1
|
Singh VK, Seed TM. The potential value of 5-androstenediol in countering acute radiation syndrome. Drug Discov Today 2024; 29:103856. [PMID: 38097137 DOI: 10.1016/j.drudis.2023.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair. The drug has been evaluated clinically for its pharmacokinetics and safety. The United States Food and Drug Administration granted investigational new drug status to its injectable depot formulation (NEUMUNE). Its safety and efficacy profiles make it an attractive candidate for further development as a radiation countermeasure.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Shrum SA, Nukala U, Shrimali S, Pineda EN, Krager KJ, Thakkar S, Jones DE, Pathak R, Breen PJ, Aykin-Burns N, Compadre CM. Tocotrienols Provide Radioprotection to Multiple Organ Systems through Complementary Mechanisms of Antioxidant and Signaling Effects. Antioxidants (Basel) 2023; 12:1987. [PMID: 38001840 PMCID: PMC10668991 DOI: 10.3390/antiox12111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Tocotrienols have powerful radioprotective properties in multiple organ systems and are promising candidates for development as clinically effective radiation countermeasures. To facilitate their development as clinical radiation countermeasures, it is crucial to understand the mechanisms behind their powerful multi-organ radioprotective properties. In this context, their antioxidant effects are recognized for directly preventing oxidative damage to cellular biomolecules from ionizing radiation. However, there is a growing body of evidence indicating that the radioprotective mechanism of action for tocotrienols extends beyond their antioxidant properties. This raises a new pharmacological paradigm that tocotrienols are uniquely efficacious radioprotectors due to a synergistic combination of antioxidant and other signaling effects. In this review, we have covered the wide range of multi-organ radioprotective effects observed for tocotrienols and the mechanisms underlying it. These radioprotective effects for tocotrienols can be characterized as (1) direct cytoprotective effects, characteristic of the classic antioxidant properties, and (2) other effects that modulate a wide array of critical signaling factors involved in radiation injury.
Collapse
Affiliation(s)
- Stephen A. Shrum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| | - Ujwani Nukala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Shivangi Shrimali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Edith Nathalie Pineda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Kimberly J. Krager
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Shraddha Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Darin E. Jones
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Philip J. Breen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (U.N.); (S.S.); (E.N.P.); (K.J.K.); (S.T.); (D.E.J.); (R.P.); (P.J.B.); (N.A.-B.)
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA
| |
Collapse
|
3
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
4
|
Bahrami Asl F, Islami-seginsara M, Ebrahimi Kalan M, Hemmatjo R, Hesam M, Shafiei-Irannejad V. Exposure to ionizing radiations and changes in blood cells and interleukin-6 in radiation workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35757-35768. [PMID: 36538225 PMCID: PMC9764314 DOI: 10.1007/s11356-022-24652-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Long-term exposure to ionizing radiation (IR) can cause dire health consequences even less than the dose limits. Previous biomonitoring studies have focused more on complete blood counts (CBCs), with non-coherent results. In this study, we aimed to investigate the association between exposure to IR and cytokine interleukin-6 (IL-6) along with hematological parameters in Tabriz megacity's radiation workers. In this hospital-based study, blood samples were taken from 33 radiation workers (exposed group) and 34 non-radiation workers (control group) in 4 hospitals. Absorbed radiation dose was measured by a personal film badge dosimeter in radiation workers. The studied biomarkers and all of the selected covariates were measured and analyzed using adjusted multiple linear regression models. The exposed doses for all radiation workers were under the dose limits (overall mean = 1.18 mSv/year). However, there was a significant association between exposure to ionizing radiation and IL-6 (49.78 vs 36.17; t = 2.4; p = 0.02) and eosinophils (0.17 vs 0.14; t = 2.02; p = 0.049). The difference between the mean of the other biomarkers in radiation workers was not statistically significant compared to the control group. This study demonstrated that long-term exposure to ionizing radiation, even under the dose limits, is related to a significantly increased level of some blood biomarkers (Il-6 and eosinophil) that, in turn, can cause subsequent health effects such as cancer.
Collapse
Affiliation(s)
- Farshad Bahrami Asl
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Islami-seginsara
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Ebrahimi Kalan
- Department of Health Behavior, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Rasoul Hemmatjo
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mousa Hesam
- Radiation Health Unit, Department of Environmental Health Engineering, Health Vice-Chancellor, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
6
|
Dragojevic S, Ji J, Singh PK, Connors MA, Mutter RW, Lester SC, Talele SM, Zhang W, Carlson BL, Remmes NB, Park SS, Elmquist WF, Krishnan S, Tryggestad EJ, Sarkaria JN. Preclinical Risk Evaluation of Normal Tissue Injury With Novel Radiosensitizers. Int J Radiat Oncol Biol Phys 2021; 111:e54-e62. [PMID: 34400266 PMCID: PMC8764622 DOI: 10.1016/j.ijrobp.2021.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Genotoxic damage induced by radiation triggers a highly coordinated DNA damage response, and molecular inhibitors of key nodes within this complex response network can profoundly enhance the antitumor efficacy of radiation. This is especially true for drugs targeting the catalytic subunit of DNA-dependent protein kinase, which is a core component of the nonhomologous end-joining DNA repair pathway, and ataxia telangiectasia mutated, which coordinates cell cycle arrest, apoptosis, and DNA repair functionalities after radiation exposure. Unlike the more modest in vitro radiosensitizing effects seen with classic sensitizing agents such as cisplatin, 5-fluorouracil, or taxanes, DNA-dependent protein kinase or ataxia telangiectasia mutated inhibitors provide much more robust sensitizing effects in vitro, as might be anticipated from targeting these key DNA repair modulators. However, patients with homozygous inactivating mutations of ataxia telangiectasia mutated or mice with homozygous defects in DNA-dependent protein kinase (severe combined immunodeficiency) have profoundly enhanced acute normal tissue radiation reactions. Therefore, there is significant potential that the combination of small molecule inhibitors of these kinases with radiation could cause similar dose-limiting acute normal tissue toxicities. Similarly, although less understood, inhibition of these DNA repair response pathways could markedly increase the risk of late radiation toxicities. Because these potent radiosensitizers could be highly useful to improve local control of otherwise radiation-resistant tumors, understanding the potential for elevated risks of radiation injury is essential for optimizing therapeutic ratio and developing safe and informative clinical trials. In this review, we will discuss 2 straightforward models to assess the potential for enhanced mucosal toxicity in the oral cavity and small intestine established in our laboratories. We also will discuss similar strategies for evaluating potential drug-radiation interactions with regard to increased risks of debilitating late effects.
