1
|
Lee SY, Prieto-Fernández E, Egia-Mendikute L, Antoñana-Vildosola A, Velasco-Beltrán P, Bosch A, Jimenez-Lasheras B, de Blas A, Etxaniz-Diaz de Durana J, Valdaliso-Díez E, Bozal-Basterra L, Ercilla A, Martin JE, Carracedo A, Gros A, Aransay AM, Palazón A, Pérez-Gutiérrez L. Syndecan-3 positively regulates the pro-inflammatory function of macrophages. Cell Mol Life Sci 2025; 82:145. [PMID: 40192763 PMCID: PMC11977058 DOI: 10.1007/s00018-025-05649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/10/2025] [Accepted: 03/06/2025] [Indexed: 04/10/2025]
Abstract
The tumour microenvironment (TME) is a highly structured ecosystem that surrounds a tumour and plays a crucial role in tumorigenesis. As one of the most abundant cell types in the TME, tumour-associated-macrophages (TAMs) can promote disease progression and resistance to therapy. Syndecan-3 (SDC3) is a cell-surface heparan sulphate proteoglycan expressed by TAMs, although its functional relevance in these cells remains unknown. Here, we demonstrated that pro-inflammatory cytokines drive the expression of SDC3 on the cell surface of macrophages. Genetic ablation of SDC3 in macrophages led to aberrant proliferation, adhesion and expression of CD40 and CD86 surface markers. Moreover, SDC3 defective macrophages exhibited distinctive gene expression patterns, leading to impaired tumour cell phagocytosis and increased tumour cell proliferation. Mechanistically, a decrease in the secretion of pro-inflammatory cytokines was observed in SDC3 KO macrophages, concomitant with impaired T cell effector functions. Additionally, a higher angiogenic capacity was observed in endothelial cells when co-cultured with macrophages deficient for SDC3, possibly mediated through an increased release of VEGFA, PECAM-1 and IL-8 by SDC3 KO cells. Collectively, we have identified SDC3 as a modulator of macrophage functions aiming at supporting a pro-inflammatory and anti-tumour phenotype in these cells.
Collapse
Affiliation(s)
- So Young Lee
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Endika Prieto-Fernández
- Tumor Immunology and Immunotherapy Lab, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Leire Egia-Mendikute
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Asier Antoñana-Vildosola
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Paloma Velasco-Beltrán
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Alexandre Bosch
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Borja Jimenez-Lasheras
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Ander de Blas
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Jone Etxaniz-Diaz de Durana
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Eunate Valdaliso-Díez
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Laura Bozal-Basterra
- Cancer Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Amaia Ercilla
- Cancer Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - José Ezequiel Martin
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Arkaitz Carracedo
- Cancer Cell Signaling and Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Alena Gros
- Tumor Immunology and Immunotherapy Lab, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana M Aransay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Asís Palazón
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Lorena Pérez-Gutiérrez
- Cancer Glycoimmunology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain.
| |
Collapse
|
2
|
Xu Z, Wang R, Xu Y, Qiu R, Chen J, Liu L, Qian Q. Comparative analysis and process optimization for manufacturing CAR-T using the PiggyBac system derived from cryopreserved versus fresh PBMCs. Sci Rep 2025; 15:5023. [PMID: 39934258 PMCID: PMC11814250 DOI: 10.1038/s41598-025-89686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Chimeric antigen receptor T (CAR-T) therapy holds promise for cancer treatment but faces challenges with using fresh patient cells, including manufacturing failures and logistical hurdles. Cryopreserved peripheral blood mononuclear cells (PBMCs) offer a potential solution, and while lentiviral processes have been reported for generating CAR-T from these cells, few studies have demonstrated successful PiggyBac electroporation methods. Therefore, the objectives of our study were twofold: Firstly, to conduct a comparative study on cryopreserved PBMCs, fresh PBMCs, and their respective preparations of CAR-T. Secondly, to establish a PiggyBac electroporation CAR-T preparation process using cryopreserved PBMCs through process optimization. The results revealed that long-term frozen PBMCs viability in a relatively stable manner. CAR-T generated from cryopreserved PBMCs exhibited comparable expansion potential, cell phenotype, differentiation profiles, exhaustion markers, and cytotoxicity against human ovarian cancer cell line (SKOV-3) cells to those derived from fresh PBMCs. Moreover, through process optimization, we further enhanced the proliferation and toxicity of CAR-T. This approach has the potential to revolutionize the CAR-T production model by utilizing healthy donor cells instead of patient cells. This shift could mitigate issues affecting treatment efficacy, such as suboptimal cell condition following illness or delays in cell preparation.
Collapse
Affiliation(s)
- Zenghui Xu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai Cell Therapy Research Institute, 1585 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai University Mengchao Cancer Hospital, 118 Qianyang Road, Shanghai, 201805, Shanghai, China.
| | - Ruyue Wang
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Yuanjian Xu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Ruijuan Qiu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Jiangrui Chen
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Linfeng Liu
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China
| | - Qijun Qian
- Shanghai Cell Therapy Group Co., Ltd, 1535 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai Cell Therapy Research Institute, 1585 Yuanguo Road, Shanghai, 201805, Shanghai, China.
- Shanghai University Mengchao Cancer Hospital, 118 Qianyang Road, Shanghai, 201805, Shanghai, China.
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, Shanghai, China.
| |
Collapse
|
3
|
Kim SY, Tang M, Chih SY, Sallavanti J, Gao Y, Qiu Z, Wang HG, Li W. Involvement of p38 MAPK and MAPKAPK2 in promoting cell death and the inflammatory response to ischemic stress associated with necrotic glioblastoma. Cell Death Dis 2025; 16:12. [PMID: 39805854 PMCID: PMC11729867 DOI: 10.1038/s41419-025-07335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.k.a. p38) as a key player in promoting cell death and the inflammatory response to ischemic stress associated with necrotic tumors. We found that glioblastoma (GBM) cells expressing patient-derived Kirsten rat sarcoma (KRAS) or phosphoinositide-3-kinase (PI3K) active mutants showed enhanced cell death under ischemia-mimetic conditions in vitro and were more likely to develop into necrotic tumors in vivo. Cell death in both settings depended on p38, which is also required for tumor progression driven by KRAS or PI3K. Under ischemia-mimetic conditions, GBM cells undergo reactive oxygen species (ROS)-dependent cell death. Gene expression in these cells recapitulated multiple features observed in peri-necrotic tumors from patient GBM. Further studies showed the involvement of a positive feedback loop between the p38-MAPK-activated protein kinase 2 (MAPKAPK2, a.k.a. MK2) signaling axis and the unfolded protein response signaling components activating transcription factor 4 (ATF4) and inositol-requiring enzyme 1 (IRE1α) in driving ischemic tumor cell death. This signaling cascade was further potentiated by RAS or PI3K activation under ischemic conditions, contributing to the inflammatory gene expression response. Therefore, our study suggests that p38 could be targeted to relieve the inflammatory response in necrotic tumors and inhibit GBM progression.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Miaolu Tang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen Y Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Jessica Sallavanti
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Yan Gao
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Zhiqiang Qiu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA.
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
4
|
Mozooni Z, Faraji F, Minaeian S, Bahadorizadeh L. The Relationship Between Serum IgE Level and IL-4 and IL-13 Cytokines in Colorectal Cancer Patients. Immunol Invest 2025; 54:34-45. [PMID: 39392309 DOI: 10.1080/08820139.2024.2414091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common malignancy of the digestive system in the world. Immune cells and molecules in tumor microenvironment are crucial.Identifying immune system components in cancer aids in biomarker discovery. This study investigated the serum IgE levels and expression of IL-4 and IL-13 in the tissue and serum of CRC patients and explored their possible association with pathological and clinical factors. MATERIALS AND METHODS Thirty-six patients with CRC and 36 healthy individuals were involved in the study. Tissues and blood samples were collected. Serum levels of IgE and IL-4 and IL-13 were analyzed using the ELISA method. The quantitative Real-Time PCR (qRT-PCR) technique was used to assess the expression levels of the cytokines in CRC tissue samples in comparison with the adjacent control tissue. RESULTS Our results revealed that the serum level of IL-4 and IL-13 and also their gene expression levels were significantly decreased in CRC patients compared to the controls. The results of this study revealed that there is no significant difference in the serum levels of IgE between CRC patients and the control group. CONCLUSION All in all, the results of the current research suggest that the expression levels of IL-13, IL-4, and IgE vary between CRC tissue.
