1
|
Brown E, Hunt BPV. Cumulative effects of fire in the Fraser River basin on freshwater quality and implications for the Salish Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179416. [PMID: 40250226 DOI: 10.1016/j.scitotenv.2025.179416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
The movement of water from land to the ocean serves as a major biogeochemical link between terrestrial and marine systems, through which terrestrial disturbances can impact freshwater quality and coastal oceans. Wildfire is a major terrestrial disturbance, however its influence on water quality in large freshwater systems and the ocean is understudied. As anthropogenic pressures change fire regimes globally, it is important that this connection is better understood. The Fraser River's basin has significant wildfire history, and the Fraser River has major influence on its receiving waters of the Salish Sea, making this an ideal system in which to investigate the influence of fire on water quality from freshwater to the ocean. This study assessed cumulative impacts of wildfire on Fraser River water quality using historical water quality and fire data. Wildfire in the Fraser River basin explained up to 16.3 % of variance in water quality, and fires burning closer to major waterways had immediate influence on water quality, while farther away wildfires had a delayed influence on water quality. For water quality variables of particular importance in the Salish Sea, wildfire was linked to short term decreases in the riverine concentrations of some constituents, and delayed increases in the concentrations of nearly all assessed water quality variables. These findings have implications for coastal ocean productivity and contamination, and identify fire as an important agent of biogeochemical cycling between land and ocean.
Collapse
Affiliation(s)
- Emily Brown
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada; Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Brian P V Hunt
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada; Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada; Hakai Institute, PO Box 309, Heriot Bay, Quadra Island, BC V0P 1H0, Canada
| |
Collapse
|
2
|
Su C, Zhou H, Wang Y, Duan X, Jiang T, Zhang C, Gao H, Kong L, Wang M, Guo C. Contrasting Effects of Atmospheric Particulate Matter Deposition on Free-Living and Particle-Associated Bacteria in the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40410126 DOI: 10.1021/acs.est.4c12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Atmospheric particulate matter (PM) deposition has become an important nutrient source in marine ecosystems, increasing particulate organic carbon and resource heterogeneity. However, their effects on marine bacterial communities remain unclear. In this study, by conducting on-board microcosm experiments with anthropogenic East Asian PM in the oligotrophic South China Sea, the response of particle-associated (PA) bacteria was investigated and compared with its free-living (FL) counterparts. Results showed that PM input increased nutrient heterogeneity, shifting bacterial community composition and lifestyle. Copiotrophic PA bacteria became more abundant and contributed a disproportionately higher percentage to total bacterial production despite a decline in total bacterial abundance. FL bacteria showed increased diversity, shifting from oligotrophs to copiotrophs, while PA bacteria displayed reduced diversity and nondirectional compositional changes, suggesting their distinct assembly mechanisms in response to external nutrient inputs. Metagenomic analysis further revealed that PM drives a shift toward a copiotrophic, particle-attached lifestyle with upregulated pathways for chemotaxis, motility, and biofilm formation. Notably, PM addition also increased the relative abundance of oil-degrading taxa. These findings reveal the complexity of microbial responses to environmental perturbations and underscore the need to consider unique ecological niches and bacterial lifestyles.
Collapse
Affiliation(s)
- Chang Su
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongyan Zhou
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yifei Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xueping Duan
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Chao Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China
| | - Liangliang Kong
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Min Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Haide College, Ocean University of China, Qingdao 266100, China
| | - Cui Guo
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Iriarte J, Lundin D, Martinez-Varela A, Gónzalez JM, Sánchez P, Dachs J, Vila-Costa M. Entanglement of hydrocarbon-degrading bacteria and polycyclic aromatic hydrocarbons in the ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 379:126512. [PMID: 40412639 DOI: 10.1016/j.envpol.2025.126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 05/07/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Knowledge of Earth's microbiomes' capacity to degrade aromatic compounds is limited by the lack of accurate tools for identifying degrading genes and their associated taxa. Additionally, these estimates are hardly compared to in situ background concentrations of polycyclic aromatic hydrocarbons (PAHs), particularly in oceanic waters. This knowledge is important for assessing the persistence of the widespread and abundant PAHs in the environment and their interactions with microbes. Here, we present a new tool to identify aromatic ring-hydroxylating dioxygenase α-subunit (arhdA) gene sequences by combining profile-based search with phylogenetic placement in a reference phylogeny. We identified arhdA-harboring taxa in both the Genome Taxonomy Database and the Malaspina Vertical Profiles Gene Database, a gene catalog derived from metagenomes collected during the Malaspina expedition. We found that multiple ubiquitous taxa in tropical and temperate oceans harbor arhdA. The comparison of arhdA gene abundances in seawater metagenomes with the field PAH concentrations showed that higher abundances of arhdA gene copies per cell were negatively correlated with 2-4 ring PAHs, consistent with the known degradation of lighter PAHs. Gene abundances were significantly higher in the particle-associated fraction than in the free-living fraction, suggesting particulate matter as a relevant reservoir of PAH degraders. Finally, we show that PAHs, together with other environmental variables, modulate the structure of oceanic microbial communities.
Collapse
Affiliation(s)
- Jon Iriarte
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalunya, 08034, Barcelona, Spain; Doctoral Program in Analytical Chemistry and the Environment, Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, Catalunya, 08028, Barcelona, Spain
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Alícia Martinez-Varela
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalunya, 08034, Barcelona, Spain
| | - José M Gónzalez
- Department of Microbiology, University of La Laguna, 38200, La Laguna, Spain
| | - Pablo Sánchez
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Catalunya, 08003, Barcelona, Spain
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalunya, 08034, Barcelona, Spain
| | - Maria Vila-Costa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Catalunya, 08034, Barcelona, Spain.
| |
Collapse
|
4
|
Wang S, Huang J, Wu Z, Li S, Zhu X, Liu Y, Ji G. Global mapping of flux and microbial sources for oceanic N 2O. Nat Commun 2025; 16:3341. [PMID: 40199896 PMCID: PMC11978886 DOI: 10.1038/s41467-025-58715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
The ocean is the largest source of N2O emissions from global aquatic ecosystems. However, the N2O production-consumption mechanism and microbial spatial distribution are still unclear. Our study established a bottom-up model based on the source‒sink boundary and the microbial sources of N2O. A high-resolution (0.1°) global distribution of oceanic N2O was depicted, confirmed by approximately 150,000 surface measurements. The microbial N2O flux is 2.9 Tg/yr N-N2O, with the oxygen-deficient zones (ODZs) disproportionately accounting for more than half of the total emission. High primary productivity, sharp oxyclines, and shallow emission depths caused the ODZs to be N2O hotspots. Geographically, ammonia-oxidizing archaea (AOA, 1.0 Tg) are the most widely distributed contributors to N2O emissions in the ocean, completely overtaking ammonia-oxidizing bacteria (AOB). Heterotrophic denitrification, mainly occurring in ODZs, contributes the most (1.6 Tg) to N2O emissions. Overall, this study offers a bottom-up framework for understanding microbial source-sink mechanism in the ocean.
Collapse
Affiliation(s)
- Shuo Wang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Jilin Huang
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Zhen Wu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Xianfang Zhu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Yong Liu
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| | - Guodong Ji
- College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| |
Collapse
|
5
|
Meng Y, Feng T, Fang Z, Sun W, Zhao S, Yang G, Wang L. Impacts of decadal increasing nitrogen deposition on North Pacific marine ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124844. [PMID: 40056589 DOI: 10.1016/j.jenvman.2025.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Atmospheric nitrogen deposition is one of the key sources of marine nutrients, significantly affecting marine ecosystems. However, the ecological response of marine ecosystems to current and future changes in nitrogen deposition remains unclear. This study investigates the effects of rising nitrogen deposition during the past decades on North Pacific ecosystems by utilizing a coupled physical-biological model. We estimate that the drastic 170% increase in nitrogen deposition during 1950-2020, as indicated by the ACCMIP project, leads to a 1% rise in plankton biomass and a 0.4% decrease in phosphate. These changes boost marine primary productivity and increase the demand for phosphorus, particularly in mid to low-latitude regions. Continued nitrogen deposition under different emission scenarios (RCP2.6, 6.0, and 8.5) during the next decades would exacerbate nutrient imbalances, with the nitrogen-to-phosphorus ratio rising by >0.25%, adversely affecting ecosystem stability. These findings provide insights into future responses of marine ecosystems to rising nitrogen deposition.
Collapse
Affiliation(s)
- Yanjiahui Meng
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China
| | - Tian Feng
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China; Institute of East China Sea, Ningbo University, Ningbo, China.
| | - Zhen Fang
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China; Ningbo Natural Resources & Planning Big Data Center, Ningbo, Zhejiang, China
| | - Weiwei Sun
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China.
| | - Shuyu Zhao
- Ningbo Meteorological Bureau, Ningbo, Zhejiang, China
| | - Gang Yang
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China
| | - Lihua Wang
- Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Li M, Chu L, Zou M, Rong L, Xu N, Sun X. Nitric oxide involved in alleviating iron-deficiency stress in macroalga Gracilariopsis lemaneiformis. MARINE ENVIRONMENTAL RESEARCH 2025; 206:107032. [PMID: 40037183 DOI: 10.1016/j.marenvres.2025.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/30/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Nitric oxide (NO), an active signaling molecule, plays multifaceted roles in plant growth, development, and responses to biotic/abiotic stresses such as high temperature and nutrient deficiency. In marine environments, algae frequently encounter challenges due to limitations in the availability of essential nutrients, including nitrogen, phosphate and iron. Here, sodium nitroprusside (SNP), a NO donor, was employed to investigate the regulating roles of NO on the physiological traits and metabolic pathways in the iron-deficient macroalga Gracilariopsis lemaneiformis. The supply of SNP mitigated the adverse effect due to iron deficiency by promoting the actual photosynthetic efficiency and photochemical quenching coefficient, NO accumulation, proline content, and ferric chelate reductase (FCR) activity, while reducing the malondialdehyde level, thereby alleviating the algal growth inhibition. After a comparative transcriptome analysis, a total of 1255 upregulated- and 3266 downregulated-unigenes were identified in the SNP-supplied alga relative to the iron-deficient G. lemaneiformis. Furthermore, multiple metabolic pathways were significantly enriched, including photosynthesis, carbon metabolism, phenylpropanoid biosynthesis, nitrogen metabolism, glutathione metabolism, and abscisic acid synthesis and signaling pathway, and the latter three were further demonstrated from the enzyme and metabolite levels. In summary, this study will not only present novel insights into how marine macroalgae adapt to iron-limited environments, but also provide a basis for understanding the crucial role and underlying mechanisms of NO mitigating iron-deficiency adversity in G. lemaneiformis.
