1
|
Peng JC, He Z, Zhang ZQ. Standing genetic variation and introgression shape the cryptic radiation of Aquilegia in the mountains of Southwest China. Commun Biol 2025; 8:684. [PMID: 40307563 PMCID: PMC12043930 DOI: 10.1038/s42003-025-08120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Cryptic diversity in evolutionary radiation offers an excellent system for investigating the intricacies of evolutionary progress. Understanding the evolution of cryptic diversity is imperative for unraveling the hidden complexities of biodiversity. However, empirical evidence elucidating the mechanisms behind cryptic radiation remains limited, particularly in plants. Here, we focus on a monophyletic group of Aquilegia species mainly distributed in the mountains of Southwest China, one of the world's biodiversity hotspots. Using whole-genome resequencing of 158 individuals from 23 natural populations, we identify three to four paraphyletic lineages within each morphological species. Our findings reveal that 39 out of 43 detected instances of introgression occurred post-lineage formation. Identifying shared genomic regions indicates that the divergence of fixed singletons in lineages from morphological species A. kansuensis and A. rockii predates lineage formation, supporting a scenario where incomplete lineage sorting of standing variation contributes to morphological parallelism. Furthermore, strong positive correlations among genomic differentiation, divergence, and introgression suggest that standing variations and introgression from non-sister lineages contribute to the rapid genetic divergence. Our study illuminates the important roles of standing variations and introgression in plant cryptic radiation, advancing our understanding of the complex mechanisms behind the evolution of biodiversity in recent radiation events.
Collapse
Affiliation(s)
- Jun-Chu Peng
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Qiang Zhang
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
2
|
Calado R, Leal MC, Silva RXG, Borba M, Ferro A, Almeida M, Madeira D, Vieira H. Living Coral Displays, Research Laboratories, and Biobanks as Important Reservoirs of Chemodiversity with Potential for Biodiscovery. Mar Drugs 2025; 23:89. [PMID: 39997213 PMCID: PMC11857471 DOI: 10.3390/md23020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Over the last decades, bioprospecting of tropical corals has revealed numerous bioactive compounds with potential for biotechnological applications. However, this search involves sampling in natural reefs, and this is currently hampered by multiple ethical and technological constraints. Living coral displays, research laboratories, and biobanks currently offer an opportunity to continue to unravel coral chemodiversity, acting as "Noah's Arks" that may continue to support the bioprospecting of molecules of interest. This issue is even more relevant if one considers that tropical coral reefs currently face unprecedent threats and irreversible losses that may impair the biodiscovery of molecules with potential for new products, processes, and services. Living coral displays provide controlled environments for studying corals and producing both known and new metabolites under varied conditions, and they are not prone to common bottlenecks associated with bioprospecting in natural coral reefs, such as loss of the source and replicability. Research laboratories may focus on a particular coral species or bioactive compound using corals that were cultured ex situ, although they may differ from wild conspecifics in metabolite production both in quantitative and qualitative terms. Biobanks collect and preserve coral specimens, tissues, cells, and/or information (e.g., genes, associated microorganisms), which offers a plethora of data to support the study of bioactive compounds' mode of action without having to cope with issues related to access, standardization, and regulatory compliance. Bioprospecting in these settings faces several challenges and opportunities. On one hand, it is difficult to ensure the complexity of highly biodiverse ecosystems that shape the production and chemodiversity of corals. On the other hand, it is possible to maximize biomass production and fine tune the synthesis of metabolites of interest under highly controlled environments. Collaborative efforts are needed to overcome barriers and foster opportunities to fully harness the chemodiversity of tropical corals before in-depth knowledge of this pool of metabolites is irreversibly lost due to tropical coral reefs' degradation.
Collapse
Affiliation(s)
- Ricardo Calado
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.C.L.); (R.X.G.S.); (M.B.); (A.F.); (D.M.)
| | - Miguel C. Leal
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.C.L.); (R.X.G.S.); (M.B.); (A.F.); (D.M.)
| | - Ruben X. G. Silva
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.C.L.); (R.X.G.S.); (M.B.); (A.F.); (D.M.)
| | - Mara Borba
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.C.L.); (R.X.G.S.); (M.B.); (A.F.); (D.M.)
| | - António Ferro
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.C.L.); (R.X.G.S.); (M.B.); (A.F.); (D.M.)
| | - Mariana Almeida
- CESAM, Departamento de Ambiente e Ordenamento, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.A.); (H.V.)
| | - Diana Madeira
- ECOMARE, CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.C.L.); (R.X.G.S.); (M.B.); (A.F.); (D.M.)
| | - Helena Vieira
- CESAM, Departamento de Ambiente e Ordenamento, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (M.A.); (H.V.)
| |
Collapse
|
3
|
Terraneo TI, Benzoni F, Arrigoni R, Berumen ML, Mariappan KG, Antony CP, Harrison HB, Payri C, Huang D, Baird AH. A genomic approach to Porites (Anthozoa: Scleractinia) megadiversity from the Indo-Pacific. Mol Phylogenet Evol 2025; 203:108238. [PMID: 39551223 DOI: 10.1016/j.ympev.2024.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/15/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Porites corals are vital components of tropical reef ecosystems worldwide, serving as ecosystem engineers and hubs of biodiversity in shallow water coral reefs. Despite their ecological significance and the widespread use of Porites spp. as models for research, the richness and evolutionary relationships of species within the genus remain elusive. In this study, we analyzed genomic data from 330 colonies of Porites from 17 localities across the Indo-Pacific region based on the reduced representation genomic approach ezRAD. We retrieved 25,163 SNPs and provided a phylogenomic hypothesis for 29 nominal species and 10 unknown morphologies, recovering 15 deeply rooted molecular clades. Among these, 12 clades included samples corresponding to single distinct morphospecies. One did not match any nominal species. The remaining two clades comprised species complexes, which included various massive and encrusting morphologies commonly used in experimental biology. Within these complexes, we observed additional geographic or morphological structure, indicating complex evolutionary dynamics, possibly reflecting distinct species, isolated populations or hybridization. Additionally, a series of divergent samples underscored the importance of more sampling to define species boundaries and refine phylogenomic relationships. We also integrated our findings with previous phylogenetic datasets and their respective sampling localities, challenging traditional notions about Porites species geographic distributions. Overall, our findings indicate a need to revise past synonymies and to formally establish new species. A precise understanding of Porites species and their diversity and distributions is necessary for effective reef conservation and management.
Collapse
Affiliation(s)
- Tullia I Terraneo
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa 16126, Italy
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kiruthiga G Mariappan
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chakkiath P Antony
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hugo B Harrison
- School of Biological Sciences, University of Bristol, Bristol BS81TQ, United Kingdom
| | - Claude Payri
- UMR ENTROPIE (IRD, UR, CNRS), Institut de Recherche pour le Développement, Nouméa, New-Caledonia, France
| | - Danwei Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
4
|
Li R, Leiva C, Lemer S, Kirkendale L, Li J. Photosymbiosis shaped animal genome architecture and gene evolution as revealed in giant clams. Commun Biol 2025; 8:7. [PMID: 39755777 DOI: 10.1038/s42003-024-07423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome. Giant clams thrive in oligotrophic waters by forming a remarkable association with photosymbiotic dinoflagellate algae. Genome-based demographic inferences uncover a tight correlation between T. maxima global population change and major paleoclimate and habitat shifts, revealing how abiotic and biotic factors may dictate T. maxima microevolution. Comparative analyses reveal genomic features that may be symbiosis-driven, including expansion and contraction of immunity-related gene families and a large proportion of lineage-specific genes. Strikingly, about 70% of the genome is composed of repetitive elements, especially transposable elements, most likely resulting from a symbiosis-adapted immune system. This work greatly enhances our understanding of genomic drivers of symbiosis that underlie metazoan evolution and diversification.
Collapse
Affiliation(s)
- Ruiqi Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
- Museum of Natural History, University of Colorado Boulder, Boulder, CO, USA.
| | | | - Sarah Lemer
- University of Guam Marine Laboratory, Guam, USA
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Lisa Kirkendale
- Collections and Research, Western Australian Museum, Perth, WA, Australia
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
5
|
Mellor NJ, Webster TH, Byrne H, Williams AS, Edwards T, DeNardo DF, Wilson MA, Kusumi K, Dolby GA. Divergence in Regulatory Regions and Gene Duplications May Underlie Chronobiological Adaptation in Desert Tortoises. Mol Ecol 2025; 34:e17600. [PMID: 39624910 PMCID: PMC11774117 DOI: 10.1111/mec.17600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Many cellular processes and organismal behaviours are time-dependent, and asynchrony of these phenomena can facilitate speciation through reinforcement mechanisms. The Mojave and Sonoran desert tortoises (Gopherus agassizii and G. morafkai respectively) reside in adjoining deserts with distinct seasonal rainfall patterns and they exhibit asynchronous winter brumation and reproductive behaviours. We used whole genome sequencing of 21 individuals from the two tortoise species and an outgroup to understand genes potentially underlying these characteristics. Genes within the most diverged 1% of the genome (FST ≥ 0.63) with putatively functional variation showed extensive divergence in regulatory elements, particularly promoter regions. Such genes related to UV nucleotide excision repair, mitonuclear and homeostasis functions. Genes mediating chronobiological (cell cycle, circadian and circannual) processes were also among the most highly diverged regions (e.g., XPA and ZFHX3). Putative promoter variants had significant enrichment of genes related to regulatory machinery (ARC-Mediator complex), suggesting that transcriptional cascades driven by regulatory divergence may underlie the behavioural differences between these species, leading to asynchrony-based prezygotic isolation. Further investigation revealed extensive expansion of respiratory and intestinal mucins (MUC5B and MUC5AC) within Gopherus, particularly G. morafkai. This expansion could be a xeric-adaptation to water retention and/or contribute to differential Mycoplasma agassizii infection rates between the two species, as mucins help clear inhaled dust and bacterial. Overall, results highlight the diverse array of genetic changes underlying divergence, adaptation and reinforcement during speciation.
