1
|
Vela S, Wolf ESA, Zhou M, Davis A, Mou Z, Cuevas HE, Vermerris W. A Sorghum BAK1/ SERK4 Homolog Functions in Pathogen-Associated Molecular Patterns-Triggered Immunity and Cell Death in Response to Colletotrichum sublineola Infection. PHYTOPATHOLOGY 2025; 115:387-400. [PMID: 39761500 DOI: 10.1094/phyto-09-24-0283-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Sorghum bicolor is the fifth most important cereal crop and expected to gain prominence due to its versatility, low input requirements, and tolerance to hot and dry conditions. In warm and humid environments, the productivity of sorghum is severely limited by the hemibiotrophic fungal pathogen Colletotrichum sublineola, the causal agent of anthracnose. Cultivating anthracnose-resistant accessions is the most effective and environmentally benign way to safeguard yield. A previous genome-wide association study for anthracnose resistance in the Sorghum Association Panel uncovered single-nucleotide polymorphisms on chromosome 5 associated with resistance to anthracnose, including one located within the coding region of gene Sobic.005G182400. In this study, we investigated the molecular function of Sobic.005G182400 in response to C. sublineola infection. Conserved domain, phylogenetic, and structural analyses revealed that the protein encoded by Sobic.005G182400 shares significant structural similarity with the Arabidopsis BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1)/SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE4 (SERK4). Although sequence analysis of four sorghum accessions showed no substantial variation in the coding region, accession SC1330, which carries the resistance allele, exhibited significantly higher expression of Sobic.005G182400 during early infection (≤24 h). Co-expression network analysis identified that the module associated with Sobic.005G182400 was enriched in genes involved in endocytosis, autophagy, and vesicle transport. Gene regulatory network analysis further suggested that Sobic.005G182400 regulates genes required for BAK1/SERK4-mediated cell death via protein glycosylation. Together, these findings indicate that Sobic.005G182400 encodes a protein with similarity to Arabidopsis BAK1/SERK4 that enables pathogen-associated molecular patterns-triggered immunity and regulates cell death.
Collapse
Affiliation(s)
- Saddie Vela
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
| | - Emily S A Wolf
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
| | - Mingxi Zhou
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
| | - Alyssa Davis
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, U.S.A
| | - Zhonglin Mou
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, U.S.A
| | - Hugo E Cuevas
- U.S. Department of Agriculture, Agricultural Research Service, Tropical Agriculture Research Station, Mayagüez, PR, U.S.A
| | - Wilfred Vermerris
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, U.S.A
- University of Florida Genetics Institute, Gainesville, FL, U.S.A
| |
Collapse
|
2
|
Wang L, Ju C, Han C, Yu Z, Bai MY, Wang C. The interaction of nutrient uptake with biotic and abiotic stresses in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:455-487. [PMID: 39783785 DOI: 10.1111/jipb.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025]
Abstract
Plants depend heavily on efficient nutrient uptake and utilization for optimal growth and development. However, plants are constantly subjected to a diverse array of biotic stresses, such as pathogen infections, insect pests, and herbivory, as well as abiotic stress like drought, salinity, extreme temperatures, and nutrient imbalances. These stresses significantly impact the plant's ability to take up nutrient and use it efficiency. Understanding how plants maintain nutrient uptake and use efficiency under biotic and abiotic stress conditions is crucial for improving crop resilience and sustainability. This review explores the recent advancements in elucidating the mechanisms underlying nutrient uptake and utilization efficiency in plants under such stress conditions. Our aim is to offer a comprehensive perspective that can guide the breeding of stress-tolerant and nutrition-efficient crop varieties, ultimately contributing to the advancement of sustainable agriculture.
Collapse
Affiliation(s)
- Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanfeng Ju
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhenghao Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Cun Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
3
|
Wang Y, Li H, Lin J, Li Y, Zhang K, Li H, Fu Q, Jiang Y. Engineering nanozyme immunomodulator with magnetic targeting effect for cascade-enzyodynamic and ultrasound-reinforced metallo-immunotherapy in prostate carcinoma. Nat Commun 2025; 16:1876. [PMID: 39987131 PMCID: PMC11846840 DOI: 10.1038/s41467-025-57190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Conventional immunotherapy exhibits low response rates due to the immunosuppressive tumor microenvironment (TME). To overcome this limitation, this study introduces ZFPG nanoparticles (ZFPG NPs) with ZnFe2O4@Pt cores and glucose oxidase (GOx) shells. The ZFPG NPs possess five-enzyme activities, good sonosensitivity, and remarkable magnetic targeting properties, which facilitate sono-metallo-immunotherapy for prostate cancer treatment in male mice. Specifically, the magnetic targeting ability effectively improves their accumulation in tumors while still showing enrichment in the liver and kidneys. The multienzyme cascade catalysis and sonosensitivity of these NPs effectively deplete glutathione and glucose, and enhance the generation and utilization of H2O2, thereby inducing multiple ROS bursts. Furthermore, these comprehensive effects up-regulate the HMOX1 to promote the Fe2+ and lipid peroxides accumulation, thereby inducing immunogenic ferroptosis. This strategy facilitates anti-tumor immunity by ameliorating the immunosuppressive TME and inhibiting lung metastatic progression. This joint warfare strategy offers a powerful solution to address conventional immunotherapy limitations.
Collapse
Affiliation(s)
- Yandong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| | - Haodong Li
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, P. R. China
| | - Junyang Lin
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, P. R. China
| | - Yutang Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, P. R. China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, P. R. China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, P. R. China.
- Key Laboratory of Urinary Diseases in Universities of Shandong, Shandong First Medical University, Jinan, P. R. China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, P. R. China.
| |
Collapse
|
4
|
Luo L, Cui Y, Ouyang N, Huang S, Gong X, Wei L, Zou B, Hua J, Lu S. Tolerance to multiple abiotic stresses is mediated by interacting CNGC proteins that regulate Ca 2+ influx and stomatal movement in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:226-242. [PMID: 39776199 DOI: 10.1111/jipb.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Members of the cyclic nucleotide-gated channel (CNGC) proteins are reportedly involved in a variety of biotic and abiotic responses and stomatal movement. However, it is unknown if and how a single member could regulate multiple responses. Here we characterized three closely related CNGC genes in rice, OsCNGC14, OsCNGC15 and OsCNGC16, to determine whether they function in multiple abiotic stresses. The loss-of-function mutants of each of these three genes had reduced calcium ion (Ca2+) influx and slower stomatal closure in response to heat, chilling, drought and the stress hormone abscisic acid (ABA). These mutants also had reduced tolerance to heat, chilling and drought compared with the wild-type. Conversely, overexpression of OsCNGC16 led to a more rapid stomatal closure response to stresses and enhanced tolerance to heat, chilling and drought. The tight association of stomatal closure and stress tolerance strongly suggests that tolerance to multiple abiotic stresses conferred by these OsCNGC genes results at least partially from their regulation of stomatal movement. In addition, physical interactions were observed among the three OsCNGC proteins but not with a distantly related CNGC, suggesting the formation of hetero-oligomers among themselves. This study unveils the crucial role of OsCNGC14, 15 and 16 proteins in stomatal response and tolerance to multiple stresses, suggesting a mechanism of tolerance to multiple stresses that involves calcium influx and stomatal movement regulation.
Collapse
Affiliation(s)
- Lilin Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongmei Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Nana Ouyang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuying Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Gong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baohong Zou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, New York, USA
| | - Shan Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Song M, Yuan J, Zhang G, Sun M, Zhang Y, Su X, Lv R, Zhao Y, Shi Y, Zhao L. Mitochondrial transfer of drug-loaded artificial mitochondria for enhanced anti-Glioma therapy through synergistic apoptosis/ferroptosis/immunogenic cell death. Acta Biomater 2025; 193:514-530. [PMID: 39674237 DOI: 10.1016/j.actbio.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Mitochondrial targeting in gliomas represents a novel therapeutic strategy with significant potential to enhance drug sensitivity by effectively killing glioma cells at the mitochondrial level. In this study, we developed artificial mitochondria derived from mitochondrial membrane-based nanovesicles, enabling precise mitochondrial targeting of doxorubicin (Dox) to selectively eradicate cancer cells by amplifying multiple cell death pathways. It was found that Dox-encapsulating mitochondria-based nanovesicles (DOX-MitoNVs) exhibited an extraordinary ability to penetrate the blood-brain barrier (BBB), specifically targeting gliomas. By targeting mitochondria instead of locating at the nucleus, DOX-MitoNVs not only amplified Dox mediated apoptosis effects through the overloading of intracellular Ca2+ but also intensified ferroptosis by generating reactive oxygen species (ROS). Furthermore, DOX-MitoNVs demonstrated a significant ability to modulate the tumor immune microenvironment, thereby inducing pronounced immunogenic cell death (ICD) effects. In summary, it presents a novel therapeutic strategy utilizing DOX-MitoNVs for precise mitochondrial targeting in gliomas, enhancing drug sensitivity, inducing multiple cell death pathways, and modulating the tumor immune microenvironment to promote immunogenic cell death. STATEMENT OF SIGNIFICANCE: Mitochondrial targeting in gliomas is a promising therapeutic strategy that enhances drug sensitivity by exploiting glioma cells' mitochondrial vulnerabilities. We engineered mitochondrial membrane-based nanovesicles as artificial mitochondria for precise mitochondrial targeting of Dox. This approach facilitates selective cancer cell eradication and amplifies multiple cell death pathways alongside immunogenic chemotherapy. Notably, DOX-MitoNVs effectively cross the BBB and specifically target gliomas. By focusing on mitochondria, Dox induces apoptosis and intensifies ferroptosis through ROS generation. Additionally, DOX-MitoNVs can transform the tumor immune microenvironment, promoting ICD. Overall, DOX-MitoNVs offer a promising platform for enhanced glioma therapy.