Collapse
Affiliation(s)
- Zahra Mozooni
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Leyla Bahadorizadeh
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhang Y, Cheng F, Cai X, Wu J. Malignant behaviors and immune response in melanoma: Epstein-Barr virus induced gene 3 as a therapeutic target based on an in-vitro exploration. PeerJ 2024; 12:e18730. [PMID: 39726752 PMCID: PMC11670768 DOI: 10.7717/peerj.18730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Epstein-Barr virus induced gene 3 (EBI3), a member of the IL-12 family, is known to be involved in malignant progression in a variety of cancers, but its role in melanoma is unclear. The aim of this study was to explore the effects of EBI3 on the malignant phenotype melanoma to reveal its potential as a therapeutic target. Methods In this study, we used bioinformatics to analyze the expression of EBI3 in pan-cancer and verified its expression level in melanoma cells by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Subsequently, the effects of EBI3 knockdown on cell proliferation, migration and invasion were detected using the Cell Counting Kit-8 (CCK-8) and Transwell assays. Changes in immune-related cytokines were detected by ELISA, and macrophage polarization was observed using immunofluorescence. Finally, the phosphorylation levels of signaling pathways such as Smad3, STAT6 and cGAS-STING were analyzed by Western blot. Results EBI3 was evidently highly-expressed in melanoma, and silencing of EBI3 could visibly suppress the survival and migration/invasion of melanoma cells, concurrent with the increased levels of BAX and CDH1 and the decreased expressions of BCL2 and CDH2. Meanwhile, EBI3 knockdown diminished the phosphorylation levels of both Smad3 and STAT6 and the levels of immune response-relevant cytokines in melanoma cells, while aggravating the macrophage M1 polarization and the expression of cGAS, p-STING and p-IRE1 α in THP-1 monocyte-derived macrophages co-cultured with EBI3-silenced melanoma cells. Conclusion This study filled the blank on the involvement of EBI3 in melanoma, hinting the possibility of controlling EBI3 as a therapeutic strategy in the management of melanoma.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Medical Aesthetics, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengrui Cheng
- Department of Medical Aesthetics, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingrui Cai
- Surgery of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingping Wu
- Department of Medical Aesthetics, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Li C, Xu C, Guan R, Jiao R, Wang Y, Cui C, Cao S, Chang F, Wei R, Li Z, Liu Z, Gross ND, Li G, Li W, Wei D, Lei D. Spatial transcriptomics reveal tumor microenvironment and SLCO2A1 correlated with tumor suppression in hypopharyngeal squamous cell carcinoma. Int Immunopharmacol 2024; 142:113243. [PMID: 39340989 DOI: 10.1016/j.intimp.2024.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Hypopharyngeal squamous cell carcinoma (HSCC) is a type of head and neck tumor with malignant behavior and poor prognosis. Spatial transcriptomics is a method that spatially analyzes gene expression patterns in tissues and has been used to discover tumor microenvironment and molecular markers in various tumors. However, there are no published reports on spatial transcriptomic analysis of HSCC. METHODS In this study, spatial transcriptomic analysis was performed on tumor tissues in situ, peritumoral tissues, and lymphatic metastatic tissues of four patients with HSCC. Morphological markers, including panCK, SMA, and CD45, were used to identify epithelial, fibroblast, and immune cells, respectively. By analyzing the expression of more than 18, 000 genes within the transcriptome of all ROIs, differentially expressed genes of three cell types in different tissues were identified, and differentially expressed signaling pathways and immune infiltration were analyzed. RESULTS The spatial distribution of cells suggests that fibroblast cells in tumor tissues may be involved in the genesis and development of tumors, and the immune infiltration of lymphatic tumor metastasis is lower than that of tumors in situ. For epithelial cells, SLCO2A1, which is a favorable prognosis marker in head and neck squamous cell carcinoma (HNSCC), was significantly down-regulated in tumor tissues and lymphatic metastatic tissues compared with adjacent normal tissues. For immune cells, KANK3, which is a favorable prognosis markers in HNSCC, was significantly down-regulated in lymphatic metastatic tissues compared with adjacent normal tissues. For fibroblast cells, AQP1, CLEC3B and SLCO2A1, which are favorable prognosis markers in HNSCC, were significantly down-regulated in tumor tissues compared with adjacent normal tissues. ITGA8, which is a favorable prognosis markers in HNSCC, was significantly down-regulated in lymphatic metastatic tissues compared with normal lymphatic tissues. CSRP1, DES, and SLCO2A1 positively correlate with immune infiltration in HNSCC. Moreover, SLCO2A1 overexpression suppressed Fadu cells proliferation and metastasis and significantly correlated with favorable survival overcome in HSCC. CONCLUSIONS We investigated tumor and fibroblast heterogeneity, as well as the immune microenvironment in HSCC by using spatial transcriptomics. SLCO2A1 may be a tumor suppressor gene and correlates with immune infiltration for HSCC and could serve as a potential target for its diagnosis and treatment.
Collapse
Affiliation(s)
- Ce Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Chenyang Xu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Rui Guan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Ruijie Jiao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Yin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Chengfu Cui
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Fen Chang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Ran Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Zinan Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Zhiwei Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Neil D Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Centre, Houston, TX 77030, USA
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, PR China.
| |
Collapse
|
7
|
Sesarman A, Luput L, Rauca VF, Patras L, Licarete E, Meszaros MS, Dume BR, Negrea G, Toma VA, Muntean D, Porfire A, Banciu M. Targeting of M2 macrophages with IL-13-functionalized liposomal prednisolone inhibits melanoma angiogenesis in vivo. J Liposome Res 2024; 34:535-546. [PMID: 38379249 DOI: 10.1080/08982104.2024.2315452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.
Collapse
Affiliation(s)
- Alina Sesarman
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences of Babes-Bolyai University, Cluj-Napoca, Romania
| | - Marta-Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Bogdan Razvan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Giorgiana Negrea
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Experimental Biology and Biochemistry, nstitute of Biological Research, branch of NIRDBS Bucharest, Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, and Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Mozooni Z, Shahmohammadi A, Golestani N, Bahadorizadeh L. The Relationship Between Serum and Tissue Levels of IL-13 and TYK2 in Colorectal Cancer Patients. Immunol Invest 2024; 53:1279-1292. [PMID: 39252194 DOI: 10.1080/08820139.2024.2399581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a third cause of death worldwide. The immune system plays a significant role in the tumor microenvironment and identifying its components involved in cancer development can aid in finding new biomarkers for prognosis, treatment monitoring, and immune-based therapies. Interleukin 13 (IL-13) is a cytokine produced by immune cells that has been implicated in tumor invasion, proliferation, and metastasis. Previous studies have shown that IL-13 causes the phosphorylation of Tyrosine kinase 2 (TYK2), which may contribute to the development and progression of cancer. This study investigated the levels expression of IL-13 and TYK2 in the tissue and serum of CRC patients and explored their possible association with pathological and clinical factors. METHODS 105 patients with CRC and 105 healthy individuals were involved in the study. Tissue and blood samples were collected. The quantitative Real-Time PCR (qRT-PCR) technique was used to assess the expression levels of the IL-13 and TYK2 CRC tissue samples in comparison with the adjacent control tissue. RESULT The expression levels of IL-13 were lower and TYK2 were found to be higher in CRC tissue compared to normal tissue. Additionally, serum levels of IL-13 were decreased in CRC patients while TYK2 levels were elevated. A significant negative correlation was found between the expression levels of IL-13 in both serum and tissue and the cancer stage. CONCLUSION These results suggest that IL-13 and TYKMay 2 play essential roles in CRC development and progression and may serve as potential biomarkers for early detection and treatment.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leyla Bahadorizadeh
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wang F, Bashiri Dezfouli A, Multhoff G. The immunomodulatory effects of cannabidiol on Hsp70-activated NK cells and tumor target cells. Mol Immunol 2024; 174:1-10. [PMID: 39126837 DOI: 10.1016/j.molimm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Cannabidiol (CBD), the major non-psychoactive component of cannabis, exhibits anti-inflammatory properties, but less is known about the immunomodulatory potential of CBD on activated natural killer (NK) cells and/or their targets. Many tumor cells present heat shock protein 70 (Hsp70) on their cell surface in a tumor-specific manner and although a membrane Hsp70 (mHsp70) positive phenotype serves as a target for Hsp70-activated NK cells, a high mHsp70 expression is associated with tumor aggressiveness. This study investigated the immuno-modulatory potential of CBD on NK cells stimulated with TKD Hsp70 peptide and IL-2 (TKD+IL-2) and also on HCT116 p53wt and HCT116 p53-/- colorectal cancer cells exhibiting high and low basal levels of mHsp70 expression. RESULTS Apart from an increase in the density of NTB-A and a reduced expression of LAMP-1, the expression of all other activatory NK cell receptors including NKp30, NKG2D and CD69 which are significantly up-regulated after stimulation with TKD+IL-2 remained unaffected after a co-treatment with CBD. However, the release of major pro-inflammatory cytokines by NK cells such as interferon-γ (IFN-γ) and the effector molecule granzyme B (GrzB) was significantly reduced upon CBD treatment. With respect to the tumor target cells, CBD significantly reduced the elevated expression of mHsp70 but had no effect on the low basal mHsp70 expression. Expression of other NK cell ligands such as MICA and MICB remained unaffected, and the NK cell ligands ULBP and B7-H6 were not expressed on these target cells. Consistent with the reduced mHsp70 expression, treatment of both effector and target cells with CBD reduced the killing of high mHsp70 expressing tumor cells by TKD+IL-2+CBD pre-treated NK cells but had no effect on the killing of low mHsp70 expressing tumor cells. Concomitantly, CBD treatment reduced the TKD+IL-2 induced increased release of IFN-γ, IL-4, TNF-α and GrzB, but CBD had no effect on the release of IFN-α when NK cells were co-incubated with tumor target cells. CONCLUSION Cannabidiol (CBD) may potentially diminish the anti-tumor effectiveness of TKD+IL-2 activated natural killer (NK) cells.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich and Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China; Radiation Immuno-Oncology Group, TranslaTUM - Central Institute for Translational Cancer Research and Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, TranslaTUM - Central Institute for Translational Cancer Research and Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany.
| |
Collapse
|
10
|
Zou S, Liu B, Feng Y. CCL17, CCL22 and their receptor CCR4 in hematologic malignancies. Discov Oncol 2024; 15:412. [PMID: 39240278 PMCID: PMC11379839 DOI: 10.1007/s12672-024-01210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Hematological malignancies (HM) are common malignant tumors with high morbidity and mortality rates, and are malignant diseases that seriously affect human health, with chemotherapy prone to recurrence and toxic side effects. Therefore, the development of precise, effective, and safe targeted therapeutic agents has become a hotspot in the current research of antitumor technology. More and more studies have shown that the interaction of C-C chemokine ligand 17 (CCL17) and C-C chemokine ligand 22 (CCL22) with the receptor C-C chemokine receptor type 4 (CCR4) promotes the immune escape of tumors and is closely related to the occurrence, development, and prognosis of hematological tumors. In this regard, we present a review on the expression and role of the CCL17/CCL22-CCR4 axis in HM, including lymphoma, leukemia, and multiple myeloma, with the aim of providing latest ideas and directions for the diagnosis and treatment of HM. In addition, we discuss the role and related mechanisms of HM therapeutic agents targeting the CCL17/CCL22-CCR4 axis and the potential of humanized anti-CCR4 antibodies for the treatment of HM.