Collapse
Affiliation(s)
- N. Jade Mellor
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City, Utah
| | - Avery S. Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Taylor Edwards
- Arizona Molecular Clinical Core, University of Arizona, Tucson, Arizona 85721
| | - Dale F. DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Melissa A. Wilson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Greer A. Dolby
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
6
|
Wu T, Xu AN, Lei Y, Song H. Ancient Hybridisation Fuelled Diversification in Acropora Corals. Mol Ecol 2024:e17615. [PMID: 39670962 DOI: 10.1111/mec.17615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Introgression is the infiltration or flow of genes from one species to another through hybridisation followed by backcrossing. This may lead to incorrect phylogenetic reconstruction or divergence-time estimation. Acropora is a dominant genus of reef-building corals; however, whether this group has an introgression history before their diversification remains unclear, and previous divergence-time estimates of Acropora have not considered the impact of introgression. In this study, we broke through the limitation of a few genes and a few species and proved the existence of ancient introgression in the evolution of Acropora from whole-genome protein-coding sequences. We inferred 21.9% of all triplet loci (homologous loci from three different species) with a history of introgression and a series of introgression events with a genetic material contribution of up to 30.9% before diversification. Furthermore, 7756 nuclear loci were clustered into three groups using a multidimensional scaling algorithm, the heterogeneity of which resulted in different phylogenetic relationships. The diversification time of Acropora was estimated to be middle to late Miocene when we retained only the gene group with the lowest degree of introgression. The collision of Australia with the Pacific arcs and the Southeast Asian margin in the early Miocene, and a series of cooling events in the middle to late Miocene, may provide geographical and climatic conditions for the diversification of Acropora, respectively. Therefore, our results indicate that at the genome-wide level, ancient introgressive hybridisation may have promoted the radiation evolution of Acropora. Based on our results, the influence of introgression should be taken into account when reconstructing phylogenetic relationships and evaluating divergence time.
Collapse
Affiliation(s)
- Tianzhen Wu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Alan Ningyuan Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yanli Lei
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Haijun Song
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan, China
| |
Collapse
|
7
|
Lamb AM, Peplow LM, Dungan AM, Ferguson SN, Harrison PL, Humphrey CA, McCutchan GA, Nitschke MR, van Oppen MJH. Interspecific hybridisation provides a low-risk option for increasing genetic diversity of reef-building corals. Biol Open 2024; 13:bio060482. [PMID: 39207257 PMCID: PMC11381923 DOI: 10.1242/bio.060482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interspecific hybridisation increases genetic diversity and has played a significant role in the evolution of corals in the genus Acropora. In vitro fertilisation can be used to increase the frequency of hybridisation among corals, potentially enhancing their ability to adapt to climate change. Here, we assessed the field performance of hybrids derived from the highly cross-fertile coral species Acropora sarmentosa and Acropora florida from the Great Barrier Reef. Following outplanting to an inshore reef environment, the 10-month survivorship of the hybrid offspring groups was intermediate between that of the purebred groups, although not all pairwise comparisons were statistically significant. The A. florida purebreds, which had the lowest survivorship, were significantly larger at 10 months post-deployment compared to the other three groups. The four offspring groups harboured the same intracellular photosymbiont communities (Symbiodiniaceae), indicating that observed performance differences were due to the coral host and not photosymbiont communities. The limited differences in the performance of the groups and the lack of outbreeding depression of the F1 hybrids in the field suggest that interspecific hybridisation may be a useful method to boost the genetic diversity, and as such increase the adaptive capacity, of coral stock for restoration of degraded and potentially genetically eroded populations.
Collapse
Affiliation(s)
- Annika M Lamb
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
- School of Biosciences, The University of Melbourne, Grattan Street, Parkville VIC 3010
- AIMS@JCU - James Cook University, Townsville, QLD 4811, Australia
| | - Lesa M Peplow
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Ashley M Dungan
- School of Biosciences, The University of Melbourne, Grattan Street, Parkville VIC 3010
| | - Sophie N Ferguson
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Peter L Harrison
- Marine Ecology Research Centre - Southern Cross University, Lismore, NSW 2480
| | - Craig A Humphrey
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Guy A McCutchan
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, 1526 Cape Cleveland Road, Cape Cleveland 4810, Queensland, Australia
- School of Biosciences, The University of Melbourne, Grattan Street, Parkville VIC 3010
| |
Collapse
|
8
|
Furukawa M, Kitanobo S, Ohki S, Teramoto MM, Hanahara N, Morita M. Integrative taxonomic analyses reveal that rapid genetic divergence drives Acropora speciation. Mol Phylogenet Evol 2024; 195:108063. [PMID: 38493988 DOI: 10.1016/j.ympev.2024.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Reef-building corals provide the structural basis for one of Earth's most spectacular and diverse but increasingly threatened ecosystems. The reef-building coral genus Acropora may have undergone substantial speciation during the Pleistocene climate and sea-level changes. Here, we aimed to evaluate the speciation history of four morphologically similar tabular Acropora species (Acropora aff. hyacinthus, A. cf. bifurcata, A. cf. cytherea, and A. cf. subulata) using an integrative approach with morphology, genetic, and reproduction methodology. Extensive morphological analyses showed that these four species are distinct and exhibited high gamete incompatibility, preventing hybridization. Furthermore, population structure and principal component analyses with SNPs (>60,000) indicated that these species were genetically distinct, and the ABBA-BABA test did not support introgression among these species. Many of their coding and noncoding RNA sequences showed high genetic variance at loci with high Fst values along the genome. Comparison of these orthologs with those of other Acropora species suggested that many of these genes are under positive selection, which could be associated with spawning time, gamete, and morphological divergence. Our findings show that the speciation of tabular Acropora occurred without hybridization, and the divergence accompanying the rapid evolution of genes in species-rich Acropora could be associated with speciation.
Collapse
Affiliation(s)
- Mao Furukawa
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Seiya Kitanobo
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Mariko M Teramoto
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Nozomi Hanahara
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan; Okinawa Churashima Foundation Research Center, 888 Ishikawa, Motobu, Okinawa 905-0206, Japan
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan.
| |
Collapse
|
9
|
Addamo AM, Modrell MS, Taviani M, Machordom A. Unravelling the relationships among Madrepora Linnaeus, 1758, Oculina Lamark, 1816 and Cladocora Ehrenberg, 1834 (Cnidaria: Anthozoa: Scleractinia). INVERTEBR SYST 2024; 38:IS23027. [PMID: 38744497 DOI: 10.1071/is23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024]
Abstract
Despite the widespread use of integrative taxonomic approaches, many scleractinian coral genera and species remain grouped in polyphyletic families, classified as incertae sedis or simply understudied. Oculinidae Gray, 1847 represents a family for which many taxonomic questions remain unresolved, particularly those related to some of the current genera, such as Oculina Lamark, 1816 or recently removed genera, including Cladocora Ehrenberg, 1834 and Madrepora Linnaeus, 1758. Cladocora is currently assigned to the family Cladocoridae Milne Edwards & Haime, 1857 and a new family, Bathyporidae Kitahara, Capel, Zilberberg & Cairns, 2024, was recently raised to accommodate Madrepora . However, the name Bathyporidae is not valid because this was not formed on the basis of a type genus name. To resolve taxonomic questions related to these three genera, the evolutionary relationships are explored through phylogenetic analyses of 18 molecular markers. The results of these analyses support a close relationship between the species Oculina patagonica and Cladocora caespitosa , indicating that these may belong to the same family (and possibly genus), and highlighting the need for detailed revisions of Oculina and Cladocora . By contrast, a distant relationship is found between these two species and Madrepora oculata , with the overall evidence supporting the placement of Madrepora in the resurrected family Madreporidae Ehrenberg, 1834. This study advances our knowledge of coral systematics and highlights the need for a comprehensive review of the genera Oculina , Cladocora and Madrepora .
Collapse
Affiliation(s)
- Anna M Addamo
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain; and European Commission, Joint Research Centre (JRC), I-21027 Ispra, Italy; and Climate Change Research Centre (CCRC), University of Insubria, I-21100 Varese, Italy; and Present address: Faculty of Biosciences and Aquaculture, Nord University, NO-8049 Bodø, Norway
| | - Melinda S Modrell
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain
| | - Marco Taviani
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR-CNR), I-40129 Bologna, Italy; and Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), E-28006 Madrid, Spain
| |
Collapse
|
10
|
Meziere Z, Popovic I, Prata K, Ryan I, Pandolfi J, Riginos C. Exploring coral speciation: Multiple sympatric Stylophora pistillata taxa along a divergence continuum on the Great Barrier Reef. Evol Appl 2024; 17:e13644. [PMID: 38283599 PMCID: PMC10818133 DOI: 10.1111/eva.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Understanding how biodiversity originates and is maintained are fundamental challenge in evolutionary biology. Speciation is a continuous process and progression along this continuum depends on the interplay between evolutionary forces driving divergence and forces promoting genetic homogenisation. Coral reefs are broadly connected yet highly heterogeneous ecosystems, and divergence with gene flow at small spatial scales might therefore be common. Genomic studies are increasingly revealing the existence of closely related and sympatric taxa within taxonomic coral species, but the extent to which these taxa might still be exchanging genes and sharing environmental niches is unclear. In this study, we sampled extensively across diverse habitats at multiple reefs of the Great Barrier Reef (GBR) and comprehensively examined genome-wide diversity and divergence histories within and among taxa of the Stylophora pistillata species complex. S. pistillata is one of the most abundant and well-studied coral species, yet we discovered five distinct taxa, with wide geographic ranges and extensive sympatry. Demographic modelling showed that speciation events have occurred with gene flow and that taxa are at different stages along a divergence continuum. We found significant correlations between genetic divergence and specific environmental variables, suggesting that niche partitioning may have played a role in speciation and that S. pistillata taxa might be differentially adapted to different environments. Conservation actions rely on estimates of species richness, population sizes and species ranges, which are biased if divergent taxa are lumped together. As coral reefs are rapidly degrading due to climate change, our study highlights the importance of recognising evolutionarily distinct and differentially adapted coral taxa to improve conservation and restoration efforts aiming at protecting coral genetic diversity.
