjee A, Vallentin D. Convergent behavioral strategies and neural computations during vocal turn-taking across diverse species. Curr Opin Neurobiol 2022; 73:102529. [DOI: 10.1016/j.conb.2022.102529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 01/20/2023]
|
15
|
Schuppe ER, Zhang MD, Perelmuter JT, Marchaterre MA, Bass AH. Oxytocin-like receptor expression in evolutionarily conserved nodes of a vocal network associated with male courtship in a teleost fish. J Comp Neurol 2022; 530:903-922. [PMID: 34614539 PMCID: PMC8898023 DOI: 10.1002/cne.25257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Neuropeptides, including oxytocin-like peptides, are a conserved group of hormones that regulate a wide range of social behaviors, including vocal communication. In the current study, we evaluate whether putative brain sites for the actions of isotocin (IT), the oxytocin (OT) homolog of teleost fishes are associated with vocal courtship and circuitry in the plainfin midshipman fish (Porichthys notatus). During the breeding season, nesting males produce advertisement calls known as "hums" to acoustically court females at night and attract them to nests. We first identify IT receptor (ITR) mRNA in evolutionarily conserved regions of the forebrain preoptic area (POA), anterior hypothalamus (AH), and midbrain periaqueductal gray (PAG), and in two topographically separate populations within the hindbrain vocal pattern generator- duration-coding vocal prepacemaker (VPP) and amplitude-coding vocal motor nuclei (VMN) that also innervate vocal muscles. We also verify that ITR expression overlaps known distribution sites of OT-like immunoreactive fibers. Next, using phosphorylated ribosomal subunit 6 (pS6) as a marker for activated neurons, we demonstrate that ITR-containing neurons in the anterior parvocellular POA, AH, PAG, VPP, and VMN are activated in humming males. Posterior parvocellular and magno/gigantocellular divisions of the POA remain constitutively active in nonhumming males that are also in a reproductive state. Together with prior studies of midshipman fish and other vertebrates, our findings suggest that IT-signaling influences male courtship behavior, in part, by acting on brain regions that broadly influence behavioral state (POA) as well as the initiation (POA and PAG) and temporal structure (VPP and VMN) of advertisement hums.
Collapse
Affiliation(s)
| | | | | | | | - Andrew H. Bass
- Department of Neurobiology and Behavior, Cornell University
| |
Collapse
|
16
|
Balebail S, Sisneros JA. Long duration advertisement calls of nesting male plainfin midshipman fish are honest indicators of size and condition. J Exp Biol 2022; 225:274840. [PMID: 35332923 DOI: 10.1242/jeb.243889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The plainfin midshipman fish (Porichthys notatus) has long served as a model organism for neuroethology research on acoustic communication and related social behaviors. Type I or "singing" males produce highly stereotyped, periodic advertisement calls that are the longest known uninterrupted vertebrate vocalizations, lasting up to two hours in duration. Despite the extensive literature on the acoustic behaviour of this species, it remains unclear whether reproductive males signal their quality via their highly energetic, multiharmonic advertisement calls. Here, we recorded the advertisement calls of 22 reproductive type I males at night in a controlled laboratory setting in which males were housed in artificial tanks maintained at a constant temperature (13.9+0.3°C). The duration of the advertisement calls from type I males was observed to increase from the first call of the night to the middle call after which call duration remained steady until the early morning hours and first light. A strong positive correlation was observed between loudness (SPL and maximum SPL) of the advertisement call and body size (mass and standard length; rs>0.8). In addition, an asymptotic relationship was observed between the harmonic frequencies (F0-F10) of the advertisement calls and male body condition, with harmonic frequencies initially increasing with body condition but then plateauing at higher body condition. Taken together, our results suggest that type I male advertisement calls provide reliable honest information about male quality regarding size and body condition. Such condition dependent information of calling males could potentially be used by receptive females to help facilitate mate choice decisions.
Collapse
Affiliation(s)
- Sujay Balebail
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Joseph A Sisneros
- Department of Biology, University of Washington, Seattle, WA 98195, USA.,Department of Psychology, University of Washington, Seattle, WA 98195, USA.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Wood M, Širović A. Characterization of fin whale song off the Western Antarctic Peninsula. PLoS One 2022; 17:e0264214. [PMID: 35271610 PMCID: PMC8912240 DOI: 10.1371/journal.pone.0264214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/05/2022] [Indexed: 12/02/2022] Open
Abstract
Song is produced by a variety of terrestrial and marine animals and is particularly common among baleen whales. Fin whale (Balaenoptera physalus) song is comprised of relatively simple 20 Hz pulses produced at regular intervals. The timing of these intervals, in addition to the presence and frequency of overtones, appears to be unique to each population. The purpose of this study was to characterize Western Antarctic Peninsula fin whale song and describe temporal pattern variations in song type and occurrence. Recordings were collected in the area from 2001-2004 and again 2014-2016. One song type was identified with a primary inter-pulse interval (IPI) of approximately 14 s and secondary IPI of 12.5 s. This song occurred in three pattern variants: singlet, doublet, and long triplet. The interval between pulses increased by 1.5 s between recording periods while the frequency of the overtones decreased from 89 Hz to 86 Hz. Song was never recorded in August and while it was recorded at other times in some years, it was consistently present in recordings from April through June across all years. While multiple pattern variants were present each year, singlets were generally the most prevalent variant. Doublets and triplets occurred from February through June, with highest levels of variants in February. In later years the triplet variant presence increased and in 2016 it comprised 53% of recorded song bouts. Further research is needed to understand the reasons why song changes over time and to examine the feasibility of using song to delineate and identify populations.
Collapse
Affiliation(s)
- Megan Wood
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States of America
| | - Ana Širović
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States of America
- Biology Department, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
18
|
Turk AZ, Bishop M, Adeck A, SheikhBahaei S. Astrocytic modulation of central pattern generating motor circuits. Glia 2022; 70:1506-1519. [PMID: 35212422 DOI: 10.1002/glia.24162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/26/2022]
Abstract
Central pattern generators (CPGs) generate the rhythmic and coordinated neural features necessary for the proper conduction of complex behaviors. In particular, CPGs are crucial for complex motor behaviors such as locomotion, mastication, respiration, and vocal production. While the importance of these networks in modulating behavior is evident, the mechanisms driving these CPGs are still not fully understood. On the other hand, accumulating evidence suggests that astrocytes have a significant role in regulating the function of some of these CPGs. Here, we review the location, function, and role of astrocytes in locomotion, respiration, and mastication CPGs and propose that, similarly, astrocytes may also play a significant role in the vocalization CPG.