Collapse
Affiliation(s)
- Sonja Dragojevic
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jianxiong Ji
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pankaj K Singh
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | | | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Surabhi M Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
7
|
Nemec-Bakk AS, Sridharan V, Landes RD, Singh P, Cao M, Seawright JW, Liu X, Zheng G, Dominic P, Pathak R, Boerma M. Mitigation of late cardiovascular effects of oxygen ion radiation by γ-tocotrienol in a mouse model. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:43-50. [PMID: 34689949 PMCID: PMC8548672 DOI: 10.1016/j.lssr.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/29/2021] [Indexed: 05/14/2023]
Abstract
PURPOSE While there is concern about degenerative tissue effects of exposure to space radiation during deep-space missions, there are no pharmacological countermeasures against these adverse effects. γ-Tocotrienol (GT3) is a natural form of vitamin E that has anti-oxidant properties, modifies cholesterol metabolism, and has anti-inflammatory and endothelial cell protective properties. The purpose of this study was to test whether GT3 could mitigate cardiovascular effects of oxygen ion (16O) irradiation in a mouse model. MATERIALS AND METHODS Male C57BL/6 J mice were exposed to whole-body 16O (600 MeV/n) irradiation (0.26-0.33 Gy/min) at doses of 0 or 0.25 Gy at 6 months of age and were followed up to 9 months after irradiation. Animals were administered GT3 (50 mg/kg/day s.c.) or vehicle, on Monday - Friday starting on day 3 after irradiation for a total of 16 administrations. Ultrasonography was used to measure in vivo cardiac function and blood flow parameters. Cardiac tissue remodeling and inflammatory infiltration were assessed with histology and immunoblot analysis at 2 weeks, 3 and 9 months after radiation. RESULTS GT3 mitigated the effects of 16O radiation on cardiac function, the expression of a collagen type III peptide, and markers of mast cells, T-cells and monocytes/macrophages in the left ventricle. CONCLUSIONS GT3 may be a potential countermeasure against late degenerative tissue effects of high-linear energy transfer radiation in the heart.
Collapse
Affiliation(s)
- Ashley S Nemec-Bakk
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Preeti Singh
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maohua Cao
- College of Dentistry, Texas A&M University, Dallas TX, USA
| | | | - Xingui Liu
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - Paari Dominic
- Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
8
|
Gheita HA, El-Sabbagh WA, Abdelsalam RM, Attia AS, El-Ghazaly MA. Promising role of filgrastim and α-tocopherol succinate in amelioration of gastrointestinal acute radiation syndrome (GI-ARS) in mice. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1537-1550. [PMID: 31350581 DOI: 10.1007/s00210-019-01702-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
The protective role of α-tocopherol succinate (α-TCS) and the therapeutic efficacy of filgrastim were investigated in gastrointestinal acute radiation syndrome (GI-ARS) induced following 10 Gy whole-body γ-irradiation. Mice were randomly allocated into 5 groups: [1] normal-control, [2] irradiated-control, [3] subcutaneous (s.c.) injection of filgrastim (5 μg/kg/day) for 4 consecutive days given 1 h post-irradiation, [4] s.c. injection with α-TCS (400 mg/kg) 1 day prior to irradiation, [5] s.c. injection with α-TCS (400 mg/kg) 1 day prior to irradiation and filgrastim (5 μg/kg/day) for 4 consecutive days 1 h post-irradiation. Histopathological analysis, serum citrulline level, intestinal interleukin-1β (IL-1β), reduced glutathione (GSH), and malondialdehyde (MDA) contents as well as myeloperoxidase (MPO) activity were measured. Intestinal caspase-3, p53, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) immunopositivity were examined. In irradiated-control, MDA increased (249%) and GSH decreased (25%) compared to normal and were unaffected by filgrastim. α-TCS alone significantly reduced MDA (84.5%) and normalized GSH. The combination significantly reduced MDA (59%) and dramatically increased GSH (1573%), pointing to a possible synergistic action. In irradiated-control, MPO and IL-1β significantly increased (111% and 613%, respectively) compared to normal-control and both were significantly decreased in all treated groups. Compared to normal-control, citrulline significantly declined (68%) in irradiated-control; a significant elevation was achieved by treatments with α-TCS alone or combined with filgrastim (88% and 94%, respectively). The combination therapy significantly decreased the degree of irradiation-induced injury of the epithelium and cellular infiltration and showed the lowest histopathological scoring compared to the other groups (p ≤ 0.05). In irradiated-control, immune-reactive expressions of iNOS, COX-2, caspase-3, and p53 were remarkable (18.62%, 34.27%, 31.19%, and 27.44%, respectively) and after combination therapy were reduced (1.04%, 22.39%, 8.76%, and 4.91%, respectively). The current findings represent a first-hand strategy in dealing with GI-ARS with a potential preference to using a combined therapy of filgrastim and α-TCS.
Collapse
Affiliation(s)
- Heba A Gheita
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt.
| | - Walaa A El-Sabbagh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amina S Attia
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo, Egypt
| |
Collapse
|
9
|
17α-Ethinyl-androst-5-ene-3β, 17β-diol, a Novel Potent Oral Radioprotective Agent, Confers Radioprotection of Hematopoietic Stem and Progenitor Cells in a Granulocyte Colony-Stimulating Factor-Independent Manner. Int J Radiat Oncol Biol Phys 2018; 103:217-228. [PMID: 30103023 DOI: 10.1016/j.ijrobp.2018.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/18/2018] [Accepted: 08/01/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE The risk of radiation exposure is considered to have increased in recent years. For convenience and simple administration, development of an effective orally administered radioprotective agent is highly desirable. The steroid 5-androstene-3β, 17β-diol (5-AED) has been evaluated as both a radioprotector and a radiomitigator in mice and nonhuman primates; however, poor oral bioavailability has limited its development. A variant compound-17α-ethinyl-androst-5-ene-3β, 17β-diol (EAD)-exhibits significant oral bioavailability. We investigated the radioprotective effects of EAD via oral administration in mice. METHODS AND MATERIALS Survival assays were performed in lethally (9.0-10.0 Gy) irradiated mice. Peripheral blood cell counts were monitored in lethally (9.5 Gy) or sublethally (6.5 Gy) irradiated mice. We performed histologic analysis of bone marrow (BM) and frequency and functional analysis of hematopoietic stem and progenitor cells in mice irradiated with 6.5 Gy. To investigate multilineage engraftment of irradiated hematopoietic stem cells after BM transplantation, competitive repopulation assays were conducted. Plasma granulocyte colony-stimulating factor was measured by enzyme-linked immunosorbent assay. RESULTS Oral administration of EAD on 3 consecutive days before irradiation conferred 100% survival in mice, against otherwise 100% death, at a 9.5-Gy lethal dose of total body irradiation. EAD ameliorated radiation-induced pancytopenia at the same dose. EAD augmented BM cellular recovery and colony-forming ability, promoted hematopoietic stem and progenitor cell recovery, and expanded the pool of functionally superior hematopoietic stem cells in the BM of sublethally irradiated mice. Unlike 5-AED, EAD did not increase granulocyte colony-stimulating factor levels in mice and exhibited no therapeutic effects on hematologic recovery after irradiation; nevertheless, its radioprotective efficacy was superior to that of 5-AED. CONCLUSIONS Our findings demonstrate the radioprotective efficacy of EAD and reveal that the 17α-ethinyl group is essential for its oral activity. Given its oral efficacy and low toxicity, EAD has potential as an optimal radioprotector for use by first responders, as well as at-risk civilian populations.
Collapse
|
10
|
Nukala U, Thakkar S, Krager KJ, Breen PJ, Compadre CM, Aykin-Burns N. Antioxidant Tocols as Radiation Countermeasures (Challenges to be Addressed to Use Tocols as Radiation Countermeasures in Humans). Antioxidants (Basel) 2018; 7:E33. [PMID: 29473853 PMCID: PMC5836023 DOI: 10.3390/antiox7020033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
Radiation countermeasures fall under three categories, radiation protectors, radiation mitigators, and radiation therapeutics. Radiation protectors are agents that are administered before radiation exposure to protect from radiation-induced injuries by numerous mechanisms, including scavenging free radicals that are generated by initial radiochemical events. Radiation mitigators are agents that are administered after the exposure of radiation but before the onset of symptoms by accelerating the recovery and repair from radiation-induced injuries. Whereas radiation therapeutic agents administered after the onset of symptoms act by regenerating the tissues that are injured by radiation. Vitamin E is an antioxidant that neutralizes free radicals generated by radiation exposure by donating H atoms. The vitamin E family consists of eight different vitamers, including four tocopherols and four tocotrienols. Though alpha-tocopherol was extensively studied in the past, tocotrienols have recently gained attention as radiation countermeasures. Despite several studies performed on tocotrienols, there is no clear evidence on the factors that are responsible for their superior radiation protection properties over tocopherols. Their absorption and bioavailability are also not well understood. In this review, we discuss tocopherol's and tocotrienol's efficacy as radiation countermeasures and identify the challenges to be addressed to develop them into radiation countermeasures for human use in the event of radiological emergencies.