Collapse
Affiliation(s)
- Zoe Meziere
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Katharine Prata
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Isobel Ryan
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - John Pandolfi
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
11
|
Glasenapp MR, Pogson GH. Extensive introgression among strongylocentrotid sea urchins revealed by phylogenomics. Ecol Evol 2023; 13:e10446. [PMID: 37636863 PMCID: PMC10451471 DOI: 10.1002/ece3.10446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Gametic isolation is thought to play an important role in the evolution of reproductive isolation in broadcast-spawning marine invertebrates. However, it is unclear whether gametic isolation commonly evolves early in the speciation process or only accumulates after other reproductive barriers are already in place. It is also unknown whether gametic isolation is an effective barrier to introgression following speciation. Here, we used whole-genome sequencing data and multiple complementary phylogenomic approaches to test whether the well-documented gametic incompatibilities among the strongylocentrotid sea urchins have limited introgression. We quantified phylogenetic discordance, inferred reticulate phylogenetic networks, and applied the Δ statistic using gene tree topologies reconstructed from multiple sequence alignments of protein-coding single-copy orthologs. In addition, we conducted ABBA-BABA tests on genome-wide single nucleotide variants and reconstructed a phylogeny of mitochondrial genomes. Our results revealed strong mito-nuclear discordance and considerable nonrandom gene tree discordance that cannot be explained by incomplete lineage sorting alone. Eight of the nine species examined demonstrated a history of introgression with at least one other species or ancestral lineage, indicating that introgression was common during the diversification of the strongylocentrotid urchins. There was strong support for introgression between four extant species pairs (Strongylocentrotus pallidus ⇔ S. droebachiensis, S. intermedius ⇔ S. pallidus, S. purpuratus ⇔ S. fragilis, and Mesocentrotus franciscanus ⇔ Pseudocentrotus depressus) and additional evidence for introgression on internal branches of the phylogeny. Our results suggest that the existing gametic incompatibilities among the strongylocentrotid urchin species have not been a complete barrier to hybridization and introgression following speciation. Their continued divergence in the face of widespread introgression indicates that other reproductive isolating barriers likely exist and may have been more critical in establishing reproductive isolation early in speciation.
Collapse
Affiliation(s)
- Matthew R. Glasenapp
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| | - Grant H. Pogson
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
12
|
Randolph Quek ZB, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol Phylogenet Evol 2023:107867. [PMID: 37348770 DOI: 10.1016/j.ympev.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (<38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.
Collapse
Affiliation(s)
- Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Yale-NUS College, National University of Singapore, Singapore 138527, Singapore.
| | - Sudhanshi S Jain
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia; Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms, Genoa Marine Centre, Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, 16126 Genoa, Italy
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bert W Hoeksema
- Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jose I Carvajal
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Marcelo V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States of America
| | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Claudia F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
13
|
Ji J, Jackson DJ, Leaché AD, Yang Z. Power of Bayesian and Heuristic Tests to Detect Cross-Species Introgression with Reference to Gene Flow in the Tamias quadrivittatus Group of North American Chipmunks. Syst Biol 2023; 72:446-465. [PMID: 36504374 PMCID: PMC10275556 DOI: 10.1093/sysbio/syac077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 10/25/2023] Open
Abstract
In the past two decades, genomic data have been widely used to detect historical gene flow between species in a variety of plants and animals. The Tamias quadrivittatus group of North America chipmunks, which originated through a series of rapid speciation events, are known to undergo massive amounts of mitochondrial introgression. Yet in a recent analysis of targeted nuclear loci from the group, no evidence for cross-species introgression was detected, indicating widespread cytonuclear discordance. The study used the heuristic method HYDE to detect gene flow, which may suffer from low power. Here we use the Bayesian method implemented in the program BPP to re-analyze these data. We develop a Bayesian test of introgression, calculating the Bayes factor via the Savage-Dickey density ratio using the Markov chain Monte Carlo (MCMC) sample under the model of introgression. We take a stepwise approach to constructing an introgression model by adding introgression events onto a well-supported binary species tree. The analysis detected robust evidence for multiple ancient introgression events affecting the nuclear genome, with introgression probabilities reaching 63%. We estimate population parameters and highlight the fact that species divergence times may be seriously underestimated if ancient cross-species gene flow is ignored in the analysis. We examine the assumptions and performance of HYDE and demonstrate that it lacks power if gene flow occurs between sister lineages or if the mode of gene flow does not match the assumed hybrid-speciation model with symmetrical population sizes. Our analyses highlight the power of likelihood-based inference of cross-species gene flow using genomic sequence data. [Bayesian test; BPP; chipmunks; introgression; MSci; multispecies coalescent; Savage-Dickey density ratio.].
Collapse
Affiliation(s)
- Jiayi Ji
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Donavan J Jackson
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | - Adam D Leaché
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
14
|
Whelan NV, Strong EE, Gladstone NS, Mays JW. Using genomics, morphometrics, and environmental niche modeling to test the validity of a narrow-range endemic snail, Pateranantahala (Gastropoda, Polygyridae). Zookeys 2023; 1158:91-120. [PMID: 37234252 PMCID: PMC10208601 DOI: 10.3897/zookeys.1158.94152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/13/2023] [Indexed: 05/27/2023] Open
Abstract
Terrestrial gastropods are among the most imperiled groups of organisms on Earth. Many species have a complex taxonomic history, often including poorly defined subspecies, most of which have not been the focus of modern systematics research. Genomic tools, geometric morphometrics, and environmental niche modeling were used to assess the taxonomic status of Pateraclarkiinantahala (Clench & Banks, 1932), a subspecies of high conservation concern with a restricted range of approximately 3.3 km2 in North Carolina, USA. A genome-scale dataset was generated that included individuals with morphologies matching P.c.nantahala, P.c.clarkii, and one individual with an intermediate form between P.c.nantahala and P.c.clarkii that was initially hypothesized as a potential hybrid. Mitochondrial phylogenetics, nuclear species tree inference, and phylogenetic networks were used to assess relationships and gene flow. Differences in shell shape via geometric morphometrics and whether the environmental niches of the two subspecies were significantly different were also examined. Molecular analyses indicated an absence of gene flow among lineages of P.clarkii sensu lato. Analyses rejected our hypothesis that the intermediate shelled form represented a hybrid, but instead indicated that it was a distinct lineage. Environmental niche models indicated significant differences in environmental niche between P.c.clarkii and P.c.nantahala, and geometric morphometrics indicated that P.c.nantahala had a significantly different shell shape. Given multiple lines of evidence, species-level recognition of P.nantahala is warranted.
Collapse
Affiliation(s)
- Nathan V. Whelan
- Southeast Conservation Genetics Lab, Warm Springs Fish Technology Center, US Fish and Wildlife Service, 203 Swingle Hall, Auburn, Alabama, 36849, USAAuburn UniversityAuburnUnited States of America
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, 203 Swingle Hall, Auburn, Alabama, 36849, USAWarm Springs Fish Technology Center, US Fish and Wildlife ServiceAuburnUnited States of America
| | - Ellen E. Strong
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 163, Washington, DC 20013, USANational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Nicholas S. Gladstone
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, 203 Swingle Hall, Auburn, Alabama, 36849, USAWarm Springs Fish Technology Center, US Fish and Wildlife ServiceAuburnUnited States of America
| | - Jason W. Mays
- Asheville Ecological Services Field Office, United States Fish and Wildlife Service, 160 Zillicoa ST, Asheville, NC 28801, USAAsheville Ecological Services Field Office, United States Fish and Wildlife ServiceAshevilleUnited States of America
| |
Collapse
|
15
|
Matias AMA, Popovic I, Thia JA, Cooke IR, Torda G, Lukoschek V, Bay LK, Kim SW, Riginos C. Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef. Evol Appl 2023; 16:293-310. [PMID: 36793689 PMCID: PMC9923489 DOI: 10.1111/eva.13435] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022] Open
Abstract
Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.
Collapse
Affiliation(s)
- Ambrocio Melvin A. Matias
- Institute of BiologyUniversity of the Philippines DilimanQuezon CityPhilippines
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Joshua A. Thia
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkevilleVictoriaAustralia
| | - Ira R. Cooke
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Vimoksalehi Lukoschek
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Gold Coast University HospitalQLD HealthSouthportQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Sun W. Kim
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
16
|
Coelho MAG, Pearson GA, Boavida JRH, Paulo D, Aurelle D, Arnaud‐Haond S, Gómez‐Gras D, Bensoussan N, López‐Sendino P, Cerrano C, Kipson S, Bakran‐Petricioli T, Ferretti E, Linares C, Garrabou J, Serrão EA, Ledoux J. Not out of the Mediterranean: Atlantic populations of the gorgonian Paramuricea clavata are a separate sister species under further lineage diversification. Ecol Evol 2023; 13:e9740. [PMID: 36789139 PMCID: PMC9912747 DOI: 10.1002/ece3.9740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023] Open
Abstract
The accurate delimitation of species boundaries in nonbilaterian marine taxa is notoriously difficult, with consequences for many studies in ecology and evolution. Anthozoans are a diverse group of key structural organisms worldwide, but the lack of reliable morphological characters and informative genetic markers hampers our ability to understand species diversification. We investigated population differentiation and species limits in Atlantic (Iberian Peninsula) and Mediterranean lineages of the octocoral genus Paramuricea previously identified as P. clavata. We used a diverse set of molecular markers (microsatellites, RNA-seq derived single-copy orthologues [SCO] and mt-mutS [mitochondrial barcode]) at 49 locations. Clear segregation of Atlantic and Mediterranean lineages was found with all markers. Species-tree estimations based on SCO strongly supported these two clades as distinct, recently diverged sister species with incomplete lineage sorting, P. cf. grayi and P. clavata, respectively. Furthermore, a second putative (or ongoing) speciation event was detected in the Atlantic between two P. cf. grayi color morphotypes (yellow and purple) using SCO and supported by microsatellites. While segregating P. cf. grayi lineages showed considerable geographic structure, dominating circalittoral communities in southern (yellow) and western (purple) Portugal, their occurrence in sympatry at some localities suggests a degree of reproductive isolation. Overall, our results show that previous molecular and morphological studies have underestimated species diversity in Paramuricea occurring in the Iberian Peninsula, which has important implications for conservation planning. Finally, our findings validate the usefulness of phylotranscriptomics for resolving evolutionary relationships in octocorals.