Collapse
Affiliation(s)
- Shasha Zou
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Bo Liu
- Department of Key, Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yonghuai Feng
- Department of Hematology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Department of Hematology, Dongguan People's Hospital, Dongguan, China.
| |
Collapse
|
11
|
Almeida-Nunes DL, Nunes M, Osório H, Ferreira V, Lobo C, Monteiro P, Abreu MH, Bartosch C, Silvestre R, Dinis-Oliveira RJ, Ricardo S. Ovarian cancer ascites proteomic profile reflects metabolic changes during disease progression. Biochem Biophys Rep 2024; 39:101755. [PMID: 38974022 PMCID: PMC11225207 DOI: 10.1016/j.bbrep.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 07/09/2024] Open
Abstract
Ovarian cancer (OC) patients develop ascites, an accumulation of ascitic fluid in the peritoneal cavity anda sign of tumour dissemination within the peritoneal cavity. This body fluid is under-researched, mainly regarding the ascites formed during tumour progression that have no diagnostic value and, therefore, are discarded. We performed a discovery proteomics study to identify new biomarkers in the ascites supernatant of OC patients. In this preliminary study, we analyzed a small amount of OC ascites to highlight the importance of not discarding such biological material during treatment, which could be valuable for OC management. Our findings reveal that OC malignant ascitic fluid (MAF) displays a proliferative environment that promotes the growth of OC cells that shift the metabolic pathway using alternative sources of nutrients, such as the cholesterol pathway. Also, OC ascites drained from patients during treatment showed an immunosuppressive environment, with up-regulation of proteins from the signaling pathways of IL-4 and IL-13 and down-regulation from the MHC-II. This preliminary study pinpointed a new protein (Transmembrane Protein 132A) in the OC context that deserves to be better explored in a more extensive cohort of patients' samples. The proteomic profile of MAF from OC patients provides a unique insight into the metabolic kinetics of cancer cells during disease progression, and this information can be used to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Diana Luísa Almeida-Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| | - Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313, Porto, Portugal
| | - Hugo Osório
- Proteomics Scientific Platform, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine from University of Porto (FMUP), 4200-319, Porto, Portugal
| | - Verónica Ferreira
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Cláudia Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Paula Monteiro
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Miguel Henriques Abreu
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto) / Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine from University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's – PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
- FOREN – Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, 1400-136, Lisbon, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135, Porto, Portugal
- Associate Laboratory I4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116, Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal
| |
Collapse
|
12
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
13
|
Zhu L, Jin Z. Exploring the causal relationship between the immune cell-inflammatory factor axis and lung cancer: a Mendelian randomization study. Front Oncol 2024; 14:1345765. [PMID: 39267832 PMCID: PMC11390355 DOI: 10.3389/fonc.2024.1345765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Background Lung cancer is a major health burden globally and smoking is a well-known risk factor. It has been observed that chronic inflammation contributes to lung cancer progression, with immune cells and inflammatory cytokines implicated in tumor development. Clarifying the causal links between these immune components and lung cancer could enhance prevention and therapy. Methods We performed Mendelian randomization (MR) to explore causal connections between immune cells, inflammatory markers, and lung cancer risk, using genetic variants as instruments. Data from GWAS on these variables underpinned our MR analyses. Results Our findings indicated an inverse association between some immune cells and lung cancer risk, implying that more immune cells might be protective. NK T cells (CD16-CD56) and myeloid cells (HLA DR+ on CD33dim HLA DR+ CD11b+) had an inverse correlation with lung cancer risk. Furthermore, a direct relationship was observed between inflammatory cytokines and these immune cells. In contrast, IL-18 was inversely associated with lung cancer, while IL-13 showed a direct correlation. Conclusion The study underscores the role of immune and inflammatory factors in lung cancer. These insights could lead to new therapeutic strategies for combating lung cancer.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Zhi Jin
- Department of Traditional Chinese Medicine, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
14
|
Kao CJ, Charmsaz S, Alden SL, Brancati M, Li HL, Balaji A, Munjal K, Howe K, Mitchell S, Leatherman J, Griffin E, Nakazawa M, Tsai HL, Danilova L, Thoburn C, Gizzi J, Gross NE, Hernandez A, Coyne EM, Shin SM, Babu JS, Apostol GW, Durham J, Christmas BJ, Konig MF, Lipson EJ, Naidoo J, Cappelli LC, Pabani A, Ged Y, Baretti M, Brahmer J, Hoffman-Censits J, Seiwert TY, Garonce-Hediger R, Guha A, Bansal S, Tang L, Jaffee EM, Chandler GS, Mohindra R, Ho WJ, Yarchoan M. Immune-related events in individuals with solid tumors on immunotherapy associate with Th17 and Th2 signatures. J Clin Invest 2024; 134:e176567. [PMID: 39403935 PMCID: PMC11473156 DOI: 10.1172/jci176567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUNDImmune-related adverse events (irAEs) and their associated morbidity/mortality are a key concern for patients receiving immune checkpoint inhibitors (ICIs). Prospective evaluation of the drivers of irAEs in a diverse pan-tumor cohort is needed to identify patients at greatest risk and to develop rational treatment and interception strategies.METHODSIn an observational study, we prospectively collected blood samples and performed regular clinical evaluations for irAEs in patients receiving ICI therapy as standard of care for solid tumors. We performed in-parallel analysis of cytokines by Luminex immunoassay and circulating immune cells by cytometry by time-of-flight (CyTOF) at baseline and on treatment to investigate mechanisms of irAEs.RESULTSWe enrolled 111 patients, of whom 40.5% developed a symptomatic irAE (grade ≥ 2). Development of a grade ≥ 2 irAE was positively associated with the use of combination ICI and a history of an autoimmune disorder. Early changes in T helper 17 (Th17) (IL-6, IL-17f), type 2 (IL-5, IL-13, IL-25), and type 1 (TNF-α) cytokine signatures and congruent on-treatment expansions of Th17 and Th2 effector memory (Th2EM) T cell populations in peripheral blood were positively associated with the development of grade ≥2 irAEs. IL-6 levels were also associated with inferior cancer-specific survival and overall survival.CONCLUSIONSIn a diverse, prospective pan-tumor cohort, Th17 and Th2 skewing during early ICI treatment was associated with the development of clinically relevant irAEs but not antitumor responses, providing possible targets for monitoring and therapeutic interventions.FUNDINGJohns Hopkins Bloomberg-Kimmel Institute for Cancer Immunotherapy, the NCI SPORE in Gastrointestinal Cancers (P50 CA062924), NCI grant (R50CA243627 to LD), the NIH Center Core Grant (P30 CA006973), Swim Across America (to MY), NIAMS (K23AR075872 to LC), and imCORE-Genentech grant 137515 (to Johns Hopkins Medicine on behalf of MY).