Collapse
Affiliation(s)
- Mingyue Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Luke Chu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Mo Zou
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lizhen Rong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Nianjun Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xue Sun
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
7
|
Pourdanandeh M, Séchet V, Carpentier L, Réveillon D, Hervé F, Hubert C, Hess P, Selander E. Effects of copepod chemical cues on intra- and extracellular toxins in two species of Dinophysis. HARMFUL ALGAE 2025; 142:102793. [PMID: 39947851 DOI: 10.1016/j.hal.2024.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 05/09/2025]
Abstract
Copepods may contribute to harmful algal bloom formation by selectively rejecting harmful cells. Additionally, copepods and the chemical cues they exude, copepodamides, have been shown to induce increased toxin production in paralytic and amnesic toxin producing microalgae. However, it is unknown if diarrhetic shellfish toxin (DST) producers such as Dinophysis respond to copepods or copepodamides in a similar fashion. Here we expose laboratory cultures of Dinophysis sacculus and D. acuminata to direct grazing by Acartia sp. copepods or copepodamides and measure their toxins after three days. Total Dinophysis-produced toxins (DPTs), okadaic acid, pectenotoxin-2, and C9-diol ester of okadaic acid, increased by 8 - 45 % in D. sacculus but was significantly different from controls only in the highest (10 nM) copepodamide treatment whereas toxin content was not affected in D. acuminata. Growth rate was low across all groups and explained up to 91 % of the variation in toxin content. DPTs were redistributed from internal compartments to the extracellular medium in the highest copepodamide treatments (5 - 10 nM), which were two to three times higher than controls and indicates an active release or passive leakage of toxins. Untargeted analysis of endometabolomes indicated significant changes in metabolite profiles for both species in response to the highest copepodamide treatments, independent of known toxins. However, it is not clear whether these are stress responses or caused by more complex mechanisms. The relatively small grazer-induced effect in Dinophysis observed here, compared to several species of Alexandrium and Pseudo-nitzschia reported previously, suggests that DPT production in Dinophysis is likely not induced by copepods, except perhaps in patches with high copepod densities. Thus, DPTs may, represent either a constitutive chemical defence for Dinophysis, or serve an altogether different purpose.
Collapse
Affiliation(s)
- Milad Pourdanandeh
- Department of Marine Sciences, University of Gothenburg, Medicinaregatan 7b, SE41390, Gothenburg, Sweden.
| | | | | | | | | | | | | | - Erik Selander
- Functional ecology section - Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Zhang S, Lin W, Liang S, Sun G, Yao J, Duan D. Co-Culturing Seaweed with Scallops Can Inhibit the Occurrence of Vibrio by Increasing Dissolved Oxygen and pH. PLANTS (BASEL, SWITZERLAND) 2025; 14:334. [PMID: 39942895 PMCID: PMC11820688 DOI: 10.3390/plants14030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Seaweeds are critically important for the maintenance of biodiversity in marine aquaculture ecosystems, as they can inhibit the growth of Vibrio. Here, we determined the optimal environmental parameters for co-culturing green macroalgae (Ulva pertusa) and red macroalgae (Gracilariopsis lemaneiformis) with Chinese scallop (Chlamys farreri) by measuring dissolved oxygen (DO), pH, and the strength of Vibrio inhibition under laboratory conditions and validating the effectiveness of this optimal co-culture system from the perspectives of nutrient levels, enzyme activities, and microbial diversity. The results show that co-culturing 30 g of seaweed and three scallops in 6 L of seawater with aeration in the dark (1.25 L min-1, 12:12 h L:D) significantly decreased the number and abundance of Vibrio after 3 days. The activities of superoxide dismutase, catalase, pyruvate kinase, and lactate dehydrogenase in C. farreri were significantly higher, indicating that its immune defense and metabolism enhanced in this optimal co-culture system. High DO and pH levels significantly decreased the alpha diversity of microorganisms, and the abundance of pathogenic microorganisms decreased. The optimal co-culture system was effective for the control of vibriosis. Generally, our findings suggest that seaweeds could be used to enhance the aquaculture environment by conferring healthy and sustainable functions in the future.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lin
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Sijie Liang
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guangda Sun
- Changdao Dongxing Aquaculture Co., Ltd., Changdao 265800, China;
| | - Jianting Yao
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Delin Duan
- Shandong Province Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (S.Z.); (W.L.); (S.L.)
- Lab for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Morant J, Payo-Payo A, María-Valera A, Pérez-García JM. Potential feeding sites for seabirds and marine mammals reveal large overlap with offshore wind energy development worldwide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123808. [PMID: 39740445 DOI: 10.1016/j.jenvman.2024.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/28/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Offshore wind energy is experiencing accelerated growth worldwide to support global net zero ambitions. To ensure responsible development and to protect the natural environment, it is essential to understand and mitigate the potential impacts on wildlife, particularly on seabirds and marine mammals. However, fully understanding the effects of offshore wind energy production requires characterising its global geographic occurrence and its potential overlap with marine species. This study aims to generate risk maps of interaction between offshore and seabirds and marine mammals based on the distribution of their potential foraging areas. These maps will allow visualisation of the spatial occurrence of risk and its severity for both groups. To achieve it, we built a structural equation model of three levels (plankton, fish, and top predators) to predict small-ranged seabirds and marine mammal spatial richness as a proxy of potential feeding sites. Later, we overlapped these maps with global wind density (as a proxy of potential offshore development areas) to identify risk areas. Our results pointed to simplified trophic chain models that effectively explained the richness of small-ranged seabirds and marine mammals. Our risk maps reveal a high overlap with potential offshore wind development. Low-risk areas were located mainly in so-called Global North countries, suggesting vast knowledge gaps and potential hidden risks in these areas. Importantly, the highest risk values were found outside the Marine Protected Areas for both groups, underscoring the necessity for strategic planning and the expansion of renewable energy sources to avert potential conservation challenges in the future.
Collapse
Affiliation(s)
- Jon Morant
- Department of Applied Biology, Miguel Hernández University of Elche, Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Orihuela, Spain; Department of Ecology, University of Alicante, Cra. San Vicente del Raspeig, Alicante, E-03690, Spain.
| | - Ana Payo-Payo
- Departament de Biodiversity, Ecology y Evoluyion, Complutense Univerity of Madrid, Avda. de Séneca, 2. Ciudad Universitaria, 28040, Spain
| | | | - Juan Manuel Pérez-García
- Department of Applied Biology, Miguel Hernández University of Elche, Elche, Spain; Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Orihuela, Spain
| |
Collapse
|
10
|
Kim Y, Choe S, Cho Y, Moon H, Shin H, Seo J, Myung J. Biodegradation of poly(butylene adipate terephthalate) and poly(vinyl alcohol) within aquatic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176129. [PMID: 39255933 DOI: 10.1016/j.scitotenv.2024.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Understanding the environmental fate of biodegradable plastics in aquatic systems is crucial, given the alarming amount of plastic waste and microplastic particles transported through aquatic pathways. In particular, there is a need to analyze the biodegradation of commercialized biodegradable plastics upon release from wastewater treatment plants into natural aquatic systems. This study investigates the biodegradation behaviors of poly(butylene adipate terephthalate) (PBAT) and poly(vinyl alcohol) (PVA) in wastewater, freshwater, and seawater. Biodegradation of PBAT and PVA assessed through biochemical oxygen demand (BOD) experiments and microcosm tests revealed that the type of aquatic system governs the biodegradation behaviors of each plastic, with the highest biodegradation rate achieved in wastewater for both PBAT and PVA (25.6 and 32.2 % in 30 d, respectively). Plastic release pathway from wastewater into other aquatic systems simulated by sequential incubation in different microcosms suggested that PBAT exposed to wastewater and freshwater before reaching seawater was more prone to degradation than when directly exposed to seawater. On the other hand, PVA displayed comparable biodegradation rate regardless of whether it was directly exposed to seawater or had passed through other environments beforehand. Metagenome amplicon sequencing of 16S rRNA genes revealed distinct community shifts dependent on the type of plastics in changing environments along the simulated aquatic pathway. Several bacterial species putatively implicated in the biodegradation of PBAT and PVA are discussed. Our findings underscore the significant influence of pollution routes on the biodegradation of PBAT and PVA, highlighting the potential for wastewater treatment to facilitate rapid degradation compared to direct exposure to pristine aquatic environments.
Collapse
Affiliation(s)
- Youngju Kim
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Shinhyeong Choe
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Yongjun Cho
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hoseong Moon
- Graduate School of Green Growth and Sustainability, KAIST, Daejeon 34141, Republic of Korea
| | - Hojun Shin
- Department of Packaging and Logistics, Yonsei University, Wonju 26493, Republic of Korea
| | - Jongchul Seo
- Department of Packaging and Logistics, Yonsei University, Wonju 26493, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Green Growth and Sustainability, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
11
|
Zhong A, Wang D, Gong F, Zhu W, Fu D, Zheng Z, Huang J, He X, Bai Y. Remote sensing estimates of global sea surface nitrate: Methodology and validation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175362. [PMID: 39117199 DOI: 10.1016/j.scitotenv.2024.175362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Information about sea surface nitrate (SSN) concentrations is crucial for estimating oceanic new productivity and for carbon cycle studies. Due to the absence of optical properties in SSN and the intricate relationships with environmental factors affecting spatiotemporal dynamics, developing a more representative and widely applicable remote sensing inversion algorithm for SSN is challenging. Most methods for the remote estimation of SSN are based on data-driven neural networks or deep learning and lack mechanistic descriptions. Since fitting functions between the SSN and sea surface temperature (SST), mixed layer depth (MLD), and chlorophyll (Chl) content have been established for the open ocean, it is important to include the remote sensing indicator photosynthetically active radiation (PAR), which is critical in nitrate biogeochemical processes. In this study, we employed an algorithm for estimating the monthly average SSN on a global 1° by 1° resolution grid; this algorithm relies on the empirical relationship between the World Ocean Atlas 2018 (WOA18) monthly interpolated climatology of nitrate in each 1° × 1° grid and the estimated monthly SST and PAR datasets from Moderate Resolution Imaging Spectroradiometer (MODIS) and MLD from the Hybrid Coordinate Ocean Model (HYCOM). These results indicated that PAR potentially affects SSN. Furthermore, validation of the SSN model with measured nitrate data from different months and locations for the years 2018-2023 yielded a high prediction accuracy (N = 12,846, R2 = 0.93, root mean square difference (RMSE) = 3.12 μmol/L, and mean absolute error (MAE) = 2.22 μmol/L). Further independent validation and sensitivity tests demonstrated the validity of the algorithm for retrieving SSN.
Collapse
Affiliation(s)
- Aifen Zhong
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China
| | - Difeng Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Daya Bay Observation and Research Station of Marine Risks and Hazards, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Fang Gong
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Daya Bay Observation and Research Station of Marine Risks and Hazards, Ministry of Natural Resources, Hangzhou 310012, China
| | - Weidong Zhu
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Dongyang Fu
- College of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhuoqi Zheng
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China; Geography and Ocean Science College, Nanjing University, Nanjing 210023, China
| | - Jingjing Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China; Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xianqiang He
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yan Bai
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
12
|
Daakour S, Nelson DR, Fu W, Jaiswal A, Dohai B, Alzahmi AS, Koussa J, Huang X, Shen Y, Twizere JC, Salehi-Ashtiani K. Adaptive Evolution Signatures in Prochlorococcus: Open Reading Frame (ORF)eome Resources and Insights from Comparative Genomics. Microorganisms 2024; 12:1720. [PMID: 39203562 PMCID: PMC11357015 DOI: 10.3390/microorganisms12081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Prochlorococcus, a cyanobacteria genus of the smallest and most abundant oceanic phototrophs, encompasses ecotype strains adapted to high-light (HL) and low-light (LL) niches. To elucidate the adaptive evolution of this genus, we analyzed 40 Prochlorococcus marinus ORFeomes, including two cornerstone strains, MED4 and NATL1A. Employing deep learning with robust statistical methods, we detected new protein family distributions in the strains and identified key genes differentiating the HL and LL strains. The HL strains harbor genes (ABC-2 transporters) related to stress resistance, such as DNA repair and RNA processing, while the LL strains exhibit unique chlorophyll adaptations (ion transport proteins, HEAT repeats). Additionally, we report the finding of variable, depth-dependent endogenous viral elements in the 40 strains. To generate biological resources to experimentally study the HL and LL adaptations, we constructed the ORFeomes of two representative strains, MED4 and NATL1A synthetically, covering 99% of the annotated protein-coding sequences of the two species, totaling 3976 cloned, sequence-verified open reading frames (ORFs). These comparative genomic analyses, paired with MED4 and NATL1A ORFeomes, will facilitate future genotype-to-phenotype mappings and the systems biology exploration of Prochlorococcus ecology.