Collapse
Affiliation(s)
- Márcio A. G. Coelho
- Centre for Marine Sciences (CCMAR)University of AlgarveFaroPortugal
- MARE – Marine and Environmental Sciences CentreISPA‐Instituto UniversitárioLisboaPortugal
| | | | | | - Diogo Paulo
- Centre for Marine Sciences (CCMAR)University of AlgarveFaroPortugal
| | - Didier Aurelle
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIOMarseilleFrance
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRSSorbonne UniversitéParisFrance
| | - Sophie Arnaud‐Haond
- MARBEC (Marine Biodiversity, Exploitation and Conservation)Univ. Montpellier, IFREMER, CNRS, IRDSète CedexFrance
| | - Daniel Gómez‐Gras
- Hawai‘i Institute of Marine BiologyUniversity of Hawai‘i at MānoaKaneoheHawaiiUSA
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Nathaniel Bensoussan
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIOMarseilleFrance
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Paula López‐Sendino
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Carlo Cerrano
- Dipartimento di Scienze della Vita e dell’Ambiente (DiSVA)Università Politecnica delle MarcheAnconaItaly
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa)RomeItaly
- Stazione Zoologica Anton DohrnNaplesItaly
- Fano Marine CenterFanoItaly
| | - Silvija Kipson
- Department of Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia
- SEAFAN – Marine Research & ConsultancyZagrebCroatia
| | | | - Eliana Ferretti
- Studio Associato GAIA s.n.c.GenoaItaly
- Institute of Marine ScienceThe University of AucklandAucklandNew Zealand
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Joaquim Garrabou
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIOMarseilleFrance
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Ester A. Serrão
- Centre for Marine Sciences (CCMAR)University of AlgarveFaroPortugal
- CIBIO/InBIO‐Centro de Investigação em Biodiversidade e Recursos GenéticosVairãoPortugal
| | - Jean‐Baptiste Ledoux
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
| |
Collapse
|
17
|
Alvarado-Cerón V, Muñiz-Castillo AI, León-Pech MG, Prada C, Arias-González JE. A decade of population genetics studies of scleractinian corals: A systematic review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105781. [PMID: 36371949 DOI: 10.1016/j.marenvres.2022.105781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are the most diverse marine ecosystems. However, coral cover has decreased worldwide due to natural disturbances, climate change, and local anthropogenic drivers. In recent decades, various genetic methods and molecular markers have been developed to assess genetic diversity, structure, and connectivity in different coral species to determine the vulnerability of their populations. This review aims to identify population genetic studies of scleractinian corals in the last decade (2010-2020), and the techniques and molecular markers used. Bibliometric analysis was conducted to identify journals and authors working in this field. We then calculated the number of genetic studies by species and ecoregion based on data obtained from 178 studies found in Scopus and Web of Science. Coral Reefs and Molecular Ecology were the main journals published population genetics studies, and microsatellites are the most widely used molecular markers. The Caribbean, Australian Barrier Reef, and South Kuroshio in Japan are among the ecoregions with the most population genetics data. In contrast, we found limited information about the Coral Triangle, a region with the highest biodiversity and key to coral reef conservation. Notably, only 117 (out of 1500 described) scleractinian coral species have genetic studies. This review emphasizes which coral species have been studied and highlights remaining gaps and locations where such data is critical for coral conservation.
Collapse
Affiliation(s)
- Viridiana Alvarado-Cerón
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Aarón Israel Muñiz-Castillo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - María Geovana León-Pech
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Carlos Prada
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Jesús Ernesto Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
18
|
Zhang J, Richards ZT, Adam AAS, Chan CX, Shinzato C, Gilmour J, Thomas L, Strugnell JM, Miller DJ, Cooke I. Evolutionary responses of a reef-building coral to climate change at the end of the last glacial maximum. Mol Biol Evol 2022; 39:msac201. [PMID: 36219871 PMCID: PMC9578555 DOI: 10.1093/molbev/msac201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change threatens the survival of coral reefs on a global scale, primarily through mass bleaching and mortality as a result of marine heatwaves. While these short-term effects are clear, predicting the fate of coral reefs over the coming century is a major challenge. One way to understand the longer-term effects of rapid climate change is to examine the response of coral populations to past climate shifts. Coastal and shallow-water marine ecosystems such as coral reefs have been reshaped many times by sea-level changes during the Pleistocene, yet, few studies have directly linked this with its consequences on population demographics, dispersal, and adaptation. Here we use powerful analytical techniques, afforded by haplotype phased whole-genomes, to establish such links for the reef-building coral, Acropora digitifera. We show that three genetically distinct populations are present in northwestern Australia, and that their rapid divergence since the last glacial maximum (LGM) can be explained by a combination of founder-effects and restricted gene flow. Signatures of selective sweeps, too strong to be explained by demographic history, are present in all three populations and overlap with genes that show different patterns of functional enrichment between inshore and offshore habitats. In contrast to rapid divergence in the host, we find that photosymbiont communities are largely undifferentiated between corals from all three locations, spanning almost 1000 km, indicating that selection on host genes and not acquisition of novel symbionts, has been the primary driver of adaptation for this species in northwestern Australia.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
- Collections and Research, Western Australian Museum, 49 Kew Street Welshpool, WA 6106, Australia
| | - Arne A S Adam
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Cheong Xin Chan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD 4072, Australia
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo277-8564, Chiba, Japan
| | - James Gilmour
- Australia Institute of Marine Science, Indian Oceans Marine Research Centre, Crawley, WA, 6009, Australia
| | - Luke Thomas
- Australia Institute of Marine Science, Indian Oceans Marine Research Centre, Crawley, WA, 6009, Australia
- Oceans Graduate School, The UWA Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jan M Strugnell
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Sustainable Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia
| | - David J Miller
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan 904-0495
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
19
|
Wang MS, Murray GGR, Mann D, Groves P, Vershinina AO, Supple MA, Kapp JD, Corbett-Detig R, Crump SE, Stirling I, Laidre KL, Kunz M, Dalén L, Green RE, Shapiro B. A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears. Nat Ecol Evol 2022; 6:936-944. [PMID: 35711062 DOI: 10.1038/s41559-022-01753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Polar bears (Ursus maritimus) and brown bears (Ursus arctos) are sister species possessing distinct physiological and behavioural adaptations that evolved over the last 500,000 years. However, comparative and population genomics analyses have revealed that several extant and extinct brown bear populations have relatively recent polar bear ancestry, probably as the result of geographically localized instances of gene flow from polar bears into brown bears. Here, we generate and analyse an approximate 20X paleogenome from an approximately 100,000-year-old polar bear that reveals a massive prehistoric admixture event, which is evident in the genomes of all living brown bears. This ancient admixture event was not visible from genomic data derived from living polar bears. Like more recent events, this massive admixture event mainly involved unidirectional gene flow from polar bears into brown bears and occurred as climate changes caused overlap in the ranges of the two species. These findings highlight the complex reticulate paths that evolution can take within a regime of radically shifting climate.
Collapse
Affiliation(s)
- Ming-Shan Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Gemma G R Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Daniel Mann
- Department of Geosciences, University of Alaska, Fairbanks, AK, USA.,Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Pamela Groves
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Alisa O Vershinina
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Megan A Supple
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Joshua D Kapp
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Sarah E Crump
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Ian Stirling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Wildlife Research Division, Environment and Climate Change Canada Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kristin L Laidre
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Michael Kunz
- University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Richard E Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA. .,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
20
|
Siqueira AC, Kiessling W, Bellwood DR. Fast-growing species shape the evolution of reef corals. Nat Commun 2022; 13:2426. [PMID: 35504876 PMCID: PMC9065008 DOI: 10.1038/s41467-022-30234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Ecological interactions are ubiquitous on tropical coral reefs, where sessile organisms coexist in limited space. Within these high-diversity systems, reef-building scleractinian corals form an intricate interaction network. The role of biotic interactions among reef corals is well established on ecological timescales. However, its potential effect on macroevolutionary patterns remains unclear. By analysing the rich fossil record of Scleractinia, we show that reef coral biodiversity experienced marked evolutionary rate shifts in the last 3 million years, possibly driven by biotic interactions. Our models suggest that there was an overwhelming effect of staghorn corals (family Acroporidae) on the fossil diversity trajectories of other coral groups. Staghorn corals showed an unparalleled spike in diversification during the Pleistocene. But surprisingly, their expansion was linked with increases in both extinction and speciation rates in other coral families, driving a nine-fold increase in lineage turnover. These results reveal a double-edged effect of diversity dependency on reef evolution. Given their fast growth, staghorn corals may have increased extinction rates via competitive interactions, while promoting speciation through their role as ecosystem engineers. This suggests that recent widespread human-mediated reductions in staghorn coral cover, may be disrupting the key macroevolutionary processes that established modern coral reef ecosystems. The effect of biotic interactions among reef corals on macroevolutionary patterns is unclear. Here, the authors study the rich coral fossil record, finding that reef coral diversity experienced potentially biotic interaction-driven evolutionary rate changes, and that Staghorn corals affected fossil diversity trajectories of other coral groups.