Collapse
Affiliation(s)
- Ariana Z Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mitchell Bishop
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Afuh Adeck
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
19
|
Ghahramani ZN, Perelmuter JT, Varughese J, Kyaw P, Palmer WC, Sisneros JA, Forlano PM. Activation of noradrenergic locus coeruleus and social behavior network nuclei varies with duration of male midshipman advertisement calls. Behav Brain Res 2022; 423:113745. [PMID: 35033611 DOI: 10.1016/j.bbr.2022.113745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Vocal courtship is vital to the reproductive success of many vertebrates and is therefore a highly-motivated behavioral state. Catecholamines have been shown to play an essential role in the expression and maintenance of motivated vocal behavior, such as the coordination of vocal-motor output in songbirds. However, it is not well-understood if this relationship applies to anamniote vocal species. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.e., dopaminergic and noradrenergic) nuclei and nodes of the social behavior network (SBN) are differentially activated in vocally courting (humming) versus non-humming males. Herein, we demonstrate that tyrosine hydroxylase immunoreactive (TH-ir) neuron number in the noradrenergic locus coeruleus (LC) and induction of cFos (an immediate early gene product and proxy for neural activation) in the preoptic area differentiated humming from non-humming males. Furthermore, we found relationships between activation of the LC and SBN nuclei with the total amount of time that males spent humming, further reinforcing a role for these specific brain regions in the production of motivated reproductive-related vocalizations. Finally, we found that patterns of functional connectivity between catecholaminergic nuclei and nodes of the SBN differed between humming and non-humming males, supporting the notion that adaptive behaviors (such as the expression of advertisement hums) emerge from the interactions between various catecholaminergic nuclei and the SBN.
Collapse
Affiliation(s)
- Zachary N Ghahramani
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, USA; Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Doctoral Subprograms in Ecology, Evolutionary Biology and Behavior,.
| | - Jonathan T Perelmuter
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA; Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Neuroscience, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA
| | - Joshua Varughese
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | - Phoo Kyaw
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA
| | | | - Joseph A Sisneros
- Departments of Biology and Psychology,; University of Washington, Seattle, WA, USA; Virginia Bloedel Hearing Research Center, Seattle, WA, USA
| | - Paul M Forlano
- Department of Biology, Brooklyn College, City University of New York, Brooklyn, NY, USA; Doctoral Subprograms in Ecology, Evolutionary Biology and Behavior,; Neuroscience, and Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA; Behavioral and Cognitive Neuroscience, The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
20
|
Dunlap KD, Koukos HM, Chagnaud BP, Zakon HH, Bass AH. Vocal and Electric Fish: Revisiting a Comparison of Two Teleost Models in the Neuroethology of Social Behavior. Front Neural Circuits 2021; 15:713105. [PMID: 34489647 PMCID: PMC8418312 DOI: 10.3389/fncir.2021.713105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
The communication behaviors of vocal fish and electric fish are among the vertebrate social behaviors best understood at the level of neural circuits. Both forms of signaling rely on midbrain inputs to hindbrain pattern generators that activate peripheral effectors (sonic muscles and electrocytes) to produce pulsatile signals that are modulated by frequency/repetition rate, amplitude and call duration. To generate signals that vary by sex, male phenotype, and social context, these circuits are responsive to a wide range of hormones and neuromodulators acting on different timescales at multiple loci. Bass and Zakon (2005) reviewed the behavioral neuroendocrinology of these two teleost groups, comparing how the regulation of their communication systems have both converged and diverged during their parallel evolution. Here, we revisit this comparison and review the complementary developments over the past 16 years. We (a) summarize recent work that expands our knowledge of the neural circuits underlying these two communication systems, (b) review parallel studies on the action of neuromodulators (e.g., serotonin, AVT, melatonin), brain steroidogenesis (via aromatase), and social stimuli on the output of these circuits, (c) highlight recent transcriptomic studies that illustrate how contemporary molecular methods have elucidated the genetic regulation of social behavior in these fish, and (d) describe recent studies of mochokid catfish, which use both vocal and electric communication, and that use both vocal and electric communication and consider how these two systems are spliced together in the same species. Finally, we offer avenues for future research to further probe how similarities and differences between these two communication systems emerge over ontogeny and evolution.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Haley M Koukos
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Boris P Chagnaud
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| | - Harold H Zakon
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States.,Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
21
|
Fissette SD, Busy U, Huerta B, Brant CO, Li K, Johnson NS, Li W. Diel Patterns of Pheromone Release By Male Sea Lamprey. Integr Comp Biol 2021; 61:1795-1810. [PMID: 34477864 DOI: 10.1093/icb/icab190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Costs to producing sexual signals can create selective pressures on males to invest signaling effort in particular contexts. When the benefits of signaling vary consistently across time, males can optimize signal investment to specific temporal contexts using biological rhythms. Sea lamprey, Petromyzon marinus, have a semelparous life history, are primarily nocturnal, and rely on pheromone communication for reproduction; however, whether male investment in pheromone transport and release matches increases in spawning activity remains unknown. By measuring 1) 3keto-petromyzonol sulfate (3kPZS, a main pheromone component) and its biosynthetic precursor petromyzonol sulfate (PZS) in holding water and tissue samples at 6 points over the course of 24 hours, and 2) 3kPZS release over the course of several days, we demonstrate that 3kPZS release exhibits a consistent diel pattern across several days with elevated pheromone release just prior to sunset and at night. Trends in hepatic concentrations and circulatory transport of PZS and 3kPZS were consistent with patterns of 3kPZS release and suggest the possibility of direct upregulation in pheromone transport and release rather than observed release patterns being solely a byproduct of increased behavioral activity. Our results suggest males evolved a signaling strategy that synchronizes elevated pheromone release with nocturnal increases in sea lamprey behavior. This may be imperative to ensure that male signaling effort is not wasted in a species having a single, reproductive event.