Collapse
Affiliation(s)
- Sarah Daakour
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - David R. Nelson
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Weiqi Fu
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Department of Marine Science, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Ashish Jaiswal
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Bushra Dohai
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Helmholtz Center Munich, Institute of Network Biology (INET), German Research Center for Environmental Health, 85764 Munich, Germany
| | - Amnah Salem Alzahmi
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular & Computational Biology, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Joseph Koussa
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Department of Biology, New York University, New York, NY 10012, USA
- Department of Chemical and Biological Sciences, Montgomery College, Germantown, MD 20850, USA
| | - Xiaoluo Huang
- Genome Synthesis and Editing Platform, China National GeneBank (CNGB), BGI-Research, Shenzhen 518120, China; (X.H.); (Y.S.)
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Beijing 100045, China
| | - Yue Shen
- Genome Synthesis and Editing Platform, China National GeneBank (CNGB), BGI-Research, Shenzhen 518120, China; (X.H.); (Y.S.)
| | - Jean-Claude Twizere
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular & Computational Biology, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Kourosh Salehi-Ashtiani
- Center for Genomics and Systems Biology (CGSB), New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (S.D.); (D.R.N.); (W.F.); (A.J.); (B.D.); (A.S.A.); (J.K.); (J.-C.T.)
- Division of Science and Math, New York University-Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
13
|
Du T, Wang S, Jing Z, Wu L, Zhang C, Zhang B. Future changes in coastal upwelling and biological production in eastern boundary upwelling systems. Nat Commun 2024; 15:6238. [PMID: 39043692 PMCID: PMC11266572 DOI: 10.1038/s41467-024-50570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Upwelling along oceanic eastern boundaries has attracted significant attention due to its profound effects on ocean productivity and associated biological and socioeconomic implications. However, uncertainty persists regarding the evolution of coastal upwelling with climate change, particularly its impact on future biological production. Here, using a series of state-of-the-art climate models, we identify a significant seasonal advancement and prolonged duration of upwelling in major upwelling systems. Nevertheless, the upwelling intensity (total volume of upwelled water) exhibits complex changes in the future. In the North Pacific, the upwelling is expected to attenuate, albeit with a minor magnitude. Conversely, in other basins, coastal upwelling diminishes significantly in equatorward regions but displays a slight decline or even an enhancement at higher latitudes. The climate simulations also reveal a robust connection between changes in upwelling intensity and net primary production, highlighting the crucial impact of future coastal upwelling alterations on marine ecosystems.
Collapse
Affiliation(s)
| | | | - Zhao Jing
- Laoshan Laboratory, Qingdao, China
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, China
| | - Lixin Wu
- Laoshan Laboratory, Qingdao, China
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, China
| | - Chao Zhang
- FDOMES and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
| |
Collapse
|
14
|
Das S, Deogharia R, Sil S. Classification of eco-zones from the factors and processes controlling phytoplankton biomass. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106528. [PMID: 38696934 DOI: 10.1016/j.marenvres.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Phytoplankton is of utmost importance to the marine ecosystem and, subsequently, to the Blue Economy. This study aims to explain the reasons for variability of phytoplankton by estimating the dependency of Chlorophyll-a (Chl-a) on various limiting factors using statistics. The global oceans are classified into coherent units that display similar sensitivity to changing parameters and processes using the k-means algorithm. The resulting six clusters are based on the limiting factors (PAR, iron, or nitrate) that modulate Chl-a yield divisions of the oceans, similar to regions of different trophic statuses. The clusters range from the polar and equatorial regions with high nutrient values limited by light, to open oceanic regions in downwelling gyres limited by nutrients. Some clusters also show a high dependency on marine dissolved iron. Further, oceans are also divided into eight clusters based on the processes (stratification, upwelling, topography, and solar insolation) that impact ocean productivity. The study shows that considering temporal variations is crucial for segregating oceans into ecological zones by utilizing correlation of time-series data into classification. Our results provide valuable insights into the regulation of phytoplankton abundance and its variability, which can help in understanding the implications of climate change and other anthropogenic effects on marine biology.
Collapse
Affiliation(s)
- Sudeep Das
- School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Rahul Deogharia
- School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Sourav Sil
- School of Earth, Ocean and Climate Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
| |
Collapse
|
15
|
Jankowska E, Montserrat F, Romaniello SJ, Walworth NG, Andrews MG. Metal bioaccumulation and effects of olivine sand exposure on benthic marine invertebrates. CHEMOSPHERE 2024; 358:142195. [PMID: 38692368 DOI: 10.1016/j.chemosphere.2024.142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Due to the anthropogenic increase of atmospheric CO2 emissions, humanity is facing the negative effects of rapid global climate change. Both active emission reduction and carbon dioxide removal (CDR) technologies are needed to meet the Paris Agreement and limit global warming to 1.5 °C by 2050. One promising CDR approach is coastal enhanced weathering (CEW), which involves the placement of sand composed of (ultra)mafic minerals like olivine in coastal zones. Although the large-scale placement of olivine sand could beneficially impact the planet through the consumption of atmospheric CO2 and reduction in ocean acidification, it may also have physical and geochemical impacts on benthic communities. The dissolution of olivine can release dissolved constituents such as trace metals that may affect marine organisms. Here we tested acute and chronic responses of marine invertebrates to olivine sand exposure, as well as examined metal accumulation in invertebrate tissue resulting from olivine dissolution. Two different ecotoxicological experiments were performed on a range of benthic marine invertebrates (amphipod, polychaete, bivalve). The first experiment included acute and chronic survival and growth tests (10 and 20 days, respectively) of olivine exposure while the second had longer (28 day) exposures to measure chronic survival and bioaccumulation of trace metals (e.g. Ni, Cr, Co) released during olivine sand dissolution. Across all fauna we observed no negative effects on acute survival or chronic growth resulting solely from olivine exposure. However, over 28 days of exposure, the bent-nosed clam Macoma nasuta experienced reduced burrowing and accumulated 4.2 ± 0.7 μg g ww-1 of Ni while the polychaete Alitta virens accumulated 3.5 ± 0.9 μg g ww-1 of Ni. No significant accumulation of any other metals was observed. Future work should include longer-term laboratory studies as well as CEW field studies to validate these findings under real-world scenarios.
Collapse
Affiliation(s)
| | | | | | - Nathan G Walworth
- Vesta, PBC, San Francisco, CA, USA; University of Southern California, Los Angeles, CA, USA; J. Craig Venter Institute, La Jolla, CA, USA
| | | |
Collapse
|
16
|
Yang GG, Wang Q, Feng J, He L, Li R, Lu W, Liao E, Lai Z. Can three-dimensional nitrate structure be reconstructed from surface information with artificial intelligence? - A proof-of-concept study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171365. [PMID: 38458452 DOI: 10.1016/j.scitotenv.2024.171365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Nitrate is one of the essential variables in the ocean that is a primary control of the upper ocean pelagic ecosystem. Its three-dimensional (3D) structure is vital for understanding the dynamic and ecosystem. Although several gridded nitrate products exist, the possibility of reconstructing the 3D structure of nitrate from surface data has never been exploited. In this study, we employed two advanced artificial intelligence (AI) networks, U-net and Earthformer, to reconstruct nitrate concentration in the Indian Ocean from surface data. Simulation from an ecosystem model was utilized as the labeling data to train and test the AI networks, with wind vectors, wind stress, sea surface temperature, sea surface chlorophyll-a, solar radiation, and precipitation as the input. We compared the performance of two networks and different pre-processing methods. With the input features decomposed into climatology and anomaly components, the Earthformer achieved optimal reconstruction results with a lower normalized mean square error (NRMSE = 0.1591), spatially and temporally, outperforming U-net (NRMSE = 0.2007) and the climatology prediction (NRMSE = 0.2089). Furthermore, Earthformer was more capable of identifying interannual nitrate anomalies. With a network interpretation technique, we quantified the spatio-temporal importance of every input feature in the best case (Earthformer with decomposed inputs). The influence of different input features on nitrate concentration in the adjacent Java Sea exhibited seasonal variation, stronger than the interannual one. The feature importance highlighted the role of dynamic factors, particularly the wind, matching our understanding of the dynamic controls of the ecosystem. Our reconstruction and network interpretation technique can be extended to other ecosystem variables, providing new possibilities in studies of marine environment and ecology from an AI perspective.
Collapse
Affiliation(s)
- Guangyu Gary Yang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Qishuo Wang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jiacheng Feng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Lechi He
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Rongzu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Wenfang Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Enhui Liao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhigang Lai
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
17
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
18
|
Crehan O, Davy SK, Grover R, Ferrier-Pagès C. Nutrient depletion and heat stress impair the assimilation of nitrogen compounds in a scleractinian coral. J Exp Biol 2024; 227:jeb246466. [PMID: 38563292 DOI: 10.1242/jeb.246466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Concentrations of dissolved nitrogen in seawater can affect the resilience of the cnidarian-dinoflagellate symbiosis to climate change-induced bleaching. However, it is not yet known how the assimilation and translocation of the various nitrogen forms change during heat stress, nor how the symbiosis responds to nutrient depletion, which may occur due to increasing water stratification. Here, the tropical scleractinian coral Stylophora pistillata, in symbiosis with dinoflagellates of the genus Symbiodinium, was grown at different temperatures (26°C, 30°C and 34°C), before being placed in nutrient-replete or -depleted seawater for 24 h. The corals were then incubated with 13C-labelled sodium bicarbonate and different 15N-labelled nitrogen forms (ammonium, urea and dissolved free amino acids) to determine their assimilation rates. We found that nutrient depletion inhibited the assimilation of all nitrogen sources studied and that heat stress reduced the assimilation of ammonium and dissolved free amino acids. However, the host assimilated over 3-fold more urea at 30°C relative to 26°C. Overall, both moderate heat stress (30°C) and nutrient depletion individually decreased the total nitrogen assimilated by the symbiont by 66%, and combined, they decreased assimilation by 79%. This led to the symbiotic algae becoming nitrogen starved, with the C:N ratio increasing by over 3-fold at 34°C, potentially exacerbating the impacts of coral bleaching.
Collapse
Affiliation(s)
- Oscar Crehan
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Renaud Grover
- Marine Department, Centre Scientifique de Monaco, MC 98000 Monaco, Principality of Monaco
| | | |
Collapse
|
19
|
Siriwardana H, Samarasekara RSM, Anthony D, Vithanage M. Measurements and analysis of nitrogen and phosphorus in oceans: Practice, frontiers, and insights. Heliyon 2024; 10:e28182. [PMID: 38560146 PMCID: PMC10979167 DOI: 10.1016/j.heliyon.2024.e28182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Nitrogen and phosphorus concentrations in oceans have been extensively studied, and advancements in associated disciplines have rapidly progressed, enabling the exploration of novel and previously challenging questions. A keyword analysis was conducted using the Scopus database to examine chronological trends and hotspots, offering comprehensive insights into the evolution of marine nitrogen and phosphorus research. For this purpose, author keyword networks were developed for the periods before 1990, 1990 to 2000, 2001 to 2011, and 2012 to 2022. Furthermore, analytical techniques employed in the recent decade to determine nitrogen and phosphorus concentrations in seawater were assessed for their applicability and limitations through a critical review of more than 50 journal articles. Taxonomy and nitrogen biogeochemistry were the prominent research interests for the first two periods, respectively, while stable isotopic tracking of nitrogen and phosphorus processes emerged as the dominant research focus for the last two decades. The integration of macroeconomic factors in research development and the chronological rise of interdisciplinary research were identified. Conventional analytical techniques such as spectrophotometry, colorimetry, fluorometry, and elemental analysis were noted, along with emerging techniques like remote sensing and microfluidic sensors.