Collapse
Affiliation(s)
- Ujwani Nukala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Joint Bioinformatics Graduate Program, University of Arkansas at Little Rock, Little Rock, AR 72204, USA.
| | - Shraddha Thakkar
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Kimberly J Krager
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Philip J Breen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA.
| | - Cesar M Compadre
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA.
| | - Nukhet Aykin-Burns
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Tocol Pharmaceuticals, LLC, Little Rock, AR 77205, USA.
| |
Collapse
|
11
|
Hofer M, Hoferová Z, Falk M. Pharmacological Modulation of Radiation Damage. Does It Exist a Chance for Other Substances than Hematopoietic Growth Factors and Cytokines? Int J Mol Sci 2017; 18:E1385. [PMID: 28657605 PMCID: PMC5535878 DOI: 10.3390/ijms18071385] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 02/03/2023] Open
Abstract
In recent times, cytokines and hematopoietic growth factors have been at the center of attention for many researchers trying to establish pharmacological therapeutic procedures for the treatment of radiation accident victims. Two granulocyte colony-stimulating factor-based radiation countermeasures have been approved for the treatment of the hematopoietic acute radiation syndrome. However, at the same time, many different substances with varying effects have been tested in animal studies as potential radioprotectors and mitigators of radiation damage. A wide spectrum of these substances has been studied, comprising various immunomodulators, prostaglandins, inhibitors of prostaglandin synthesis, agonists of adenosine cell receptors, herbal extracts, flavonoids, vitamins, and others. These agents are often effective, relatively non-toxic, and cheap. This review summarizes the results of animal experiments, which show the potential for some of these untraditional or new radiation countermeasures to become a part of therapeutic procedures applicable in patients with the acute radiation syndrome. The authors consider β-glucan, 5-AED (5-androstenediol), meloxicam, γ-tocotrienol, genistein, IB-MECA (N⁶-(3-iodobezyl)adenosine-5'-N-methyluronamide), Ex-RAD (4-carboxystyryl-4-chlorobenzylsulfone), and entolimod the most promising agents, with regards to their contingent use in clinical practice.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Zuzana Hoferová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| | - Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
12
|
Li ZT, Wang LM, Yi LR, Jia C, Bai F, Peng RJ, Yu ZY, Xiong GL, Xing S, Shan YJ, Yang RF, Dong JX, Cong YW. Succinate ester derivative of δ-tocopherol enhances the protective effects against 60Co γ-ray-induced hematopoietic injury through granulocyte colony-stimulating factor induction in mice. Sci Rep 2017; 7:40380. [PMID: 28145432 PMCID: PMC5286428 DOI: 10.1038/srep40380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
α-tocopherol succinate (α-TOS), γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have drawn large attention due to their efficacy as radioprotective agents. α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI). Because α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI), we hypothesized succinate may be contribute to the radioprotection of α-TOS. To study the contributions of succinate and to identify stronger radioprotective agents, we synthesized α-, γ- and δ-TOS. Then, we evaluated their radioprotective effects and researched further mechanism of δ-TOS on hematological recovery post-irradiation. Our results demonstrated that the chemical group of succinate enhanced the effects of α-, γ- and δ-TOS upon radioprotection and granulocyte colony-stimulating factor (G-CSF) induction, and found δ-TOS a higher radioprotective efficacy at a lower dosage. We further found that treatment with δ-TOS ameliorated radiation-induced pancytopenia, augmenting cellular recovery in bone marrow and the colony forming ability of bone marrow cells in sublethal irradiated mice, thus promoting hematopoietic stem and progenitor cell recovery following irradiation exposure. δ-TOS appears to be an attractive radiation countermeasure without known toxicity, but further exploratory efficacy studies are still required.
Collapse
Affiliation(s)
- Zhong-Tang Li
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li-Mei Wang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li-Rong Yi
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chao Jia
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fan Bai
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ren-Jun Peng
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zu-Yin Yu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo-Lin Xiong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Xing
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ya-Jun Shan
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ri-Fang Yang
- Department of Medicinal Chemistry, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun-Xing Dong
- Department of Pharmaceutical Sciences, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Wen Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
13
|
Singh VK, Fatanmi OO, Wise SY, Newman VL, Romaine PLP, Seed TM. THE POTENTIATION OF THE RADIOPROTECTIVE EFFICACY OF TWO MEDICAL COUNTERMEASURES, GAMMA-TOCOTRIENOL AND AMIFOSTINE, BY A COMBINATION PROPHYLACTIC MODALITY. RADIATION PROTECTION DOSIMETRY 2016; 172:302-310. [PMID: 27542813 PMCID: PMC5444681 DOI: 10.1093/rpd/ncw223] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study was designed to evaluate the possible potentiation of survival protection afforded by relatively low-dose amifostine prophylaxis against total body irradiation in combination with a protective, less toxic agent, gamma-tocotrienol (GT3). Mice were administered amifostine and/or GT3, then exposed to 9.2 Gy 60Co γ-irradiation and monitored for survival for 30 days. To investigate cytokine stimulation, mice were administered amifostine or GT3; serum samples were collected and analyzed for cytokines. Survival studies show single treatments of GT3 or amifostine significantly improved survival, compared to the vehicle, and combination treatments resulted in significantly higher survival compared to single treatments. In vivo studies with GT3 confirmed prior work indicating GT3 induces granulocyte colony-stimulating factor (G-CSF). This approach, the prophylactic combination of amifostine and GT3, which act through different mechanisms, shows promise and should be investigated further as a potential countermeasure for acute radiation syndrome.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Stephen Y Wise
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Victoria L Newman
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Patricia L P Romaine
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | | |
Collapse
|
14
|
Mishra S, Patel DD, Bansal DD, Kumar R. Semiquinone glucoside derivative provides protection against γ-radiation by modulation of immune response in murine model. ENVIRONMENTAL TOXICOLOGY 2016; 31:478-488. [PMID: 25361477 DOI: 10.1002/tox.22061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Present study was undertaken to evaluate radioprotective and immunomodulatory activities of a novel semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1 in C57 BL/6 mice. Whole body survival study was performed to evaluate in vivo radioprotective efficacy of SQGD. To observe effect of SQGD on immunostimulation, Circulatory cytokine (i.e., interleukin-2 (IL-2), IFN-γ, IL-10, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and macrophage colony stimulating factor (M-CSF) expression was analyzed in serum of irradiated and SQGD treated mice at different time intervals using ELISA assay. Results of the present investigation indicated that SQGD pre-treatment (-2 h) to lethally irradiated mice provide ∼ 83% whole body survival compared with irradiated mice where no survival was observed at 30(th) post irradiation day. Significant (p < 0.05) induction in IL-2 and IFN-γ expression was observed at all tested time intervals with SQGD pre-treated irradiated mice as compared with irradiated mice alone. However, sharp increase in IL-10 expression was observed in irradiated mice which were found to be subsidized in irradiated mice pre-treated with SQGD. Similarly, significant (p < 0.05%) induction in G-CSF, M-CSF and GM-CSF expression was observed in irradiated mice treated with SQGD as compared with irradiated control mice at tested time intervals. In conclusion, SQGD pre-treatment to irradiated mice enhanced expression of IL-12 and IFN-γ while down-regulated IL-10 expression and thus modulates cytoprotective pro-inflammatory TH1 type immune response in irradiated mice. Further, SQGD pre-treatment to irradiated mice accelerate G-CSF, GM-CSF and M-CSF expression suggesting improved haematopoiesis and enhanced cellular immune response in immuno-compromised irradiated mice that may contribute to in vivo radiation protection.