Collapse
Affiliation(s)
- Alexandre C Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia. .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen - Nürnberg (FAU), Erlangen, 91054, Germany
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
21
|
Thomas L, Underwood JN, Rose NH, Fuller ZL, Richards ZT, Dugal L, Grimaldi CM, Cooke IR, Palumbi SR, Gilmour JP. Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia. SCIENCE ADVANCES 2022; 8:eabl9185. [PMID: 35476443 PMCID: PMC9045720 DOI: 10.1126/sciadv.abl9185] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
At the Rowley Shoals in Western Australia, the prominent reef flat becomes exposed on low tide and the stagnant water in the shallow atoll lagoons heats up, creating a natural laboratory for characterizing the mechanisms of coral resilience to climate change. To explore these mechanisms in the reef coral Acropora tenuis, we collected samples from lagoon and reef slope habitats and combined whole-genome sequencing, ITS2 metabarcoding, experimental heat stress, and transcriptomics. Despite high gene flow across the atoll, we identified clear shifts in allele frequencies between habitats at relatively small linked genomic islands. Common garden heat stress assays showed corals from the lagoon to be more resistant to bleaching, and RNA sequencing revealed marked differences in baseline levels of gene expression between habitats. Our results provide new insight into the complex mechanisms of coral resilience to climate change and highlight the potential for spatially varying selection across complex coral reef seascapes to drive pronounced ecological divergence in climate-related traits.
Collapse
Affiliation(s)
- Luke Thomas
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
- Corresponding author.
| | - Jim N. Underwood
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| | - Noah H. Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Zachary L. Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Zoe T. Richards
- Coral Conservation and Research Group, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Collections and Research, Western Australian Museum, Welshpool, Australia
| | - Laurence Dugal
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Camille M. Grimaldi
- UWA Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
| | - Ira R. Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Stephen R. Palumbi
- Hopkins Marine Station, Biology Department, Stanford University, Pacific Grove, CA, USA
| | - James P. Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Crawley, Australia
| |
Collapse
|
22
|
Kitanobo S, Iwao K, Fukami H, Isomura N, Morita M. First evidence for backcrossing of F1 hybrids in Acropora corals under sperm competition. Sci Rep 2022; 12:5356. [PMID: 35354852 PMCID: PMC8967929 DOI: 10.1038/s41598-022-08989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Acropora is a species-rich genus of reef-building corals with highly diverse morphologies. Hybridization among intercrossing species potentially influences species diversity within Acropora. However, the mechanisms that allow hybridization/backcrossing remain unknown. Although we tested a limited number of species, we hypothesized that Acropora gametes in the Indo-Pacific may preferentially fertilize conspecific gametes despite their compatibility with heterospecific gametes, leading to infrequent hybridization between potentially intercrossing species. In this study, F1 hybrids of Acropora florida and A. intermedia showed specific fertilization trends. For example, sperm had the ability to backcross with the parental species even in the presence of sperm from the parental species. Also, eggs of the hybrids produced from A. florida eggs and A. intermedia sperm (“FLOint”) exhibited self-fertilization. Since a low ratio of hybridization between A. florida and A. intermedia is predicted, the population size of hybrids should be small. Therefore, self-fertilization would facilitate reproduction of the hybrid in nature, while remaining sperm could outcompete parental species sperm to backcross with eggs. Although we succeeded in breeding two colonies of hybrids, it is reasonable to speculate that hybrids show a high tendency to choose the most efficient sexual reproduction tactics.
Collapse
|
23
|
Fifer JE, Yasuda N, Yamakita T, Bove CB, Davies SW. Genetic divergence and range expansion in a western North Pacific coral. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152423. [PMID: 34942242 DOI: 10.1016/j.scitotenv.2021.152423] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Coral poleward range expansions have recently been observed in response to warming oceans. Range expansion can lead to reduced genetic diversity and increased frequency of deleterious mutations that were rare in core populations, potentially limiting the ability for adaptation and persistence in novel environments. Successful expansions that overcome these founder effects and colonize new habitat have been attributed to multiple introductions from different sources, hybridization with native populations, or rapid adaptive evolution. Here, we investigate population genomic patterns of the reef-building coral Acropora hyacinthus along a latitudinal cline that includes a well-established range expansion front in Japan using 2b-RAD sequencing. A total of 184 coral samples were collected across seven sites spanning from ~24°N to near its northern range front at ~33°N. We uncover the presence of three cryptic lineages of A. hyacinthus, which occupy discrete reefs within this region. Only one lineage is present along the expansion front and we find evidence for its historical occupation of marginal habitats. Within this lineage we also find evidence of bottleneck pressures associated with expansion events including higher clonality, increased linkage disequilibrium, and lower genetic diversity in range edge populations compared to core populations. Asymmetric migration between populations was also detected with lower migration from edge sites. Lastly, we describe genomic signatures of local adaptation potentially attributed to lower winter temperatures experienced at the more recently expanded northern populations. Together these data illuminate the genomic consequences of range expansion in a coral and highlight how adaptation to discrete environments along expansion fronts may facilitate further range expansion in this temperate coral lineage.
Collapse
Affiliation(s)
- James E Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Nina Yasuda
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki 889-2192, Japan.
| | - Takehisa Yamakita
- Marine Biodiversity and Environmental Assessment Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
| | - Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
24
|
Juszkiewicz DJ, White NE, Stolarski J, Benzoni F, Arrigoni R, Baird AH, Hoeksema BW, Wilson NG, Bunce M, Richards ZT. Full Title: Phylogeography of recent Plesiastrea (Scleractinia: Plesiastreidae) based on an integrated taxonomic approach. Mol Phylogenet Evol 2022; 172:107469. [DOI: 10.1016/j.ympev.2022.107469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
|
25
|
Prata KE, Riginos C, Gutenkunst RN, Latijnhouwers KRW, Sánchez JA, Englebert N, Hay KB, Bongaerts P. Deep connections: divergence histories with gene flow in mesophotic
Agaricia
corals. Mol Ecol 2022; 31:2511-2527. [PMID: 35152496 PMCID: PMC9303685 DOI: 10.1111/mec.16391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
Largely understudied, mesophotic coral ecosystems lie below shallow reefs (at >30 m depth) and comprise ecologically distinct communities. Brooding reproductive modes appear to predominate among mesophotic‐specialist corals and may limit genetic connectivity among populations. Using reduced representation genomic sequencing, we assessed spatial population genetic structure at 50 m depth in an ecologically important mesophotic‐specialist species Agaricia grahamae, among locations in the Southern Caribbean. We also tested for hybridisation with the closely related (but depth‐generalist) species Agaricia lamarcki, within their sympatric depth zone (50 m). In contrast to our expectations, no spatial genetic structure was detected between the reefs of Curaçao and Bonaire (~40 km apart) within A. grahamae. However, cryptic taxa were discovered within both taxonomic species, with those in A. lamarcki (incompletely) partitioned by depth and those in A. grahamae occurring sympatrically (at the same depth). Hybrid analyses and demographic modelling identified contemporary and historical gene flow among cryptic taxa, both within and between A. grahamae and A. lamarcki. These results (1) indicate that spatial connectivity and subsequent replenishment may be possible between islands of moderate geographic distances for A. grahamae, an ecologically important mesophotic species, (2) that cryptic taxa occur in the mesophotic zone and environmental selection along shallow to mesophotic depth gradients may drive divergence in depth‐generalists such as A. lamarcki, and (3) highlight that gene flow links taxa within this relativity diverse Caribbean genus.
Collapse
Affiliation(s)
- Katharine E. Prata
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
- California Academy of Sciences San Francisco CA USA
| | - Cynthia Riginos
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology University of Arizona Tuscon AZ USA
| | | | - Juan A. Sánchez
- Laboratorio de Biología Molecular Marina (BIOMMAR) Departamento de Ciencias Biológicas Universidad de los Andes Bogotá Colombia
| | - Norbert Englebert
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Kyra B. Hay
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Pim Bongaerts
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
- California Academy of Sciences San Francisco CA USA
- Caribbean Research and Management of Biodiversity Foundation Willemstad, Curaçao
| |
Collapse
|
26
|
Blázquez M, Hernández-Moreno LS, Gasulla F, Pérez-Vargas I, Pérez-Ortega S. The Role of Photobionts as Drivers of Diversification in an Island Radiation of Lichen-Forming Fungi. Front Microbiol 2022; 12:784182. [PMID: 35046912 PMCID: PMC8763358 DOI: 10.3389/fmicb.2021.784182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Speciation in oceanic islands has attracted the interest of scientists since the 19th century. One of the most striking evolutionary phenomena that can be studied in islands is adaptive radiation, that is, when a lineage gives rise to different species by means of ecological speciation. Some of the best-known examples of adaptive radiation are charismatic organisms like the Darwin finches of the Galapagos and the cichlid fishes of the great African lakes. In these and many other examples, a segregation of the trophic niche has been shown to be an important diversification driver. Radiations are known in other groups of organisms, such as lichen-forming fungi. However, very few studies have investigated their adaptive nature, and none have focused on the trophic niche. In this study, we explore the role of the trophic niche in a putative radiation of endemic species from the Macaronesian Region, the Ramalina decipiens group. The photobiont diversity was studied by Illumina MiSeq sequencing of the ITS2 region of 197 specimens spanning the phylogenetic breadth and geographic range of the group. A total of 66 amplicon sequence variants belonging to the four main clades of the algal genus Trebouxia were found. Approximately half of the examined thalli showed algal coexistence, but in most of them, a single main photobiont amounted to more than 90% of the reads. However, there were no significant differences in photobiont identity and in the abundance of ITS2 reads across the species of the group. We conclude that a segregation of the trophic niche has not occurred in the R. decipiens radiation.