Collapse
Affiliation(s)
- Hasitha Siriwardana
- Faculty of Engineering, University of Sri Jayewardenepura, 41, Lumbini Avenue, Ratmalana 10390, Sri Lanka
| | - R S M Samarasekara
- Faculty of Engineering, University of Sri Jayewardenepura, 41, Lumbini Avenue, Ratmalana 10390, Sri Lanka
| | - Damsara Anthony
- Faculty of Engineering, University of Sri Jayewardenepura, 41, Lumbini Avenue, Ratmalana 10390, Sri Lanka
- Department of Civil Engineering, Faculty of Engineering, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center (ERRC), Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| |
Collapse
|
20
|
James C, Layton C, Hurd CL, Britton D. The endemic kelp Lessonia corrugata is being pushed above its thermal limits in an ocean warming hotspot. JOURNAL OF PHYCOLOGY 2024; 60:503-516. [PMID: 38426571 DOI: 10.1111/jpy.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Kelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co-occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range-restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4-22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22-23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 μmol · d-1) and high (90 μmol · d-1) nitrate conditions at and above the thermal optimum (16-23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20-21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean-warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.
Collapse
Affiliation(s)
- Cody James
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Cayne Layton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Damon Britton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
21
|
Rashid A, Siddiqui NA, Ahmed N, Wahid A, Jamil M, Sankoh AA, Olutoki JO. Geochemical and mineralogical characteristics of shales from the early to middle Permian Dohol Formation in Peninsular Malaysia: Implications for organic matter enrichment, provenance, tectonic setting, palaeoweathering and paleoclimate. Heliyon 2024; 10:e27553. [PMID: 38524595 PMCID: PMC10958216 DOI: 10.1016/j.heliyon.2024.e27553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024] Open
Abstract
The early to middle Permian Dohol Formation is characterized by a significant presence of shale deposits. While these shales exhibit a low potential to generate hydrocarbons, there is a need to ascertain the possible reasons for the low hydrocarbon generation potential. Also, there are several unidentified properties and attributes associated with these shales in terms of their inorganic geochemical characteristics and their mineralogy. This study is focused on using XRF, ICPMS, and SEM with EDX to determine the mineralogical and geochemical characteristics of these shales and use these data to discuss their provenance history and tectonic setting and interpret the paleoclimatic and paleoweathering conditions. The inorganic geochemical analysis shows that the shales from the Dohol Formation are from a felsic igneous source. The shales were also identified to be from a passive margin based on the bivariate plot of SiO2 vs log (K2O/Na2O) and several multidimensional diagram plots. The CIA and CIW data, as well as the A-CN-K plot, all point to a significant degree of chemical weathering, ranging from mild to intense. The Sr/Cu ratio and C-value, combined with various other geochemical proxies, indicate that the shales were formed in warm-humid climatic conditions. The SEM analysis shows that the samples are mainly composed of kaolinite and illite, and this result was supported by the EDX elemental composition. The high terrigenous influx of sediments, the oxic to sub-oxic conditions in which the sediments were deposited, and finally low marine productivity were found to be the reasons for the low TOC in the shales from the Dohol Formation.
Collapse
Affiliation(s)
- Alidu Rashid
- Department of Geoscience, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Numair Ahmed Siddiqui
- Department of Geoscience, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Nisar Ahmed
- Department of Geoscience, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| | - Ali Wahid
- Institute of Geology, University of Azad Jammu and Kashmir, Muzaffarabad, AJK, Pakistan
| | - Muhammad Jamil
- Department of Earth Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Abdul Aziz Sankoh
- Department of Civil and Environmental Engineering, University of Energy and Natural Resources, P.O. Box 214, Sunyani, Ghana
- College of Engineering and Computing, George Mason University, 4400 University Dr, Fairfax, VA, 22030, USA
| | | |
Collapse
|
22
|
Mu J, Ding S, Liu SM, Song G, Ning X, Zhang X, Xu W, Zhang H. Multiple isotopes decipher the nitrogen cycle in the cascade reservoirs and downstream in the middle and lower Yellow River: Insight for reservoir drainage period. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170625. [PMID: 38320705 DOI: 10.1016/j.scitotenv.2024.170625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Intensive anthropogenic activities, such as excessive nitrogen input and dam construction, have altered the nitrogen cycle in the global river system. However, the focus on the source, transformation and fate of nitrogen in the Yellow River is still scarce. In this study, the multiple isotopes (δ15N-NO3-, δ18O-NO3-, δ15N-NH4+ and δ15N-PN) were deciphered to explore the nitrogen cycling processes and the driving factors in the thermally stratified cascade reservoirs (Sanmenxia Reservoir: SMXR and Xiaolangdi Reservoir: XLDR) and Lower Yellow River (LYR) during the drainage period of the XLDR. In the SMXR, algal bloom triggered the assimilation process in the upper layer before the SMX Dam, followed by remineralization and subsequent nitrification processes in the lower water layers. The nitrification reaction in the XLDR progressively increased along both longitudinal and vertical directions to the lower layer of the XLD Dam, which was linked to the variation in the water residence time of riverine, transition and lentic zones. The robust nitrification rates in the lower layer of the lentic zone coincided with the substantial depletion of nitrate isotopic composition and enrichment of both δ15N-PN and δ15N-NH4+, indicating the longer water residence time not only promoted the growth of the nitrifying population but also facilitated the remineralization to enhance NH4+ availability. In the LYR, the slight nitrate assimilation, as indicated by nitrate isotopic composition and fractionation models, was the predominant nitrogen transformation process. The Bayesian isotope mixing model results showed that manure and sewage was the dominant nitrate source (50 %) in the middle and lower Yellow River. Notably, the in-reservoir nitrification was a significant nitrate source (27 %) in the XLDR and LYR. Our study deepens the understanding of anthropogenic activities impacting the nitrogen cycle in the river-reservoir system, providing valuable insight into water quality management and nitrogen cycle mechanisms in the Yellow River.
Collapse
Affiliation(s)
- Jinglong Mu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuai Ding
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Su Mei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Guodong Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyan Ning
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaotong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenqi Xu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hongmei Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
23
|
Pei P, Aslam M, Wang H, Ye P, Li T, Liang H, Lin Q, Chen W, Du H. Diversity and ecological function of urease-producing bacteria in the cultivation environment of Gracilariopsis lemaneiformis. MICROBIAL ECOLOGY 2024; 87:35. [PMID: 38261068 PMCID: PMC10806000 DOI: 10.1007/s00248-023-02339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Urease-producing bacteria (UPB) provide inorganic nitrogen for primary producers by hydrolyzing urea, and play an important role in marine nitrogen cycle. However, there is still an incomplete understanding of UPB and their ecological functions in the cultivation environment of the red macroalgae Gracilariopsis lemaneiformis. This study comprehensively analyzed the diversity of culturable UPB and explored their effects on urea uptake by G. lemaneiformis. A total of 34 isolates belonging to four main bacterial phyla i.e. (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) were identified through 16S rRNA sequencing and were screened for UPB by urea agar chromogenic medium assay and ureC gene cloning. Our data revealed that only 8 strains contained urease. All of these UPB exhibited different urease activities, which were determined by the Berthelot reaction colorimetry assay. Additionally, the UPB strain (G13) isolated from G. lemaneiformis with higher urease activity was selected for co-culture with G. lemaneiformis to explore its role in promoting or inhibiting nitrogen uptake by macroalgae. The results showed a significant increase in urea consumption in the culture medium and the total cellular nitrogen in G. lemaneiformis in the UPB-co culture group compared to the sterile group. This suggests that the selected UPB strain positively influences nitrogen uptake by G. lemaneiformis. Similarly, isotopic assays revealed that the δ15N content of G. lemaneiformis was significantly higher in the UPB-co culture than in the control group, where δ15N-urea was the only nitrogen source in the culture medium. This indicates that the UPB helped G. lemaneiformis to absorb more nitrogen from urea. Moreover, the highest content of δ15N was found in G. lemaneiformis with epiphytic bacteria compared to sterilized (i.e. control), showing that epiphytic bacteria, along with UPB, have a compound effect in helping G. lemaneiformis absorb more nitrogen from urea. Taken together, these results provide unique insight into the ecological role of UPB and suggest that urease from macroalgae environment-associated bacteria might be an important player in marine nitrogen cycling.
Collapse
Affiliation(s)
- Pengbing Pei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
- Faculty of Marine Sciences, LUAWMS, Lasbela, 90150, Pakistan
| | - Hui Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Peilin Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou, 515063, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Qi Lin
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, 515063, China.
| |
Collapse
|
24
|
Arandia-Gorostidi N, Jaffe AL, Parada AE, Kapili BJ, Casciotti KL, Salcedo RSR, Baumas CMJ, Dekas AE. Urea assimilation and oxidation support activity of phylogenetically diverse microbial communities of the dark ocean. THE ISME JOURNAL 2024; 18:wrae230. [PMID: 39530358 PMCID: PMC11697164 DOI: 10.1093/ismejo/wrae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Urea is hypothesized to be an important source of nitrogen and chemical energy to microorganisms in the deep sea; however, direct evidence for urea use below the epipelagic ocean is lacking. Here, we explore urea utilization from 50 to 4000 meters depth in the northeastern Pacific Ocean using metagenomics, nitrification rates, and single-cell stable-isotope-uptake measurements with nanoscale secondary ion mass spectrometry. We find that on average 25% of deep-sea cells assimilated urea-derived N (60% of detectably active cells), and that cell-specific nitrogen-incorporation rates from urea were higher than that from ammonium. Both urea concentrations and assimilation rates relative to ammonium generally increased below the euphotic zone. We detected ammonia- and urea-based nitrification at all depths at one of two sites analyzed, demonstrating their potential to support chemoautotrophy in the mesopelagic and bathypelagic regions. Using newly generated metagenomes we find that the ureC gene, encoding the catalytic subunit of urease, is found within 39% of deep-sea cells in this region, including the Nitrososphaeria (syn., Thaumarchaeota; likely for nitrification) as well as members of thirteen other phyla such as Proteobacteria, Verrucomicrobia, Plantomycetota, Nitrospinota, and Chloroflexota (likely for assimilation). Analysis of public metagenomes estimated ureC within 10-46% of deep-sea cells around the world, with higher prevalence below the photic zone, suggesting urea is widely available to the deep-sea microbiome globally. Our results demonstrate that urea is a nitrogen source to abundant and diverse microorganisms in the dark ocean, as well as a significant contributor to deep-sea nitrification and therefore fuel for chemoautotrophy.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Alexander L Jaffe
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Alma E Parada
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Bennett J Kapili
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Karen L Casciotti
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
- Oceans Department, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Rebecca S R Salcedo
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Chloé M J Baumas
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| |
Collapse
|
25
|
Grypioti E, Richard H, Kryovrysanaki N, Jaubert M, Falciatore A, Verret F, Kalantidis K. Dicer-dependent heterochromatic small RNAs in the model diatom species Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:811-826. [PMID: 38044751 DOI: 10.1111/nph.19429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Diatoms are eukaryotic microalgae responsible for nearly half of the marine productivity. RNA interference (RNAi) is a mechanism of regulation of gene expression mediated by small RNAs (sRNAs) processed by the endoribonuclease Dicer (DCR). To date, the mechanism and physiological role of RNAi in diatoms are unknown. We mined diatom genomes and transcriptomes for key RNAi effectors and retraced their phylogenetic history. We generated DCR knockout lines in the model diatom species Phaeodactylum tricornutum and analyzed their mRNA and sRNA populations, repression-associated histone marks, and acclimatory response to nitrogen starvation. Diatoms presented a diversification of key RNAi effectors whose distribution across species suggests the presence of distinct RNAi pathways. P. tricornutum DCR was found to process 26-31-nt-long double-stranded sRNAs originating mostly from transposons covered by repression-associated epigenetic marks. In parallel, P. tricornutum DCR was necessary for the maintenance of the repression-associated histone marks H3K9me2/3 and H3K27me3. Finally, PtDCR-KO lines presented a compromised recovery post nitrogen starvation suggesting a role for P. tricornutum DCR in the acclimation to nutrient stress. Our study characterized the molecular function of the single DCR homolog of P. tricornutum suggesting an association between RNAi and heterochromatin maintenance in this model diatom species.