Collapse
Affiliation(s)
- Chester J. Kao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | | | - Madelena Brancati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Howard L. Li
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aanika Balaji
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kabeer Munjal
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Kathryn Howe
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Sarah Mitchell
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - James Leatherman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Ervin Griffin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Mari Nakazawa
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Hua-Ling Tsai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ludmila Danilova
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chris Thoburn
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Gizzi
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole E. Gross
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Erin M. Coyne
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Sarah M. Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Jayalaxmi Suresh Babu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - George W. Apostol
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Jennifer Durham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Brian J. Christmas
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
| | - Maximilian F. Konig
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Evan J. Lipson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jarushka Naidoo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Beaumont Hospital, Dublin, Ireland
- RCSI University of Health Sciences, Dublin, Ireland
| | - Laura C. Cappelli
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aliyah Pabani
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yasser Ged
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marina Baretti
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jean Hoffman-Censits
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tanguy Y. Seiwert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Aditi Guha
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Sanjay Bansal
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Laura Tang
- Genentech Inc., a member of the imCORE network, South San Francisco, California, USA
| | - Elizabeth M. Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - G. Scott Chandler
- F. Hoffmann-La Roche Ltd., a member of the imCORE network, Basel, Switzerland
| | - Rajat Mohindra
- F. Hoffmann-La Roche Ltd., a member of the imCORE network, Basel, Switzerland
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
| | - Mark Yarchoan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, a member of the imCORE network, Baltimore, Maryland, USA
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Convergence Institute and
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Lu Y, Liu H, Shang J, Mao Y, Meng L, Gao C. Effects of Weizhuan'an on rats with precancerous lesions of gastric cancer based on regulating gastric mucosal microflora and inflammatory factors. Front Pharmacol 2024; 15:1446244. [PMID: 39221149 PMCID: PMC11361960 DOI: 10.3389/fphar.2024.1446244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Objectives This study aimed to observe the intervention of Weizhuan'an prescription on rats with precancerous lesions of gastric cancer (PLGC) as well as its regulation on gastric mucosal microflora and inflammatory factors and explore the pharmacodynamic mechanisms of Weizhuan'an Formula. Methods The rats were classified into the blank control group (BCG); low-, medium-, and high-dose groups of Weizhuan'an prescription (LDG, MDG, and HDG, respectively); and natural recovery group (NRG) at random. The rats in the traditional Chinese medicine (TCM) group were given corresponding doses of Weizhuan'an formula, while the rats in the NRG and BCG were given an equivalent volume of distilled water for 12 weeks. After that, gastric mucosa samples of rats were collected to observe the general and pathological changes in the gastric mucosa; the changes in gastric mucosal microflora were detected by 16S rDNA amplicon sequencing, and the inflammatory factors were analyzed by cytokine antibody microarray and Western blotting. Results The results suggest that compared with the BCG, the pathology of gastric mucosa and gastric mucosal microflora and inflammatory factors in rats with PLGC have changed significantly, while Weizhuan'an formula effectively improved them, especially in the MDG and HDG (p < 0.05). Compared with the NRG, the abundance of probiotics such as Lactobacillus and Veillonella were increased, while the abundance of pathogens such as Proteobacteria and Pseudomonas was decreased (p < 0.05, p < 0.01), and the relative contents of IL-2, IL-4, IL-13, and MCP-1 in gastric mucosa were decreased (p < 0.05). Moreover, it can upregulate the DNA-binding transcriptional regulator, ABC type multidrug transport system, and related enzymes and affect the signaling pathways such as viral protein interaction with cytokine and cytokine receptor and T cell receptor signaling pathway significantly (p < 0.05, p < 0.01), which can promote drug absorption and utilization and repair damaged gastric mucosa. Conclusion The study confirmed that Weizhuan'an prescription can treat rats with PLGC by regulating gastric mucosal microflora and inflammatory factors.
Collapse
Affiliation(s)
- Yuting Lu
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huayi Liu
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jiaju Shang
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Changbai Gao
- Department of Nephropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Dai Y, Ji Z, Liang H, Jiang M, Wang L, Bao X, Liu J, Liu M, Yang C. CD44v5 domain regulates crosstalk between TNBC cells and tumor-associated macrophages by enhancing the IL-4R/STAT3 axis. Cancer Sci 2024; 115:2235-2253. [PMID: 38700108 PMCID: PMC11247601 DOI: 10.1111/cas.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has greater infiltration of M2-like macrophages (TAMs), which enhances cancer cell invasion and leads to a poor prognosis. TNBC progression is mediated by both tumor cells and the tumor microenvironment (TME). Here we elucidate the mechanism of the interaction between TNBC cells and TAMs. In this study, we confirmed that CD44v5 is highly expressed in TNBC, which drives TNBC cell metastasis and promotes TAM polarization by co-localizing with IL4Rα and inhibiting its internalization and degradation, thereby promoting activation of the STAT3/IL6 signaling axis. At the same time, TAMs also facilitate TNBC cell metastasis by secreting IL-4, IL-6, and other cytokines, in which the IL-4/IL-4R/STAT3/IL-6 signaling axis plays the same role for TNBC cells responding to TAMs. Moreover, we found that the above progress could be suppressed when the CD44v5 domain was blocked. We demonstrated that the CD44v5/IL-4R/STAT3/IL-6 signaling pathway plays a key role in TNBC cell metastasis, and in TNBC cells inducing TAM polarization and responding to TAMs, promoting metastasis. Collectively, we suggest that the CD44v5 domain may be a promising target for regulating the TME of TNBC as well as treating TNBC.
Collapse
Affiliation(s)
- Yanhua Dai
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Zhongjian Ji
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Hongyan Liang
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Meng Jiang
- Faculty of ComputingHarbin Institute of TechnologyHarbinChina
| | - Lan Wang
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Xinyi Bao
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Jiaren Liu
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Ming Liu
- Department of General SurgeryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| | - Chun Yang
- Department of Clinical LaboratoryThe 4th Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
17
|
Xue Y, Friedl V, Ding H, Wong CK, Stuart JM. Single-cell signatures identify microenvironment factors in tumors associated with patient outcomes. CELL REPORTS METHODS 2024; 4:100799. [PMID: 38889686 PMCID: PMC11228369 DOI: 10.1016/j.crmeth.2024.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024]
Abstract
The cellular components of tumors and their microenvironment play pivotal roles in tumor progression, patient survival, and the response to cancer treatments. Unveiling a comprehensive cellular profile within bulk tumors via single-cell RNA sequencing (scRNA-seq) data is crucial, as it unveils intrinsic tumor cellular traits that elude identification through conventional cancer subtyping methods. Our contribution, scBeacon, is a tool that derives cell-type signatures by integrating and clustering multiple scRNA-seq datasets to extract signatures for deconvolving unrelated tumor datasets on bulk samples. Through the employment of scBeacon on the The Cancer Genome Atlas (TCGA) cohort, we find cellular and molecular attributes within specific tumor categories, many with patient outcome relevance. We developed a tumor cell-type map to visually depict the relationships among TCGA samples based on the cell-type inferences.
Collapse
Affiliation(s)
- Yuanqing Xue
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Verena Friedl
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Hongxu Ding
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Christopher K Wong
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA
| | - Joshua M Stuart
- UC Santa Cruz Department, Biomolecular Engineering, Genomics Institute, Santa Cruz, CA, USA.
| |
Collapse
|
18
|
Ramos Solis N, Cannon A, Dilday T, Abt M, Oblak AL, Soloff AC, Kaplan MH, Yeh ES. HUNK as a key regulator of tumor-associated macrophages in triple negative breast cancer. Oncoimmunology 2024; 13:2364382. [PMID: 38846083 PMCID: PMC11155704 DOI: 10.1080/2162402x.2024.2364382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC tumors are not sensitive to endocrine therapy, and standardized TNBC treatment regimens are lacking. TNBC is a more immunogenic subtype of breast cancer, making it more responsive to immunotherapy intervention. Tumor-associated macrophages (TAMs) constitute one of the most abundant immune cell populations in TNBC tumors and contribute to cancer metastasis. This study examines the role of the protein kinase HUNK in tumor immunity. Gene expression analysis using NanoString's nCounter PanCancer Immune Profiling panel identified that targeting HUNK is associated with changes in the IL-4/IL-4 R cytokine signaling pathway. Experimental analysis shows that HUNK kinase activity regulates IL-4 production in mammary tumor cells, and this regulation is dependent on STAT3. In addition, HUNK-dependent regulation of IL-4 secreted from tumor cells induces polarization of macrophages into an M2-like phenotype associated with TAMs. In return, IL-4 induces cancer metastasis and macrophages to produce epidermal growth factor. These findings delineate a paracrine signaling exchange between tumor cells and TAMs regulated by HUNK and dependent on IL-4/IL-4 R. This highlights the potential of HUNK as a target for reducing TNBC metastasis through modulation of the TAM population.
Collapse
Affiliation(s)
- Nicole Ramos Solis
- Department of Pharmacology and Toxicology, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
| | - Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
| | - Tinslee Dilday
- Department of Pharmacology and Toxicology, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
| | - Melissa Abt
- Department of Pharmacology and Toxicology, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
| | - Adrian L. Oblak
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
| | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark H. Kaplan
- Simon Comprehensive Cancer Center, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
| | - Elizabeth S. Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
19
|
Švajger U, Kamenšek U. Interleukins and interferons in mesenchymal stromal stem cell-based gene therapy of cancer. Cytokine Growth Factor Rev 2024; 77:76-90. [PMID: 38508954 DOI: 10.1016/j.cytogfr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
The tumor microenvironment is importantly shaped by various cytokines, where interleukins (ILs) and interferons (IFNs) shape the balance of immune activity within tumor niche and associated lymphoid organs. Their importance in activation and tuning of both innate and adaptive immune responses prompted their use in several clinical trials, albeit with limited therapeutic efficacy and risk of toxicity due to systemic administration. Increasing preclinical evidence suggests that local delivery of ILs and IFNs could significantly increase their effectiveness, while simultaneously attenuate the known side effects and issues related to their biological activity. A prominent way to achieve this is to use cell-based delivery vehicles. For this purpose, mesenchymal stromal stem cells (MSCs) are considered an almost ideal candidate. Namely, MSCs can be obtained in large quantities and from obtainable sources (e.g. umbilical cord or adipose tissue), their ex vivo expansion is relatively straightforward compared to other cell types and they possess very low immunogenicity making them suitable for allogeneic use. Importantly, MSCs have shown an intrinsic capacity to respond to tumor-directed chemotaxis. This review provides a focused and detailed discussion on MSC-based gene therapy using ILs and IFNs, engineering techniques and insights on potential future advancements.
Collapse
Affiliation(s)
- Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Šlajmerjeva Ulica 6, Ljubljana SI-1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana SI-1000, Slovenia.