Collapse
Affiliation(s)
- Mingzhu Song
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Jiayu Yuan
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Ge Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Mengdi Sun
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Ruizhen Lv
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yuting Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China; Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China; Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
6
|
Lv Y, Liu S, Ma Y, Hu L, Yan H. Analysis of CNGC Family Members in Citrus clementina (Hort. ex Tan.) by a Genome-Wide Approach. Int J Mol Sci 2025; 26:960. [PMID: 39940728 PMCID: PMC11817026 DOI: 10.3390/ijms26030960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The study focuses on the Cyclic nucleotide-gated ion channels (CNGCs) proteins in citrus, aiming to investigate their potential roles. A total of 33 CcCNGC proteins were identified and characterized in Citrus clementina using a genome-wide method. The study revealed that these proteins share a conserved CNGC domain structurally but exhibit significant differences in their primary sequence and motif composition. Phylogenetic analysis classified the CcCNGC proteins into 13 subgroups. The cis-elements present in all CcCNGCs promoters were identified and classified, and the number of elements was determined. The results suggested that these genes play important roles in citrus growth and development, as well as in response to biotic and abiotic stresses. Gene expression analysis further supported these findings, demonstrating that CNGC genes were responsive to various plant hormones and Phytophthora nicotianae infection, which causes citrus foot rot. Overall, the study indicated that members of the CcCNGC gene family exhibit structural and functional diversity. Further research is needed to validate the specific functions of individual family members and their roles in citrus physiology and response to stress conditions.
Collapse
Affiliation(s)
- Yuanda Lv
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.)
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China
| | - Shumei Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.)
| | - Yanyan Ma
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.)
| | - Lina Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.)
| | - Huaxue Yan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.)
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou 510640, China
| |
Collapse
|
7
|
Li T, Jia W, Li L, Xu S, Xu R. GhCNGC31 is critical for conferring resistance to Verticillium wilt in cotton. PLANT MOLECULAR BIOLOGY 2024; 115:2. [PMID: 39666136 DOI: 10.1007/s11103-024-01533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
In the past decades, cyclic nucleotide-gated ion channels (CNGCs) have been extensively studied in diploid species Arabidopsis thaliana. However, the functional diversification of CNGCs in crop plants, mostly polyploid, remains poorly understood. In allotetraploid Upland cotton (Gossypium hirsutum), GhCNGC31 is one of the multiple orthologs of AtCNGC2, being present in the plasma membrane, capable of interacting with itself and binding to calmodulins and cyclic nucleotides. GhCNGC31 knockdown plants exhibited slight growth inhibition, and became more susceptible to Verticillium dahliae infection, which was associated with the reduced lignin and flavonoid accumulation, impaired ROS (reactive oxygen species) burst, and down-regulation of defense-related genes PR1, JAZ2, LOX2, and RBOH10. RNA-Seq analysis identified 1817 differentially expressed genes from GhCNGC31 knockdown, of which 1184 (65%) were responsive to V. dahliae infection and accounted for 57% among a total of 2065 V. dahliae-responsive genes identified in this study. These GhCNGC31-regulated genes mainly function with cell wall organization and biogenesis, cellular carbohydrate metabolic or biosynthetic process, cellular component macromolecule biosynthetic process, and rhythmic process. They are significantly enriched in the pathways of plant MAPK signaling, plant-pathogen interaction, phenylpropanoid biosynthesis, and plant hormone signal transduction. A set of transcription factors (TFs) and resistance (R) genes are among the GhCNGC31-regulated genes, which are significantly over-represented with the TCP and WRKY TFs families, as well as with the R genes of T (TIR) and TNL (TIR-NB-LRR) classes. Together, our results unraveled a critical role of GhCNGC31 for conferring resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Tianming Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Jia
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shi Xu
- Henan Seed Industry Development Center, Zhengzhou, 450000, China
| | - Ruqiang Xu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Hastwell AH, Chu X, Liu Y, Ferguson BJ. The parallel narrative of RGF/GLV/CLEL peptide signalling. TRENDS IN PLANT SCIENCE 2024; 29:1342-1355. [PMID: 39322488 DOI: 10.1016/j.tplants.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Plant peptide families share distinct characteristics, and many members are in homologous signalling pathways controlling development and responses to external signals. The root meristem growth factor (RGF) peptides/GOLVEN (GLV)/CLAVATA3-ESR-related like (CLEL) are a family of short signalling peptides that are derived from a precursor protein and undergo post-translational modifications. Their role in root meristem development is well established and recent efforts have identified subtilase processing pathways and several downstream signalling components. This discovery has enabled the convergence of previously distinct pathways and enhanced our understanding of plant developmental processes. Here, we review the structure-function relationship of RGF peptides, the post-translational modification pathways, and the downstream signalling mechanisms and highlight components of these pathways that are known in non-RGF-mediated pathways.
Collapse
Affiliation(s)
- April H Hastwell
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Xitong Chu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhan Liu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
9
|
Zhou Z, Zhi T, Zou J, Chen G. Transcriptome analysis to identify genes related to programmed cell death resulted from manipulating of BnaFAH ortholog by CRISPR/Cas9 in Brassica napus. Sci Rep 2024; 14:26389. [PMID: 39488592 PMCID: PMC11531537 DOI: 10.1038/s41598-024-77877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) catalyzes the final step of the tyrosine degradation pathway. In this study, we isolated and characterized two homologous BnaFAH genes in Brassica napus L. variant Westar, and then used CRISPR/Cas9-mediated targeted mutagenesis to generate a series of transgene-free mutant lines either with single or double-null bnafah alleles. Among these mutant lines, the aacc (bnafah) double-null mutant line, rather than the aaCC (bnaa06fah) mutant line, exhibited programmed cell death (PCD) under short days (SD). Histochemical staining and content measurement confirmed that the accumulation of reactive oxygen species (ROS) in bnafah was significantly higher than that in bnaa06fah. To further elucidate the mechanism of PCD, we performed transcriptomic analyses of bnaa06fah and bnafah at different SD stages. A heatmap cluster of differentially expressed genes (DEGs) revealed that PCD may be related to various redox regulatory genes involved in antioxidant activity, ROS-responsive regulation and calcium signaling. Combined with the results of previous studies, our work revealed that the expression levels of BnaC04CAT2, BnaA09/C09SAL1, BnaA08/C08ACO2, BnaA07/C06ERO1, BnaA08ACA1, BnaC04BIK1, BnaA09CRK36 and BnaA03CPK4 were significantly different and that these genes might be candidate hub genes for PCD. Together, our results underscore the ability of different PCD phenotypes to alter BnaFAH orthologs through gene editing and further elucidated the molecular mechanisms of oxidative stress-induced PCD in plants.
Collapse
Affiliation(s)
- Zhou Zhou
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Tiantian Zhi
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China.
| | - Jie Zou
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Gang Chen
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| |
Collapse
|
10
|
Wang Y, Chi Q, Jia W, Zheng T, Li B, Li L, Li T, Gao R, Liu W, Ye S, Xu R, Zhang H. Genome Analysis of BnCNGC Gene Family and Function Exploration of BnCNGC57 in Brassica napus L. Int J Mol Sci 2024; 25:11359. [PMID: 39518912 PMCID: PMC11545589 DOI: 10.3390/ijms252111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The cyclic nucleotide-gated ion channel (CNGC), as a non-selective cation channel, plays a pivotal role in plant growth and stress response. A systematic analysis and identification of the BnCNGC gene family in Brassica napus is crucial for uncovering its biological functions and potential applications in plant science. In this study, we identified 61 BnCNGC members in the B. napus genome, which are phylogenetically similar to Arabidopsis and can be classified into Groups I-IV (with Group IV further subdivided into IV-a and IV-b). Collinearity analysis with other species provided insights into the evolution of BnCNGC. By homology modeling, we predicted the three-dimensional structure of BnCNGC proteins and analyzed cis-acting elements in their promoters, revealing diverse roles in hormone regulation, growth, and stress response. Notably, overexpression of BnCNGC57 (BnaC09g42460D) significantly increased seed size, possibly through regulating cell proliferation via the MAPK signaling pathway. Our findings contribute to a better understanding of the BnCNGC gene family and highlight the potential regulatory role of BnCNGC57 in the seed development of B. napus.