Collapse
Affiliation(s)
- Skye D Fissette
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Ugo Busy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Belinda Huerta
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Cory O Brant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Ke Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas S Johnson
- U.S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Rd., Millersburg, MI 49759, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
22
|
Barkan CL, Leininger EC, Zornik E. Everything in modulation: neuromodulators as keys to understanding communication dynamics. Integr Comp Biol 2021; 61:854-866. [PMID: 34038510 DOI: 10.1093/icb/icab102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across the animal kingdom, the ability to produce communication signals appropriate to social encounters is essential, but how these behaviors are selected and adjusted in a context-dependent manner is poorly understood. This question can be addressed on many levels, including sensory processing by peripheral organs and the CNS, sensorimotor integration in decision-making brain regions, and motor circuit activation and modulation. Because neuromodulator systems act at each of these levels, they are a useful lens through which to explore the mechanisms underlying complex patterns of communication. It has been clear for decades that understanding the logic of input-output decision making by the nervous system requires far more than simply identifying the connections linking sensory organs to motor circuits; this is due in part to the fact that neuromodulators can promote distinct and temporally dynamic responses to similar signals. We focus on the vocal circuit dynamics of Xenopus frogs, and describe complementary examples from diverse vertebrate communication systems. While much remains to be discovered about how neuromodulators direct flexibility in communication behaviors, these examples illustrate that several neuromodulators can act upon the same circuit at multiple levels of control, and that the functional consequence of neuromodulation can depend on species-specific factors as well as dynamic organismal characteristics like internal state.
Collapse
Affiliation(s)
| | | | - Erik Zornik
- Reed College, Biology Department, Portland, OR
| |
Collapse
|
23
|
Tripp JA, Feng NY, Bass AH. To hum or not to hum: Neural transcriptome signature of male courtship vocalization in a teleost fish. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12740. [PMID: 33960645 DOI: 10.1111/gbb.12740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/31/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
For many animal species, vocal communication is a critical social behavior and often a necessary component of reproductive success. Additionally, vocalizations are often demanding motor acts. Wanting to know whether a specific molecular toolkit might be required for vocalization, we used RNA-sequencing to investigate neural gene expression underlying the performance of an extreme vocal behavior, the courtship hum of the plainfin midshipman fish (Porichthys notatus). Single hums can last up to 2 h and may be repeated throughout an evening of courtship activity. We asked whether vocal behavioral states are associated with specific gene expression signatures in key brain regions that regulate vocalization by comparing transcript expression levels in humming versus non-humming males. We find that the circadian-related genes period3 and Clock are significantly upregulated in the vocal motor nucleus and preoptic area-anterior hypothalamus, respectively, in humming compared with non-humming males, indicating that internal circadian clocks may differ between these divergent behavioral states. In addition, we identify suites of differentially expressed genes related to synaptic transmission, ion channels and transport, neuropeptide and hormone signaling, and metabolism and antioxidant activity that together may support the neural and energetic demands of humming behavior. Comparisons of transcript expression across regions stress regional differences in brain gene expression, while also showing coordinated gene regulation in the vocal motor circuit in preparation for courtship behavior. These results underscore the role of differential gene expression in shifts between behavioral states, in this case neuroendocrine, motor and circadian control of courtship vocalization.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
- Department of Integrative Biology, University of Texas-Austin, Austin, Texas, USA
| | - Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Lloyd E, Chhouk B, Conith AJ, Keene AC, Albertson RC. Diversity in rest-activity patterns among Lake Malawi cichlid fishes suggests a novel axis of habitat partitioning. J Exp Biol 2021; 224:jeb242186. [PMID: 33658242 PMCID: PMC8077532 DOI: 10.1242/jeb.242186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 12/04/2022]
Abstract
Animals display remarkable diversity in rest and activity patterns that are regulated by endogenous foraging strategies, social behaviors and predator avoidance. Alteration in the circadian timing of activity or the duration of rest-wake cycles provide a central mechanism for animals to exploit novel niches. The diversity of the >3000 cichlid species throughout the world provides a unique opportunity to examine variation in locomotor activity and rest. Lake Malawi alone is home to over 500 species of cichlids that display divergent behaviors and inhabit well-defined niches throughout the lake. These species are presumed to be diurnal, though this has never been tested systematically. Here, we measured locomotor activity across the circadian cycle in 11 Lake Malawi cichlid species. We documented surprising variability in the circadian time of locomotor activity and the duration of rest. In particular, we identified a single species, Tropheops sp. 'red cheek', that is nocturnal. Nocturnal behavior was maintained when fish were provided shelter, but not under constant darkness, suggesting that it results from acute response to light rather than an endogenous circadian rhythm. Finally, we showed that nocturnality is associated with increased eye size after correcting for evolutionary history, suggesting a link between visual processing and nighttime activity. Together, these findings identify diversity of locomotor behavior in Lake Malawi cichlids and provide a system for investigating the molecular and neural basis underlying variation in nocturnal activity.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33401, USA
| | - Brian Chhouk
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Andrew J. Conith
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Alex C. Keene
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33401, USA
| | - R. Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
25
|