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška Cesta 2, Ljubljana SI-1000, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, Ljubljana SI-1000, Slovenia
| |
Collapse
|
20
|
Leland P, Degheidy H, Lea A, Bauer SR, Puri RK, Joshi BH. Identification and characterisation of novel CAR-T cells to target IL13Rα2 positive human glioma in vitro and in vivo. Clin Transl Med 2024; 14:e1664. [PMID: 38685487 PMCID: PMC11058282 DOI: 10.1002/ctm2.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Previously, we discovered that human solid tumours, but not normal human tissues, preferentially overexpress interleukin-13Receptor alpha2, a high binding receptor for IL-13. To develop novel anti-cancer approaches, we constructed a chimeric antigen receptor construct using a high binding and codon optimised scFv-IL-13Rα2 fragment fused with CD3ζ and co-stimulatory cytoplasmic domains of CD28 and 4-1BB. METHODS We developed a scFv clone, designated 14-1, by biopanning the bound scFv phages using huIL-13Rα2Fc chimeric protein and compared its binding with our previously published clone 4-1. We performed bioinformatic analyses for complementary determining regions (CDR) framework and residue analyses of the light and heavy chains. This construct was packaged with helper plasmids to produce CAR-lentivirus and transduced human Jurkat T or activated T cells from peripheral blood mononuclear cells (PBMCs) to produce CAR-T cells and tested for their quality attributes in vitro and in vivo. Serum enzymes including body weight from non-tumour bearing mice were tested for assessing general toxicity of CAR-T cells. RESULTS The binding of 14-1 clone is to IL-13Rα2Fc-chimeric protein is ∼5 times higher than our previous clone 4-1. The 14-1-CAR-T cells grew exponentially in the presence of cytokines and maintained phenotype and biological attributes such as cell viability, potency, migration and T cell activation. Clone 14-1 migrated to IL-13Rα2Fc and cell free supernatants only from IL-13Rα2+ve confluent glioma tumour cells in a chemotaxis assay. scFv-IL-13Rα2-CAR-T cells specifically killed IL-13Rα2+ve but not IL-13Rα2-ve tumour cells in vitro and selectively caused significant release of IFN-γ only from IL-13Rα2+ve co-cultures. These CAR-T cells regressed IL-13Rα2+ve glioma xenografts in vivo without any general toxicity. In contrast, the IL-13Rα2 gene knocked-down U251 and U87 xenografts failed to respond to the CAR-T therapy. CONCLUSION Taken together, we conclude that the novel scFv-IL-13Rα2 CAR-T cell therapy may offer an effective therapeutic option after designing a careful pre-clinical and clinical study.
Collapse
Affiliation(s)
- Pamela Leland
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
| | - Heba Degheidy
- Cellular and Tissue Therapy Branch, Office of Cellular Therapy & Human Tissues, Office of Therapeutic ProductsCenter for Biologics Evaluation and ResearchU.S. Food and Drug Administration, White OakSilver SpringMarylandUSA
| | - Ashley Lea
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
| | - Steven R. Bauer
- Cellular and Tissue Therapy Branch, Office of Cellular Therapy & Human Tissues, Office of Therapeutic ProductsCenter for Biologics Evaluation and ResearchU.S. Food and Drug Administration, White OakSilver SpringMarylandUSA
- Wake Forest Institute for Regenerative MedicineWinston‐SalemNorth CarolinaUSA
| | - Raj K. Puri
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
- Iovance Biotherapeutics, Inc.FrederickMarylandUSA
| | - Bharat H. Joshi
- Tumor Vaccine and Biotechnology BranchDivision of Cell Therapy IISilver SpringMarylandUSA
| |
Collapse
|
21
|
Li P, Jing Y, Qiu X, Xiao H, Zheng Y, Wu L. Structural characterization and immunomodulatory activity of a polysaccharide from Dioscotea opposita. Int J Biol Macromol 2024; 265:130734. [PMID: 38462105 DOI: 10.1016/j.ijbiomac.2024.130734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
The purified polysaccharides fraction, DOP-2, was prepared from Dioscorea opposita Thunb (D. opposita). This study combined in vitro and in vivo experiments to comprehensively investigate the index changes in RAW264.7 cells and immunocompromised mice under DOP-2 intervention, aiming to elucidate the potential mechanisms of immunomodulatory effects of DOP-2. DOP-2 (10 ∼ 500 μg/mL) significantly elevated the levels of NO, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) factors secreted by RAW264.7 cells, and restored the body weight of immunosuppressed mice and improve the degree of injury to the immune organ index, resulting in significant immunomodulatory effects. Notably, DOP-2 promoted the production of short-chain fatty acids (SCFAs) in immunosuppressed mice and modulated the composition of their gut microflora. These findings highlight the potential benefits of DOP-2 therapy in improving immune function and gut health, and will provide a theoretical basis for the application of D. opposita polysaccharides as an immunomodulatory adjuvant.
Collapse
Affiliation(s)
- Pengyue Li
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Yongshuai Jing
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Xiaoyue Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Huina Xiao
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China
| | - Yuguang Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China.
| | - Lanfang Wu
- College of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang 050200, China; Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, 3 Xingyuan Road, Shijiazhuang 050200, China.
| |
Collapse
|
22
|
Griffith BD, Frankel TL. The Aryl Hydrocarbon Receptor: Impact on the Tumor Immune Microenvironment and Modulation as a Potential Therapy. Cancers (Basel) 2024; 16:472. [PMID: 38339226 PMCID: PMC10854841 DOI: 10.3390/cancers16030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ubiquitous nuclear receptor with a broad range of functions, both in tumor cells and immune cells within the tumor microenvironment (TME). Activation of AhR has been shown to have a carcinogenic effect in a variety of organs, through induction of cellular proliferation and migration, promotion of epithelial-to-mesenchymal transition, and inhibition of apoptosis, among other functions. However, the impact on immune cell function is more complicated, with both pro- and anti-tumorigenic roles identified. Although targeting AhR in cancer has shown significant promise in pre-clinical studies, there has been limited efficacy in phase III clinical trials to date. With the contrasting roles of AhR activation on immune cell polarization, understanding the impact of AhR activation on the tumor immune microenvironment is necessary to guide therapies targeting the AhR. This review article summarizes the state of knowledge of AhR activation on the TME, limitations of current findings, and the potential for modulation of the AhR as a cancer therapy.
Collapse
Affiliation(s)
- Brian D. Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Sullivan MR, White RP, Dashnamoorthy Ravi, Kanetkar N, Fridman IB, Ekenseair A, Evens AM, Konry T. Characterizing influence of rCHOP treatment on diffuse large B-cell lymphoma microenvironment through in vitro microfluidic spheroid model. Cell Death Dis 2024; 15:18. [PMID: 38195589 PMCID: PMC10776622 DOI: 10.1038/s41419-023-06299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
For over two decades, Rituximab and CHOP combination treatment (rCHOP) has remained the standard treatment approach for diffuse large B-cell lymphoma (DLBCL). Despite numerous clinical trials exploring treatment alternatives, few options have shown any promise at further improving patient survival and recovery rates. A wave of new therapeutic approaches have recently been in development with the rise of immunotherapy for cancer, however, the cost of clinical trials is prohibitive of testing all promising approaches. Improved methods of early drug screening are essential for expediting the development of the therapeutic approaches most likely to help patients. Microfluidic devices provide a powerful tool for drug testing with enhanced biological relevance, along with multi-parameter data outputs. Here, we describe a hydrogel spheroid-based microfluidic model for screening lymphoma treatments. We utilized primary patient DLBCL cells in combination with NK cells and rCHOP treatment to determine the biological relevance of this approach. We observed cellular viability in response to treatment, rheological properties, and cell surface marker expression levels correlated well with expected in vivo characteristics. In addition, we explored secretory and transcriptomic changes in response to treatment. Our results showed complex changes in phenotype and transcriptomic response to treatment stimuli, including numerous metabolic and immunogenic changes. These findings support this model as an optimal platform for the comparative screening of novel treatments.
Collapse
Affiliation(s)
- Matthew R Sullivan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Rachel P White
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Ninad Kanetkar
- Chemical Engineering Department, Northeastern University, Boston, MA, USA
| | - Ilana Berger Fridman
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Avram and Stella Goldstein-Goren Department of Biotechnology and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Adam Ekenseair
- Chemical Engineering Department, Northeastern University, Boston, MA, USA
| | | | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
24
|
Shipman WD, Singh K, Cohen JM, Leventhal J, Damsky W, Tomayko MM. Targeting interleukin (IL)-4/IL-13 in immune checkpoint inhibitor-induced bullous pemphigoid: a cautionary note on the beneficial effect of T helper 2 immunity in melanoma and immunotherapy: reply from the authors. Br J Dermatol 2023; 190:138. [PMID: 37947404 DOI: 10.1093/bjd/ljad342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Affiliation(s)
| | | | | | | | - William Damsky
- Departments of Dermatology
- Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mary M Tomayko
- Departments of Dermatology
- Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Gu SL, Nath S, Markova A. Safety of Immunomodulatory Systemic Therapies Used in the Management of Immune-Related Cutaneous Adverse Events. Pharmaceuticals (Basel) 2023; 16:1610. [PMID: 38004475 PMCID: PMC10674388 DOI: 10.3390/ph16111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Immune-related cutaneous adverse events (ircAEs) commonly occur in patients on treatment with immune checkpoint inhibitors and can significantly reduce patient quality of life. These are often treated with immunomodulatory agents, including glucocorticoids, immunosuppressants, and biologics. While often effective at managing symptoms, these therapies can cause several adverse events which may limit their use. In addition, immunomodulatory agents should be used with particular caution in patients receiving immunotherapy, as the efficacy of the oncologic regimen may potentially be undermined. In this review, we summarize the safety of systemic therapies that are used in the management of ircAEs, with a particular focus on the resultant risk of secondary tumor progression in patients with active cancer.