Collapse
Affiliation(s)
- Yue Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Qing Chi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Jia
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Tiantian Zheng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Binghua Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Lin Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Ting Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Rui Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenzhe Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shenglin Ye
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Ruqiang Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Hanfeng Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| |
Collapse
|
11
|
Peng Y, Ming Y, Jiang B, Zhang X, Fu D, Lin Q, Zhang X, Wang Y, Shi Y, Gong Z, Ding Y, Yang S. Differential phosphorylation of Ca2+-permeable channel CYCLIC NUCLEOTIDE-GATED CHANNEL20 modulates calcium-mediated freezing tolerance in Arabidopsis. THE PLANT CELL 2024; 36:4356-4371. [PMID: 38875155 PMCID: PMC11449002 DOI: 10.1093/plcell/koae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Plants respond to cold stress at multiple levels, including increasing cytosolic calcium (Ca2+) influx and triggering the expression of cold-responsive genes. In this study, we show that the Ca2+-permeable channel CYCLIC NUCLEOTIDE-GATED CHANNEL20 (CNGC20) positively regulates freezing tolerance in Arabidopsis (Arabidopsis thaliana) by mediating cold-induced Ca2+ influx. Moreover, we demonstrate that the leucine-rich repeat receptor-like kinase PLANT PEPTIDE CONTAINING SULFATED TYROSINE1 RECEPTOR (PSY1R) is activated by cold, phosphorylating and enhancing the activity of CNGC20. The psy1r mutant exhibits decreased cold-evoked Ca2+ influx and freezing tolerance. Conversely, COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1), a protein kinase that negatively regulates cold signaling, phosphorylates and facilitates the degradation of CNGC20 under prolonged periods of cold treatment, thereby attenuating freezing tolerance. This study thus identifies PSY1R and CRPK1 kinases that regulate CNGC20 activity and stability, respectively, thereby antagonistically modulating freezing tolerance in plants.
Collapse
Affiliation(s)
- Yue Peng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhang Ming
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bochen Jiang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiuyue Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Diyi Fu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qihong Lin
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Yanglin Ding
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Li ST, Kong WY, Chen JB, Hao DL, Guo HL. Genome-Wide Identification and Expression Analysis of the Cyclic Nucleotide-Gated Channel Gene Family in Zoysia japonica under Salt Stress. Int J Mol Sci 2024; 25:10114. [PMID: 39337599 PMCID: PMC11432434 DOI: 10.3390/ijms251810114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Salt stress severely inhibits plant growth. Understanding the mechanism of plant salt tolerance is highly important to improving plant salt tolerance. Previous studies have shown that nonselective cyclic nucleotide-gated ion channels (CNGCs) play an important role in plant salt tolerance. However, current research on CNGCs mainly focuses on CNGCs in glycophytic plants, and research on CNGCs in halophytes that exhibit special salt tolerance strategies is still scarce. This study used the halophilic plant Zoysia japonica, an excellent warm-season turfgrass, as the experimental material. Through bioinformatics analysis, 18 members of the CNGC family were identified in Zoysia japonica; they were designated ZjCNGC1 through ZjCNGC18 according to their scaffold-level chromosomal positions. ZjCNGCs are divided into four groups (I-IV), with the same groups having differentiated protein-conserved domains and gene structures. ZjCNGCs are unevenly distributed on 16 scaffold-level chromosomes. Compared with other species, the ZjCNGCs in Group III exhibit obvious gene expansion, mainly due to duplication of gene segments. The collinearity between ZjCNGCs, OsCNGCs, and SjCNGCs suggests that CNGCs are evolutionarily conserved among gramineous plants. However, the Group III ZjCNGCs are only partially collinear with OsCNGCs and SjCNGCs, implying that the expansion of Group III ZjCNGC genes may have been an independent event occurring in Zoysia japonica. Protein interaction prediction revealed that ZjCNGCs, calcium-dependent protein kinase, H+-ATPase, outwardly rectifying potassium channel protein, and polyubiquitin 3 interact with ZjCNGCs. Multiple stress response regulatory elements, including those involved in salt stress, are present on the ZjCNGC promoter. The qPCR results revealed differences in the expression patterns of ZjCNGCs in different parts of the plant. Under salt stress conditions, the expression of ZjCNGCs was significantly upregulated in roots and leaves, with ZjCNGC8 and ZjCNGC13 showing the greatest increase in expression in the roots. These results collectively suggest that ZjCNGCs play an important role in salt tolerance and that their expansion into Group III may be a special mechanism underlying the salt tolerance of Zoysia japonica.
Collapse
Affiliation(s)
- Shu-Tong Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Wei-Yi Kong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jing-Bo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
13
|
Yu X, Niu H, Liu C, Wang H, Yin W, Xia X. PTI-ETI synergistic signal mechanisms in plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2113-2128. [PMID: 38470397 PMCID: PMC11258992 DOI: 10.1111/pbi.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.
Collapse
Affiliation(s)
- Xiao‐Qian Yu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hao‐Qiang Niu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Chao Liu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| |
Collapse
|
14
|
Harshith CY, Pal A, Chakraborty M, Nair A, Raju S, Shivaprasad PV. Wound-induced small-peptide-mediated signaling cascade, regulated by OsPSKR, dictates balance between growth and defense in rice. Cell Rep 2024; 43:114515. [PMID: 39003743 DOI: 10.1016/j.celrep.2024.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Wounding is a general stress in plants that results from various pest and pathogenic infections in addition to environment-induced mechanical damages. Plants have sophisticated molecular mechanisms to recognize and respond to wounding, with those of monocots being distinct from dicots. Here, we show the involvement of two distinct categories of temporally separated, endogenously derived peptides, namely, plant elicitor peptides (PEPs) and phytosulfokine (PSK), mediating wound responses in rice. These peptides trigger a dynamic signal relay in which a receptor kinase involved in PSK perception named OsPSKR plays a major role. Perturbation of OsPSKR expression in rice leads to compromised development and constitutive autoimmune phenotypes. OsPSKR regulates the transitioning of defense to growth signals upon wounding. OsPSKR displays mutual antagonism with the OsPEPR1 receptor involved in PEP perception. Collectively, our work indicates the presence of a stepwise peptide-mediated signal relay that regulates the transition from defense to growth upon wounding in monocots.
Collapse
Affiliation(s)
- Chitthavalli Y Harshith
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Avik Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Monoswi Chakraborty
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Steffi Raju
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India; SASTRA University, Thirumalaisamudram, Thanjavur 613401, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
15
|
Li L, Liu J, Zhou JM. From molecule to cell: the expanding frontiers of plant immunity. J Genet Genomics 2024; 51:680-690. [PMID: 38417548 DOI: 10.1016/j.jgg.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
In recent years, the field of plant immunity has witnessed remarkable breakthroughs. During the co-evolution between plants and pathogens, plants have developed a wealth of intricate defense mechanisms to safeguard their survival. Newly identified immune receptors have added unexpected complexity to the surface and intracellular sensor networks, enriching our understanding of the ongoing plant-pathogen interplay. Deciphering the molecular mechanisms of resistosome shapes our understanding of these mysterious molecules in plant immunity. Moreover, technological innovations are expanding the horizon of the plant-pathogen battlefield into spatial and temporal scales. While the development provides new opportunities for untangling the complex realm of plant immunity, challenges remain in uncovering plant immunity across spatiotemporal dimensions from both molecular and cellular levels.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China.
| |
Collapse
|
16
|
Wang W, Cheng HY, Zhou JM. New insight into Ca 2+ -permeable channel in plant immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:623-631. [PMID: 38289015 DOI: 10.1111/jipb.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024]
Abstract
Calcium ions (Ca2+ ) are crucial intracellular second messengers in eukaryotic cells. Upon pathogen perception, plants generate a transient and rapid increase in cytoplasmic Ca2+ levels, which is subsequently decoded by Ca2+ sensors and effectors to activate downstream immune responses. The elevation of cytosolic Ca2+ is commonly attributed to Ca2+ influx mediated by plasma membrane-localized Ca2+ -permeable channels. However, the contribution of Ca2+ release triggered by intracellular Ca2+ -permeable channels in shaping Ca2+ signaling associated with plant immunity remains poorly understood. This review discusses recent advances in understanding the mechanism underlying the shaping of Ca2+ signatures upon the activation of immune receptors, with particular emphasis on the identification of intracellular immune receptors as non-canonical Ca2+ -permeable channels. We also discuss the involvement of Ca2+ release from the endoplasmic reticulum in generating Ca2+ signaling during plant immunity.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang-Yuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
17
|
Wang C, Luan S. Calcium homeostasis and signaling in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102485. [PMID: 38043138 DOI: 10.1016/j.pbi.2023.102485] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Calcium (Ca2+) signaling consists of three steps: (1) initiation of a change in cellular Ca2+ concentration in response to a stimulus, (2) recognition of the change through direct binding of Ca2+ by its sensors, (3) transduction of the signal to elicit downstream responses. Recent studies have uncovered a central role for Ca2+ signaling in both layers of immune responses initiated by plasma membrane (PM) and intracellular receptors, respectively. These advances in our understanding are attributed to several lines of research, including invention of genetically-encoded Ca2+ reporters for the recording of intracellular Ca2+ signals, identification of Ca2+ channels and their gating mechanisms, and functional analysis of Ca2+ binding proteins (Ca2+ sensors). This review analyzes the recent literature that illustrates the importance of Ca2+ homeostasis and signaling in plant innate immunity, featuring intricate Ca2+dependent positive and negative regulations.