Nisembaum LG, Martin P, Lecomte F, Falcón J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J Neuroendocrinol 2021; 33:e12955. [PMID: 33769643 DOI: 10.1111/jne.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Part of the life cycle of several fish species includes important salinity changes, as is the case for the sea bass (Dicentrarchus labrax) or the Atlantic salmon (Salmo salar). Salmo salar juveniles migrate downstream from their spawning sites to reach seawater, where they grow and become sexually mature. The process of preparation enabling juveniles to migrate downstream and physiologically adapt to seawater is called smoltification. Daily and seasonal variations of photoperiod and temperature play a role in defining the timing of smoltification, which may take weeks to months, depending on the river length and latitude. Smoltification is characterised by a series of biochemical, physiological and behavioural changes within the neuroendocrine axis. This review discusses the current knowledge and gaps related to the neuroendocrine mechanisms that mediate the effects of light and temperature on smoltification. Studies performed in S. salar and other salmonids, as well as in other species undergoing important salinity changes, are reviewed, and a particular emphasis is given to the pineal hormone melatonin and its possible role in osmoregulation. The daily and annual variations of plasma melatonin levels reflect corresponding changes in external photoperiod and temperature, which suggests that the hormonal time-keeper melatonin might contribute to controlling smoltification. Here, we review studies on (i) the impact of pinealectomy and/or melatonin administration on smoltification; (ii) melatonin interactions with hormones involved in osmoregulation (e.g., prolactin, growth hormone and cortisol); (iii) the presence of melatonin receptors in tissues involved in osmoregulation; and (iv) the impacts of salinity changes on melatonin receptors and circulating melatonin levels. Altogether, these studies show evidence indicating that melatonin interacts with the neuroendocrine pathways controlling smoltification, although more information is needed to clearly decipher its mechanisms of action.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Frédéric Lecomte
- Ministère des Forêts, de la Faune et des Parcs, Direction de l'expertise sur la faune aquatique, Québec, Canada
| | - Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, SU, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
26
|
Bottalico LN, Weljie AM. Cross-species physiological interactions of endocrine disrupting chemicals with the circadian clock. Gen Comp Endocrinol 2021; 301:113650. [PMID: 33166531 PMCID: PMC7993548 DOI: 10.1016/j.ygcen.2020.113650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are endocrine-active chemical pollutants that disrupt reproductive, neuroendocrine, cardiovascular and metabolic health across species. The circadian clock is a transcriptional oscillator responsible for entraining 24-hour rhythms of physiology, behavior and metabolism. Extensive bidirectional cross talk exists between circadian and endocrine systems and circadian rhythmicity is present at all levels of endocrine control, from synthesis and release of hormones, to sensitivity of target tissues to hormone action. In mammals, a range of hormones directly alter clock gene expression and circadian physiology via nuclear receptor (NR) binding and subsequent genomic action, modulating physiological processes such as nutrient and energy metabolism, stress response, reproductive physiology and circadian behavioral rhythms. The potential for EDCs to perturb circadian clocks or circadian-driven physiology is not well characterized. For this reason, we explore evidence for parallel endocrine and circadian disruption following EDC exposure across species. In the reviewed studies, EDCs dysregulated core clock and circadian rhythm network gene expression in brain and peripheral organs, and altered circadian reproductive, behavioral and metabolic rhythms. Circadian impacts occurred in parallel to endocrine and metabolic alterations such as impaired fertility and dysregulated metabolic and energetic homeostasis. Further research is warranted to understand the nature of interaction between circadian and endocrine systems in mediating physiological effects of EDC exposure at environmental levels.
Collapse
Affiliation(s)
- Lisa N Bottalico
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Institute for Translational Medicine and Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Li Y, Lv Y, Bian C, You X, Shi Q. Molecular evolution of melatonin receptor genes (mtnr) in vertebrates and its shedding light on mtnr1c. Gene 2020; 769:145256. [PMID: 33164759 DOI: 10.1016/j.gene.2020.145256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Melatonin receptors (MTNRs) play important roles in regulation of circadian rhythms and seasonal reproduction. However, their origin and evolution in vertebrates have not been investigated. Here, we performed a comprehensive examination by comparative genome mining of MTNRs in vertebrates. We successfully extracted 164 putative encoding sequences for MTNRs (including 57 mtnr1a, 59 mtnr1b and 48 mtnr1c) from 45 high-quality representative genomes. Interestingly, the putative expansions of mtnr1a and mtnr1b in zebrafish were also identified in other Cyprinifomes, but not in other orders of teleost. Using phylogenetic interference, we observed this expansion to be clustered into a primitive position of the Actinopterygii, which may be resulted from teleost-specific genome duplication. The C-terminal extension of MTNR1C, predicted to be proteoglycan 4 (PRG4), originated after the speciation of Monotremata or Marsupialia. Our present genomics survey provides novel insights into the evolution of MTNRs in vertebrates and updates our understanding of these proteins.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| |
Collapse
|
28
|
Agostino PV, Lusk NA, Meck WH, Golombek DA, Peryer G. Daily and seasonal fluctuation in Tawny Owl vocalization timing. PLoS One 2020; 15:e0231591. [PMID: 32294116 PMCID: PMC7159226 DOI: 10.1371/journal.pone.0231591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/26/2020] [Indexed: 12/01/2022] Open
Abstract
A robust adaptation to environmental changes is vital for survival. Almost all living organisms have a circadian timing system that allows adjusting their physiology to cyclic variations in the surrounding environment. Among vertebrates, many birds are also seasonal species, adapting their physiology to annual changes in photoperiod (amplitude, length and duration). Tawny Owls (Strix aluco) are nocturnal birds of prey that use vocalization as their principal mechanism of communication. Diurnal and seasonal changes in vocalization have been described for several vocal species, including songbirds. Comparable studies are lacking for owls. In the present work, we show that male Tawny Owls present a periodic vocalization pattern in the seconds-to-minutes range that is subject to both daily (early vs. late night) and seasonal (spring vs. summer) rhythmicity. These novel theory-generating findings appear to extend the role of the circadian system in regulating temporal events in the seconds-to-minutes range to other species.