Collapse
Affiliation(s)
- Stephanie L. Gu
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sandy Nath
- Urgent Care Service, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Alina Markova
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
26
|
Mamuladze T, Kipnis J. Type 2 immunity in the brain and brain borders. Cell Mol Immunol 2023; 20:1290-1299. [PMID: 37429945 PMCID: PMC10616183 DOI: 10.1038/s41423-023-01043-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023] Open
Abstract
Recent research in neuroimmunology has revolutionized our understanding of the intricate interactions between the immune system and the central nervous system (CNS). The CNS, an "immune-privileged organ", is now known to be intimately connected to the immune system through different cell types and cytokines. While type 2 immune responses have traditionally been associated with allergy and parasitic infections, emerging evidence suggests that these responses also play a crucial role in CNS homeostasis and disease pathogenesis. Type 2 immunity encompasses a delicate interplay among stroma, Th2 cells, innate lymphoid type 2 cells (ILC2s), mast cells, basophils, and the cytokines interleukin (IL)-4, IL-5, IL-13, IL-25, TSLP and IL-33. In this review, we discuss the beneficial and detrimental roles of type 2 immune cells and cytokines in CNS injury and homeostasis, cognition, and diseases such as tumors, Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Tornike Mamuladze
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Immunology Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
27
|
López-López S, Romero de Ávila MJ, González-Gómez MJ, Nueda ML, Baladrón V, Monsalve EM, García-Ramírez JJ, Díaz-Guerra MJM. NOTCH4 potentiates the IL-13 induced genetic program in M2 alternative macrophages through the AP1 and IRF4-JMJD3 axis. Int Immunol 2023; 35:497-509. [PMID: 37478314 DOI: 10.1093/intimm/dxad028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
IL-13 signaling polarizes macrophages to an M2 alternatively activated phenotype, which regulates tissue repair and anti-inflammatory responses. However, an excessive activation of this pathway leads to severe pathologies, such as allergic airway inflammation and asthma. In this work, we identified NOTCH4 receptor as an important modulator of M2 macrophage activation. We show that the expression of NOTCH4 is induced by IL-13, mediated by Janus kinases and AP1 activity, probably mediated by the IL-13Rα1 and IL-13Rα2 signaling pathway. Furthermore, we demonstrate an important role for NOTCH4 signaling in the IL-13 induced gene expression program in macrophages, including various genes that contribute to pathogenesis of the airways in asthma, such as ARG1, YM1, CCL24, IL-10, or CD-163. We also demonstrate that NOTCH4 signaling modulates IL-13-induced gene expression by increasing IRF4 activity, mediated, at least in part, by the expression of the histone H3K27me3 demethylase JMJD3, and by increasing AP1-dependent transcription. In summary, our results provide evidence for an important role of NOTCH4 signaling in alternative activation of macrophages by IL-13 and suggest that NOTCH4 may contribute to the increased severity of lesions in M2 inflammatory responses, such as allergic asthma, which points to NOTCH4 as a potential new target for the treatment of these pathologies.
Collapse
Affiliation(s)
- Susana López-López
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
- Research Unit, Complejo Hospitalario Universitario de Albacete, C/Laurel, s/n, 02008 Albacete, Spain
| | - María José Romero de Ávila
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - María Julia González-Gómez
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - María Luisa Nueda
- Biochemistry and Molecular Biology Branch, School of Pharmacy/CRIB/Biomedicine Unit, Department of Inorganic and Organic Chemistry and Biochemistry, University of Castilla-La Mancha/CSIC, Albacete, Spain
| | - Victoriano Baladrón
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - Eva M Monsalve
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - José Javier García-Ramírez
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| | - María José M Díaz-Guerra
- CRIB/Biomedicine Unit, Medical School, University of Castilla-La Mancha/CSIC, C/Almansa 14, 02008 Albacete, Spain
| |
Collapse
|
28
|
Ji H, Fan Y, Gao X, Gong Y, Dai K, Wang Z, Xu B, Yu J. The Protective Effects of Water-Soluble Alginic Acid on the N-Terminal of Thymopentin. Molecules 2023; 28:6445. [PMID: 37764221 PMCID: PMC10536172 DOI: 10.3390/molecules28186445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thymopentin (TP5) has exhibited strong antitumor and immunomodulatory effects in vivo. However, the polypeptide is rapidly degraded by protease and aminopeptidase within a minute at the N-terminal of TP5, resulting in severe limitations for further practical applications. In this study, the protective effects of water-soluble alginic acid (WSAA) on the N-terminal of TP5 were investigated by establishing an H22 tumor-bearing mice model and determining thymus, spleen, and liver indices, immune cells activities, TNF-α, IFN-γ, IL-2, and IL-4 levels, and cell cycle distributions. The results demonstrated that WSAA+TP5 groups exhibited the obvious advantages of the individual treatments and showed superior antitumor effects on H22 tumor-bearing mice by effectively protecting the immune organs, activating CD4+ T cells and CD19+ B cells, and promoting immune-related cytokines secretions, finally resulting in the high apoptotic rates of H22 cells through arresting them in S phase. These data suggest that WSAA could effectively protect the N-terminal of TP5, thereby improving its antitumor and immunoregulatory activities, which indicates that WSAA has the potential to be applied in patients bearing cancer or immune deficiency diseases as a novel immunologic adjuvant.
Collapse
Affiliation(s)
- Haiyu Ji
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Yuting Fan
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Xiaoji Gao
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Youshun Gong
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Keyao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Bo Xu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| | - Juan Yu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai 264005, China; (H.J.); (Y.F.); (X.G.); (Y.G.); (Z.W.); (B.X.)
| |
Collapse
|
29
|
Zhang Z, Liu S, Gao T, Yang Y, Li Q, Zhao L. A novel immune-related prognostic signature based on Chemoradiotherapy sensitivity predicts long-term survival in patients with esophageal squamous cell carcinoma. PeerJ 2023; 11:e15839. [PMID: 37609436 PMCID: PMC10441524 DOI: 10.7717/peerj.15839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Background There is a heterogenous clinical response following chemoradiotherapy (CRT) in esophageal squamous cell carcinoma (ESCC). Therefore, we aimed to study signaling pathway genes that affect CRT sensitivity and prognosis. Methods Gene expression analyses were performed in the GEO and TCGA datasets. A immunohistochemistry (IHC) analysis was performed in pretreatment biopsies. Results MMP13 was found to be highly expressed in the "Pathologic Complete Response (pCR)" and "Complete Remission (CR)" and "Alive" groups. Th17 cells and MMP9/13 showed a negative correlation in immune infiltration analysis. In GSEA analysis, IL-4 and IL-13 signaling pathways were highly enriched in patients exhibiting high MMP expression in pCR and CR groups. IHC results suggested higher MMP13 & IL-4 and lower IL-17A & RORC expression in the CR group compared to the 0.70, and the model could well distinguish high-risk and low-risk subgroups. Conclusion The above results may provide guidance for developing novel treatment and prognostic strategies in ESCC patients.
Collapse
Affiliation(s)
- Zewei Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Shiliang Liu
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Tiantian Gao
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yuxian Yang
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Quanfu Li
- Ordos Central Hospital, Ordos, China
| | - Lei Zhao
- Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
30
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
31
|
Walker K, Baravalle R, Holyfield R, Kalms J, Wright H, Seewooruthun C, Muskett FW, Scott-Tucker A, Merritt A, Henry A, Lawson ADG, Hall G, Prosser C, Carr MD. Identification and characterisation of anti-IL-13 inhibitory single domain antibodies provides new insights into receptor selectivity and attractive opportunities for drug discovery. Front Immunol 2023; 14:1216967. [PMID: 37483614 PMCID: PMC10359924 DOI: 10.3389/fimmu.2023.1216967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Interleukin-13 (IL-13) is a cytokine involved in T-cell immune responses and is a well validated therapeutic target for the treatment of asthma, along with other allergic and inflammatory diseases. IL-13 signals through a ternary signalling complex formed with the receptors IL-13Rα1 and IL-4Rα. This complex is assembled by IL-13 initially binding IL-13Rα1, followed by association of the binary IL-13:IL-13Rα1 complex with IL-4Rα. The receptors are shared with IL-4, but IL-4 initially binds IL-4Rα. Here we report the identification and characterisation of a diverse panel of single-domain antibodies (VHHs) that bind to IL-13 (KD 40 nM-5.5 μM) and inhibit downstream IL-13 signalling (IC50 0.2-53.8 μM). NMR mapping showed that the VHHs recognise a number of epitopes on IL-13, including previously unknown allosteric sites. Further NMR investigation of VHH204 bound to IL-13 revealed a novel allosteric mechanism of inhibition, with the antibody stabilising IL-13 in a conformation incompatible with receptor binding. This also led to the identification of a conformational equilibrium for free IL-13, providing insights into differing receptor signalling complex assembly seen for IL-13 compared to IL-4, with formation of the IL-13:IL-13Rα1 complex required to stabilise IL-13 in a conformation with high affinity for IL-4Rα. These findings highlight new opportunities for therapeutic targeting of IL-13 and we report a successful 19F fragment screen of the IL-13:VHH204 complex, including binding sites identified for several hits. To our knowledge, these 19F containing fragments represent the first small-molecules shown to bind to IL-13 and could provide starting points for a small-molecule drug discovery programme.