Collapse
Affiliation(s)
- S Mishra
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Patel
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Bansal
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - R Kumar
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| |
Collapse
|
15
|
Colony-stimulating factors for the treatment of the hematopoietic component of the acute radiation syndrome (H-ARS): a review. Cytokine 2016; 71:22-37. [PMID: 25215458 DOI: 10.1016/j.cyto.2014.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. As such, this type of security threat is considered to be of relatively low risk, but one that would have an extraordinary high impact on health and well-being of the US citizenry. Psychological counseling and medical assessments would be necessary for all those significantly impacted by the nuclear/radiological event. Direct medical interventions would be necessary for all those individuals who had received substantial radiation exposures (e.g., >1 Gy). Although no drugs or products have yet been specifically approved by the United States Food and Drug Administration (US FDA) to treat the effects of acute radiation syndrome (ARS), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and pegylated G-CSF have been used off label for treating radiation accident victims. Recent threats of terrorist attacks using nuclear or radiologic devices makes it imperative that the medical community have up-to-date information and a clear understanding of treatment protocols using therapeutically effective recombinant growth factors and cytokines such as G-CSF and GM-CSF for patients exposed to injurious doses of ionizing radiation. Based on limited human studies with underlying biology, we see that the recombinants, G-CSF and GM-CSF appear to have modest, but significant medicinal value in treating radiation accident victims. In the near future, the US FDA may approve G-CSF and GM-CSF as ‘Emergency Use Authorization’ (EUA) for managing radiation-induced aplasia, an ARS-related pathology. In this article, we review the status of growth factors for the treatment of radiological/nuclear accident victims.
Collapse
|
16
|
Abstract
The discovery of vitamin E (α-tocopherol) began in 1922 as a vital component required in reproduction. Today, there are eight naturally occurring vitamin E isoforms, namely α-, β-, γ- and δ-tocopherol and α-, β-, γ- and δ-tocotrienol. Vitamin E is potent antioxidants, capable of neutralizing free radicals directly by donating hydrogen from its chromanol ring. α-Tocopherol is regarded the dominant form in vitamin E as the α-tocopherol transfer protein in the liver binds mainly α-tocopherol, thus preventing its degradation. That contributed to the oversight of tocotrienols and resulted in less than 3% of all vitamin E publications studying tocotrienols. Nevertheless, tocotrienols have been shown to possess superior antioxidant and anti-inflammatory properties over α-tocopherol. In particular, inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase to lower cholesterol, attenuating inflammation via downregulation of transcription factor NF-κB activation, and potent radioprotectant against radiation damage are some properties unique to tocotrienols, not tocopherols. Aside from cancer, vitamin E has also been shown protective in bone, cardiovascular, eye, nephrological and neurological diseases. In light of the different pharmacological properties of tocopherols and tocotrienols, it becomes critical to specify which vitamin E isoform(s) are being studied in any future vitamin E publications. This review provides an update on vitamin E therapeutic potentials, protective effects and modes of action beyond cancer, with comparison of tocopherols against tocotrienols. With the concerted efforts in synthesizing novel vitamin E analogs and clinical pharmacology of vitamin E, it is likely that certain vitamin E isoform(s) will be therapeutic agents against human diseases besides cancer.
Collapse
Affiliation(s)
- Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn 2015; 16:65-81. [PMID: 26568096 PMCID: PMC4732464 DOI: 10.1586/14737159.2016.1121102] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate drugs for acute radiation syndrome (ARS) have been identified that have low toxicity and significant radioprotective and radiomitigative efficacy. Inasmuch as exposing healthy human volunteers to injurious levels of radiation is unethical, development and approval of new radiation countermeasures for ARS are therefore presently based on animal studies and Phase I safety study in healthy volunteers. The Animal Efficacy Rule, which underlies the Food and Drug Administration approval pathway, requires a sound understanding of the mechanisms of injury, drug efficacy, and efficacy biomarkers. In this context, it is important to identify biomarkers for radiation injury and drug efficacy that can extrapolate animal efficacy results, and can be used to convert drug doses deduced from animal studies to those that can be efficacious when used in humans. Here, we summarize the progress of studies to identify candidate biomarkers for the extent of radiation injury and for evaluation of countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Victoria L Newman
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Patricia Lp Romaine
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Martin Hauer-Jensen
- c Departments of Pharmaceutical Sciences, Surgery, and Pathology , University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems , Little Rock , AR , USA
| | - Harvey B Pollard
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
18
|
Vasilyeva I, Bespalov V, Baranova A. Radioprotective combination of α-tocopherol and ascorbic acid promotes apoptosis that is evident by release of low-molecular weight DNA fragments into circulation. Int J Radiat Biol 2015; 91:872-7. [PMID: 26473391 DOI: 10.3109/09553002.2015.1087066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Genotoxic stresses, including irradiation, lead to the apoptosis of damaged cells and the release of DNA fragments into circulation. Both α-tocopherol acetate and ascorbic acid possess antioxidant and radioprotective properties. Interestingly, depending on a particular experimental system, the treatment with vitamins may demonstrate either apoptosis-promoting or apoptosis-suppressing effects. MATERIALS AND METHODS Adult Wistar male rats received total body irradiation with 2-100 Gy doses, while non-irradiated rats served as controls. Oral gavages with vitamins were administered either 10 min or 1 h before irradiation. Control groups were similarly treated with water. Blood samples were collected at 5 h post irradiation. The levels and the composition of circulating DNA were profiled. Chromosomal aberrations were assessed 24 h after irradiation. RESULTS A substantial dose-dependent increase in circulating low-molecular weight (LMW) DNA levels was observed after whole body irradiation. An order-of-magnitude increase in the proportion of bone marrow cells with chromosomal abnormalities was observed after irradiation at 2 Gy. Single vitamin preparations were not protective, while the combination of α-tocopherol (10 mg/kg) and ascorbic acid (20 mg/kg) displayed a protective effect evident from marked decrease in chromosomal aberrations. In animals treated with a combination of the vitamins only, substantial increases in the release of LMW DNA were observed. CONCLUSIONS Radioprotective combination of α-tocopherol and ascorbic acid promotes apoptosis that is evident by release of low-molecular weight DNA into circulation. We hypothesize that the pretreatment with vitamins provides radioprotection, at least in part, by aiding non-inflammatory, apoptotic elimination of most damaged cells. The microevolutionary nature of observed adaptive response provides mechanistic foundation for the phenomenon of hormesis.