Collapse
Affiliation(s)
- Patricia V. Agostino
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | - Nicholas A. Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States of America
| | - Diego A. Golombek
- Department of Science and Technology, National University of Quilmes/CONICET, Buenos Aires, Argentina
| | - Guy Peryer
- School of Health Sciences, University of East Anglia, Norwich, England, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Tripp JA, Salas-Allende I, Makowski A, Bass AH. Mating Behavioral Function of Preoptic Galanin Neurons Is Shared between Fish with Alternative Male Reproductive Tactics and Tetrapods. J Neurosci 2020; 40:1549-1559. [PMID: 31911461 PMCID: PMC7044739 DOI: 10.1523/jneurosci.1276-19.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 11/21/2022] Open
Abstract
Understanding the contribution of neuropeptide-containing neurons to variation in social behavior remains critically important. Galanin has gained increased attention because of the demonstration that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. How widespread these mechanisms are among vertebrates essentially remains unexplored, especially among teleost fishes, which comprise nearly one-half of living vertebrate species. Teleosts with alternative reproductive tactics exhibit stereotyped patterns of social behavior that diverge widely between individuals within a sex. This includes midshipman that have two male morphs. Type I males mate using either acoustic courtship to attract females to enter a nest they guard or cuckoldry during which they steal fertilizations from a nest-holding male using a sneak or satellite spawning tactic, whereas type II males only cuckold. Using the neural activity marker phospho-S6, we show increased galanin neuron activation in courting type I males during mating that is not explained by their courtship vocalizations, parental care of eggs, or nest defense against cuckolders. This increase is not observed during mating in cuckolders of either morph or females (none of which show parental care). Together with their role in mating in male mammals, the results demonstrate an unexpectedly specific and deep-rooted, phylogenetically shared behavioral function for POA galanin neurons. The results also point to galanin-dependent circuitry as a potential substrate for the evolution of divergent phenotypes within one sex and provide new functional insights into how POA populations in teleosts compare to the POA and anterior hypothalamus of tetrapods.SIGNIFICANCE STATEMENT Studies of neuropeptide regulation of vertebrate social behavior have mainly focused on the vasopressin-oxytocin family. Recently, galanin has received attention as a regulator of social behavior largely because of studies demonstrating that galanin neurons in the preoptic area (POA) promote mating and parental care in mammals. Species with alternative reproductive tactics (ARTs) exhibit robust, consistent differences in behavioral phenotypes between individuals within a sex. Taking advantage of this trait, we show POA galanin neurons are specifically active during mating in one of two male reproductive tactics, but not other mating-related behaviors in a fish with ARTs. The results demonstrate a deep, phylogenetically shared role for POA galanin neurons in reproductive-related social behaviors with implications for the evolution of ARTs.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | | | - Andrea Makowski
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| |
Collapse
|
30
|
Zhang YS, Ghazanfar AA. A Hierarchy of Autonomous Systems for Vocal Production. Trends Neurosci 2020; 43:115-126. [PMID: 31955902 PMCID: PMC7213988 DOI: 10.1016/j.tins.2019.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Vocal production is hierarchical in the time domain. These hierarchies build upon biomechanical and neural dynamics across various timescales. We review studies in marmoset monkeys, songbirds, and other vertebrates. To organize these data in an accessible and across-species framework, we interpret the different timescales of vocal production as belonging to different levels of an autonomous systems hierarchy. The first level accounts for vocal acoustics produced on short timescales; subsequent levels account for longer timescales of vocal output. The hierarchy of autonomous systems that we put forth accounts for vocal patterning, sequence generation, dyadic interactions, and context dependence by sequentially incorporating central pattern generators, intrinsic drives, and sensory signals from the environment. We then show the framework's utility by providing an integrative explanation of infant vocal production learning in which social feedback modulates infant vocal acoustics through the tuning of a drive signal.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
31
|
Kelley DB, Ballagh IH, Barkan CL, Bendesky A, Elliott TM, Evans BJ, Hall IC, Kwon YM, Kwong-Brown U, Leininger EC, Perez EC, Rhodes HJ, Villain A, Yamaguchi A, Zornik E. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication. J Neurosci 2020; 40:22-36. [PMID: 31896561 PMCID: PMC6939475 DOI: 10.1523/jneurosci.0736-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
In many species, vocal communication is essential for coordinating social behaviors including courtship, mating, parenting, rivalry, and alarm signaling. Effective communication requires accurate production, detection, and classification of signals, as well as selection of socially appropriate responses. Understanding how signals are generated and how acoustic signals are perceived is key to understanding the neurobiology of social behaviors. Here we review our long-standing research program focused on Xenopus, a frog genus which has provided valuable insights into the mechanisms and evolution of vertebrate social behaviors. In Xenopus laevis, vocal signals differ between the sexes, through development, and across the genus, reflecting evolutionary divergence in sensory and motor circuits that can be interrogated mechanistically. Using two ex vivo preparations, the isolated brain and vocal organ, we have identified essential components of the vocal production system: the sexually differentiated larynx at the periphery, and the hindbrain vocal central pattern generator (CPG) centrally, that produce sex- and species-characteristic sound pulse frequencies and temporal patterns, respectively. Within the hindbrain, we have described how intrinsic membrane properties of neurons in the vocal CPG generate species-specific vocal patterns, how vocal nuclei are connected to generate vocal patterns, as well as the roles of neurotransmitters and neuromodulators in activating the circuit. For sensorimotor integration, we identified a key forebrain node that links auditory and vocal production circuits to match socially appropriate vocal responses to acoustic features of male and female calls. The availability of a well supported phylogeny as well as reference genomes from several species now support analysis of the genetic architecture and the evolutionary divergence of neural circuits for vocal communication. Xenopus thus provides a vertebrate model in which to study vocal communication at many levels, from physiology, to behavior, and from development to evolution. As one of the most comprehensively studied phylogenetic groups within vertebrate vocal communication systems, Xenopus provides insights that can inform social communication across phyla.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027,
| | - Irene H Ballagh
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Zoology, University of British Columbia, Vancouver V6T132, Canada
| | - Charlotte L Barkan
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Taffeta M Elliott
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Psychology and Education, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801
| | - Ben J Evans
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Ian C Hall
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Benedictine University, Lisle, Illinois 60532
| | - Young Mi Kwon
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Ursula Kwong-Brown
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Elizabeth C Leininger
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Division of Natural Sciences, New College of Florida, Sarasota, Florida 34243
| | - Emilie C Perez
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Heather J Rhodes
- Department of Biology, Boston University, Boston, Massachusetts 02215
- Department of Biology, Denison University, Granville, Ohio 43023, and
| | - Avelyne Villain
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Ayako Yamaguchi
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Erik Zornik
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
32
|
Maugars G, Nourizadeh-Lillabadi R, Weltzien FA. New Insights Into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts. Front Endocrinol (Lausanne) 2020; 11:538196. [PMID: 33071966 PMCID: PMC7541902 DOI: 10.3389/fendo.2020.538196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
In order to improve our understanding of melatonin signaling, we have reviewed and revised the evolutionary history of melatonin receptor genes (mtnr) in vertebrates. All gnathostome mtnr genes have a conserved gene organization with two exons, except for mtnr1b paralogs of some teleosts that show intron gains. Phylogeny and synteny analyses demonstrate the presence of four mtnr subtypes, MTNR1A, MTNR1B, MTNR1C, MTNR1D that arose from duplication of an ancestral mtnr during the vertebrate tetraploidizations (1R and 2R). In tetrapods, mtnr1d was lost, independently, in mammals, in archosaurs and in caecilian amphibians. All four mtnr subtypes were found in two non-teleost actinopterygian species, the spotted gar and the reedfish. As a result of teleost tetraploidization (3R), up to seven functional mtnr genes could be identified in teleosts. Conservation of the mtnr 3R-duplicated paralogs differs among the teleost lineages. Synteny analysis showed that the mtnr1d was conserved as a singleton in all teleosts resulting from an early loss after tetraploidization of one of the teleost 3R and salmonid 4R paralogs. Several teleosts including the eels and the piranha have conserved both 3R-paralogs of mtnr1a, mtnr1b, and mtnr1c. Loss of one of the 3R-paralogs depends on the lineage: mtnr1ca was lost in euteleosts whereas mtnr1cb was lost in osteoglossomorphs and several ostariophysians including the zebrafish. We investigated the tissue distribution of mtnr expression in a large range of tissues in medaka. The medaka has conserved the four vertebrate paralogs, and these are expressed in brain and retina, and, differentially, in peripheral tissues. Photoperiod affects mtnr expression levels in a gene-specific and tissue-specific manner. This study provides new insights into the repertoire diversification and functional evolution of the mtnr gene family in vertebrates.