Collapse
Affiliation(s)
- Kayleigh Walker
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Roberta Baravalle
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Rachel Holyfield
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Jacqueline Kalms
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
- UCB Biopharma, UCB Pharma, Slough, United Kingdom
| | - Helena Wright
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Chitra Seewooruthun
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Frederick W. Muskett
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | | | - Andy Merritt
- LifeArc, Centre for Therapeutics Discovery, Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | | | | | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Christine Prosser
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
- UCB Biopharma, UCB Pharma, Slough, United Kingdom
| | - Mark D. Carr
- Leicester Institute of Structural and Chemical Biology, and Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
32
|
Jou E. Type 1 and type 2 cytokine-mediated immune orchestration in the tumour microenvironment and their therapeutic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:474-497. [PMID: 37455828 PMCID: PMC10345208 DOI: 10.37349/etat.2023.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Eric Jou
- Queens’ College, University of Cambridge, CB3 9ET Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
33
|
Chetverina D, Vorobyeva NE, Gyorffy B, Shtil AA, Erokhin M. Analyses of Genes Critical to Tumor Survival Reveal Potential 'Supertargets': Focus on Transcription. Cancers (Basel) 2023; 15:cancers15113042. [PMID: 37297004 DOI: 10.3390/cancers15113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The identification of mechanisms that underlie the biology of individual tumors is aimed at the development of personalized treatment strategies. Herein, we performed a comprehensive search of genes (termed Supertargets) vital for tumors of particular tissue origin. In so doing, we used the DepMap database portal that encompasses a broad panel of cell lines with individual genes knocked out by CRISPR/Cas9 technology. For each of the 27 tumor types, we revealed the top five genes whose deletion was lethal in the particular case, indicating both known and unknown Supertargets. Most importantly, the majority of Supertargets (41%) were represented by DNA-binding transcription factors. RNAseq data analysis demonstrated that a subset of Supertargets was deregulated in clinical tumor samples but not in the respective non-malignant tissues. These results point to transcriptional mechanisms as key regulators of cell survival in specific tumors. Targeted inactivation of these factors emerges as a straightforward approach to optimize therapeutic regimens.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- Cancer Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, H-1117 Budapest, Hungary
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115522, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
34
|
Choi WK, Hussein UK, Ahmed AG, Zhang J, Kim KM, Ahn AR, Park HS, Park SH, Cho DH, Jang KY. Co-operative roles of IL-4Rα and IL-13Rα1 in the progression of ovarian carcinomas and the survival of ovarian carcinoma patients. Cancer Commun (Lond) 2023. [PMID: 37243576 PMCID: PMC10354408 DOI: 10.1002/cac2.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Affiliation(s)
- Won Ku Choi
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Usama Khamis Hussein
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Asmaa Gamal Ahmed
- Faculty of Postgraduate Studies and Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Junyue Zhang
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ae Ri Ahn
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
35
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
36
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Tanito K, Nii T, Yokoyama Y, Oishi H, Shibata M, Hijii S, Kaneko R, Tateishi C, Ito S, Kishimura A, Mori T, Katayama Y. Engineered macrophages acting as a trigger to induce inflammation only in tumor tissues based on arginase 1-responsive TNF-α accelerated release. J Control Release 2023:S0168-3659(23)00260-2. [PMID: 37080897 DOI: 10.1016/j.jconrel.2023.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Herein, we report engineered macrophages, termed "MacTrigger," acting as a trigger to induce an inflammatory environment only in tumor tissues. This led to intensive anti-tumor effects based on the removal potential of foreign substances. The strength of this study is the utilization of two unique functions of macrophages: (1) their ability to migrate to tumor tissues and (2) polarization into the anti-inflammatory M2 phenotype in the presence of tumor tissues. The MacTrigger accelerated the release of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), when it was polarized to the M2 phenotype. When the MacTrigger was administered to tumor-bearing mice, tumor growth was significantly inhibited compared with the non-treatment group, the un-transfected macrophages group, and the group with engineered macrophages capable of randomly releasing TNF-α. Additionally, the ratio of the M1 phenotype to the M2 phenotype in tumor tissues was >1 only in the MacTrigger group. Moreover, the ratios of natural killer cells and CD8+T cells in tumor tissues were increased compared with other groups. These results indicate that MacTrigger can induce inflammation in tumor tissues, leading to effective anti-tumor effects. In normal tissues, especially the liver, notable side effects were not observed. This is because, in the liver, the MacTrigger was not polarized to the M2 phenotype and could not induce inflammation. These results suggest that the MacTrigger is a "trigger" that can induce inflammation only in tumor tissues, then allowing the body to attack tumor tissues through the innate immunity system.
Collapse
Affiliation(s)
- Kenta Tanito
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruki Nii
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yuta Yokoyama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruka Oishi
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mayuka Shibata
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shoichi Hijii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryosuke Kaneko
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chuya Tateishi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shoko Ito
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li 32023, Taiwan, ROC.
| |
Collapse
|
38
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
39
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
40
|
Antitumor effect of melatonin on breast cancer in experimental models: A systematic review. Biochim Biophys Acta Rev Cancer 2023; 1878:188838. [PMID: 36403922 DOI: 10.1016/j.bbcan.2022.188838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Breast cancer is the most frequent malignant neoplasm in females. While conventional treatments such as chemotherapy and radiotherapy are available, they are highly invasive and toxic to oncological patients. Melatonin is a promising molecule for the treatment of breast cancer with antitumor effects on tumorigenesis and tumor progression. The aim of this systematic review was to synthesize knowledge about the antitumor effect of melatonin on breast cancer in experimental models and propose the main mechanisms of action already described in relation to the processes regulated by melatonin. PubMed, Web of Science, and Embase databases were used. The inclusion criteria were in vitro and in vivo experimental studies that used different formulations of melatonin as a treatment for breast cancer, without year or language restrictions. Risk of bias for studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) tool. Data from selected articles were presented as narrative descriptions and tables. Seventy-five articles on different breast cancer cell lines and experimental models treated with melatonin alone, or in combination with other compounds were included. Melatonin showed antitumor effects on proliferative pathways related to the cell cycle and tumorigenesis, tumor death, angiogenesis, and tumor metastasis, as well as on oxidative stress and immune regulatory pathways. These effects were either dependent or independent of melatonin receptors. Herein, we clarify the antitumor action of melatonin on different tumorigenic processes in breast cancer in experimental models. Systematic review registration: PROSPERO database (CRD42022309822/https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022309822).
Collapse
|
41
|
Wu XY, Xu WW, Huan XK, Wu GN, Li G, Zhou YH, Najafi M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol Cell Biochem 2023; 478:197-214. [PMID: 35771397 DOI: 10.1007/s11010-022-04502-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Cancer resistance to anti-tumour agents has been one of the serious challenges in different types of cancer treatment. Usually, an increase in the cell death markers can predict a higher rate of survival among patients diagnosed with cancer. By increasing the regulation of survival genes, cancer cells can display a higher resistance to therapy through the suppression of anti-tumour immunity and inhibition of cell death signalling pathways. Administration of certain adjuvants may be useful in order to increase the therapeutic efficiency of anti-cancer therapy through the stimulation of different cell death pathways. Several studies have demonstrated that metformin, an antidiabetic drug with anti-cancer properties, amplifies cell death mechanisms, especially apoptosis in a broad-spectrum of cancer cells. Stimulation of the immune system by metformin has been shown to play a key role in the induction of cell death. It seems that the induction or suppression of different cell death mechanisms has a pivotal role in either sensitization or resistance of cancer cells to therapy. This review explains the cellular and molecular mechanisms of cell death following anticancer therapy. Then, we discuss the modulatory roles of metformin on different cancer cell death pathways including apoptosis, mitotic catastrophe, senescence, autophagy, ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China
| | - Xiang-Kun Huan
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Guan-Nan Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yu-Hong Zhou
- Digestive Endoscopy Center, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
42
|
Chen Y, Sun J, Luo Y, Liu J, Wang X, Feng R, Huang J, Du H, Li Q, Tan J, Ren G, Wang X, Li H. Pharmaceutical targeting Th2-mediated immunity enhances immunotherapy response in breast cancer. J Transl Med 2022; 20:615. [PMID: 36564797 PMCID: PMC9783715 DOI: 10.1186/s12967-022-03807-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is a complex disease with a highly immunosuppressive tumor microenvironment, and has limited clinical response to immune checkpoint blockade (ICB) therapy. T-helper 2 (Th2) cells, an important component of the tumor microenvironment (TME), play an essential role in regulation of tumor immunity. However, the deep relationship between Th2-mediated immunity and immune evasion in breast cancer remains enigmatic. METHODS Here, we first used bioinformatics analysis to explore the correlation between Th2 infiltration and immune landscape in breast cancer. Suplatast tosilate (IPD-1151 T, IPD), an inhibitor of Th2 function, was then employed to investigate the biological effects of Th2 blockade on tumor growth and immune microenvironment in immunocompetent murine breast cancer models. The tumor microenvironment was analyzed by flow cytometry, mass cytometry, and immunofluorescence staining. Furthermore, we examined the efficacy of IPD combination with ICB treatment by evaluating TME, tumor growth and mice survival. RESULTS Our bioinformatics analysis suggested that higher infiltration of Th2 cells indicates a tumor immunosuppressive microenvironment in breast cancer. In three murine breast cancer models (EO771, 4T1 and EMT6), IPD significantly inhibited the IL-4 secretion by Th2 cells, promoted Th2 to Th1 switching, remodeled the immune landscape and inhibited tumor growth. Remarkably, CD8+ T cell infiltration and the cytotoxic activity of cytotoxic T lymphocyte (CTL) in tumor tissues were evidently enhanced after IPD treatment. Furthermore, increased effector CD4+ T cells and decreased myeloid-derived suppressor cells and M2-like macrophages were also demonstrated in IPD-treated tumors. Importantly, we found IPD reinforced the therapeutic response of ICB without increasing potential adverse effects. CONCLUSIONS Our findings demonstrate that pharmaceutical inhibition of Th2 cell function improves ICB response via remodeling immune landscape of TME, which illustrates a promising combinatorial immunotherapy.