Collapse
Affiliation(s)
- Irina Vasilyeva
- a N. N. Petrov Research Institute of Oncology, Ministry of Public Health , St. Petersburg.,b International Research Center 'Biotechnologies of the Third Millennium' ITMO University 191002 , St. Petersburg , Russia
| | - Vladimir Bespalov
- a N. N. Petrov Research Institute of Oncology, Ministry of Public Health , St. Petersburg.,b International Research Center 'Biotechnologies of the Third Millennium' ITMO University 191002 , St. Petersburg , Russia
| | - Ancha Baranova
- c Center for the Study of Chronic Metabolic Diseases, School of Systems Biology, College of Science, George Mason University , Fairfax , VA , USA.,d Moscow Institute of Physics and Technology , Dolgoprudny , Moscow Region.,e Federal State Budgetary Institution 'Research Centre for Medical Genetics' under the Russian Academy of Medical Sciences , Moscow , Russia
| |
Collapse
|
19
|
Krivokrysenko VI, Toshkov IA, Gleiberman AS, Krasnov P, Shyshynova I, Bespalov I, Maitra RK, Narizhneva NV, Singh VK, Whitnall MH, Purmal AA, Shakhov AN, Gudkov AV, Feinstein E. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates. PLoS One 2015; 10:e0135388. [PMID: 26367124 PMCID: PMC4569586 DOI: 10.1371/journal.pone.0135388] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/15/2015] [Indexed: 12/28/2022] Open
Abstract
There are currently no approved medical radiation countermeasures (MRC) to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques) treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care) administered in a mitigative regimen, 1-48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01) absolute survival advantage of 40-60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05) effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters.
Collapse
Affiliation(s)
| | - Ilia A. Toshkov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Peter Krasnov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Inna Shyshynova
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Ivan Bespalov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Ratan K. Maitra
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Vijay K. Singh
- Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Mark H. Whitnall
- Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Andrei A. Purmal
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Andrei V. Gudkov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
- Department of Cell Stress Biology, Roswell Park Cancer Institute (RPCI), Buffalo, New York, United States of America
- * E-mail: (AVG); (EF)
| | - Elena Feinstein
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
- * E-mail: (AVG); (EF)
| |
Collapse
|
20
|
Vitamin E Analogs as Radiation Response Modifiers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:741301. [PMID: 26366184 PMCID: PMC4558447 DOI: 10.1155/2015/741301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/06/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023]
Abstract
The potentially life-threatening effects of total body ionizing radiation exposure have been known for more than a century. Despite considerable advances in our understanding of the effects of radiation over the past six decades, efforts to identify effective radiation countermeasures for use in case of a radiological/nuclear emergency have been largely unsuccessful. Vitamin E is known to have antioxidant properties capable of scavenging free radicals, which have critical roles in radiation injuries. Tocopherols and tocotrienols, vitamin E analogs together known as tocols, have shown promise as radioprotectors. Although the pivotal mechanisms of action of tocols have long been thought to be their antioxidant properties and free radical scavenging activities, other alternative mechanisms have been proposed to drive their activity as radioprotectors. Here we provide a brief overview of the effects of ionizing radiation, the mechanistic mediators of radiation-induced damage, and the need for radiation countermeasures. We further outline the role for, efficacy of, and mechanisms of action of tocols as radioprotectors, and we compare and contrast their efficacy and mode of action with that of another well-studied chemical radioprotector, amifostine.
Collapse
|
21
|
Elliott TB, Bolduc DL, Ledney GD, Kiang JG, Fatanmi OO, Wise SY, Romaine PLP, Newman VL, Singh VK. Combined immunomodulator and antimicrobial therapy eliminates polymicrobial sepsis and modulates cytokine production in combined injured mice. Int J Radiat Biol 2015; 91:690-702. [PMID: 25994812 PMCID: PMC4673550 DOI: 10.3109/09553002.2015.1054526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Purpose: A combination therapy for combined injury (CI) using a non-specific immunomodulator, synthetic trehalose dicorynomycolate and monophosphoryl lipid A (STDCM-MPL), was evaluated to augment oral antimicrobial agents, levofloxacin (LVX) and amoxicillin (AMX), to eliminate endogenous sepsis and modulate cytokine production. Materials and methods: Female B6D2F1/J mice received 9.75 Gy cobalt-60 gamma-radiation and wound. Bacteria were isolated and identified in three tissues. Incidence of bacteria and cytokines were compared between treatment groups. Results: Results demonstrated that the lethal dose for 50% at 30 days (LD50/30) of B6D2F1/J mice was 9.42 Gy. Antimicrobial therapy increased survival in radiation-injured (RI) mice. Combination therapy increased survival after RI and extended survival time but did not increase survival after CI. Sepsis began five days earlier in CI mice than RI mice with Gram-negative species predominating early and Gram-positive species increasing later. LVX plus AMX eliminated sepsis in CI and RI mice. STDCM-MPL eliminated Gram-positive bacteria in CI and most RI mice but not Gram-negative. Treatments significantly modulated 12 cytokines tested, which pertain to wound healing or elimination of infection. Conclusions: Combination therapy eliminates infection and prolongs survival time but does not assure CI mouse survival, suggesting that additional treatment for proliferative-cell recovery is required.
Collapse
Affiliation(s)
- Thomas B Elliott
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - David L Bolduc
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - G David Ledney
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - Juliann G Kiang
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA.,b Department of Radiation Biology , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,c Department of Medicine , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Oluseyi O Fatanmi
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - Stephen Y Wise
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | | | - Victoria L Newman
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - Vijay K Singh
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA.,b Department of Radiation Biology , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
22
|
Srivastava A, Leighton X, Eidelman O, Starr J, Jozwik C, Srivastava M, Pollard HB, Singh VK. Personalized Radioproteomics: Identification of a Protein Biomarker Signature for Preemptive Rescue by Tocopherol Succinate in CD34 + Irradiated Progenitor Cells Isolated from a Healthy Control Donor. ACTA ACUST UNITED AC 2015; 8:23-30. [PMID: 27087761 PMCID: PMC4833407 DOI: 10.4172/jpb.1000349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tocopherol succinate (TS) has been shown to protect mice against acute radiation syndrome, however, its exact mechanism of action and its possible use in humans has not yet been evaluated. Our approach has been to test the radioprotectant properties of TS on CD34-positive stem cells from healthy volunteers. We hypothesize that a radioproteomics strategy can identify a drug-dependent, personalized proteomics signature for radioprotection. To directly test the radioproteomics hypothesis, we treated human CD34-positive stem cells with 20 μM TS for 24 h, and then exposed the cells to 2 Gy of cobalt-60 gamma-radiation. We isolated protein from all cultures and used a high throughput Antibody Microarray (AbMA) platform to measure concentrations of 725 low abundance proteins. As an in vivo control, we also tested mouse CD34-positive stem cells using the same preemptive TS paradigm on progenitor colony forming units. TS pretreatment of in vitro or in vivo CD34-positive stem cells rescued radiation-induced loss of colony-forming potential of progenitors. We identified 50 of 725 proteins that could be preemptively rescued from radiation-induced reduction by pretreatment with TS. Ingenuity Pathway Analysis (IPA) reveals that the modified proteins fall into categories dominated by epigenetic regulation, DNA repair, and inflammation. Our results suggest that radioproteomics can be used to develop personalized medicine for radioprotection using protein signatures from primary CD34-positive progenitors derived from the patient or victim prior to radiation exposure. The protective effect of TS may be due to its ability to preemptively activate epigenetic mechanisms relevant to radioprotection and to preemptively activate the programs for DNA repair and inflammation leading to cell survival.