Collapse
Affiliation(s)
- Emilia Grypioti
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
| | - Hugues Richard
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, 13353, Berlin, Germany
| | - Nikoleta Kryovrysanaki
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| | - Marianne Jaubert
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Angela Falciatore
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR 7238 Sorbonne Université, 75005, Paris, France
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005, Paris, France
| | - Frédéric Verret
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Institute of Marine Biology and Aquaculture, Hellenic Center for Marine Research, 71500, Gournes, Crete, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, PO Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
| |
Collapse
|
26
|
Kang HC, Jeong HJ, Ok JH, Lim AS, Lee K, You JH, Park SA, Eom SH, Lee SY, Lee KH, Jang SH, Yoo YD, Lee MJ, Kim KY. Food web structure for high carbon retention in marine plankton communities. SCIENCE ADVANCES 2023; 9:eadk0842. [PMID: 38100582 PMCID: PMC10848704 DOI: 10.1126/sciadv.adk0842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Total annual net primary productions in marine and terrestrial ecosystems are similar. However, a large portion of the newly produced marine phytoplankton biomass is converted to carbon dioxide because of predation. Which food web structure retains high carbon biomass in the plankton community in the global ocean? In 6954 individual samples or locations containing phytoplankton, unicellular protozooplankton, and multicellular metazooplankton in the global ocean, phytoplankton-dominated bottom-heavy pyramids held higher carbon biomass than protozooplankton-dominated middle-heavy diamonds or metazooplankton-dominated top-heavy inverted pyramids. Bottom-heavy pyramids predominated, but the high predation impact by protozooplankton on phytoplankton or the vertical migration of metazooplankton temporarily changed bottom-heavy pyramids to middle-heavy diamonds or top-heavy inverted pyramids but returned to bottom-heavy pyramids shortly. This finding has profound implications for carbon retention by plankton communities in the global ocean.
Collapse
Affiliation(s)
- Hee Chang Kang
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hae Jin Jeong
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Hee Ok
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - An Suk Lim
- Division of Life Science, Gyeongsang National University, Jinju 52828, South Korea
| | - Kitack Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Ji Hyun You
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sang Ah Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Se Hee Eom
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Yeon Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyung Ha Lee
- Food and Nutrition Tech, CJ CheilJedang, Suwon 16495, South Korea
| | - Se Hyeon Jang
- Department of Oceanography, Chonnam National University, Gwangju 61186, South Korea
| | - Yeong Du Yoo
- Department of Oceanography, Kunsan National University, Kunsan 54150, South Korea
| | - Moo Joon Lee
- Department of Marine Biotechnology, Anyang University, Incheon 23038, South Korea
| | - Kwang Young Kim
- Department of Oceanography, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
27
|
Liang W, Wang Y, Mu J, Wu N, Wang J, Liu S. Nutrient changes in the Bohai Sea over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166696. [PMID: 37660818 DOI: 10.1016/j.scitotenv.2023.166696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
With the growing problem of eutrophication in the Bohai Sea, actions have been taken to reduce nutrient inputs, but it remains to be seen whether nutrient levels and structure have been ameliorated. In this study, the nutrient trends in the Bohai Sea are re-examined based on observations from 2000 to 2019. The results suggest that dissolved inorganic nitrogen (DIN) concentrations and DIN/DIP (dissolved inorganic phosphate) ratios gradually increased from 2000 to 2013 but dramatically decreased from 2013 to 2019. The increase and decrease rates of DIN concentrations decreased with increasing water depth, indicating that DIN concentrations in nearshore waters responded more rapidly to changes in human activities. However, DIP concentrations responded weakly to nutrient inputs, with their trends uncoupled. The DIN/DIP ratios have declined close to and in some seasons even below the canonical Redfield ratio in areas with water depths >20 m recently, implying that relative nutrient limitation in these areas may be shifting from relative phosphorus (P) limitation to absence of relative nutrient limitation or relative nitrogen (N) limitation. Atmospheric deposition, wastewater discharge, and riverine input were responsible for 66 %, 21 %, and 13 % of the variance in the decline of DIN concentration, respectively. Several environmental indicators responded positively to the decrease in DIN concentrations and DIN/DIP ratios, with varying degrees of recovery recently. Our study proves the phased success of various nutrient reduction measures taken by the Chinese government to improve the environment of the Bohai Sea over the past decade.
Collapse
Affiliation(s)
- Wen Liang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yan Wang
- National Marine Environmental Monitoring Center, Dalian, China
| | - Jinglong Mu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Nian Wu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Juying Wang
- National Marine Environmental Monitoring Center, Dalian, China.
| | - Sumei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
28
|
Jiang HB, Hutchins DA, Ma W, Zhang RF, Wells M, Jiao N, Wang Y, Chai F. Natural ocean iron fertilization and climate variability over geological periods. GLOBAL CHANGE BIOLOGY 2023; 29:6856-6866. [PMID: 37855153 DOI: 10.1111/gcb.16990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Marine primary producers are largely dependent on and shape the Earth's climate, although their relationship with climate varies over space and time. The growth of phytoplankton and associated marine primary productivity in most of the modern global ocean is limited by the supply of nutrients, including the micronutrient iron. The addition of iron via episodic and frequent events drives the biological carbon pump and promotes the sequestration of atmospheric carbon dioxide (CO2 ) into the ocean. However, the dependence between iron and marine primary producers adaptively changes over different geological periods due to the variation in global climate and environment. In this review, we examined the role and importance of iron in modulating marine primary production during some specific geological periods, that is, the Great Oxidation Event (GOE) during the Huronian glaciation, the Snowball Earth Event during the Cryogenian, the glacial-interglacial cycles during the Pleistocene, and the period from the last glacial maximum to the late Holocene. Only the change trend of iron bioavailability and climate in the glacial-interglacial cycles is consistent with the Iron Hypothesis. During the GOE and the Snowball Earth periods, although the bioavailability of iron in the ocean and the climate changed dramatically, the changing trend of many factors contradicted the Iron Hypothesis. By detangling the relationship among marine primary productivity, iron availability and oceanic environments in different geological periods, this review can offer some new insights for evaluating the impact of ocean iron fertilization on removing CO2 from the atmosphere and regulating the climate.
Collapse
Affiliation(s)
- Hai-Bo Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Wentao Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
| | - Rui-Feng Zhang
- School of Oceanography, Shanghai Jiaotong University, Shanghai, Shanghai, China
| | - Mark Wells
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
- School of Marine Sciences, University of Maine, Orono, Maine, USA
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
| | - Fei Chai
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, China
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
29
|
Chen S, Meng Y, Lin S, Yu Y, Xi J. Estimation of sea surface nitrate from space: Current status and future potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165690. [PMID: 37487888 DOI: 10.1016/j.scitotenv.2023.165690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sea surface nitrate (SSN) plays an important role in assessing phytoplankton growth and new production in the ocean. Field sampling of SSN data is important, but limited by data quantity both spatially and temporally. Satellite remote sensing can contribute through providing spatial and temporal data to such assessments. During the past 30 years many studies have been published focusing on SSN retrievals from satellites to a greater or less extent. In this study, we reviewed the progresses of SSN estimation from satellites in both open ocean and coastal waters. Because of the lack of electromagnetic properties of SSN, satellite retrievals of SSN were most realized by developing relationships between SSN and related environmental variables (e.g., sea surface temperature, chlorophyll-a concentration, sea surface salinity), using traditional empirical regressions and novel machine learning techniques. We synthesized most of the peer-reviewed studies for both open and coastal oceans, in terms of study areas, model inputs, regression formulas, and model uncertainties. In general, regional SSN algorithms were most developed in coastal oceans with upwelling or river discharges. The published SSN algorithms had varying uncertainties with a wide range of 0.83-6.87 μmol/L, and the uncertainties were significantly reduced in recent studies, with more field measurements available and better understanding of the physical and biogeochemical processes in driving nitrate dynamics.
Collapse
Affiliation(s)
- Shuangling Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Yu Meng
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Sheng Lin
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yi Yu
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Jingyuan Xi
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| |
Collapse
|
30
|
Xie J, Wu Q, Tao L, Wu F, Tu S, Chen D, Lin T, Li T. Essential and non-essential elements in tuna and billfish around the world: Distribution patterns and influencing factors. MARINE POLLUTION BULLETIN 2023; 196:115587. [PMID: 37797540 DOI: 10.1016/j.marpolbul.2023.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
Tuna and billfish are widely distributed in oceans worldwide. Their survival is relied on a decent share of essential and non-essential elements. We conducted a comprehensive evaluation of essential and non-essential elements in livers of tuna and billfish collected from global oceans. The individual element consistently shown similar orders of magnitude in both tuna and billfish, with essential elements generally being 1-3 orders of magnitude higher than non-essential elements. Various physicochemical properties and behaviors contributed to four distinct clusters of these elements. Also, element distribution pattern indicated the presence of four sample groups based on regions and categories. Nine elements served as characteristic indicators. Among them, fish category was the most important influencing factor. Hg, Fe, Tl, Co, and Se were influenced by body size, trophic level, and feeding habits. Ni was influenced by sampling regions, while Mg, Mn and As were influenced by body size and local primary production.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Feng Wu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Shuyi Tu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Duofu Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan 316021, China.
| |
Collapse
|
31
|
Carrión O, Zhu XY, Williams BT, Wang J, Zhang XH, Todd JD. Molecular discoveries in microbial DMSP synthesis. Adv Microb Physiol 2023; 83:59-116. [PMID: 37507162 DOI: 10.1016/bs.ampbs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.
Collapse
Affiliation(s)
- Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jinyan Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
32
|
Hania A, López-Adams R, PrášIl O, Eichner M. Protection of nitrogenase from photosynthetic O 2 evolution in Trichodesmium: methodological pitfalls and advances over 30 years of research. PHOTOSYNTHETICA 2023; 61:58-72. [PMID: 39650126 PMCID: PMC11515819 DOI: 10.32615/ps.2023.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 12/11/2024]
Abstract
The Trichodesmium genus comprises some of the most abundant N2-fixing organisms in oligotrophic marine ecosystems. Since nitrogenase, the key enzyme for N2 fixation, is irreversibly inhibited upon O2 exposure, these organisms have to coordinate their N2-fixing ability with simultaneous photosynthetic O2 production. Although being the principal object of many laboratory and field studies, the overall process of how Trichodesmium reconciles these two mutually exclusive processes remains unresolved. This is in part due to contradictory results that fuel the Trichodesmium enigma. In this review, we sift through methodological details that could potentially explain the discrepancy between findings related to Trichodesmium's physiology. In doing so, we exhaustively contrast studies concerning both spatial and temporal nitrogenase protective strategies, with particular attention to more recent insights. Finally, we suggest new experimental approaches for solving the complex orchestration of N2 fixation and photosynthesis in Trichodesmium.