Collapse
Affiliation(s)
- Miguel Blázquez
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Lucía S Hernández-Moreno
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Israel Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
27
|
Vilaça ST, Piccinno R, Rota‐Stabelli O, Gabrielli M, Benazzo A, Matschiner M, Soares LS, Bolten AB, Bjorndal KA, Bertorelle G. Divergence and hybridization in sea turtles: Inferences from genome data show evidence of ancient gene flow between species. Mol Ecol 2021; 30:6178-6192. [PMID: 34390061 PMCID: PMC9292604 DOI: 10.1111/mec.16113] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Reconstructing past events of hybridization and population size changes are required to understand speciation mechanisms and current patterns of genetic diversity, and ultimately contribute to species' conservation. Sea turtles are ancient species currently facing anthropogenic threats including climate change, fisheries, and illegal hunting. Five of the seven extant sea turtle species are known to currently hybridize, especially along the Brazilian coast where some populations can have ~32%-42% of hybrids. Although frequently observed today, it is not clear what role hybridization plays in the evolutionary diversification of this group of reptiles. In this study, we generated whole genome resequencing data of the five globally distributed sea turtle species to estimate a calibrated phylogeny and the population size dynamics, and to understand the role of hybridization in shaping the genomes of these ancient species. Our results reveal discordant species divergence dates between mitochondrial and nuclear genomes, with a high frequency of conflicting trees throughout the nuclear genome suggesting that some sea turtle species frequently hybridized in the past. The reconstruction of the species' demography showed a general decline in effective population sizes with no signs of recovery, except for the leatherback sea turtle. Furthermore, we discuss the influence of reference bias in our estimates. We show long-lasting ancestral gene flow events within Chelonioidea that continued for millions of years after initial divergence. Speciation with gene flow is a common pattern in marine species, and it raises questions whether current hybridization events should be considered as a part of these species' evolutionary history or a conservation issue.
Collapse
Affiliation(s)
| | - Riccardo Piccinno
- Department of Sustainable Agro‐ecosystems and BioresourcesFondazione Edmund MachTrentoItaly
| | - Omar Rota‐Stabelli
- Department of Sustainable Agro‐ecosystems and BioresourcesFondazione Edmund MachTrentoItaly
| | - Maëva Gabrielli
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Andrea Benazzo
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | | | - Luciano S. Soares
- Archie Carr Center for Sea Turtle Research and Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Alan B. Bolten
- Archie Carr Center for Sea Turtle Research and Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Karen A. Bjorndal
- Archie Carr Center for Sea Turtle Research and Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Giorgio Bertorelle
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| |
Collapse
|
28
|
Rose NH, Bay RA, Morikawa MK, Thomas L, Sheets EA, Palumbi SR. Genomic analysis of distinct bleaching tolerances among cryptic coral species. Proc Biol Sci 2021; 288:20210678. [PMID: 34641729 DOI: 10.1098/rspb.2021.0678] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reef-building coral species are experiencing an unprecedented decline owing to increasing frequency and intensity of marine heatwaves and associated bleaching-induced mortality. Closely related species from the Acropora hyacinthus species complex differ in heat tolerance and in their association with heat-tolerant symbionts. We used low-coverage full genome sequencing of 114 colonies monitored across the 2015 bleaching event in American Samoa to determine the genetic differences among four cryptic species (termed HA, HC, HD and HE) that have diverged in these species traits. Cryptic species differed strongly at thousands of single nucleotide polymorphisms across the genome which are enriched for amino acid changes in the bleaching-resistant species HE. In addition, HE also showed two particularly divergent regions with strong signals of differentiation. One approximately 220 kb locus, HES1, contained the majority of fixed differences in HE. A second locus, HES2, was fixed in HE but polymorphic in the other cryptic species. Surprisingly, non-HE individuals with HE-like haplotypes at HES2 were more likely to bleach. At both loci, HE showed particular sequence similarity to a congener, Acropora millepora. Overall, resilience to bleaching during the third global bleaching event was strongly structured by host cryptic species, buoyed by differences in symbiont associations between these species.
Collapse
Affiliation(s)
- Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Rachael A Bay
- Department of Evolution and Ecology, University of California, Davis, CA, USA.,Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Megan K Morikawa
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Luke Thomas
- The UWA Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.,Australian Institute of Marine Science, Perth, Western Australia, Australia.,Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | | | | |
Collapse
|
29
|
Yuasa H, Kajitani R, Nakamura Y, Takahashi K, Okuno M, Kobayashi F, Shinoda T, Toyoda A, Suzuki Y, Thongtham N, Forsman Z, Bronstein O, Seveso D, Montalbetti E, Taquet C, Eyal G, Yasuda N, Itoh T. Elucidation of the speciation history of three sister species of crown-of-thorns starfish (Acanthaster spp.) based on genomic analysis. DNA Res 2021; 28:6350483. [PMID: 34387305 DOI: 10.1093/dnares/dsab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
The crown-of-thorns starfish (COTS) is a coral predator that is widely distributed in Indo-Pacific Oceans. A previous phylogenetic study using partial mitochondrial sequences suggested that COTS had diverged into four distinct species, but a nuclear genome-based analysis to confirm this was not conducted. To address this, COTS species nuclear genome sequences were analysed here, sequencing Northern Indian Ocean (NIO) and Red Sea (RS) species genomes for the first time, followed by a comparative analysis with the Pacific Ocean (PO) species. Phylogenetic analysis and ADMIXTURE analysis revealed clear divergences between the three COTS species. Furthermore, within the PO species, the phylogenetic position of the Hawaiian sample was further away from the other Pacific-derived samples than expected based on the mitochondrial data, suggesting that it may be a PO subspecies. The pairwise sequentially Markovian coalescent model showed that the trajectories of the population size diverged by region during the Mid-Pleistocene transition when the sea-level was dramatically decreased, strongly suggesting that the three COTS species experienced allopatric speciation. Analysis of the orthologues indicated that there were remarkable genes with species-specific positive selection in the genomes of the PO and RS species, which suggested that there may be local adaptations in the COTS species.
Collapse
Affiliation(s)
- Hideaki Yuasa
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuta Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Fumiya Kobayashi
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takahiro Shinoda
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima City, Shizuoka 411-8540, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba 272-8562, Japan
| | | | - Zac Forsman
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Sciences & Technology, University of Hawai'i at Mānoa, Coconut Island, Kāne'ohe, HI, USA
| | - Omri Bronstein
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel.,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126 Milan, Italy.,Marine Research and High Education Center (MaRHE Center), 12030 Faafu Magoodhoo, Republic of Maldives
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, 20126 Milan, Italy.,Marine Research and High Education Center (MaRHE Center), 12030 Faafu Magoodhoo, Republic of Maldives
| | | | - Gal Eyal
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.,The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Nina Yasuda
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki 889-2192, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
30
|
McManus LC, Forrest DL, Tekwa EW, Schindler DE, Colton MA, Webster MM, Essington TE, Palumbi SR, Mumby PJ, Pinsky ML. Evolution and connectivity influence the persistence and recovery of coral reefs under climate change in the Caribbean, Southwest Pacific, and Coral Triangle. GLOBAL CHANGE BIOLOGY 2021; 27:4307-4321. [PMID: 34106494 PMCID: PMC8453988 DOI: 10.1111/gcb.15725] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
Corals are experiencing unprecedented decline from climate change-induced mass bleaching events. Dispersal not only contributes to coral reef persistence through demographic rescue but can also hinder or facilitate evolutionary adaptation. Locations of reefs that are likely to survive future warming therefore remain largely unknown, particularly within the context of both ecological and evolutionary processes across complex seascapes that differ in temperature range, strength of connectivity, network size, and other characteristics. Here, we used eco-evolutionary simulations to examine coral adaptation to warming across reef networks in the Caribbean, the Southwest Pacific, and the Coral Triangle. We assessed the factors associated with coral persistence in multiple reef systems to understand which results are general and which are sensitive to particular geographic contexts. We found that evolution can be critical in preventing extinction and facilitating the long-term recovery of coral communities in all regions. Furthermore, the strength of immigration to a reef (destination strength) and current sea surface temperature robustly predicted reef persistence across all reef networks and across temperature projections. However, we found higher initial coral cover, slower recovery, and more evolutionary lag in the Coral Triangle, which has a greater number of reefs and more larval settlement than the other regions. We also found the lowest projected future coral cover in the Caribbean. These findings suggest that coral reef persistence depends on ecology, evolution, and habitat network characteristics, and that, under an emissions stabilization scenario (RCP 4.5), recovery may be possible over multiple centuries.