Collapse
Affiliation(s)
- Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Zhang C, Xie Y, He P, Shan L. Unlocking Nature's Defense: Plant Pattern Recognition Receptors as Guardians Against Pathogenic Threats. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:73-83. [PMID: 38416059 DOI: 10.1094/mpmi-10-23-0177-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Embedded in the plasma membrane of plant cells, receptor kinases (RKs) and receptor proteins (RPs) act as key sentinels, responsible for detecting potential pathogenic invaders. These proteins were originally characterized more than three decades ago as disease resistance (R) proteins, a concept that was formulated based on Harold Flor's gene-for-gene theory. This theory implies genetic interaction between specific plant R proteins and corresponding pathogenic effectors, eliciting effector-triggered immunity (ETI). Over the years, extensive research has unraveled their intricate roles in pathogen sensing and immune response modulation. RKs and RPs recognize molecular patterns from microbes as well as dangers from plant cells in initiating pattern-triggered immunity (PTI) and danger-triggered immunity (DTI), which have intricate connections with ETI. Moreover, these proteins are involved in maintaining immune homeostasis and preventing autoimmunity. This review showcases seminal studies in discovering RKs and RPs as R proteins and discusses the recent advances in understanding their functions in sensing pathogen signals and the plant cell integrity and in preventing autoimmunity, ultimately contributing to a robust and balanced plant defense response. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Yingpeng Xie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
19
|
Lee S, Lee HY, Kang HJ, Seo YE, Lee JH, Choi D. Oomycete effector AVRblb2 targets cyclic nucleotide-gated channels through calcium sensors to suppress pattern-triggered immunity. THE NEW PHYTOLOGIST 2024; 241:1277-1291. [PMID: 38013595 DOI: 10.1111/nph.19430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Transient and rapid increase in cytosolic Ca2+ plays a crucial role in plant-pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Cyclic nucleotide-gated channels (CNGCs) have been implicated in mediating this Ca2+ influx; however, their regulatory mechanisms remain poorly understood. Here, we have found that AVRblb2 requires the calmodulin (CaM) and calmodulin-like (CML) proteins as co-factors to interact with the NbCNGCs, resulting in the formation of AVRblb2-CaM/CML-NbCNGCs complex. Furthermore, CaM and CML are dissociated from NbCNGC18 during PTI response to increase Ca2+ influx; however, Avrblb2 inhibits calcium channel activation by disrupting the release of CaM and CML from NbCNGC18. Following recognition of PAMP, NbCNGC18 forms active heteromeric channels with other NbCNGCs, which may give selectivity of CNGC complex against diverse signals for fine-tuning of cytosolic Ca2+ level to mediate appropriate responses. Silencing of multiple NbCNGCs compromised the function of AVRblb2 on the pathogenicity of Phytophthora infestans, confirming that AVRblb2 contributes to pathogen virulence by targeting CNGCs. Our findings provide new insights into the regulation of CNGCs in PTI and the role of pathogen effectors in manipulating host cell physiology to promote infection.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Horticultural Biotechnology, Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| | - Hye-Young Lee
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Hui Jeong Kang
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Ye-Eun Seo
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Horticultural Biotechnology, Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Doil Choi
- Plant Immunity Research Center, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
- Horticultural Biotechnology, Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
20
|
Li W, Li P, Deng Y, Situ J, He Z, Zhou W, Li M, Xi P, Liang X, Kong G, Jiang Z. A plant cell death-inducing protein from litchi interacts with Peronophythora litchii pectate lyase and enhances plant resistance. Nat Commun 2024; 15:22. [PMID: 38167822 PMCID: PMC10761943 DOI: 10.1038/s41467-023-44356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis). These proteins enhance plant susceptibility to oomycete pathogens in a PeL enzymatic activity-dependent manner. However, LcPIP1, a plant immune regulator secreted by litchi, binds to PlPeL1/PlPeL1-like, and attenuates PlPeL1/PlPeL1-like induced plant susceptibility to Phytophthora capsici. LcPIP1 also induces cell death and various immune responses in Nicotiana benthamiana. Conserved in plants, LcPIP1 homologs bear a conserved "VDMASG" motif and exhibit immunity-inducing activity. Furthermore, SERK3 interacts with LcPIP1 and is required for LcPIP1-induced cell death. NbPIP1 participates in immune responses triggered by the PAMP protein INF1. In summary, our study reveals the dual roles of PlPeL1/PlPeL1-like in plant-pathogen interactions: enhancing pathogen virulence through PeL enzymatic activity while also being targeted by LcPIP1, thus enhancing plant immunity.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhuoyuan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Wenzhe Zhou
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xiangxiu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
21
|
Peng S, Li P, Li T, Tian Z, Xu R. GhCNGC13 and 32 Act as Critical Links between Growth and Immunity in Cotton. Int J Mol Sci 2023; 25:1. [PMID: 38203172 PMCID: PMC10778622 DOI: 10.3390/ijms25010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cyclic nucleotide-gated ion channels (CNGCs) remain poorly studied in crop plants, most of which are polyploid. In allotetraploid Upland cotton (Gossypium hirsutum), silencing GhCNGC13 and 32 impaired plant growth and shoot apical meristem (SAM) development, while triggering plant autoimmunity. Both growth hormones (indole-3-acetic acid and gibberellin) and stress hormones (abscisic acid, salicylic acid, and jasmonate) increased, while leaf photosynthesis decreased. The silenced plants exhibited an enhanced resistance to Botrytis cinerea; however, Verticillium wilt resistance was weakened, which was associated with LIPOXYGENASE2 (LOX2) downregulation. Transcriptomic analysis of silenced plants revealed 4835 differentially expressed genes (DEGs) with functional enrichment in immunity and photosynthesis. These DEGs included a set of transcription factors with significant over-representation in the HSF, NAC, and WRKY families. Moreover, numerous members of the GhCNGC family were identified among the DEGs, which may indicate a coordinated action. Collectively, our results suggested that GhCNGC13 and 32 functionally link to photosynthesis, plant growth, and plant immunity. We proposed that GhCNGC13 and 32 play a critical role in the "growth-defense tradeoff" widely observed in crops.
Collapse
Affiliation(s)
- Song Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Panyu Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianming Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zengyuan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruqiang Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China; (S.P.); (P.L.); (T.L.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Zeng H, Zhu Q, Yuan P, Yan Y, Yi K, Du L. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:3680-3703. [PMID: 37575022 DOI: 10.1111/pce.14686] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Plants have evolved a set of finely regulated mechanisms to respond to various biotic stresses. Transient changes in intracellular calcium (Ca2+ ) concentration have been well documented to act as cellular signals in coupling environmental stimuli to appropriate physiological responses with astonishing accuracy and specificity in plants. Calmodulins (CaMs) and calmodulin-like proteins (CMLs) are extensively characterized as important classes of Ca2+ sensors. The spatial-temporal coordination between Ca2+ transients, CaMs/CMLs and their target proteins is critical for plant responses to environmental stresses. Ca2+ -loaded CaMs/CMLs interact with and regulate a broad spectrum of target proteins, such as ion transporters (including channels, pumps, and antiporters), transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biological functions. This review focuses on mechanisms underlying how CaMs/CMLs are involved in the regulation of plant responses to diverse biotic stresses including pathogen infections and herbivore attacks. Recent discoveries of crucial functions of CaMs/CMLs and their target proteins in biotic stress resistance revealed through physiological, molecular, biochemical, and genetic analyses have been described, and intriguing insights into the CaM/CML-mediated regulatory network are proposed. Perspectives for future directions in understanding CaM/CML-mediated signalling pathways in plant responses to biotic stresses are discussed. The application of accumulated knowledge of CaM/CML-mediated signalling in biotic stress responses into crop cultivation would improve crop resistance to various biotic stresses and safeguard our food production in the future.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
23
|
Wang D, Shi CL, Wu L, Wang Y. BTL2 phospho-switch surveils plant immunity. TRENDS IN PLANT SCIENCE 2023; 28:1337-1339. [PMID: 37690906 DOI: 10.1016/j.tplants.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor involved in the recognition of pattern-associated molecular patterns (PAMPs) via plasma membrane-localized pattern recognition receptors (PRRs). Absence of BAK1/SERK4 leads to the activation of autoimmunity in plants. Yu et al. recently showed that BAK-TO-LIFE 2 (BTL2) is required for the surveillance of BAK1/SERK4 integrity to maintain immune homeostasis.
Collapse
Affiliation(s)
- Dacheng Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Lin Shi
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yiming Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Fallahzadeh-Mamaghami V, Weber H, Kemmerling B. BAK-up: the receptor kinase BAK-TO-LIFE 2 enhances immunity when BAK1 is lacking. STRESS BIOLOGY 2023; 3:42. [PMID: 37747566 PMCID: PMC10519891 DOI: 10.1007/s44154-023-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
BRI1-ASSOCIATED KINASE 1 (BAK1/SERK3) and its closest homolog BAK1-LIKE 1 (BKK1/SERK4) are leucine-rich repeat receptor kinases (LRR-RKs) belonging to the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family. They act as co-receptors of various other LRR-RKs and participate in multiple signaling events by complexing and transphosphorylating ligand-binding receptors. Initially identified as the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) co-receptor, BAK1 also functions in plant immunity by interacting with pattern recognition receptors. Mutations in BAK1 and BKK1 cause severely stunted growth and cell death, characterized as autoimmune cell death. Several factors play a role in this type of cell death, including RKs and components of effector-triggered immunity (ETI) signaling pathways, glycosylation factors, ER quality control components, nuclear trafficking components, ion channels, and Nod-like receptors (NLRs). The Shan lab has recently discovered a novel RK BAK-TO-LIFE 2 (BTL2) that interacts with BAK1 and triggers cell death in the absence of BAK1 and BKK1. This RK compensates for the loss of BAK1-mediated pattern-triggered immunity (PTI) by activating phytocytokine-mediated immune and cell death responses.