Collapse
|
33
|
Phylogenetic Reclassification of Vertebrate Melatonin Receptors To Include Mel1d. G3-GENES GENOMES GENETICS 2019; 9:3225-3238. [PMID: 31416806 PMCID: PMC6778780 DOI: 10.1534/g3.119.400170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The circadian and seasonal actions of melatonin are mediated by high affinity G-protein coupled receptors (melatonin receptors, MTRs), classified into phylogenetically distinct subtypes based on sequence divergence and pharmacological characteristics. Three vertebrate MTR subtypes are currently described: MT1 (MTNR1A), MT2 (MTNR1B), and Mel1c (MTNR1C / GPR50), which exhibit distinct affinities, tissue distributions and signaling properties. We present phylogenetic and comparative genomic analyses supporting a revised classification of the vertebrate MTR family. We demonstrate four ancestral vertebrate MTRs, including a novel molecule hereafter named Mel1d. We reconstructed the evolution of each vertebrate MTR, detailing genetic losses in addition to gains resulting from whole genome duplication events in teleost fishes. We show that Mel1d was lost separately in mammals and birds and has been previously mistaken for an MT1 paralogue. The genetic and functional diversity of vertebrate MTRs is more complex than appreciated, with implications for our understanding of melatonin actions in different taxa. The significance of our findings, including the existence of Mel1d, are discussed in an evolutionary and functional context accommodating a robust phylogenetic assignment of MTR gene family structure.
Collapse
|
34
|
Evolution of acoustic communication in blind cavefish. Nat Commun 2019; 10:4231. [PMID: 31530801 PMCID: PMC6748933 DOI: 10.1038/s41467-019-12078-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Acoustic communication allows the exchange of information within specific contexts and during specific behaviors. The blind, cave-adapted and the sighted, river-dwelling morphs of the species Astyanax mexicanus have evolved in markedly different environments. During their evolution in darkness, cavefish underwent a series of morphological, physiological and behavioral changes, allowing the study of adaptation to drastic environmental change. Here we discover that Astyanax is a sonic species, in the laboratory and in the wild, with sound production depending on the social contexts and the type of morph. We characterize one sound, the "Sharp Click", as a visually-triggered sound produced by dominant surface fish during agonistic behaviors and as a chemosensory-, food odor-triggered sound produced by cavefish during foraging. Sharp Clicks also elicit different reactions in the two morphs in play-back experiments. Our results demonstrate that acoustic communication does exist and has evolved in cavefish, accompanying the evolution of its behaviors.
Collapse
|
35
|
Simon V, Hyacinthe C, Rétaux S. Breeding behavior in the blind Mexican cavefish and its river-dwelling conspecific. PLoS One 2019; 14:e0212591. [PMID: 30785948 PMCID: PMC6382271 DOI: 10.1371/journal.pone.0212591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/05/2019] [Indexed: 12/18/2022] Open
Abstract
Fish reproductive patterns are very diverse in terms of breeding frequency, mating system, sexual dimorphisms and selection, mate choice, spawning site choice, courtship patterns, spawning behaviors and parental care. Here we have compared the breeding behavior of the surface-dwelling and cave-dwelling morphs of the characiform A. mexicanus, with the goals of documenting the spawning behavior in this emerging model organism, its possible evolution after cave colonization, and the sensory modalities involved. Using infrared video recordings, we showed that cave and surface Astyanax spawning behavior is identical, occurs in the dark, and can be divided into 5 rapid phases repeated many times, about once per minute, during spawning sessions which last about one hour and involve one female and several males. Such features may constitute "pre-adaptive traits" which have facilitated fish survival after cave colonization, and may also explain how the two morphs can hybridize in the wild and in the laboratory. Accordingly, cross-breeding experiments involving females of one morphotype and males of the other morphotype showed the same behavior including the same five phases. However, breeding between cavefish females and surface fish males was more frequent than the reverse. Finally, cavefish female pheromonal solution was able to trigger strong behavioral responses in cavefish males-but not on surface fish males. Lastly, egg production seemed higher in surface fish females than in cavefish females. These results are discussed with regards to the sensory modalities involved in triggering reproductive behavior in the two morphs, as well as its possible ongoing evolution.