Collapse
Affiliation(s)
- Lisa C. McManus
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
- Hawaiʻi Institute of Marine BiologyUniversity of Hawaiʻi at ManoaKaneʻoheHIUSA
| | - Daniel L. Forrest
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
| | - Edward W. Tekwa
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| | | | | | | | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine StationStanford UniversityPacific GroveCAUSA
| | - Peter J. Mumby
- Marine Spatial Ecology LaboratorySchool of Biological SciencesThe University of QueenslandSt LuciaQldAustralia
| | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNJUSA
| |
Collapse
|
31
|
Shinzato C, Khalturin K, Inoue J, Zayasu Y, Kanda M, Kawamitsu M, Yoshioka Y, Yamashita H, Suzuki G, Satoh N. Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes. Mol Biol Evol 2021; 38:16-30. [PMID: 32877528 PMCID: PMC7783167 DOI: 10.1093/molbev/msaa216] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The genus Acropora comprises the most diverse and abundant scleractinian corals (Anthozoa, Cnidaria) in coral reefs, the most diverse marine ecosystems on Earth. However, the genetic basis for the success and wide distribution of Acropora are unknown. Here, we sequenced complete genomes of 15 Acropora species and 3 other acroporid taxa belonging to the genera Montipora and Astreopora to examine genomic novelties that explain their evolutionary success. We successfully obtained reasonable draft genomes of all 18 species. Molecular dating indicates that the Acropora ancestor survived warm periods without sea ice from the mid or late Cretaceous to the Early Eocene and that diversification of Acropora may have been enhanced by subsequent cooling periods. In general, the scleractinian gene repertoire is highly conserved; however, coral- or cnidarian-specific possible stress response genes are tandemly duplicated in Acropora. Enzymes that cleave dimethlysulfonioproprionate into dimethyl sulfide, which promotes cloud formation and combats greenhouse gasses, are the most duplicated genes in the Acropora ancestor. These may have been acquired by horizontal gene transfer from algal symbionts belonging to the family Symbiodiniaceae, or from coccolithophores, suggesting that although functions of this enzyme in Acropora are unclear, Acropora may have survived warmer marine environments in the past by enhancing cloud formation. In addition, possible antimicrobial peptides and symbiosis-related genes are under positive selection in Acropora, perhaps enabling adaptation to diverse environments. Our results suggest unique Acropora adaptations to ancient, warm marine environments and provide insights into its capacity to adjust to rising seawater temperatures.
Collapse
Affiliation(s)
- Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Konstantin Khalturin
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jun Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.,Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Miyuki Kanda
- DNA Sequence Section (SQC), Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Mayumi Kawamitsu
- DNA Sequence Section (SQC), Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Yamashita
- Research Center for Subtropical Fisheries, Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Okinawa, Japan
| | - Go Suzuki
- Research Center for Subtropical Fisheries, Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
32
|
Reich HG, Kitchen SA, Stankiewicz KH, Devlin-Durante M, Fogarty ND, Baums IB. Genomic variation of an endosymbiotic dinoflagellate (Symbiodinium 'fitti') among closely related coral hosts. Mol Ecol 2021; 30:3500-3514. [PMID: 33964051 DOI: 10.1111/mec.15952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
Mutualisms where hosts are coupled metabolically to their symbionts often exhibit high partner fidelity. Most reef-building coral species form obligate symbioses with a specific species of photosymbionts, dinoflagellates in the family Symbiodiniaceae, despite needing to acquire symbionts early in their development from environmental sources. Three Caribbean acroporids (Acropora palmata, A. cervicornis and their F1 hybrid) are sympatric across much of their range, but often occupy different depth and light habitats. Throughout this range, both species and their hybrid associate with the endosymbiotic dinoflagellate Symbiodinium 'fitti'. Because light (and therefore depth) influences the physiology of dinoflagellates, we investigated whether S. 'fitti' populations from each host taxon were differentiated genetically. Single nucleotide polymorphisms (SNPs) among S. 'fitti' strains were identified by aligning shallow metagenomic sequences of acroporid colonies sampled from across the Caribbean to a ~600-Mb draft assembly of the S. 'fitti' genome (from the CFL14120 A. cervicornis metagenome). Phylogenomic and multivariate analyses revealed that genomic variation among S. 'fitti' strains partitioned to each host taxon rather than by biogeographical origin. This is particularly noteworthy because the hybrid has a sparse fossil record and may be of relatively recent origin. A subset (37.6%) of the SNPs putatively under selection were nonsynonymous mutations predicted to alter protein efficiency. Differences in genomic variation of S. 'fitti' strains from each host taxon may reflect the unique selection pressures created by the microenvironments associated with each host. The nonrandom sorting among S. 'fitti' strains to different hosts could be the basis for lineage diversification via disruptive selection, leading to ecological specialization and ultimately speciation.
Collapse
Affiliation(s)
- Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Nicole D Fogarty
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
33
|
Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr Biol 2021; 31:2286-2298.e8. [PMID: 33811819 DOI: 10.1016/j.cub.2021.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.
Collapse
|
34
|
Flouri T, Jiao X, Rannala B, Yang Z. A Bayesian Implementation of the Multispecies Coalescent Model with Introgression for Phylogenomic Analysis. Mol Biol Evol 2021; 37:1211-1223. [PMID: 31825513 PMCID: PMC7086182 DOI: 10.1093/molbev/msz296] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent analyses suggest that cross-species gene flow or introgression is common in nature, especially during species divergences. Genomic sequence data can be used to infer introgression events and to estimate the timing and intensity of introgression, providing an important means to advance our understanding of the role of gene flow in speciation. Here, we implement the multispecies-coalescent-with-introgression model, an extension of the multispecies-coalescent model to incorporate introgression, in our Bayesian Markov chain Monte Carlo program Bpp. The multispecies-coalescent-with-introgression model accommodates deep coalescence (or incomplete lineage sorting) and introgression and provides a natural framework for inference using genomic sequence data. Computer simulation confirms the good statistical properties of the method, although hundreds or thousands of loci are typically needed to estimate introgression probabilities reliably. Reanalysis of data sets from the purple cone spruce confirms the hypothesis of homoploid hybrid speciation. We estimated the introgression probability using the genomic sequence data from six mosquito species in the Anopheles gambiae species complex, which varies considerably across the genome, likely driven by differential selection against introgressed alleles.
Collapse
Affiliation(s)
- Tomáš Flouri
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, Davis, Davis, CA
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
35
|
Nicholson GM, Clements KD. Ecomorphological divergence and trophic resource partitioning in 15 syntopic Indo-Pacific parrotfishes (Labridae: Scarini). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Adaptive diversification is a product of both phylogenetic constraint and ecological opportunity. The species-rich parrotfish genera Scarus and Chlorurus display considerable variation in trophic cranial morphology, but these parrotfishes are often described as generalist herbivores. Recent work has suggested that parrotfish partition trophic resources at very fine spatial scales, raising the question of whether interspecific differences in cranial morphology reflect trophic partitioning. We tested this hypothesis by comparing targeted feeding substrata with a previously published dataset of nine cranial morphological traits. We sampled feeding substrata of 15 parrotfish species at Lizard Island, Great Barrier Reef, Australia, by following individuals until focused biting was observed, then extracting a bite core 22 mm in diameter. Three indices were parameterized for each bite core: substratum taphonomy, maximum turf height and cover of crustose coralline algae. Parrotfish species were spread along a single axis of variation in feeding substrata: successional status of the substratum taphonomy and epilithic and endolithic biota. This axis of trophic variation was significantly correlated with cranial morphology, indicating that morphological disparity within this clade is associated with interspecific partitioning of feeding substrata. Phylogenetic signal and phylomorphospace analyses revealed that the evolution of this clade involved a hitherto-unrecognized level of trophic diversification.
Collapse
Affiliation(s)
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Whitelaw BL, Cooke IR, Finn J, da Fonseca RR, Ritschard EA, Gilbert MTP, Simakov O, Strugnell JM. Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss. Gigascience 2020; 9:giaa120. [PMID: 33175168 PMCID: PMC7656900 DOI: 10.1093/gigascience/giaa120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cephalopods represent a rich system for investigating the genetic basis underlying organismal novelties. This diverse group of specialized predators has evolved many adaptations including proteinaceous venom. Of particular interest is the blue-ringed octopus genus (Hapalochlaena), which are the only octopods known to store large quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland. FINDINGS To reveal genomic correlates of organismal novelties, we conducted a comparative study of 3 octopod genomes, including the Southern blue-ringed octopus (Hapalochlaena maculosa). We present the genome of this species and reveal highly dynamic evolutionary patterns at both non-coding and coding organizational levels. Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger and cadherins, both associated with neural functions), as well as formation of novel gene families, dominate the genomic landscape in all octopods. Examination of tissue-specific genes in the posterior salivary gland revealed that expression was dominated by serine proteases in non-tetrodotoxin-bearing octopods, while this family was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. maculosa contain a resistance mutation found in pufferfish and garter snakes, which is exclusive to the genus. Analysis of the posterior salivary gland microbiome revealed a diverse array of bacterial species, including genera that can produce tetrodotoxin, suggestive of a possible production source. CONCLUSIONS We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other recently published cephalopod genomes, represents a valuable resource from which future work could advance our understanding of the evolution of genomic novelty in this family.
Collapse
Affiliation(s)
- Brooke L Whitelaw
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Dr, Douglas QLD 4811 , Australia
- Sciences, Museum Victoria, 11 Nicholson St, Carlton, Victoria 3053, Australia
| | - Ira R Cooke
- College of Public Health, Medical and Vet Sciences, James Cook University,1 James Cook Dr, Douglas QLD 4811 , Australia
- La Trobe Institute of Molecular Science, La Trobe University, Plenty Rd &, Kingsbury Dr, Bundoora, Melbourne, Victoria 3086, Australia
| | - Julian Finn
- Sciences, Museum Victoria, 11 Nicholson St, Carlton, Victoria 3053, Australia
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate (CMEC), GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Elena A Ritschard
- Department of Neurosciences and Developmental Biology, University of Vienna,Universitätsring 1, 1010 Wien, Vienna, Austria
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - M T P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna,Universitätsring 1, 1010 Wien, Vienna, Austria
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Dr, Douglas QLD 4811 , Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Plenty Rd &, Kingsbury Dr, Bundoora, Melbourne, Victoria 3086, Australia
| |
Collapse
|
37
|
Cooke I, Ying H, Forêt S, Bongaerts P, Strugnell JM, Simakov O, Zhang J, Field MA, Rodriguez-Lanetty M, Bell SC, Bourne DG, van Oppen MJ, Ragan MA, Miller DJ. Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. SCIENCE ADVANCES 2020; 6:6/48/eabc6318. [PMID: 33246955 PMCID: PMC7695477 DOI: 10.1126/sciadv.abc6318] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/15/2020] [Indexed: 05/24/2023]
Abstract
Genetic signatures caused by demographic and adaptive processes during past climatic shifts can inform predictions of species' responses to anthropogenic climate change. To identify these signatures in Acropora tenuis, a reef-building coral threatened by global warming, we first assembled the genome from long reads and then used shallow whole-genome resequencing of 150 colonies from the central inshore Great Barrier Reef to inform population genomic analyses. We identify population structure in the host that reflects a Pleistocene split, whereas photosymbiont differences between reefs most likely reflect contemporary (Holocene) conditions. Signatures of selection in the host were associated with genes linked to diverse processes including osmotic regulation, skeletal development, and the establishment and maintenance of symbiosis. Our results suggest that adaptation to post-glacial climate change in A. tenuis has involved selection on many genes, while differences in symbiont specificity between reefs appear to be unrelated to host population structure.