Collapse
Affiliation(s)
| | - Hannah Weber
- ZMBP, University Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany
| | - Birgit Kemmerling
- ZMBP, University Tübingen, Auf der Morgenstelle 32, Tübingen, 72076, Germany.
| |
Collapse
|
25
|
Huang S, Jia A, Ma S, Sun Y, Chang X, Han Z, Chai J. NLR signaling in plants: from resistosomes to second messengers. Trends Biochem Sci 2023; 48:776-787. [PMID: 37394345 DOI: 10.1016/j.tibs.2023.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Nucleotide binding and leucine-rich repeat-containing receptors (NLRs) have a critical role in plant immunity through direct or indirect recognition of pathogen effectors. Recent studies have demonstrated that such recognition induces formation of large protein complexes called resistosomes to mediate NLR immune signaling. Some NLR resistosomes activate Ca2+ influx by acting as Ca2+-permeable channels, whereas others function as active NADases to catalyze the production of nucleotide-derived second messengers. In this review we summarize these studies on pathogen effector-induced assembly of NLR resistosomes and resistosome-mediated production of the second messengers of Ca2+ and nucleotide derivatives. We also discuss downstream events and regulation of resistosome signaling.
Collapse
Affiliation(s)
- Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Yue Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Center for Plant Biology, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany; School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
26
|
Jia A, Huang S, Ma S, Chang X, Han Z, Chai J. TIR-catalyzed nucleotide signaling molecules in plant defense. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102334. [PMID: 36702016 DOI: 10.1016/j.pbi.2022.102334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 06/10/2023]
Abstract
Toll and interleukin-1 receptor (TIR) domain is a conserved immune module in prokaryotes and eukaryotes. Signaling regulated by TIR-only proteins or TIR domain-containing intracellular immune receptors is critical for plant immunity. Recent studies demonstrated that TIR domains function as enzymes encoding a variety of activities, which manifest different mechanisms for regulation of plant immunity. These enzymatic activities catalyze metabolism of NAD+, ATP and other nucleic acids, generating structurally diversified nucleotide metabolites. Signaling roles have been revealed for some TIR enzymatic products that can act as second messengers to induce plant immunity. Herein, we summarize our current knowledge about catalytic production of these nucleotide metabolites and their roles in plant immune signaling. We also highlight outstanding questions that are likely to be the focus of future investigations about TIR-produced signaling molecules.
Collapse
Affiliation(s)
- Aolin Jia
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shijia Huang
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shoucai Ma
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Chang
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhifu Han
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, Cologne 50674, Germany; Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Cologne 50829, Germany.
| |
Collapse
|
27
|
Yu X, Xie Y, Luo D, Liu H, de Oliveira MVV, Qi P, Kim SI, Ortiz-Morea FA, Liu J, Chen Y, Chen S, Rodrigues B, Li B, Xue S, He P, Shan L. A phospho-switch constrains BTL2-mediated phytocytokine signaling in plant immunity. Cell 2023; 186:2329-2344.e20. [PMID: 37192618 PMCID: PMC10281528 DOI: 10.1016/j.cell.2023.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/10/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
Enabling and constraining immune activation is of fundamental importance in maintaining cellular homeostasis. Depleting BAK1 and SERK4, the co-receptors of multiple pattern recognition receptors (PRRs), abolishes pattern-triggered immunity but triggers intracellular NOD-like receptor (NLR)-mediated autoimmunity with an elusive mechanism. By deploying RNAi-based genetic screens in Arabidopsis, we identified BAK-TO-LIFE 2 (BTL2), an uncharacterized receptor kinase, sensing BAK1/SERK4 integrity. BTL2 induces autoimmunity through activating Ca2+ channel CNGC20 in a kinase-dependent manner when BAK1/SERK4 are perturbed. To compensate for BAK1 deficiency, BTL2 complexes with multiple phytocytokine receptors, leading to potent phytocytokine responses mediated by helper NLR ADR1 family immune receptors, suggesting phytocytokine signaling as a molecular link connecting PRR- and NLR-mediated immunity. Remarkably, BAK1 constrains BTL2 activation via specific phosphorylation to maintain cellular integrity. Thus, BTL2 serves as a surveillance rheostat sensing the perturbation of BAK1/SERK4 immune co-receptors in promoting NLR-mediated phytocytokine signaling to ensure plant immunity.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA; National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingpeng Xie
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Dexian Luo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hai Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Marcos V V de Oliveira
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Peipei Qi
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sung-Il Kim
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | - Jun Liu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Yafei Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | - Bárbara Rodrigues
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Bo Li
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA; National Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Plant Pathology, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ping He
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - Libo Shan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
28
|
Tipper E, Leitão N, Dangeville P, Lawson DM, Charpentier M. A novel mutant allele of AtCNGC15 reveals a dual function of nuclear calcium release in the root meristem. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2572-2584. [PMID: 36715622 PMCID: PMC10112680 DOI: 10.1093/jxb/erad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 06/06/2023]
Abstract
Calcium release to the nucleoplasm of root meristem cells was demonstrated to modulate root development. The calcium channel encoded by cyclic nucleotide-gated channel (CNGC) 15 localizes at the nuclear envelope in young Arabidopsis seedlings. In contrast, at later stages of root growth, overexpression analysis showed that AtCNGC15 can relocalize to the plasma membrane to mediate primary nitrate-induced gene expression. This raises the question as to whether nuclear localized AtCNGC15 is required for root apical meristem development in young Arabidopsis seedlings, and whether nitrate signalling occurs independently of nuclear localized AtCNGC15 at this developmental stage. In this study, we characterize a novel mutant allele of AtCNGC15 and demonstrate that the mutation of a highly conserved aspartic acid in the C-linker domain is sufficient to impair the gating of AtCNCG15. We demonstrate that AtCNGC15 mediates the nuclear calcium release that modulates root apical meristem development and nitrate-induced LBD39 expression. We also show that, in the presence of nitrate, the relocalization of AtCNGC15 at the plasma membrane occurs specifically in the columella cells. Our results further suggest that the induction of LBD37, LBD38, and LBD39 in the presence of nitrate is modulated by different inputs of cytoplasmic or nuclear calcium release.
Collapse
Affiliation(s)
- Emily Tipper
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | - Pierre Dangeville
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
29
|
He Y, Meng X. Dual function of the CHS3-CSA1 immune receptor pair. TRENDS IN PLANT SCIENCE 2023; 28:375-378. [PMID: 36804916 DOI: 10.1016/j.tplants.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) receptors mediate specific recognition of pathogen effectors to initiate effector-triggered immunity. Recently, studies by Schulze et al., Yang et al., and Gu et al. collectively show that the Arabidopsis (Arabidopsis thaliana) NLR pair CHS3-CSA1 acts through two distinct activation modes to recognize different pathogen effectors, thus revealing the dual function of the CHS3-CSA1 pair in plant disease resistance.
Collapse
Affiliation(s)
- Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
30
|
Tan YQ, Yang Y, Shen X, Zhu M, Shen J, Zhang W, Hu H, Wang YF. Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. THE PLANT CELL 2023; 35:239-259. [PMID: 36069643 PMCID: PMC9806652 DOI: 10.1093/plcell/koac274] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid (ABA)-activated inward Ca2+-permeable channels in the plasma membrane (PM) of guard cells are required for the initiation and regulation of ABA-specific cytosolic Ca2+ signaling and stomatal closure in plants. But the identities of the PM Ca2+ channels are still unknown. We hypothesized that the ABA-activated Ca2+ channels consist of multiple CYCLIC NUCLEOTIDE-GATED CHANNEL (CNGC) proteins from the CNGC family, which is known as a Ca2+-permeable channel family in Arabidopsis (Arabidopsis thaliana). In this research, we observed high expression of multiple CNGC genes in Arabidopsis guard cells, namely CNGC5, CNGC6, CNGC9, and CNGC12. The T-DNA insertional loss-of-function quadruple mutant cngc5-1 cngc6-2 cngc9-1 cngc12-1 (hereafter c5/6/9/12) showed a strong ABA-insensitive phenotype of stomatal closure. Further analysis revealed that ABA-activated Ca2+ channel currents were impaired, and ABA-specific cytosolic Ca2+ oscillation patterns were disrupted in c5/6/9/12 guard cells compared with in wild-type guard cells. All ABA-related phenotypes of the c5/6/9/12 mutant were successfully rescued by the expression of a single gene out of the four CNGCs under the respective native promoter. Thus, our findings reveal a type of ABA-activated PM Ca2+ channel comprising multiple CNGCs, which is essential for ABA-specific Ca2+ signaling of guard cells and ABA-induced stomatal closure in Arabidopsis.