Collapse
Affiliation(s)
| | - Ximena Leighton
- Department of Anatomy, Physiology and Genetics, and Center for Medical Proteomics, USA
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, and Center for Medical Proteomics, USA
| | - Joshua Starr
- Department of Anatomy, Physiology and Genetics, and Center for Medical Proteomics, USA
| | - Catherine Jozwik
- Department of Anatomy, Physiology and Genetics, and Center for Medical Proteomics, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, and Center for Medical Proteomics, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, and Center for Medical Proteomics, USA
| | - Vijay K Singh
- Armed Forces Radiobiology Research Institute, Bethesda, MD, USA; Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
23
|
Singh VK, Wise SY, Fatanmi OO, Beattie LA, Seed TM. Preclinical development of a bridging therapy for radiation casualties: appropriate for high risk personnel. HEALTH PHYSICS 2014; 106:689-698. [PMID: 24776901 DOI: 10.1097/hp.0000000000000089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised individuals exposed to acute, high-dose ionizing irradiation to recover and to survive. CD2F1 mice were irradiated acutely with high doses causing severe, potentially fatal hematopoietic or gastrointestinal injuries and then transfused intravenously with progenitor-enriched, whole blood, or peripheral blood mononuclear cells from mice injected with tocopherol succinate- and AMD3100- (a chemokine receptor anatogonist used to improve the yield of mobilized progenitors). Survival of these mice over a 30-d period was used as the primary measured endpoint of therapeutic effectiveness. The authors demonstrate that tocopherol succinate and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor enriched blood or mononuclear cells acts as a bridging therapy for lymphohematopoietic system recovery in mice exposed to whole-body ionizing irradiation. The results demonstrate that infusion of whole blood or blood mononuclear cells from tocopherol succinate (TS)- and AMD3100-injected mice improved the survival of mice receiving high radiation doses significantly. The efficacy of TS-injected donor mice blood or mononuclear cells was comparable to that of blood or cells obtained from mice injected with granulocyte colony-stimulating factor. Donor origin-mobilized progenitors were found to localize in various tissues. The authors suggest that tocopherol succinate is an optimal agent for mobilizing progenitors with significant therapeutic potential. The extent of progenitor mobilization that tocopherol succinate elicits in experimental mice is comparable quantitatively to clinically used drugs such as granulocyte-colony stimulating factor and AMD3100. Therefore, it is proposed that tocopherol succinate be considered for further translational development and ultimately for use in humans.
Collapse
Affiliation(s)
- Vijay K Singh
- *Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, 4417 Maple Avenue, Bethesda, MD
| | | | | | | | | |
Collapse
|
24
|
Hofer M, Pospíšil M, Komůrková D, Hoferová Z. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review. Molecules 2014; 19:4770-8. [PMID: 24743934 PMCID: PMC6270858 DOI: 10.3390/molecules19044770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/17/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023] Open
Abstract
This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF), in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Milan Pospíšil
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Denisa Komůrková
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Zuzana Hoferová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| |
Collapse
|
25
|
Singh VK, Wise SY, Scott JR, Romaine PL, Newman VL, Fatanmi OO. Radioprotective efficacy of delta-tocotrienol, a vitamin E isoform, is mediated through granulocyte colony-stimulating factor. Life Sci 2014; 98:113-22. [DOI: 10.1016/j.lfs.2014.01.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/29/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
|
26
|
Mishra S, Malhotra P, Gupta AK, Singh PK, Javed S, Kumar R. A semiquinone glucoside derivative isolated from Bacillus sp. INM-1 provides protection against 5-fluorouracil-induced immunotoxicity. J Immunotoxicol 2014; 12:56-63. [PMID: 24512327 DOI: 10.3109/1547691x.2014.882448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
5-Fluorouracil (5-FU) is a widely used anti-cancer agent; however, it induces immunosuppression in patients undergoing a chemotherapy regime. The mode of action by which 5-FU induces immunosuppression is primarily via inhibition of hematopoietic growth factors. In the present study, immunoprotective effects of a semiquinone glucoside derivative (SQGD), a bacterial metabolite isolated from Bacillus sp. INM-1, were evaluated in a model of 5-FU-induced immunotoxicity in C57Bl/6 male mice. The evaluation was done by analyzing G-CSF, GM-CSF, and M-CSF expression in the serum, spleen, and bone marrow cells of the mice at different timepoints after 5-FU treatment. Mice received a single intraperitoneal injection of either 5-FU (75 mg/kg) alone, SQGD (50 mg/kg) alone, or SQGD 2 h prior to the 5-FU treatment. Control mice received saline vehicle only. The results demonstrated that 5-FU treatment significantly inhibited G-CSF, GM-CSF, and M-CSF expression in all three sites at all timepoints from 6-72 h post 5-FU. In SQGD treated mice, up-regulation of factor expression was observed in each compartment, and significantly so most often after 12 h. SQGD treatment prior to 5-FU administration to the mice significantly increased in all sites evaluated - relative to values in both control mice and 5-FU only-treated mice - G-CSF, M-CSF, and GM-CSF expression at almost every timepoint. The present findings suggest that SQGD provides protection against 5-FU-induced immunotoxicity in mice and could protect bone marrow progenitor cells against the effects of cytotoxic drugs used for treatment of cancer. The findings also suggested to us that SQGD is a potential immunomodulator and could protect hematopoiesis against toxic assault caused by anti-cancer drugs in the clinical setting.
Collapse
Affiliation(s)
- Saurabh Mishra
- Radiation Biotechnology Laboratory, Department of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences , Delhi , India and
| | | | | | | | | | | |
Collapse
|
27
|
Singh VK, Wise SY, Fatanmi OO, Beattie LA, Ducey EJ, Seed TM. Alpha-tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice. JOURNAL OF RADIATION RESEARCH 2014; 55:41-53. [PMID: 23814114 PMCID: PMC3885121 DOI: 10.1093/jrr/rrt088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 05/28/2023]
Abstract
The purpose of this study was to elucidate the role of alpha-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating combined injury associated with acute radiation exposure in combination with secondary physical wounding. CD2F1 mice were exposed to high doses of cobalt-60 gamma-radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMCs) from TS- and AMD3100-injected mice after irradiation. Within 1 h after irradiation, mice were exposed to secondary wounding. Mice were observed for 30 d after irradiation and cytokine analysis was conducted by multiplex Luminex assay at various time-points after irradiation and wounding. Our results initially demonstrated that transfusion of TS-mobilized progenitors from normal mice enhanced survival of acutely irradiated mice exposed 24 h prior to transfusion to supralethal doses (11.5-12.5 Gy) of (60)Co gamma-radiation. Subsequently, comparable transfusions of TS-mobilized progenitors were shown to significantly mitigate severe combined injuries in acutely irradiated mice. TS administered 24 h before irradiation was able to protect mice against combined injury as well. Cytokine results demonstrated that wounding modulates irradiation-induced cytokines. This study further supports the conclusion that the infusion of TS-mobilized progenitor-containing PBMCs acts as a bridging therapy in radiation-combined-injury mice. We suggest that this novel bridging therapeutic approach involving the infusion of TS-mobilized hematopoietic progenitors following acute radiation exposure or combined injury might be applicable to humans.