Collapse
Affiliation(s)
- Ira Cooke
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Hua Ying
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, Australia
| | - Pim Bongaerts
- California Academy of Sciences, Golden Gate Park, San Francisco, CA, USA
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - Jia Zhang
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Mauricio Rodriguez-Lanetty
- Institute of Environment and Department of Biological Sciences, Florida International University, Miami, Fl 33199, USA
| | - Sara C Bell
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David G Bourne
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Madeleine Jh van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
38
|
Ramos-Vicente D, Bayés À. AMPA receptor auxiliary subunits emerged during early vertebrate evolution by neo/subfunctionalization of unrelated proteins. Open Biol 2020; 10:200234. [PMID: 33108974 PMCID: PMC7653359 DOI: 10.1098/rsob.200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammalian synapses, the function of ionotropic glutamate receptors is critically modulated by auxiliary subunits. Most of these specifically regulate the synaptic localization and electrophysiological properties of AMPA-type glutamate receptors (AMPARs). Here, we comprehensively investigated the animal evolution of the protein families that contain AMPAR auxiliary subunits (ARASs). We observed that, on average, vertebrates have four times more ARASs than other animal species. We also demonstrated that ARASs belong to four unrelated protein families: CACNG-GSG1, cornichon, shisa and Dispanin C. Our study demonstrates that, despite the ancient origin of these four protein families, the majority of ARASs emerged during vertebrate evolution by independent but convergent processes of neo/subfunctionalization that resulted in the multiple ARASs found in present vertebrate genomes. Importantly, although AMPARs appeared and diversified in the ancestor of bilateral animals, the ARAS expansion did not occur until much later, in early vertebrate evolution. We propose that the surge in ARASs and consequent increase in AMPAR functionalities, contributed to the increased complexity of vertebrate brains and cognitive functions.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Fuller ZL, Mocellin VJL, Morris LA, Cantin N, Shepherd J, Sarre L, Peng J, Liao Y, Pickrell J, Andolfatto P, Matz M, Bay LK, Przeworski M. Population genetics of the coral Acropora millepora: Toward genomic prediction of bleaching. Science 2020; 369:369/6501/eaba4674. [PMID: 32675347 DOI: 10.1126/science.aba4674] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Although reef-building corals are declining worldwide, responses to bleaching vary within and across species and are partly heritable. Toward predicting bleaching response from genomic data, we generated a chromosome-scale genome assembly for the coral Acropora millepora We obtained whole-genome sequences for 237 phenotyped samples collected at 12 reefs along the Great Barrier Reef, among which we inferred little population structure. Scanning the genome for evidence of local adaptation, we detected signatures of long-term balancing selection in the heat-shock co-chaperone sacsin We conducted a genome-wide association study of visual bleaching score for 213 samples, incorporating the polygenic score derived from it into a predictive model for bleaching in the wild. These results set the stage for genomics-based approaches in conservation strategies.
Collapse
Affiliation(s)
- Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | | | - Luke A Morris
- Australian Institute of Marine Science, Townsville, QLD, Australia.,AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Neal Cantin
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Jihanne Shepherd
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Luke Sarre
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Julie Peng
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Yi Liao
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | | | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, NY, USA. .,Department of Systems Biology, Columbia University, New York, NY, USA.,Program for Mathematical Genomics, Columbia University, New York, NY, USA
| |
Collapse
|
40
|
Jiao X, Yang Z. Defining Species When There is Gene Flow. Syst Biol 2020; 70:108-119. [PMID: 32617579 DOI: 10.1093/sysbio/syaa052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Whatever one's definition of species, it is generally expected that individuals of the same species should be genetically more similar to each other than they are to individuals of another species. Here, we show that in the presence of cross-species gene flow, this expectation may be incorrect. We use the multispecies coalescent model with continuous-time migration or episodic introgression to study the impact of gene flow on genetic differences within and between species and highlight a surprising but plausible scenario in which different population sizes and asymmetrical migration rates cause a genetic sequence to be on average more closely related to a sequence from another species than to a sequence from the same species. Our results highlight the extraordinary impact that even a small amount of gene flow may have on the genetic history of the species. We suggest that contrasting long-term migration rate and short-term hybridization rate, both of which can be estimated using genetic data, may be a powerful approach to detecting the presence of reproductive barriers and to define species boundaries.[Gene flow; introgression; migration; multispecies coalescent; species concept; species delimitation.].
Collapse
Affiliation(s)
- Xiyun Jiao
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
41
|
Mao Y, Hou S, Shi J, Economo EP. TREEasy: An automated workflow to infer gene trees, species trees, and phylogenetic networks from multilocus data. Mol Ecol Resour 2020; 20. [PMID: 32073732 DOI: 10.1111/1755-0998.13149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Multilocus genomic data sets can be used to infer a rich set of information about the evolutionary history of a lineage, including gene trees, species trees, and phylogenetic networks. However, user-friendly tools to run such integrated analyses are lacking, and workflows often require tedious reformatting and handling time to shepherd data through a series of individual programs. Here, we present a tool written in Python-TREEasy-that performs automated sequence alignment (with MAFFT), gene tree inference (with IQ-Tree), species inference from concatenated data (with IQ-Tree and RaxML-NG), species tree inference from gene trees (with ASTRAL, MP-EST, and STELLS2), and phylogenetic network inference (with SNaQ and PhyloNet). The tool only requires FASTA files and nine parameters as inputs. The tool can be run as command line or through a Graphical User Interface (GUI). As examples, we reproduced a recent analysis of staghorn coral evolution, and performed a new analysis on the evolution of the "WGD clade" of yeast. The latter revealed novel patterns that were not identified by previous analyses. TREEasy represents a reliable and simple tool to accelerate research in systematic biology (https://github.com/MaoYafei/TREEasy).
Collapse
Affiliation(s)
- Yafei Mao
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Siqing Hou
- Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Junfeng Shi
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
42
|
Jiao X, Flouri T, Rannala B, Yang Z. The Impact of Cross-Species Gene Flow on Species Tree Estimation. Syst Biol 2020; 69:830-847. [DOI: 10.1093/sysbio/syaa001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/12/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Abstract
Recent analyses of genomic sequence data suggest cross-species gene flow is common in both plants and animals, posing challenges to species tree estimation. We examine the levels of gene flow needed to mislead species tree estimation with three species and either episodic introgressive hybridization or continuous migration between an outgroup and one ingroup species. Several species tree estimation methods are examined, including the majority-vote method based on the most common gene tree topology (with either the true or reconstructed gene trees used), the UPGMA method based on the average sequence distances (or average coalescent times) between species, and the full-likelihood method based on multilocus sequence data. Our results suggest that the majority-vote method based on gene tree topologies is more robust to gene flow than the UPGMA method based on coalescent times and both are more robust than likelihood assuming a multispecies coalescent (MSC) model with no cross-species gene flow. Comparison of the continuous migration model with the episodic introgression model suggests that a small amount of gene flow per generation can cause drastic changes to the genetic history of the species and mislead species tree methods, especially if the species diverged through radiative speciation events. Estimates of parameters under the MSC with gene flow suggest that African mosquito species in the Anopheles gambiae species complex constitute such an example of extreme impact of gene flow on species phylogeny. [IM; introgression; migration; MSci; multispecies coalescent; species tree.]
Collapse
Affiliation(s)
- Xiyun Jiao
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Tomáš Flouri
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Ziheng Yang
- Department of Genetics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
43
|
Effects of missing data and data type on phylotranscriptomic analysis of stony corals (Cnidaria: Anthozoa: Scleractinia). Mol Phylogenet Evol 2019; 134:12-23. [DOI: 10.1016/j.ympev.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 01/28/2023]
|
44
|
A Likely Ancient Genome Duplication in the Speciose Reef-Building Coral Genus, Acropora. iScience 2019; 13:20-32. [PMID: 30798090 PMCID: PMC6389592 DOI: 10.1016/j.isci.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Whole-genome duplication (WGD) has been recognized as a significant evolutionary force in the origin and diversification of multiple organisms. Acropora, a speciose reef-building coral genus, is suspected to have originated by polyploidy. Yet, there is no genetic evidence to support this hypothesis. Using comprehensive phylogenomic and comparative genomic approaches, we analyzed six Acroporid genomes and found that a WGD event likely occurred ∼31 million years ago in the most recent common ancestor of Acropora, concurrent with a worldwide coral extinction. We found that duplicated genes were highly enriched in gene regulation functions, including those of stress responses. The functional clusters of duplicated genes are related to the divergence of gene expression patterns during development. Some proteinaceous toxins were generated by WGD in Acropora compared with other cnidarian species. Collectively, this study provides evidence for an ancient WGD event in corals, which helps explain the origin and diversification of Acropora. An ancient genome duplication occurred in the most recent common ancestor of Acropora This WGD event likely occurred between 28 and 36 mya in Acropora The WGD event potentially contributes to the origin and diversification of Acropora Duplications of toxic proteins were found in Acropora following the WGD
Collapse
|