Collapse
Affiliation(s)
- A. Hania
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - R. López-Adams
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
| | - O. PrášIl
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - M. Eichner
- Laboratory of Photosynthesis, Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Novohradská 237 – Opatovický Mlýn, 37901 Třeboň, Czech Republic
| |
Collapse
|
33
|
Zhao Q, Huang H, Costello MJ, Chu J. Climate change projections show shrinking deep-water ecosystems with implications for biodiversity and aquaculture in the Northwest Pacific. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160505. [PMID: 36470391 DOI: 10.1016/j.scitotenv.2022.160505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The increased availability of environmental data with depth deriving from remote-sensing-based datasets permits more comprehensive modelling of the distribution of marine ecosystems in space and time. This research tests the potential of such objective modelling of marine ecosystems in four dimensions, spatial and temporal, to provide projections of how climate change may affect biodiversity, including aquaculture. This approach could be replicated for any regional seas. The Bohai Sea, Yellow Sea, and East China Sea (BYECS) are marginal seas in the Northwest Pacific bounded by China, Korea, and Japan. Despite providing important ecological and economic services, their ecological conditions and ecosystems distribution have not yet been systematically mapped. This analysis used 13 marine environmental variables, measured on a three-dimensional and monthly basis during 1993-2019, to classify and map the BYECS region by k-means clustering using cosine similarity as distance function. There were 13 distinct areas identified that fit the definition of "ecosystems" that is, enduring regions demarcated by environmental characteristics. Of these 13 ecosystems, the Yellow Sea Cold Water (YSCW) Ecosystem is significant in relation to seasonal species composition and the newly developing deep-sea salmon caging aquaculture in the region. Projections of the potential size of this water mass under various climate-change scenarios based on analysis using the Non-Parametric Probabilistic Ecological Niche (NPPEN) model show that its volume may decrease 31 %-66 % in the future. Such a decrease would have impacts on the seasonal species' abundances in the BYECS marginal sea region and threaten the deep-sea cold-water salmon farming.
Collapse
Affiliation(s)
- Qianshuo Zhao
- College of Marine Life Science, Ocean University of China, Shandong, Qingdao 266003, China.
| | - Huimin Huang
- College of Marine Life Science, Ocean University of China, Shandong, Qingdao 266003, China
| | - Mark John Costello
- College of Marine Life Science, Ocean University of China, Shandong, Qingdao 266003, China; Faculty of Biosciences and Aquaculture, Nord University, Bobo 8049, Norway
| | - Jiansong Chu
- College of Marine Life Science, Ocean University of China, Shandong, Qingdao 266003, China
| |
Collapse
|
34
|
Kiefl E, Esen OC, Miller SE, Kroll KL, Willis AD, Rappé MS, Pan T, Eren AM. Structure-informed microbial population genetics elucidate selective pressures that shape protein evolution. SCIENCE ADVANCES 2023; 9:eabq4632. [PMID: 36812328 DOI: 10.1126/sciadv.abq4632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Comprehensive sampling of natural genetic diversity with metagenomics enables highly resolved insights into the interplay between ecology and evolution. However, resolving adaptive, neutral, or purifying processes of evolution from intrapopulation genomic variation remains a challenge, partly due to the sole reliance on gene sequences to interpret variants. Here, we describe an approach to analyze genetic variation in the context of predicted protein structures and apply it to a marine microbial population within the SAR11 subclade 1a.3.V, which dominates low-latitude surface oceans. Our analyses reveal a tight association between genetic variation and protein structure. In a central gene in nitrogen metabolism, we observe decreased occurrence of nonsynonymous variants from ligand-binding sites as a function of nitrate concentrations, revealing genetic targets of distinct evolutionary pressures maintained by nutrient availability. Our work yields insights into the governing principles of evolution and enables structure-aware investigations of microbial population genetics.
Collapse
Affiliation(s)
- Evan Kiefl
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Ozcan C Esen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Samuel E Miller
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Kourtney L Kroll
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Michael S Rappé
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI 96822, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| |
Collapse
|
35
|
Justel-Díez M, Delgadillo-Nuño E, Gutiérrez-Barral A, García-Otero P, Alonso-Barciela I, Pereira-Villanueva P, Álvarez-Salgado XA, Velando A, Teira E, Fernández E. Inputs of seabird guano alter microbial growth, community composition and the phytoplankton-bacterial interactions in a coastal system. Environ Microbiol 2023. [PMID: 36752021 DOI: 10.1111/1462-2920.16349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Seabird guano enters coastal waters providing bioavailable substrates for microbial plankton, but their role in marine ecosystem functioning remains poorly understood. Two concentrations of the water soluble fraction (WSF) of gull guano were added to different natural microbial communities collected in surface waters from the Ría de Vigo (NW Spain) in spring, summer, and winter. Samples were incubated with or without antibiotics (to block bacterial activity) to test whether gull guano stimulated phytoplankton and bacterial growth, caused changes in taxonomic composition, and altered phytoplankton-bacteria interactions. Alteromonadales, Sphingobacteriales, Verrucomicrobia and diatoms were generally stimulated by guano. Chlorophyll a (Chl a) concentration and bacterial abundance significantly increased after additions independently of the initial ambient nutrient concentrations. Our study demonstrates, for the first time, that the addition of guano altered the phytoplankton-bacteria interaction index from neutral (i.e. phytoplankton growth was not affected by bacterial activity) to positive (i.e. phytoplankton growth was stimulated by bacterial activity) in the low-nutrient environment occurring in spring. In contrast, when environmental nutrient concentrations were high, the interaction index changed from positive to neutral after guano additions, suggesting the presence of some secondary metabolite in the guano that is needed for phytoplankton growth, which would otherwise be supplied by bacteria.
Collapse
Affiliation(s)
- Maider Justel-Díez
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Erick Delgadillo-Nuño
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Alberto Gutiérrez-Barral
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Paula García-Otero
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Isaac Alonso-Barciela
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Pablo Pereira-Villanueva
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | | | - Alberto Velando
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Eva Teira
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| | - Emilio Fernández
- Centro de Investigación Marina, Departamento de Ecología e Biología Animal, Universidad de Vigo, Vigo, Spain
| |
Collapse
|
36
|
Parra L, Viciano-Tudela S, Carrasco D, Sendra S, Lloret J. Low-Cost Microcontroller-Based Multiparametric Probe for Coastal Area Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23041871. [PMID: 36850468 PMCID: PMC9961687 DOI: 10.3390/s23041871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
The monitoring of the coastal environment is a crucial factor in ensuring its proper management. Nevertheless, existing monitoring technologies are limited due to their cost, temporal resolution, and maintenance needs. Therefore, limited data are available for coastal environments. In this paper, we present a low-cost multiparametric probe that can be deployed in coastal areas and integrated into a wireless sensor network to send data to a database. The multiparametric probe is composed of physical sensors capable of measuring water temperature, salinity, and total suspended solids (TSS). The node can store the data in an SD card or send them. A real-time clock is used to tag the data and to ensure data gathering every hour, putting the node in deep sleep mode in the meantime. The physical sensors for salinity and TSS are created for this probe and calibrated. The calibration results indicate that no effect of temperature is found for both sensors and no interference of salinity in the measuring of TSS or vice versa. The obtained calibration model for salinity is characterised by a correlation coefficient of 0.9 and a Mean Absolute Error (MAE) of 0.74 g/L. Meanwhile, different calibration models for TSS were obtained based on using different light wavelengths. The best case was using a simple regression model with blue light. The model is characterised by a correlation coefficient of 0.99 and an MAE of 12 mg/L. When both infrared and blue light are used to prevent the effect of different particle sizes, the determination coefficient of 0.98 and an MAE of 57 mg/L characterised the multiple regression model.
Collapse
|
37
|
Ding X, Shi J, Guo X, Gao H, Liu S, Guo W. Interannual variations in the nutrient cycle in the central Bohai Sea in response to anthropogenic inputs. CHEMOSPHERE 2023; 313:137620. [PMID: 36563720 DOI: 10.1016/j.chemosphere.2022.137620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In recent decades, there has been growing concern regarding the effects of human activities on the coastal nutrient cycle. However, interannual variations in the coastal nutrient cycle in response to anthropogenic nutrient input have rarely been quantified. In this study, a hydrodynamic-ecological model capable of describing the nitrogen and phosphorus cycles was used to analyze interannual variations in the nutrient cycle in the central Bohai Sea, a typical semi-enclosed sea in the Northwest Pacific. The results showed an increasing trend of dissolved inorganic nitrogen and particulate nitrogen from 1998 to 2017, whereas different forms of phosphorus showed no obvious interannual variations. The annual nutrient budgets were also quantitatively estimated from 1998 to 2017. This indicates that atmospheric nitrogen deposition plays an important role in interannual variations in the nitrogen cycle. A large amount of nitrogen from anthropogenic inputs was mainly removed by sedimentation processes instead of increasing the standing stock of nitrogen in the sea. With the reduction of anthropogenic inputs, the model showed that a variety of forms of nitrogen concentration decreased linearly, whereas phosphorus concentration increased slightly. Therefore, although environmental governance can effectively alleviate water eutrophication, it is necessary to avoid the situation where the dissolved inorganic nitrogen concentration in the sea becomes too low for phytoplankton to grow, which may determine the primary productivity and eventually affect fishery resources.
Collapse
Affiliation(s)
- Xiaokun Ding
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, 238 Songling Road, Qingdao, 266100, China; School of Ocean, Yantai University, Yantai, 264005, China
| | - Jie Shi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, 238 Songling Road, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xinyu Guo
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-Cho, Matsuyama, 790-8577, Japan
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, 238 Songling Road, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Sumei Liu
- Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education of China, Ocean University of China, 238 Songling Road, Qingdao, 266100, China
| | - Wei Guo
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
38
|
Díez J, López-Lozano A, Domínguez-Martín MA, Gómez-Baena G, Muñoz-Marín MC, Melero-Rubio Y, García-Fernández JM. Regulatory and metabolic adaptations in the nitrogen assimilation of marine picocyanobacteria. FEMS Microbiol Rev 2023; 47:6794272. [PMID: 36323406 DOI: 10.1093/femsre/fuac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Prochlorococcus and Synechococcus are the two most abundant photosynthetic organisms on Earth, with a strong influence on the biogeochemical carbon and nitrogen cycles. Early reports demonstrated the streamlining of regulatory mechanisms in nitrogen metabolism and the removal of genes not strictly essential. The availability of a large series of genomes, and the utilization of latest generation molecular techniques have allowed elucidating the main mechanisms developed by marine picocyanobacteria to adapt to the environments where they thrive, with a particular interest in the strains inhabiting oligotrophic oceans. Given that nitrogen is often limited in those environments, a series of studies have explored the strategies utilized by Prochlorococcus and Synechococcus to exploit the low concentrations of nitrogen-containing molecules available in large areas of the oceans. These strategies include the reduction in the GC and the cellular protein contents; the utilization of truncated proteins; a reduced average amount of N in the proteome; the development of metabolic mechanisms to perceive and utilize nanomolar nitrate concentrations; and the reduced responsiveness of key molecular regulatory systems such as NtcA to 2-oxoglutarate. These findings are in sharp contrast with the large body of knowledge obtained in freshwater cyanobacteria. We will outline the main discoveries, stressing their relevance to the ecological success of these important microorganisms.