Collapse
Affiliation(s)
- Vijay K. Singh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4417 Maple Avenue, Bethesda, MD, USA
| | - Stephen Y. Wise
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Oluseyi O. Fatanmi
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Lindsay A. Beattie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Elizabeth J. Ducey
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | | |
Collapse
|
28
|
Singh VK, Beattie LA, Seed TM. Vitamin E: tocopherols and tocotrienols as potential radiation countermeasures. JOURNAL OF RADIATION RESEARCH 2013; 54:973-88. [PMID: 23658414 PMCID: PMC3823775 DOI: 10.1093/jrr/rrt048] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Despite the potential devastating health consequences of intense total-body irradiation, and the decades of research, there still remains a dearth of safe and effective radiation countermeasures for emergency, radiological/nuclear contingencies that have been fully approved and sanctioned for use by the US FDA. Vitamin E is a well-known antioxidant, effective in scavenging free radicals generated by radiation exposure. Vitamin E analogs, collectively known as tocols, have been subject to active investigation for a long time as radioprotectors in patients undergoing radiotherapy and in the context of possible radiation accidents or terrorism scenarios. Eight major isoforms comprise the tocol group: four tocopherols and four tocotrienols. A number of these agents and their derivatives are being investigated actively as radiation countermeasures using animal models, and several appear promising. Although the tocols are well recognized as potent antioxidants and are generally thought to mediate radioprotection through 'free radical quenching', recent studies have suggested several alternative mechanisms: most notably, an 'indirect effect' of tocols in eliciting specific species of radioprotective growth factors/cytokines such as granulocyte colony-stimulating factor (G-CSF). The radioprotective efficacy of at least two tocols has been abrogated using a neutralizing antibody of G-CSF. Based on encouraging results of radioprotective efficacy, laboratory testing of γ-tocotrienol has moved from a small rodent model to a large nonhuman primate model for preclinical evaluation. In this brief review we identify and discuss selected tocols and their derivatives currently under development as radiation countermeasures, and attempt to describe in some detail their in vivo efficacy.
Collapse
Affiliation(s)
- Vijay K. Singh
- Radiation Countermeasures Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Corresponding author. Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA. Tel: +1-301-295-2347; Fax: +1-301-295-6503;
| | - Lindsay A. Beattie
- Radiation Countermeasures Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Thomas M. Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA
| |
Collapse
|
29
|
Granulocyte colony-stimulating factor antibody abrogates radioprotective efficacy of gamma-tocotrienol, a promising radiation countermeasure. Cytokine 2013; 62:278-85. [DOI: 10.1016/j.cyto.2013.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/10/2013] [Accepted: 03/08/2013] [Indexed: 12/11/2022]
|
30
|
Singh VK, Singh PK, Wise SY, Posarac A, Fatanmi OO. Radioprotective properties of tocopherol succinate against ionizing radiation in mice. JOURNAL OF RADIATION RESEARCH 2013; 54:210-20. [PMID: 23038797 PMCID: PMC3589926 DOI: 10.1093/jrr/rrs088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 05/18/2023]
Abstract
Threats of nuclear and other radiologic exposures have been increasing but no countermeasure for acute radiation syndrome has been approved by regulatory authorities. In prior publications we have demonstrated the efficacy of tocopherol succinate (TS) as a promising radiation countermeasure with the potential to protect against lethal doses of ionizing radiation exposure. The aim of this study was to gain further insight regarding how TS protects mice against a lethal dose of radiation. CD2F1 mice were injected subcutaneously with 400 mg/kg of TS, and 24 h later exposed to (60)Co γ-radiation. Intestinal tissues or spleen/thymus were harvested after irradiation and analyzed for CD68-positive inflammatory cells and apoptotic cells by immunostaining of jejunal cross-sections. Comet assay was used to analyze DNA damage in various tissues. Phospho-histone H3(pH3) and the proliferating cell nuclear antigen (PCNA) were used as mitotic markers for immunostaining jejunal cross-sections. We observed that injecting TS significantly decreased the number of CD68-positive cells, DNA damage and apoptotic cells (BAX, caspase 3 and cleaved poly(ADP-ribose) polymerase-positive cells) as judged by various apoptotic pathway markers. TS treatment also increased proliferating cells in irradiated mice. Results of this study further support our contention that TS protects mice against lethal doses of ionizing radiation by inhibiting radiation-induced apoptosis and DNA damage while enhancing cell proliferation.
Collapse
Affiliation(s)
- Vijay K Singh
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA.
| | | | | | | | | |
Collapse
|
31
|
Singh VK, Wise SY, Singh PK, Posarac A, Fatanmi OO, Ducey EJ, Bolduc DL, Elliott TB, Seed TM. Alpha-tocopherol succinate-mobilized progenitors improve intestinal integrity after whole body irradiation. Int J Radiat Biol 2013; 89:334-45. [PMID: 23270472 DOI: 10.3109/09553002.2013.762137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The objective of this study was to elucidate the action of α-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating radiation-induced injuries. MATERIAL AND METHODS CD2F1 mice were exposed to a high dose of radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMC) from TS- and AMD3100-injected mice after irradiation. Intestinal and splenic tissues were harvested after irradiation and cells of those tissues were analyzed for markers of apoptosis and mitosis. Bacterial translocation from gut to heart, spleen, and liver in TS-treated and irradiated mice was evaluated by bacterial culture. RESULTS We observed that the infusion of PBMC from TS- and AMD3100-injected mice significantly inhibited apoptosis, increased cell proliferation in the analyzed tissues of recipient mice, and inhibited bacterial translocation to various organs compared to mice receiving cells from vehicle-mobilized cells. This study further supports our contention that the infusion of TS-mobilized progenitor-containing PBMC acts as a bridging therapy by inhibiting radiation-induced apoptosis, enhancing cell proliferation, and inhibiting bacterial translocation in irradiated mice. CONCLUSIONS We suggest that this novel bridging therapeutic approach that involves the infusion of TS-mobilized hematopoietic progenitors following acute radiation injury might be applicable to humans as well.
Collapse
Affiliation(s)
- Vijay K Singh
- Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Krivokrysenko VI, Shakhov AN, Singh VK, Bone F, Kononov Y, Shyshynova I, Cheney A, Maitra RK, Purmal A, Whitnall MH, Gudkov AV, Feinstein E. Identification of granulocyte colony-stimulating factor and interleukin-6 as candidate biomarkers of CBLB502 efficacy as a medical radiation countermeasure. J Pharmacol Exp Ther 2012; 343:497-508. [PMID: 22837010 PMCID: PMC3477210 DOI: 10.1124/jpet.112.196071] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/26/2012] [Indexed: 01/03/2023] Open
Abstract
Given an ever-increasing risk of nuclear and radiological emergencies, there is a critical need for development of medical radiation countermeasures (MRCs) that are safe, easily administered, and effective in preventing and/or mitigating the potentially lethal tissue damage caused by acute high-dose radiation exposure. Because the efficacy of MRCs for this indication cannot be ethically tested in humans, development of such drugs is guided by the Food and Drug Administration's Animal Efficacy Rule. According to this rule, human efficacious doses can be projected from experimentally established animal efficacious doses based on the equivalence of the drug's effects on efficacy biomarkers in the respective species. Therefore, identification of efficacy biomarkers is critically important for drug development under the Animal Efficacy Rule. CBLB502 is a truncated derivative of the Salmonella flagellin protein that acts by triggering Toll-like receptor 5 (TLR5) signaling and is currently under development as a MRC. Here, we report identification of two cytokines, granulocyte colony-stimulating factor (G-CSF) and interleukin-6 (IL-6), as candidate biomarkers of CBLB502's radioprotective/mitigative efficacy. Induction of both G-CSF and IL-6 by CBLB502 1) is strictly TLR5-dependent, 2) occurs in a CBLB502 dose-dependent manner within its efficacious dose range in both nonirradiated and irradiated mammals, including nonhuman primates, and 3) is critically important for the ability of CBLB502 to rescue irradiated animals from death. After evaluation of CBLB502 effects on G-CSF and IL-6 levels in humans, these biomarkers will be useful for accurate prediction of human efficacious CBLB502 doses, a key step in the development of this prospective radiation countermeasure.