Collapse
Affiliation(s)
- Yan-Qiu Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Shen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meijun Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianlin Shen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
31
|
Guan F, Shi B, Zhang J, Wan X. Transcriptome analysis provides insights into lignin synthesis and MAPK signaling pathway that strengthen the resistance of bitter gourd (Momordica charantia) to Fusarium wilt. Genomics 2023; 115:110538. [PMID: 36494076 DOI: 10.1016/j.ygeno.2022.110538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fusarium wilt is a typical soil-borne disease caused by Fusarium oxysporum f. sp. momordicae (FOM) in bitter gourd. In this study, by comparing sequencing data at multiple time points and considering the difference between resistant (R) and susceptible (S) varieties, differentially expressed genes were screened out. Short time-series expression miner analysis revealed the upregulated expression trend of genes, which were enriched in phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase signaling pathway. Further, observation of the microstructure revealed that the R variety may form tyloses earlier than the S variety to prevent mycelium diffusion from the xylem vessel. After Fusarium wilt infection, the enzymatic activities of superoxide dismutase, peroxidase, phenylalanine ammonia lyase, and catalaseas well as levels of superoxide anion and malondialdehyde were increased in the R variety higher than those in the S variety. This study provides a reference to elucidate the disease resistance mechanism of bitter gourd.
Collapse
Affiliation(s)
- Feng Guan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| | - Bo Shi
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Jingyun Zhang
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Xinjian Wan
- Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
| |
Collapse
|
32
|
Jiang Y, Ding P. Calcium signaling in plant immunity: a spatiotemporally controlled symphony. TRENDS IN PLANT SCIENCE 2023; 28:74-89. [PMID: 36504136 DOI: 10.1016/j.tplants.2022.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Calcium ions (Ca2+) are prominent intracellular messengers in all eukaryotic cells. Recent studies have emphasized the crucial roles of Ca2+ in plant immunity. Here, we review the latest progress on the spatiotemporal control of Ca2+ function in plant immunity. We discuss discoveries of how Ca2+ influx is triggered upon the activation of immune receptors, how Ca2+-permeable channels are activated, how Ca2+ signals are decoded inside plant cells, and how these signals are switched off. Despite recent advances, many open questions remain and we highlight the existing toolkit and the new technologies to address the outstanding questions of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
33
|
Zhang J, Li Y, Bao Q, Wang H, Hou S. Plant elicitor peptide 1 fortifies root cell walls and triggers a systemic root-to-shoot immune signaling in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2022; 17:2034270. [PMID: 35164659 PMCID: PMC9176251 DOI: 10.1080/15592324.2022.2034270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Plant immunity is initiated by cell surface-localized receptors upon perception of pathogen-derived microbe or pathogen-associated molecular patterns (MAMPs/PAMPs), damage/danger-associated molecular patterns (DAMPs), and phytocytokines. Different patterns activate highly overlapping immune signaling at the early stage but divergent physiological responses at the late stage. Here, we indicate that plant elicitor peptide 1 (Pep1), a well-known DAMP, induces lignin and callose depositions, two types of late immune responses for strengthening the plant cell wall. Pep1-induced lignin and callose depositions in Arabidopsis root rely on early signaling components for Pep1 perception and signaling propagation. The phytohormone jasmonic acid and ethylene differently regulate the Pep1-regulated cell wall consolidation. Pep1 application in root also triggers a systemic immune signaling in shoot, and reactive oxygen species (ROS) is essential for the signaling communication between root and shoot. Collectively, the study reveals that Pep1 strengthens cell walls in root and triggers a systemic immune signaling from root to shoot.
Collapse
Affiliation(s)
- Jie Zhang
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yuxi Li
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Qixin Bao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Hongbo Wang
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Shuguo Hou
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
34
|
Schulze S, Yu L, Hua C, Zhang L, Kolb D, Weber H, Ehinger A, Saile SC, Stahl M, Franz-Wachtel M, Li L, El Kasmi F, Nürnberger T, Cevik V, Kemmerling B. The Arabidopsis TIR-NBS-LRR protein CSA1 guards BAK1-BIR3 homeostasis and mediates convergence of pattern- and effector-induced immune responses. Cell Host Microbe 2022; 30:1717-1731.e6. [PMID: 36446350 DOI: 10.1016/j.chom.2022.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/14/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.
Collapse
Affiliation(s)
- Sarina Schulze
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Liping Yu
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Chenlei Hua
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Lisha Zhang
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Dagmar Kolb
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Hannah Weber
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Alexandra Ehinger
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Svenja C Saile
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Mark Stahl
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, 72076 Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Farid El Kasmi
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Nürnberger
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany; Department of Biochemistry, University of Johannesburg, Johannesburg 2001, South Africa
| | - Volkan Cevik
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Birgit Kemmerling
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
35
|
Wang Y, Shen C, Jiang Q, Wang Z, Gao C, Wang W. Seed priming with calcium chloride enhances stress tolerance in rice seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111381. [PMID: 35853520 DOI: 10.1016/j.plantsci.2022.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Calcium is a crucial second messenger in plant cells and contributes to plant resistance against biotic and abiotic stress. Plant defense priming with natural or synthetic compounds leads to quicker and stronger resistance responses. However, whether pretreatment of plant seeds with calcium could improve their resistance to stress remains poorly understood. In this study, we showed that rice seedlings grown from calcium chloride (CaCl2)-pretreated seeds displayed enhanced resistance to the rice blast fungus Magnaporthe oryzae and the rice bacterial pathogen Xanthomonas oryzae pv. Oryzae (Xoo). Seed priming with CaCl2 also led to enhanced rice tolerance to salt and cold. Furthermore, the reactive oxygen species (ROS) burst increased significantly upon immunity activation in the leaves of rice seedlings grown from CaCl2-pretreated seeds. Additionally, we analyzed the rice calmodulin-binding protein 60 (OsCBP60) family and found that there were 19 OsCBP60s in rice cultivar Zhonghua 11 (ZH11). The transcripts of several OsCBP60s were chitin- and M. oryzae-inducible, suggesting that they may contribute to rice resistance. Taken together, these data indicate that seed priming with CaCl2 can effectively enhance rice tolerance to multiple stresses, perhaps by boosting the burst of ROS, and OsCBP60 family members may also play an essential role in this process.
Collapse
Affiliation(s)
- Yameng Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengbin Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaochu Jiang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanchun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
36
|
Concerted actions of PRR- and NLR-mediated immunity. Essays Biochem 2022; 66:501-511. [PMID: 35762737 DOI: 10.1042/ebc20220067] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022]
Abstract
Plants utilise cell-surface immune receptors (functioning as pattern recognition receptors, PRRs) and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) to detect pathogens. Perception of pathogens by these receptors activates immune signalling and resistance to infections. PRR- and NLR-mediated immunity have primarily been considered parallel processes contributing to disease resistance. Recent studies suggest that these two pathways are interdependent and converge at multiple nodes. This review summarises and provides a perspective on these convergent points.
Collapse
|
37
|
Yang L, Zhao C, Bai Z, Yang L, Schranz ME, Liu S, Bouwmeester K. Comparative transcriptome analysis of compatible and incompatible Brassica napus- Xanthomonas campestris interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:960874. [PMID: 36105711 PMCID: PMC9465390 DOI: 10.3389/fpls.2022.960874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Black rot caused by the vascular pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) is widespread in Brassicaceae plants and an infectious disease that causes large yield losses in oil seed rape (Brassica napus L.). Improvement of resistance through breeding is a crucial strategy to prevent black rot disease in B. napus, but presently hampered by insufficient understanding of Xcc-Brassica interactions. This study compares two EMS-mutagenized B. napus lines that show contrasting resistance levels to their susceptible progenitor. Patterns of differential gene expression between these B. napus lines were evaluated at three time points post inoculation by comparative RNA-seq analysis. In line with the observed disease phenotypes, the susceptible line ZS9mXccS-1 displayed a steady amount of differentially expressed genes (DEGs) at different time points of infection, whereas the resistant line ZS9mXccR-1 displayed a gradual increase in DEGs throughout the course of infection. Weighted gene co-expression network analysis (WGCNA) pinpointed multiple defense-related hub genes with potential central roles in immunity, including the cell surface receptor genes CRK11 and BIR1, and the associated downstream regulatory genes WRKY11 and PBL30. KEGG analysis of DEGs belonging to two distinct co-expression modules revealed enriched pathways associated with defense, including Ca2+-signaling, receptor-mediated immunity, and phytohormone balance. Taken together, our comparative transcriptome analysis provides new avenues to unravel the mechanisms underlying black rot resistance in B. napus.