Collapse
Affiliation(s)
- J Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - A López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M A Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - M C Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - Y Melero-Rubio
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| | - J M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba,14001, Spain
| |
Collapse
|
39
|
Symbiosis research in the anthropocene: science as usual in unusual times? Symbiosis 2022. [DOI: 10.1007/s13199-022-00892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Sengupta A, Dhar J, Danza F, Ghoshal A, Müller S, Kakavand N. Active reconfiguration of cytoplasmic lipid droplets governs migration of nutrient-limited phytoplankton. SCIENCE ADVANCES 2022; 8:eabn6005. [PMID: 36332020 PMCID: PMC11633079 DOI: 10.1126/sciadv.abn6005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Nutrient availability, along with light and temperature, drives marine primary production. The ability to migrate vertically, a critical trait of motile phytoplankton, allows species to optimize nutrient uptake, storage, and growth. However, this traditional view discounts the possibility that migration in nutrient-limited waters may be actively modulated by the emergence of energy-storing organelles. Here, we report that bloom-forming raphidophytes harness energy-storing cytoplasmic lipid droplets (LDs) to biomechanically regulate vertical migration in nutrient-limited settings. LDs grow and translocate directionally within the cytoplasm, steering strain-specific shifts in the speed, trajectory, and stability of swimming cells. Nutrient reincorporation restores their swimming traits, mediated by an active reconfiguration of LD size and coordinates. A mathematical model of cell mechanics establishes the mechanistic coupling between intracellular changes and emergent migratory behavior. Amenable to the associated photophysiology, LD-governed behavioral shift highlights an exquisite microbial strategy toward niche expansion and resource optimization in nutrient-limited oceans.
Collapse
Affiliation(s)
- Anupam Sengupta
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Jayabrata Dhar
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Francesco Danza
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Arkajyoti Ghoshal
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| | - Sarah Müller
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
- Swiss Nanoscience lnstitute, University of Basel, 82, Klingelbergslrasse, 4056 Basel, Switzerland
| | - Narges Kakavand
- Physics of Living Matter, Department of Physics and Materials Science, University of Luxembourg, 162A, Avenue de la Faïencerie, 1511 Luxembourg City, Luxembourg
| |
Collapse
|
41
|
Zhou J, Hu M, Liu M, Yuan J, Ni M, Zhou Z, Chen D. Combining the multivariate statistics and dual stable isotopes methods for nitrogen source identification in coastal rivers of Hangzhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82903-82916. [PMID: 35759093 PMCID: PMC9244199 DOI: 10.1007/s11356-022-21116-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Coastal rivers contributed the majority of anthropogenic nitrogen (N) loads to coastal waters, often resulting in eutrophication and hypoxia zones. Accurate N source identification is critical for optimizing coastal river N pollution control strategies. Based on a 2-year seasonal record of dual stable isotopes ([Formula: see text] and [Formula: see text]) and water quality parameters, this study combined the dual stable isotope-based MixSIAR model and the absolute principal component score-multiple linear regression (APCS-MLR) model to elucidate N dynamics and sources in two coastal rivers of Hangzhou Bay. Water quality/trophic level indices indicated light-to-moderate eutrophication status for the studied rivers. Spatio-temporal variability of water quality was associated with seasonal agricultural, aquaculture, and domestic activities, as well as the seasonal precipitation pattern. The APCS-MLR model identified soil + domestic wastewater (69.5%) and aquaculture tailwater (22.2%) as the major nitrogen pollution sources. The dual stable isotope-based MixSIAR model identified soil N, aquaculture tailwater, domestic wastewater, and atmospheric deposition N contributions of 35.3 ±21.1%, 29.7 ±17.2%, 27.9 ±14.5%, and 7.2 ±11.4% to riverine [Formula: see text] in the Cao'e River (CER) and 34.4 ±21.3%, 29.5 ±17.2%, 27.4 ±14.7%, and 8.7 ±12.8% in the Jiantang River (JTR), respectively. The APCS-MLR model and the dual stable isotope-based MixSIAR model showed consistent results for riverine N source identification. Combining these two methods for riverine N source identifications effectively distinguished the mix-source components from the APCS-MLR method and alleviated the high cost of stable isotope analysis, thereby providing reliable N source apportionment results with low requirements for water quality sampling and isotope analysis costs. This study highlights the importance of soil N management and aquaculture tailwater treatment in coastal river N pollution control.
Collapse
Affiliation(s)
- Jia Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Minpeng Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Mei Liu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Meng Ni
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhiming Zhou
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Dingjiang Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
42
|
Nair S, Zhang Z, Li H, Zhao H, Shen H, Kao SJ, Jiao N, Zhang Y. Inherent tendency of Synechococcus and heterotrophic bacteria for mutualism on long-term coexistence despite environmental interference. SCIENCE ADVANCES 2022; 8:eabf4792. [PMID: 36179022 PMCID: PMC9524826 DOI: 10.1126/sciadv.abf4792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/17/2022] [Indexed: 06/12/2023]
Abstract
Mutualism between Synechococcus and heterotrophic bacteria has been found to support their prolonged survival in nutrient-depleted conditions. However, environmental interference on the fate of their mutualism is not understood. Here, we show that exogenous nutrients disrupt their established mutualism. Once the exogenous nutrients were exhausted, Synechococcus and heterotrophic bacteria gradually reestablished their metabolic mutualism during 450 days of culture, which revived unhealthy Synechococcus cells. Using metagenomics, metatranscriptomics, and the 15N tracer method, we reveal that the associated bacterial nitrogen fixation triggered the reestablishment of the mutualism and revival of Synechococcus health. During this process, bacterial community structure and functions underwent tremendous adjustments to achieve the driving effect, and a cogeneration of nitrogen, phosphorus, iron, and vitamin by the heterotrophic bacteria sustained Synechococcus's prolonged healthy growth. Our findings suggest that Synechococcus and heterotrophic bacteria may have an inherent tendency toward mutualism despite environmental interference. This may exhibit their coevolutionary adaptations in nutrient-deficient environments.
Collapse
Affiliation(s)
- Shailesh Nair
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zenghu Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanshuang Zhao
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570228, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Yongyu Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Goyetche T, Luquot L, Carrera J, Martínez-Pérez L, Folch A. Identification and quantification of chemical reactions in a coastal aquifer to assess submarine groundwater discharge composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155978. [PMID: 35588800 DOI: 10.1016/j.scitotenv.2022.155978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
In coastal aquifers, two opposite but complementary processes occur: Seawater intrusion (SWI), which may salinize heavily exploited aquifers, and Submarine groundwater discharge (SGD) which transports oligo-elements to the sea. Aquifers are expected to be chemically reactive, both because they provide abundant surfaces to catalyze reactions and the mixing of very different Fresh Water (FW) and Sea Water (SW) promote numerous reactions. Characterizing and quantifying these reactions is essential to assess the quality and composition of both aquifer water, and SGD. Indeed, sampling SGD is difficult, so its composition is usually uncertain. We propose a reactive end-member mixing analysis (rEMMA) methodology based on principal component analysis (PCA) to (i) identify the sources of water and possible reactions occurring in the aquifer and (ii) quantify mixing ratios and the extent of chemical reactions. We applied rEMMA to the Argentona coastal aquifer located North of Barcelona that contains fluvial sediments of granitic origin and overlies weathered granite. The identification of end members (FW and SW) and the spatial distribution of their mixing ratios illustrate the application procedure. The extent of reactions and their spatial distribution allow us to distinguish reactions that occur as a result of mixing from those caused by sediment disequilibrium, which are relevant to recirculated saltwater SGD. The most important reaction is cation exchange, especially between Ca and Na, which promotes other reactions such as Gypsum and Fluorite precipitation. Iron and Manganese are mobilized in the SW portion but oxidized and precipitated in the mixing zone, so that Fe (up to 15 μEq/L) and Mn (up to 10 μEq/L) discharge is restricted to SW SGD. Nitrate is reduced in the mixing zone. The actual reaction amounts are site-specific, but the processes are not, which leads us to conjecture the importance of these reactions to understand the SGD discharge elsewhere.
Collapse
Affiliation(s)
- Tybaud Goyetche
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Spain; Associated Unit: Hydrogeology group (UPC-CSIC), Spain; Department of Civil and Environment Engineering, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain.
| | - Linda Luquot
- Géoscience Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Jesus Carrera
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Spain; Associated Unit: Hydrogeology group (UPC-CSIC), Spain
| | - Laura Martínez-Pérez
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona 18, 08034 Barcelona, Spain; Associated Unit: Hydrogeology group (UPC-CSIC), Spain; Department of Civil and Environment Engineering, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain
| | - Albert Folch
- Associated Unit: Hydrogeology group (UPC-CSIC), Spain; Department of Civil and Environment Engineering, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034 Barcelona, Spain
| |
Collapse
|
44
|
Flanjak L, Vrana I, Cvitešić Kušan A, Godrijan J, Novak T, Penezić A, Gašparović B. Effects of high temperature and nitrogen availability on the growth and composition of the marine diatom Chaetoceros pseudocurvisetus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4250-4265. [PMID: 35383849 DOI: 10.1093/jxb/erac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
The assimilation of inorganic nutrients by phytoplankton strongly depends on environmental conditions such as the availability of nitrogen and temperature, especially warming. The acclimation or adaptation of different species to such changes remains poorly understood. Here, we used a multimethod approach to study the viability and physiological and biochemical responses of the marine diatom Chaetoceros pseudocurvisetus to different temperatures (15, 25, and 30 °C) and different N:P ratios. Nitrogen limitation had a greater effect than high temperature on cell growth and reproduction, leading to a marked elongation of setae, decreased phosphorus assimilation, increased lipid accumulation, and decreased protein synthesis. The elongation of setae observed under these conditions may serve to increase the surface area available for the uptake of inorganic and/or organic nitrogen. In contrast, high temperatures (30 °C) had a stronger effect than nitrogen deficiency on cell death, nitrogen assimilation, chlorophyll a accumulation, the cessation of setae formation, and cell lipid remodelling. Significant changes in thylakoid lipids were observed in cells maintained at 30 °C, with increased levels of digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol. These changes may be explained by the role of galactolipids in thylakoid membrane stabilization during heat stress.