Collapse
|
33
|
Kulkarni SS, Cary LH, Gambles K, Hauer-Jensen M, Kumar KS, Ghosh SP. Gamma-tocotrienol, a radiation prophylaxis agent, induces high levels of granulocyte colony-stimulating factor. Int Immunopharmacol 2012; 14:495-503. [PMID: 23000517 DOI: 10.1016/j.intimp.2012.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/07/2012] [Accepted: 09/07/2012] [Indexed: 01/22/2023]
Abstract
Gamma-tocotrienol (GT3), a promising radioprotectant, is shown to protect CD2F1 mice from radiation-induced neutropenia and thrombocytopenia when given 24h prior to total-body irradiation. GT3 also is shown to increase white blood cells (WBC) and absolute neutrophil counts (ANC) transiently in peripheral blood. We hypothesized that increases in WBC and ANC may involve stimulation of hematopoiesis possibly by cytokines and growth factors. To evaluate the effects of GT3 on hematopoietic system, we measured various cytokines, chemokines and growth factors by cytokine array and Bio-Plex assays. Both showed strong induction of various cytokines and chemokines. GT3 treatment resulted in significant increases in G-CSF, IL-1α, IL-1β, IL-6, IL-12p70, IL-17, MIP-1α, and KC levels. G-CSF levels increased markedly within 12-24h after administration (5441 pg/ml in GT3-treated groups compared to 17 pg/ml in vehicle control). Most of these cytokine levels were elevated in the presence or absence of radiation. Time-course analysis of G-CSF and IL-6 induction showed that both cytokines were induced transiently after GT3 administration, and returned to normal levels by 48 h post-administration. For G-CSF, the peak was observed between 12 and 24h post-administration of GT3; however, the highest levels of IL-6 were obtained between 6 and 12h. These results demonstrate that GT3 induced high levels of G-CSF and other inflammatory cytokines and chemokines within 24h after administration. Survival studies reported showed that the most efficacious time for administering GT3 was 24h prior to irradiation, possibly because it induced key hematopoietic cytokines in that time window. These results also suggest a possible role of GT3-induced G-CSF stimulation in protecting mice from radiation-induced neutropenia and thrombocytopenia.
Collapse
Affiliation(s)
- Shilpa S Kulkarni
- Armed Forces Radiobiology Research Institute, USUHS, Bethesda, MD 20889-5603, United States
| | | | | | | | | | | |
Collapse
|
34
|
Kim JS, Ryoo SB, Heo K, Kim JG, Son TG, Moon C, Yang K. Attenuating effects of granulocyte-colony stimulating factor (G-CSF) in radiation induced intestinal injury in mice. Food Chem Toxicol 2012; 50:3174-80. [PMID: 22699087 DOI: 10.1016/j.fct.2012.05.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 02/08/2023]
Abstract
Gastrointestinal injury is a major cause of death following exposure to high levels of radiation, and no effective treatments are currently available. In this study, we examined the capacity of granulocyte colony-stimulating factor (G-CSF) to mitigate intestinal injury in, and improve survival of, C3H/HeN mice given a lethal dose (12 Gy) of radiation to the abdomen. G-CSF (100 μg/kg body weight) was injected subcutaneously daily for 3 days after irradiation and shown to improve survival and intestinal morphology at 3.5 days compared with saline-injected controls. The morphological features improved by G-CSF included crypt number and depth, villous length, and the length of basal lamina of 10 enterocytes. G-CSF also normalized the levels of circulating tumor necrosis factor alpha and attenuated the loss of peripheral neutrophils, caused by radiation-induced myelosuppression. In conclusion, our results suggest that G-CSF enhanced the survival of irradiated mice and minimized the effects of radiation on gastrointestinal injury.
Collapse
Affiliation(s)
- Joong-Sun Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
35
|
Singh VK, Christensen J, Fatanmi OO, Gille D, Ducey EJ, Wise SY, Karsunky H, Sedello AK. Myeloid Progenitors: A Radiation Countermeasure that is Effective when Initiated Days after Irradiation. Radiat Res 2012; 177:781-91. [DOI: 10.1667/rr2894.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Singh VK, Fatanmi OO, Singh PK, Whitnall MH. Role of radiation-induced granulocyte colony-stimulating factor in recovery from whole body gamma-irradiation. Cytokine 2012; 58:406-14. [PMID: 22487481 DOI: 10.1016/j.cyto.2012.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/31/2012] [Accepted: 03/16/2012] [Indexed: 01/13/2023]
Abstract
The purpose of this study was to further elucidate the radioprotective role of granulocyte colony-stimulating factor (G-CSF) induced in response to irradiation. The induction of G-CSF and interleukin-6 (IL-6) in response to radiation exposure was evaluated in mice. The level of cytokine in serum was determined by multiplex Luminex. The role of G-CSF on survival and tissue injury after total body gamma-irradiation was evaluated by administration of neutralizing antibody to G-CSF before radiation exposure. An isotype control was used for comparison and survival was monitored for 30 d after irradiation. Jejunum samples were used for immunohistochemistry. Ionizing radiation exposure induced significant levels of the hematopoietic cytokines G-CSF and IL-6, in mice receiving 9.2 Gy radiation. Maximal levels of G-CSF were observed in peripheral blood of mice 8h after irradiation. IL-6 levels were maximum at 12h after irradiation. Administration of G-CSF antibody significantly enhanced mortality in irradiated mice. G-CSF antibody-treated mice had higher numbers of CD68(+) cells and apoptotic cells in intestinal villi. Our results confirm that radiation exposure induces elevations of circulating G-CSF and IL-6. Neutralizing antibody to G-CSF exacerbates the deleterious effects of radiation, indicating that G-CSF induced in response to irradiation plays an important role in recovery.
Collapse
Affiliation(s)
- Vijay K Singh
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
37
|
Singh VK, Ducey EJ, Brown DS, Whitnall MH. A review of radiation countermeasure work ongoing at the Armed Forces Radiobiology Research Institute. Int J Radiat Biol 2012; 88:296-310. [DOI: 10.3109/09553002.2012.652726] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Singh VK, Wise SY, Singh PK, Ducey EJ, Fatanmi OO, Seed TM. α-Tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation-induced gastrointestinal injury in mice. Exp Hematol 2012; 40:407-17. [PMID: 22240608 DOI: 10.1016/j.exphem.2012.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/05/2011] [Accepted: 01/04/2012] [Indexed: 11/17/2022]
Abstract
The goal of this study was to elucidate the role of α-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating the ionizing-radiation-induced gastrointestinal syndrome in mice. We demonstrate the efficacy of a bridging therapy that will allow the lymphohematopoietic system of severely immunocompromised victims exposed to ionizing radiation to recover from high doses of radiation. CD2F1 mice were irradiated with a high dose of radiation causing gastrointestinal syndrome (11 Gy, cobalt-60 γ-radiation) and then transfused intravenously (retro-orbital sinus) with whole blood or peripheral blood mononuclear cells (PBMC) from TS- and AMD3100-injected mice 2, 24, or 48 hours post irradiation and monitored for 30-day survival. Jejunum sections were analyzed for tissue area, surviving crypts, villi, mitotic figures, and basal lamina enterocytes. Our results demonstrate that infusion of whole blood or PBMC from TS- and AMD3100-injected mice significantly improved survival of mice receiving a high dose of radiation. Histopathology and immunostaining of jejunum from irradiated and TS- and AMD3100-mobilized PBMC-transfused mice reveal significant protection of gastrointestinal tissue from radiation injury. We demonstrate that TS and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor-containing blood or PBMC acts as a bridging therapy for immune-system recovery in mice exposed to high, potentially fatal, doses of ionizing radiation.
Collapse
Affiliation(s)
- Vijay K Singh
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889-5603, USA.
| | | | | | | | | | | |
Collapse
|