Collapse
Affiliation(s)
- Li Yang
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lingli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
38
|
Borhan MH, Van de Wouw AP, Larkan NJ. Molecular Interactions Between Leptosphaeria maculans and Brassica Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:237-257. [PMID: 35576591 DOI: 10.1146/annurev-phyto-021621-120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Canola is an important oilseed crop, providing food, feed, and fuel around the world. However, blackleg disease, caused by the ascomycete Leptosphaeria maculans, causes significant yield losses annually. With the recent advances in genomic technologies, the understanding of the Brassica napus-L. maculans interaction has rapidly increased, with numerous Avr and R genes cloned, setting this system up as a model organism for studying plant-pathogen associations. Although the B. napus-L. maculans interaction follows Flor's gene-for-gene hypothesis for qualitative resistance, it also puts some unique spins on the interaction. This review discusses the current status of the host-pathogen interaction and highlights some of the future gaps that need addressing moving forward.
Collapse
Affiliation(s)
- M Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| | | | - Nicholas J Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| |
Collapse
|
39
|
Zheng L, Yang P, Niu Z, Tian M, Wang J, Sun C, Zhang S, Peng Z, Zhu J, Yang Z. Dissecting in vivo responses of phytohormones to Alternaria solani infection reveals orchestration of JA- and ABA-mediated antifungal defenses in potato. HORTICULTURE RESEARCH 2022; 9:uhac188. [PMID: 37180032 PMCID: PMC10167417 DOI: 10.1093/hr/uhac188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Affiliation(s)
- Lijia Zheng
- Hebei Agricultural University, College of Plant Protection, Baoding, Hebei, China, 071000
| | - Pan Yang
- Hebei Agricultural University, College of Plant Protection, Baoding, Hebei, China, 071000
| | - Zijian Niu
- Hebei Agricultural University, College of Plant Protection, Baoding, Hebei, China, 071000
| | - Mengjun Tian
- Hebei Agricultural University, College of Plant Protection, Baoding, Hebei, China, 071000
| | - Jinhui Wang
- Hebei Agricultural University, College of Plant Protection, Baoding, Hebei, China, 071000
| | - Chaofei Sun
- Hebei Agricultural University, College of Plant Protection, Baoding, Hebei, China, 071000
| | - Shuo Zhang
- Hebei Agricultural University, College of Plant Protection, Baoding, Hebei, China, 071000
| | - Zechi Peng
- Hebei Agricultural University, College of Plant Protection, Baoding, Hebei, China, 071000
| | | | | |
Collapse
|
40
|
Li X, Zhang J, Shi H, Li B, Li J. Rapid responses: Receptor-like kinases directly regulate the functions of membrane transport proteins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1303-1309. [PMID: 35546272 DOI: 10.1111/jipb.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Receptor-like kinases (RLKs) are a large group of plant-specific transmembrane proteins mainly acting as receptors or co-receptors of various extracellular signals. They usually turn extracellular signals into intracellular responses via altering gene expression profiles. However, recent studies confirmed that many RLKs can physically interact with diverse membrane-localized transport proteins and regulate their activities for speedy responses in limited tissues or cells. In this minireview, we highlight recent discoveries regarding how RLKs can work with membrane transport proteins collaboratively and thereby trigger cellular responses in a precise and rapid manner. It is anticipated that such regulation broadly presents in plants and more examples will be gradually revealed when in-depth analyses are conducted for the functions of RLKs.
Collapse
Affiliation(s)
- Xiaopeng Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingjie Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hongyong Shi
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
41
|
Liang X, Zhang J. Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. STRESS BIOLOGY 2022; 2:25. [PMID: 37676353 PMCID: PMC10441961 DOI: 10.1007/s44154-022-00045-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/09/2022] [Indexed: 09/08/2023]
Abstract
As sessile organisms, plants have to cope with environmental change and numerous biotic and abiotic stress. Upon perceiving environmental cues and stress signals using different types of receptors, plant cells initiate immediate and complicated signaling to regulate cellular processes and respond to stress. Receptor-like cytoplasmic kinases (RLCKs) transduce signals from receptors to cellular components and play roles in diverse biological processes. Recent studies have revealed the hubbing roles of RLCKs in plant responses to biotic stress. Emerging evidence indicates the important regulatory roles of RLCKs in plant responses to abiotic stress, growth, and development. As a pivot of cellular signaling, the activity and stability of RLCKs are dynamically and tightly controlled. Here, we summarize the current understanding of how RLCKs regulate plant responses to biotic and abiotic stress.
Collapse
Affiliation(s)
- Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Jie Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
42
|
What's new in protein kinase/phosphatase signalling in the control of plant immunity? Essays Biochem 2022; 66:621-634. [PMID: 35723080 PMCID: PMC9528078 DOI: 10.1042/ebc20210088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
Abstract
Plant immunity is crucial to plant health but comes at an expense. For optimal plant growth, tight immune regulation is required to prevent unnecessary rechannelling of valuable resources. Pattern- and effector-triggered immunity (PTI/ETI) represent the two tiers of immunity initiated after sensing microbial patterns at the cell surface or pathogen effectors secreted into plant cells, respectively. Recent evidence of PTI-ETI cross-potentiation suggests a close interplay of signalling pathways and defense responses downstream of perception that is still poorly understood. This review will focus on controls on plant immunity through phosphorylation, a universal and key cellular regulatory mechanism. Rather than a complete overview, we highlight “what’s new in protein kinase/phosphatase signalling” in the immunity field. In addition to phosphoregulation of components in the pattern recognition receptor (PRR) complex, we will cover the actions of the major immunity-relevant intracellular protein kinases/phosphatases in the ‘signal relay’, namely calcium-regulated kinases (e.g. calcium-dependent protein kinases, CDPKs), mitogen-activated protein kinases (MAPKs), and various protein phosphatases. We discuss how these factors define a phosphocode that generates cellular decision-making ‘logic gates’, which contribute to signalling fidelity, amplitude, and duration. To underscore the importance of phosphorylation, we summarize strategies employed by pathogens to subvert plant immune phosphopathways. In view of recent game-changing discoveries of ETI-derived resistosomes organizing into calcium-permeable pores, we speculate on a possible calcium-regulated phosphocode as the mechanistic control of the PTI-ETI continuum.
Collapse
|
43
|
Ying S, Scheible W. A novel calmodulin-interacting Domain of Unknown Function 506 protein represses root hair elongation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:1796-1812. [PMID: 35312071 PMCID: PMC9314033 DOI: 10.1111/pce.14316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Domain of Unknown Function 506 proteins are ubiquitous in plants. The phosphorus (P) stress-inducible REPRESSOR OF EXCESSIVE ROOT HAIR GROWTH1 (AtRXR1) gene encodes the first characterized DUF506. AtRXR1 inhibits root hair elongation by interacting with RabD2c GTPase. However, functions of other P-responsive DUF506 genes are still missing. Here, we selected two additional P-inducible DUF506 genes for further investigation. The expression of both genes was induced by auxin. Under P-stress, At3g07350 gene expressed ubiquitously in seedlings, whereas At1g62420 (AtRXR3) expression was strongest in roots. AtRXR3 overexpressors and knockouts had shorter and longer root hairs, respectively. A functional AtRXR3-green fluorescent protein fusion localized to root epidermal cells. Chromatin immunoprecipitation and quantitative reverse-transcriptase-polymerase chain reaction revealed that AtRXR3 was transcriptionally activated by RSL4. Bimolecular fluorescence complementation and calmodulin (CaM)-binding assays showed that AtRXR3 interacted with CaM in the presence of Ca2+ . Moreover, cytosolic Ca2+ ([Ca2+ ]cyt ) oscillations in root hairs of rxr3 mutants exhibited elevated frequencies and dampened amplitudes compared to those of wild type. Thus, AtRXR3 is another DUF506 protein that attenuates P-limitation-induced root hair growth through mechanisms that involve RSL4 and interaction with CaM to modulate tip-focused [Ca2+ ]cyt oscillations.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLCArdmoreOklahomaUSA
| | | |
Collapse
|
44
|
Köster P, DeFalco TA, Zipfel C. Ca 2+ signals in plant immunity. EMBO J 2022; 41:e110741. [PMID: 35560235 PMCID: PMC9194748 DOI: 10.15252/embj.2022110741] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
Calcium ions function as a key second messenger ion in eukaryotes. Spatially and temporally defined cytoplasmic Ca2+ signals are shaped through the concerted activity of ion channels, exchangers, and pumps in response to diverse stimuli; these signals are then decoded through the activity of Ca2+ -binding sensor proteins. In plants, Ca2+ signaling is central to both pattern- and effector-triggered immunity, with the generation of characteristic cytoplasmic Ca2+ elevations in response to potential pathogens being common to both. However, despite their importance, and a long history of scientific interest, the transport proteins that shape Ca2+ signals and their integration remain poorly characterized. Here, we discuss recent work that has both shed light on and deepened the mysteries of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Philipp Köster
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology and Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland.,The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| |
Collapse
|
45
|
Kim NH, Jacob P, Dangl JL. Con-Ca 2+ -tenating plant immune responses via calcium-permeable cation channels. THE NEW PHYTOLOGIST 2022; 234:813-818. [PMID: 35181918 PMCID: PMC9994437 DOI: 10.1111/nph.18044] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/06/2022] [Indexed: 05/24/2023]
Abstract
Calcium serves as a second messenger in a variety of developmental and physiological processes and has long been identified as important for plant immune responses. We discuss recent discoveries regarding plant immune-related calcium-permeable channels and how the two intertwined branches of the plant immune system are intricately linked to one another through calcium signalling. Cell surface immune receptors carefully tap the immense calcium gradient that exists between apoplast and cytoplasm in a short burst via tightly regulated plasma membrane (PM)-resident cation channels. Intracellular immune receptors form atypical calcium-permeable cation channels at the PM and mediate a prolonged calcium influx, overcoming the deleterious influence of pathogen effectors and enhancing plant immune responses.