Collapse
Affiliation(s)
- Victor Simon
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carole Hyacinthe
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
36
|
Feng NY, Marchaterre MA, Bass AH. Melatonin receptor expression in vocal, auditory, and neuroendocrine centers of a highly vocal fish, the plainfin midshipman (Porichthys notatus). J Comp Neurol 2019; 527:1362-1377. [PMID: 30620047 DOI: 10.1002/cne.24629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 11/07/2022]
Abstract
Melatonin plays a central role in entraining activity to the day-night cycle in vertebrates. Here, we investigate neuroanatomical substrates of melatonin-dependent vocal-acoustic behavior in the nocturnal and highly vocal teleost fish, the plainfin midshipman (Porichthys notatus). Using in situ hybridization (ISH) and quantitative real-time PCR (qPCR), we assess the mRNA distribution and transcript abundance of melatonin receptor subtype 1B (mel1b), shown to be important for vocalization in midshipman fish and songbirds. ISH shows robust mel1b expression in major nodes of the central vocal and auditory networks in the subpallium, preoptic area (POA), anterior hypothalamus, dorsal thalamus, posterior tuberculum, midbrain torus semicircularis and periaqueductal gray, and hindbrain. Mel1b label is also abundant in secondary targets of the olfactory, visual, and lateral line systems, as well as telencephalic regions that have been compared to the amygdala, extended amygdala, striatum, septum, and hippocampus of tetrapods. Q-PCR corroborates mel1b abundance throughout the brain and shows significant increases in the morning compared with nighttime in tissue samples inclusive of the telencephalon and POA, but remains stable in other brain regions. Plasma melatonin levels show expected increase at night. Our findings support the hypothesis that melatonin's stimulatory effects on vocal-acoustic mechanisms in midshipman is mediated, in part, by melatonin binding in vocal, auditory, and neuroendocrine centers. Together with robust mel1b expression in multiple telencephalic nuclei and sensory systems, the results further indicate an expression pattern comparable to that in birds and mammals that is indicative of melatonin's broad involvement in the modulation of physiology and behavior.
Collapse
Affiliation(s)
- Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | | | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York.,Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California
| |
Collapse
|
37
|
Tripp JA, Feng NY, Bass AH. Behavioural tactic predicts preoptic-hypothalamic gene expression more strongly than developmental morph in fish with alternative reproductive tactics. Proc Biol Sci 2019; 285:rspb.2017.2742. [PMID: 29343607 DOI: 10.1098/rspb.2017.2742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022] Open
Abstract
Reproductive success relies on the coordination of social behaviours, such as territory defence, courtship and mating. Species with extreme variation in reproductive tactics are useful models for identifying the neural mechanisms underlying social behaviour plasticity. The plainfin midshipman (Porichthys notatus) is a teleost fish with two male reproductive morphs that follow widely divergent developmental trajectories and display alternative reproductive tactics (ARTs). Type I males defend territories, court females and provide paternal care, but will resort to cuckoldry if they cannot maintain a territory. Type II males reproduce only through cuckoldry. We sought to disentangle gene expression patterns underlying behavioural tactic, in this case ARTs, from those solely reflective of developmental morph. Using RNA-sequencing, we investigated differential transcript expression in the preoptic area-anterior hypothalamus (POA-AH) of courting type I males, cuckolding type I males and cuckolding type II males. Unexpectedly, POA-AH differential expression was more strongly coupled to behavioural tactic than morph. This included a suite of transcripts implicated in hormonal regulation of vertebrate social behaviour. Our results reveal that divergent expression patterns in a conserved neuroendocrine centre known to regulate social-reproductive behaviours across vertebrate lineages may be uncoupled from developmental history to enable plasticity in the performance of reproductive tactics.
Collapse
Affiliation(s)
- Joel A Tripp
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7901, USA
| | - Ni Y Feng
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7901, USA
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853-7901, USA
| |
Collapse
|
38
|
Alward BA, Hilliard AT, York RA, Fernald RD. Hormonal regulation of social ascent and temporal patterns of behavior in an African cichlid. Horm Behav 2019; 107:83-95. [PMID: 30578818 PMCID: PMC12020726 DOI: 10.1016/j.yhbeh.2018.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
For many species, social rank determines which individuals perform certain social behaviors and when. Higher ranking or dominant (DOM) individuals maintain status through aggressive interactions and perform courtship behaviors while non-dominant (ND) individuals do not. In some species ND individuals ascend (ASC) in social rank when the opportunity arises. Many important questions related to the mechanistic basis of social ascent remain to be answered. We probed whether androgen signaling regulates social ascent in male Astatotilapia burtoni, an African cichlid whose social hierarchy can be readily controlled in the laboratory. As expected, androgen receptor (AR) antagonism abolished reproductive behavior during social ascent. However, we discovered multiple AR- and status-dependent temporal behavioral patterns that typify social ascent and dominance. AR antagonism in ASC males increased the time between successive behaviors compared to DOM males. Socially ascending males, independent of AR activation, were more likely than DOM males to follow aggressive displays with another aggressive display. Further analyses revealed differences in the sequencing of aggressive and courtship behaviors, wherein DOM males were more likely than ASC males to follow male-directed aggression with courtship displays. Strikingly, this difference was driven mostly by ASC males taking longer to transition from aggression to courtship, suggesting ASC males can perform certain DOM-typical temporal behavioral patterns. Our results indicate androgen signaling is necessary for social ascent and hormonal signaling and social experience may shape the full suite of DOM-typical behavioral patterns.