Collapse
Affiliation(s)
- Lana Flanjak
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Ivna Vrana
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Cvitešić Kušan
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Jelena Godrijan
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tihana Novak
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Abra Penezić
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Blaženka Gašparović
- Laboratory for Marine and Atmospheric Biogeochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
45
|
Ferrieux M, Dufour L, Doré H, Ratin M, Guéneuguès A, Chasselin L, Marie D, Rigaut-Jalabert F, Le Gall F, Sciandra T, Monier G, Hoebeke M, Corre E, Xia X, Liu H, Scanlan DJ, Partensky F, Garczarek L. Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From Different Thermal Niches in Iron-Depleted Areas. Front Microbiol 2022; 13:893413. [PMID: 35615522 PMCID: PMC9124967 DOI: 10.3389/fmicb.2022.893413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Marine Synechococcus cyanobacteria are ubiquitous in the ocean, a feature likely related to their extensive genetic diversity. Amongst the major lineages, clades I and IV preferentially thrive in temperate and cold, nutrient-rich waters, whilst clades II and III prefer warm, nitrogen or phosphorus-depleted waters. The existence of such cold (I/IV) and warm (II/III) thermotypes is corroborated by physiological characterization of representative strains. A fifth clade, CRD1, was recently shown to dominate the Synechococcus community in iron-depleted areas of the world ocean and to encompass three distinct ecologically significant taxonomic units (ESTUs CRD1A-C) occupying different thermal niches, suggesting that distinct thermotypes could also occur within this clade. Here, using comparative thermophysiology of strains representative of these three CRD1 ESTUs we show that the CRD1A strain MITS9220 is a warm thermotype, the CRD1B strain BIOS-U3-1 a cold temperate thermotype, and the CRD1C strain BIOS-E4-1 a warm temperate stenotherm. Curiously, the CRD1B thermotype lacks traits and/or genomic features typical of cold thermotypes. In contrast, we found specific physiological traits of the CRD1 strains compared to their clade I, II, III, and IV counterparts, including a lower growth rate and photosystem II maximal quantum yield at most temperatures and a higher turnover rate of the D1 protein. Together, our data suggests that the CRD1 clade prioritizes adaptation to low-iron conditions over temperature adaptation, even though the occurrence of several CRD1 thermotypes likely explains why the CRD1 clade as a whole occupies most iron-limited waters.
Collapse
Affiliation(s)
- Mathilde Ferrieux
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Louison Dufour
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Hugo Doré
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Morgane Ratin
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Audrey Guéneuguès
- Sorbonne Université, CNRS, UMR 7621 Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls/mer, Banyuls, France
| | - Léo Chasselin
- Sorbonne Université, CNRS, UMR 7621 Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls/mer, Banyuls, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Fabienne Rigaut-Jalabert
- Sorbonne Université, CNRS, Fédération de Recherche FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Florence Le Gall
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Théo Sciandra
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Garance Monier
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Mark Hoebeke
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Erwan Corre
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - David J. Scanlan
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Frédéric Partensky
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Laurence Garczarek
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
- CNRS Research Federation (FR2022) Tara Océans GO-SEE, Paris, France
| |
Collapse
|
46
|
Spatial and Seasonal Variations of the Island Mass Effect at the Sub-Antarctic Prince Edward Islands Archipelago. REMOTE SENSING 2022. [DOI: 10.3390/rs14092140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
At the sub-Antarctic Prince Edward Islands (PEIs) in the Southern Ocean, the Island Mass Effect (IME) plays an important role in maintaining an ecosystem able to support diverse biological communities; however, limited in situ sampling has severely constrained our understanding of it. As such, our study used satellite chlorophyll a (chla) to provide the first detailed characterisation of the spatial extent and seasonal variability of the IME at the PEIs. Seasonal surface chla variations were remarkable, with localised increases observed from mid-austral spring to the end of autumn (October to May). In contrast, during June to September, there were no distinguishable differences between chla at the PEIs and that further afield. Seasonal chla changes were significantly correlated with higher light levels, warmer waters, and shallow upper mixed layer depths reflecting enhanced water column stability during summer and autumn, with the opposite pattern in winter and spring. The IME extended northeast of the islands and remained spatially distinct from elevated chla around the northern branch of the sub-Antarctic Front and the southern branch of the Antarctic Polar Front. From December to February, the IME was spatially connected to the island shelf. In contrast, during March–May and in October, higher chla was observed only to the northeast, some distance away from the islands, suggesting a delayed IME, which has not previously been observed at the PEIs. The clear association of this higher chla with the weak mean geostrophic circulation northeast of the islands suggested retention and accumulation of nutrients and phytoplankton biomass, which was likely aided by wind-driven northeastward transport of water from the shelf. Climatological mean chla to the northeast was generally higher than that on the PEI shelf, and further research is required to determine the importance of this region to ecosystem functioning at the islands.
Collapse
|
47
|
Comparative Genomics Reveals Genetic Diversity and Metabolic Potentials of the Genus Qipengyuania and Suggests Fifteen Novel Species. Microbiol Spectr 2022; 10:e0126421. [PMID: 35446150 PMCID: PMC9241875 DOI: 10.1128/spectrum.01264-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Members of the genus Qipengyuania are heterotrophic bacteria frequently isolated from marine environments with great application potential in areas such as carotenoid production. However, the genomic diversity, metabolic function, and adaption of this genus remain largely unclear. Here, 16 isolates related to the genus Qipengyuania were recovered from coastal samples and their genomes were sequenced. The phylogenetic inference of these isolates and reference type strains of this genus indicated that the 16S rRNA gene was insufficient to distinguish them at the species level; instead, the phylogenomic reconstruction could provide the reliable phylogenetic relationships and confirm 15 new well-supported branches, representing 15 putative novel genospecies corroborated by the digital DNA-DNA hybridization and average nucleotide identity analyses. Comparative genomics revealed that the genus Qipengyuania had an open pangenome and possessed multiple conserved genes and pathways related to metabolic functions and environmental adaptation, despite the presence of divergent genomic features and specific metabolic potential. Genetic analysis and pigment detection showed that the members of this genus were identified as carotenoid producers, while some proved to be potentially aerobic anoxygenic photoheterotrophs. Collectively, the first insight into the genetic diversity and metabolic potentials of the genus Qipengyuania will contribute to better understanding of the speciation and adaptive evolution in natural environments. IMPORTANCE The deciphering of the phylogenetic diversity and metabolic features of the abundant bacterial taxa is critical for exploring their ecological importance and application potential. Qipengyuania is a genus of frequently isolated heterotrophic microorganisms with great industrial application potential. Numerous strains related to the genus Qipengyuania have been isolated from diverse environments, but their genomic diversity and metabolic functions remain unclear. Our study revealed a high degree of genetic diversity, metabolic versatility, and environmental adaptation of the genus Qipengyuania using comparative genomics. Fifteen novel species of this genus have been established using a polyphasic taxonomic approach, expanding the number of described species to almost double. This study provided an overall view of the genus Qipengyuania at the genomic level and will enable us to better uncover its ecological roles and evolutionary history.
Collapse
|
48
|
Hubot N, Giering SLC, Lucas CH. Similarities between the biochemical composition of jellyfish body and mucus. JOURNAL OF PLANKTON RESEARCH 2022; 44:337-344. [PMID: 35356360 PMCID: PMC8962712 DOI: 10.1093/plankt/fbab091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 05/31/2023]
Abstract
Recognition of the importance of jellyfish in marine ecosystems is growing. Yet, the biochemical composition of the mucus that jellyfish constantly excrete is poorly characterized. Here we analyzed the macromolecular (proteins, lipids and carbohydrates) and elemental (carbon and nitrogen) composition of the body and mucus of five scyphozoan jellyfish species (Aurelia aurita, Chrysaora fulgida, Chrysaora pacifica, Eupilema inexpectata and Rhizostoma pulmo). We found that the relative contribution of the different macromolecules and elements in the jellyfish body and mucus was similar across all species, with protein being the major component in all samples (81 ± 4% of macromolecules; 3.6 ± 3.1% of dry weight, DW) followed by lipids (13 ± 4% of macromolecules; 0.5 ± 0.4%DW) and carbohydrates (6 ± 3% of macromolecules; 0.3 ± 0.4%DW). The energy content of the jellyfish matter ranged from 0.2 to 3.1 KJ g-1 DW. Carbon and nitrogen content was 3.7 ± 3.0 and 1.0 ± 0.8%DW, respectively. The average ratios of protein:lipid:carbohydrate and carbon:nitrogen for all samples were 14.6:2.3:1 and 3.8:1, respectively. Our study highlights the biochemical similarity between the jellyfish body and mucus and provides convenient and valuable ratios to support the integration of jellyfish into trophic and biogeochemical models.
Collapse
Affiliation(s)
| | - Sarah L C Giering
- National Oceanography Centre, Waterfront Campus, Southampton SO14 3ZH, UK
| | - Cathy H Lucas
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Waterfront Campus, Southampton SO14 3ZH, UK
| |
Collapse
|
49
|
Fernández-Juárez V, Jaén-Luchoro D, Brito-Echeverría J, Agawin NSR, Bennasar-Figueras A, Echeveste P. Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean Epiphyte Cobetia Sp. to Varying Nutrient Concentration. MICROBIAL ECOLOGY 2022; 83:296-313. [PMID: 33954842 DOI: 10.1007/s00248-021-01766-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Bacteria are essential in the maintenance and sustainment of marine environments (e.g., benthic systems), playing a key role in marine food webs and nutrient cycling. These microorganisms can live associated as epiphytic or endophytic populations with superior organisms with valuable ecological functions, e.g., seagrasses. Here, we isolated, identified, sequenced, and exposed two strains of the same species (i.e., identified as Cobetia sp.) from two different marine environments to different nutrient regimes using batch cultures: (1) Cobetia sp. UIB 001 from the endemic Mediterranean seagrass Posidonia oceanica and (2) Cobetia sp. 4B UA from the endemic Humboldt Current System (HCS) seagrass Heterozostera chilensis. From our physiological studies, both strains behaved as bacteria capable to cope with different nutrient and pH regimes, i.e., N, P, and Fe combined with different pH levels, both in long-term (12 days (d)) and short-term studies (4 d/96 h (h)). We showed that the isolated strains were sensitive to the N source (inorganic and organic) at low and high concentrations and low pH levels. Low availability of phosphorus (P) and Fe had a negative independent effect on growth, especially in the long-term studies. The strain UIB 001 showed a better adaptation to low nutrient concentrations, being a potential N2-fixer, reaching higher growth rates (μ) than the HCS strain. P-acquisition mechanisms were deeply investigated at the enzymatic (i.e., alkaline phosphatase activity, APA) and structural level (e.g., alkaline phosphatase D, PhoD). Finally, these results were complemented with the study of biochemical markers, i.e., reactive oxygen species (ROS). In short, we present how ecological niches (i.e., MS and HCS) might determine, select, and modify the genomic and phenotypic features of the same bacterial species (i.e., Cobetia spp.) found in different marine environments, pointing to a direct correlation between adaptability and oligotrophy of seawater.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma, Spain.
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Jocelyn Brito-Echeverría
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Nona S R Agawin
- Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma, Spain
| | | | - Pedro Echeveste
- Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
- Instituto Milenio de Oceanografía, Concepción, Chile
| |
Collapse
|
50
|
Park SJ, Ahn JW, Choi JI. Improved tolerance of recombinant Chlamydomonas rainhardtii with putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase from Pyropia yezoensis to nitrogen starvation. J Microbiol 2021; 60:63-69. [PMID: 34964943 DOI: 10.1007/s12275-022-1491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
In a previous study, a putative 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) was highly expressed in a mutant strain of Pyropia yezoensis, which exhibited an improved growth rate compared to its wild strain. To investigate the functional role of the putative ACMSD (Pyacmsd) of P. yezoensis, the putative Pyacmsd was cloned and expressed in Chlamydomonas reinhardtii. Recombinant C. reinhardtii cells with Pyacmsd (Cr_Pyacmsd) exhibited enhanced tolerance compared to control C. reinhardtii cells (Cr_control) under nitrogen starvation. Notably, Cr_Pyacmsd cells showed accumulation of lipids in nitrogen-enriched conditions. These results demonstrate the role of Pyacmsd in the generation of acetyl-coenzyme A. Thus, it can be used to enhance the production of biofuel using microalgae such as C. reinhardtii and increase the tolerance of other biological systems to nitrogen-deficient conditions.
Collapse
Affiliation(s)
- Seo-Jeong Park
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joon Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|