Collapse
Affiliation(s)
- Nak Hyun Kim
- Department of Biology and Howard Hughes Medical InstituteUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Pierre Jacob
- Department of Biology and Howard Hughes Medical InstituteUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeffery L. Dangl
- Department of Biology and Howard Hughes Medical InstituteUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
46
|
Liu Z, Hou S, Rodrigues O, Wang P, Luo D, Munemasa S, Lei J, Liu J, Ortiz-Morea FA, Wang X, Nomura K, Yin C, Wang H, Zhang W, Zhu-Salzman K, He SY, He P, Shan L. Phytocytokine signalling reopens stomata in plant immunity and water loss. Nature 2022; 605:332-339. [PMID: 35508659 PMCID: PMC9710542 DOI: 10.1038/s41586-022-04684-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 03/24/2022] [Indexed: 02/02/2023]
Abstract
Stomata exert considerable effects on global carbon and water cycles by mediating gas exchange and water vapour1,2. Stomatal closure prevents water loss in response to dehydration and limits pathogen entry3,4. However, prolonged stomatal closure reduces photosynthesis and transpiration and creates aqueous apoplasts that promote colonization by pathogens. How plants dynamically regulate stomatal reopening in a changing climate is unclear. Here we show that the secreted peptides SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and the cognate receptor kinase PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) counter-regulate phytohormone abscisic acid (ABA)- and microbe-associated molecular pattern (MAMP)-induced stomatal closure. SCREWs sensed by NUT function as immunomodulatory phytocytokines and recruit SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors to relay immune signalling. SCREWs trigger the NUT-dependent phosphorylation of ABA INSENSITIVE 1 (ABI1) and ABI2, which leads to an increase in the activity of ABI phosphatases towards OPEN STOMATA 1 (OST1)-a key kinase that mediates ABA- and MAMP-induced stomatal closure5,6-and a reduction in the activity of S-type anion channels. After induction by dehydration and pathogen infection, SCREW-NUT signalling promotes apoplastic water loss and disrupts microorganism-rich aqueous habitats to limit pathogen colonization. The SCREW-NUT system is widely distributed across land plants, which suggests that it has an important role in preventing uncontrolled stomatal closure caused by abiotic and biotic stresses to optimize plant fitness.
Collapse
Affiliation(s)
- Zunyong Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Shuguo Hou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China.
| | - Olivier Rodrigues
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université Fédérale Toulouse Midi-Pyrénées, INP-PURPAN, Toulouse, France
| | - Ping Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Dexian Luo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Shintaro Munemasa
- Graduate School of Environmental & Life Science, Okayama University, Okayama, Japan
| | - Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | | - Xin Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Science, Shandong University, Qingdao, China
| | - Kinya Nomura
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Chuanchun Yin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Science, Shandong University, Qingdao, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
47
|
Xu G, Moeder W, Yoshioka K, Shan L. A tale of many families: calcium channels in plant immunity. THE PLANT CELL 2022; 34:1551-1567. [PMID: 35134212 PMCID: PMC9048905 DOI: 10.1093/plcell/koac033] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/26/2022] [Indexed: 05/24/2023]
Abstract
Plants launch a concerted immune response to dampen potential infections upon sensing microbial pathogen and insect invasions. The transient and rapid elevation of the cytosolic calcium concentration [Ca2+]cyt is among the essential early cellular responses in plant immunity. The free Ca2+ concentration in the apoplast is far higher than that in the resting cytoplasm. Thus, the precise regulation of calcium channel activities upon infection is the key for an immediate and dynamic Ca2+ influx to trigger downstream signaling. Specific Ca2+ signatures in different branches of the plant immune system vary in timing, amplitude, duration, kinetics, and sources of Ca2+. Recent breakthroughs in the studies of diverse groups of classical calcium channels highlight the instrumental role of Ca2+ homeostasis in plant immunity and cell survival. Additionally, the identification of some immune receptors as noncanonical Ca2+-permeable channels opens a new view of how immune receptors initiate cell death and signaling. This review aims to provide an overview of different Ca2+-conducting channels in plant immunity and highlight their molecular and genetic mode-of-actions in facilitating immune signaling. We also discuss the regulatory mechanisms that control the stability and activity of these channels.
Collapse
Affiliation(s)
- Guangyuan Xu
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
- Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
48
|
Yang F, Miao Y, Liu Y, Botella JR, Li W, Li K, Song CP. Function of Protein Kinases in Leaf Senescence of Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864215. [PMID: 35548290 PMCID: PMC9083415 DOI: 10.3389/fpls.2022.864215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is an evolutionarily acquired process and it is critical for plant fitness. During senescence, macromolecules and nutrients are disassembled and relocated to actively growing organs. Plant leaf senescence process can be triggered by developmental cues and environmental factors, proper regulation of this process is essential to improve crop yield. Protein kinases are enzymes that modify their substrates activities by changing the conformation, stability, and localization of those proteins, to play a crucial role in the leaf senescence process. Impressive progress has been made in understanding the role of different protein kinases in leaf senescence recently. This review focuses on the recent progresses in plant leaf senescence-related kinases. We summarize the current understanding of the function of kinases on senescence signal perception and transduction, to help us better understand how the orderly senescence degeneration process is regulated by kinases, and how the kinase functions in the intricate integration of environmental signals and leaf age information.
Collapse
Affiliation(s)
- Fengbo Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuyue Liu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
49
|
Jiang S, Wei J, Li N, Wang Z, Zhang Y, Xu R, Zhou L, Huang X, Wang L, Guo S, Wang Y, Song CP, Qian W, Li Y. The UBP14-CDKB1;1-CDKG2 cascade controls endoreduplication and cell growth in Arabidopsis. THE PLANT CELL 2022; 34:1308-1325. [PMID: 34999895 PMCID: PMC8972217 DOI: 10.1093/plcell/koac002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 05/31/2023]
Abstract
Endoreduplication, a process in which DNA replication occurs in the absence of mitosis, is found in all eukaryotic kingdoms, especially plants, where it is assumed to be important for cell growth and cell fate maintenance. However, a comprehensive understanding of the mechanism regulating endoreduplication is still lacking. We previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, acts upstream of CYCLIN-DEPENDENT KINASE B1;1 (CDKB1;1) to influence endoreduplication and cell growth in Arabidopsis thaliana. The da3-1 mutant possesses large cotyledons with enlarged cells due to high ploidy levels. Here, we identified a suppressor of da3-1 (SUPPRESSOR OF da3-1 6; SUD6), encoding CYCLIN-DEPENDENT KINASE G2 (CDKG2), which promotes endoreduplication and cell growth. CDKG2/SUD6 physically associates with CDKB1;1 in vivo and in vitro. CDKB1;1 directly phosphorylates SUD6 and modulates its stability. Genetic analysis indicated that SUD6 acts downstream of DA3 and CDKB1;1 to control ploidy level and cell growth. Thus, our study establishes a regulatory cascade for UBP14/DA3-CDKB1;1-CDKG2/SUD6-mediated control of endoreduplication and cell growth in Arabidopsis.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinwei Wei
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhibiao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yilan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
50
|
Li Y, Tang Z, Pan Z, Wang R, Wang X, Zhao P, Liu M, Zhu Y, Liu C, Wang W, Liang Q, Gao J, Yu Y, Li Z, Lei B, Sun J. Calcium-Mobilizing Properties of Salvia miltiorrhiza-Derived Carbon Dots Confer Enhanced Environmental Adaptability in Plants. ACS NANO 2022; 16:4357-4370. [PMID: 35200008 DOI: 10.1021/acsnano.1c10556] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomass-derived carbon dots (CDs) are promising nanotools for agricultural applications and function as a reactive oxygen species (ROS) scavenger to alleviate plant oxidative stress under adverse environments. Nevertheless, plants need ROS burst to fully activate Ca2+-regulated defensive signaling pathway. The underlying mechanism of CDs to improve plant environmental adaptability without ROS is largely unknown. Here, Salvia miltiorrhiza-derived CDs triggered ROS-independent Ca2+ mobilization in plant roots. Mechanistic investigation attributed this function mainly to the hydroxyl and carboxyl groups on CDs. CDs-triggered Ca2+ mobilization was found to be dependent on the production of cyclic nucleotides and cyclic nucleotide-gated ion channels. Lectin receptor kinases were verified as essential for this Ca2+ mobilization. CDs hydroponic application promoted Ca2+ signaling and plant environmental adaptability under salinity and nutrient-deficient conditions. All these findings uncover that CDs have a Ca2+-mobilizing property and thus can be used as a simultaneous Ca2+ signaling amplifier and ROS scavenger for crop improvement.
Collapse
Affiliation(s)
- Yanjuan Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Zhiyuan Pan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Ruigang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiao Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Peng Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Ming Liu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China
| | - Yixia Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Chong Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Weichi Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Qiang Liang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jia Gao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|