Collapse
Affiliation(s)
- Beau A Alward
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Austin T Hilliard
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Ryan A York
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Karamitri A, Plouffe B, Bonnefond A, Chen M, Gallion J, Guillaume JL, Hegron A, Boissel M, Canouil M, Langenberg C, Wareham NJ, Le Gouill C, Lukasheva V, Lichtarge O, Froguel P, Bouvier M, Jockers R. Type 2 diabetes-associated variants of the MT 2 melatonin receptor affect distinct modes of signaling. Sci Signal 2018; 11:11/545/eaan6622. [PMID: 30154102 DOI: 10.1126/scisignal.aan6622] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melatonin is produced during the night and regulates sleep and circadian rhythms. Loss-of-function variants in MTNR1B, which encodes the melatonin receptor MT2, a G protein-coupled receptor (GPCR), are associated with an increased risk of type 2 diabetes (T2D). To identify specific T2D-associated signaling pathway(s), we profiled the signaling output of 40 MT2 variants by monitoring spontaneous (ligand-independent) and melatonin-induced activation of multiple signaling effectors. Genetic association analysis showed that defects in the melatonin-induced activation of Gαi1 and Gαz proteins and in spontaneous β-arrestin2 recruitment to MT2 were the most statistically significantly associated with an increased T2D risk. Computational variant impact prediction by in silico evolutionary lineage analysis strongly correlated with the measured phenotypic effect of each variant, providing a predictive tool for future studies on GPCR variants. Together, this large-scale functional study provides an operational framework for the postgenomic analysis of the multiple GPCR variants present in the human population. The association of T2D risk with signaling pathway-specific defects opens avenues for pathway-specific personalized therapeutic intervention and reveals the potential relevance of MT2 function during the day, when melatonin is undetectable, but spontaneous activity of the receptor occurs.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Bianca Plouffe
- Institute for Research in Immunology and Cancer and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Amélie Bonnefond
- Université Lille, CNRS UMR 8199-EGID, Institut Pasteur de Lille, Lille, France
| | - Min Chen
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Jonathan Gallion
- Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Luc Guillaume
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Alan Hegron
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Mathilde Boissel
- Université Lille, CNRS UMR 8199-EGID, Institut Pasteur de Lille, Lille, France
| | - Mickaël Canouil
- Université Lille, CNRS UMR 8199-EGID, Institut Pasteur de Lille, Lille, France
| | - Claudia Langenberg
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Nicholas J Wareham
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Viktoria Lukasheva
- Institute for Research in Immunology and Cancer and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| | - Olivier Lichtarge
- Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philippe Froguel
- Université Lille, CNRS UMR 8199-EGID, Institut Pasteur de Lille, Lille, France. .,Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, W12 0NN London, UK
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada.
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France. .,CNRS UMR 8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
40
|
Bonnefond A, Froguel P. Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes: Still a Long Way to Go? Curr Diab Rep 2017; 17:122. [PMID: 29063374 DOI: 10.1007/s11892-017-0957-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes (T2D) is a complex genetic metabolic disorder. T2D heritability has been estimated around 40-70%. In the last decade, exponential progress has been made in identifying T2D genetic determinants, through genome-wide association studies (GWAS). Among single-nucleotide polymorphisms mostly associated with T2D risk, rs10830963 is located in the MTNR1B gene, encoding one of the two receptors of melatonin, a neurohormone involved in circadian rhythms. Subsequent studies aiming to disentangle the role of MTNR1B in T2D pathophysiology led to controversies. In this review, we will tackle them and will try to give some directions to get a better view of MTNR1B contribution to T2D pathophysiology. RECENT FINDINGS Recent studies either based on genetic/genomic analyses, clinical/epidemiology data, functional analyses at rs10830963 locus, insulin secretion assays in response to melatonin (involving or not MTNR1B) or animal model analyses have led to strong controversies at each level of interpretation. We discuss possible caveats in these studies and present ways to go beyond these issues, towards a better understanding of T2D molecular mechanisms, keeping in mind that melatonin is a versatile hormone and regulates many functions via its primary role in the body clock.
Collapse
Affiliation(s)
- Amélie Bonnefond
- CNRS UMR 8199. European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Pôle Recherche-1er - 1er étage Aile Ouest, 1 place de Verdun, 59045, Lille Cedex, France.
| | - Philippe Froguel
- CNRS UMR 8199. European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Pôle Recherche-1er - 1er étage Aile Ouest, 1 place de Verdun, 59045, Lille Cedex, France
- Genomics of Common Disease, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
41
|
Kelley DB, Elliott TM, Evans BJ, Hall IC, Leininger EC, Rhodes HJ, Yamaguchi A, Zornik E. Probing forebrain to hindbrain circuit functions in Xenopus. Genesis 2017; 55. [PMID: 28095617 DOI: 10.1002/dvg.22999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
Abstract
The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds-for example, a baby's cry-can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species (comparative neuromics) with distinctive vocal patterns can identify conserved features, and thereby reveal essential functional components.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences, Columbia University, New York, New York, 10027
| | - Taffeta M Elliott
- Department of Psychology, New Mexico Tech, Socorro, New Mexico, 87801
| | - Ben J Evans
- Department of Biology, McMaster University, Hamilton, Ontario, Ontario, L8S4K1, Canada
| | - Ian C Hall
- Department of Biology, Benedictine University, Lisle, Illinois
| | | | - Heather J Rhodes
- Department of Biology, Denison University, Granville, Ohio, 43023
| | - Ayako Yamaguchi
- Department of Biology, University of Utah, Salt Lake City, Utah, 84112
| | - Erik Zornik
- Biology Department, Reed College, Portland, Oregon, 97201
| |
Collapse
|
42
|
Bonnefond A, Froguel P. The case for too little melatonin signalling in increased diabetes risk. Diabetologia 2017; 60:823-825. [PMID: 28314944 DOI: 10.1007/s00125-017-4255-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Genome-wide association studies have detected an association between type 2 diabetes risk and a non-coding SNP located in MTNR1B, the gene encoding melatonin receptor 2 (MT2). Melatonin regulates circadian rhythms and sleep and associates with metabolic disorders. However, the mechanisms underlying these actions are still unclear. Functional genomic, animal and clinical studies have not reached the same conclusions: while some studies have reported that decreased melatonin signalling increases type 2 diabetes risk, others have found the opposite. In this commentary, we have tried to provide an explanation for these contradictions and we suggest how the community may progress to reach a unified picture of the effect of melatonin and its signalling on type 2 diabetes.
Collapse
Affiliation(s)
- Amélie Bonnefond
- European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Centre national de la recherche scientifique (CNRS), Unité mixte de recherche (UMR) 8199, University of Lille, 1 Rue du Professeur Calmette, B.P. 245, F-59019, Lille Cedex, France.
- Department of Genomics of Common Disease, School of Public Health, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Philippe Froguel
- European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Centre national de la recherche scientifique (CNRS), Unité mixte de recherche (UMR) 8199, University of Lille, 1 Rue du Professeur Calmette, B.P. 245, F-59019, Lille Cedex, France.
- Department of Genomics of Common Disease, School of Public Health, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
43
|
McCallum E. Singing fish take their cues from melatonin. J Exp Biol 2017. [DOI: 10.1242/jeb.147249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Biological Rhythms: Melatonin Shapes the Space–Time Continuum of Social Communication. Curr Biol 2016; 26:R892-R895. [DOI: 10.1016/j.cub.2016.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|