Collapse
Affiliation(s)
- Yuru Chen
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiazheng Sun
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yachan Luo
- grid.452206.70000 0004 1758 417XDepartment of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiazhou Liu
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xiaoyu Wang
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Rui Feng
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jing Huang
- grid.452206.70000 0004 1758 417XDepartment of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Huimin Du
- grid.452206.70000 0004 1758 417XDepartment of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Qin Li
- grid.411610.30000 0004 1764 2878Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050 China
| | - Jinxiang Tan
- grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Guosheng Ren
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Xiaoyi Wang
- grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Hongzhong Li
- grid.452206.70000 0004 1758 417XChongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
43
|
Henneghan AM, Fico BG, Wright ML, Kesler SR, Harrison ML. Effects of meditation compared to music listening on biomarkers in breast cancer survivors with cognitive complaints: secondary outcomes of a pilot randomized control trial. Explore (NY) 2022; 18:657-662. [PMID: 34802955 PMCID: PMC9085959 DOI: 10.1016/j.explore.2021.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
CONTEXT We previously reported positive behavioral effects of both daily mantra meditation and classical music listening interventions in breast cancer survivors with cancer related cognitive complaints. OBJECTIVE The objective of this pilot study was to compare the effects of the meditation intervention to a music listening intervention on biomarkers of inflammation and cellular aging (secondary outcomes) in breast cancer survivors. DESIGN Randomized control trial, baseline data collection (time 1), post intervention data collection (time 2) SETTING: Community-based, Central Texas PARTICIPANTS: 25 breast cancer survivors (BCS) who were 3 months to 6 years post chemotherapy completion and reported cognitive changes. INTERVENTION(S) Kirtan Kriya meditation (KK) or classical music listening (ML), 8 weeks, 12 min a day MAIN OUTCOME: Telomerase activity [TA], c-reactive protein [CRP], soluble IL-2 receptor alpha [sIL-2Rα], soluble IL-4 receptor [sIL-4R], soluble IL-6 receptor [sIL-6R], soluble tumor necrosis factor receptor II [sTNF-RII], VEGF receptor 2 [sVEGF-R2], and VEGF receptor 3 [sVEGF-R3] RESULTS: Repeated measures analysis of variance models were analyzed from time 1 to time 2 by group for each biomarker. A pattern of greater telomerase activity across time in both groups (F (1,15) = 3.98, p = .06, ω2 = 0.04); significant decreases in sIL-4R across time for both groups (F (1,22) = 6.28, p = .02, ω2 = .003); group*time effect was nominally different but not statistically different for sIL-4R (F(1,22) = 3.82, p = .06, ω2 = .001); and a pattern for a group*time effect with ML group showing higher levels of sVEGF-R3 at time 2 (F (1,20) = 2.59, p = .12, ω2 = .009). No significant effects were found for CRP, sIL-2Rα, sIL-6R, sTNF-RII, or sVEGF-R2.
Collapse
Affiliation(s)
- Ashley M Henneghan
- The University of Texas at Austin, School of Nursing. 1710 Red River St., Austin, TX 78712, United States; The University of Texas at Austin, Department of Oncology, 1601 Trinity St., Austin, TX 78712, United States.
| | - Brandon G Fico
- The University of Texas at Austin, Department of Kinesiology and Health Education, 2109, San Jacinto Blvd., Austin, TX 78712, United States
| | - Michelle L Wright
- The University of Texas at Austin, School of Nursing. 1710 Red River St., Austin, TX 78712, United States; The University of Texas at Austin, Dell Medical School, Department of Women's Health, 1601, Trinity St., Austin, TX 78712, United States
| | - Shelli R Kesler
- The University of Texas at Austin, School of Nursing. 1710 Red River St., Austin, TX 78712, United States; The University of Texas at Austin, Department of Oncology, 1601 Trinity St., Austin, TX 78712, United States; The University of Texas at Austin, Department of Diagnostic Medicine, 1601 Trinity St., Austin, TX 78712, United States
| | - Michelle L Harrison
- The University of Texas at Austin, Department of Kinesiology and Health Education, 2109, San Jacinto Blvd., Austin, TX 78712, United States
| |
Collapse
|
44
|
de Groot AE, Myers KV, Krueger TEG, Brennen WN, Amend SR, Pienta KJ. Targeting interleukin 4 receptor alpha on tumor-associated macrophages reduces the pro-tumor macrophage phenotype. Neoplasia 2022; 32:100830. [PMID: 35939881 PMCID: PMC9386102 DOI: 10.1016/j.neo.2022.100830] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
Tumor-associated macrophages (TAMs) are an abundant tumor-promoting cell type in the tumor microenvironment (TME). Most TAMs exhibit a pro-tumor M2-like phenotype supportive of tumor growth, immune evasion, and metastasis. IL-4 and IL-13 are major cytokines that polarize macrophages to an M2 subset and share a common receptor, IL-4 receptor alpha (IL-4R alpha). Treatment of human ex vivo polarized M2 macrophages and M2 macrophage precursors with IL-4R alpha antagonist antibody Dupilumab (DupixentⓇ) reduces M2 macrophage features, including a shift in cell surface marker protein expression and gene expression. In animal models of prostate cancer, both pharmacologic inhibition of IL-4R alpha and genetic deletion of IL-4R alpha utilizing an Il4ra -/- mouse model result in decreased CD206 on TAMs. These data support IL-4R alpha as a target to reduce the pro-tumor, M2-like macrophage phenotype as a novel adjunct cancer therapy.
Collapse
Affiliation(s)
- Amber E de Groot
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA
| | - Kayla V Myers
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA.
| | - Timothy E G Krueger
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - W Nathaniel Brennen
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Sarah R Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA
| | - Kenneth J Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Baltimore, MD, 21287, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, 3400 N. Charles St., Baltimore, MD, 21218, USA
| |
Collapse
|
45
|
Monnier M, Paolini L, Vinatier E, Mantovani A, Delneste Y, Jeannin P. Antitumor strategies targeting macrophages: the importance of considering the differences in differentiation/polarization processes between human and mouse macrophages. J Immunother Cancer 2022; 10:jitc-2022-005560. [PMID: 36270732 PMCID: PMC9594518 DOI: 10.1136/jitc-2022-005560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 11/05/2022] Open
Abstract
Macrophages are the immune cells that accumulate the most in the majority of established tumors and this accumulation is associated with a poor prognosis. Tumor-associated macrophages (TAMs) produce inflammatory cytokines and growth factors that promote tumor expansion and metastasis. TAMs have recently emerged as targets of choice to restore an efficient antitumor response and to limit tumor growth. Many molecules targeting TAMs are actually evaluated in clinical trials, alone or in combination. While these molecules induce tumor regression and stimulate cytotoxic responses in mouse models of tumor development, results from early clinical trials are less impressive. In this review, we list the biological differences between human and mouse macrophages that help explain the different efficacy of antitumor strategies targeting TAMs between human and animal studies. Differences in the impact of survival and polarization factors and in the cytokines produced and markers expressed as well as the limitations of extrapolations based on in vitro models of TAM-like generation should be considered in order to improve the design and efficacy of antitumor drugs targeting TAMs.
Collapse
Affiliation(s)
- Marine Monnier
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, LabEx IGO, Angers, France.,Univ Angers, SFR ICAT, Angers, France
| | - Léa Paolini
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, LabEx IGO, Angers, France.,Univ Angers, SFR ICAT, Angers, France
| | - Emeline Vinatier
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, LabEx IGO, Angers, France.,Univ Angers, SFR ICAT, Angers, France.,Immunology and Allergology laboratory, University Hospital of Angers, Angers, France
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Yves Delneste
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, LabEx IGO, Angers, France.,Univ Angers, SFR ICAT, Angers, France.,Immunology and Allergology laboratory, University Hospital of Angers, Angers, France
| | - Pascale Jeannin
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, LabEx IGO, Angers, France .,Univ Angers, SFR ICAT, Angers, France.,Immunology and Allergology laboratory, University Hospital of Angers, Angers, France
| |
Collapse
|
46
|
Lei S, Jin J, Zhao X, Zhou L, Qi G, Yang J. The role of IL-33/ST2 signaling in the tumor microenvironment and Treg immunotherapy. Exp Biol Med (Maywood) 2022; 247:1810-1818. [PMID: 35733343 PMCID: PMC9679353 DOI: 10.1177/15353702221102094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-33 is a tissue-derived nuclear cytokine belonging to the IL-1 family. Stimulation-2 (ST2) is the only known IL-33 receptor. ST2 signals mostly on immune cells found within tissues, such as regulatory T cells (Treg cells), CD8+ T cells, and natural killer (NK) cells. Therefore, the IL-33/ST2 signaling pathway is important in the immune system. IL-33 deficiency impairs Treg cell function. ST2 signaling is also increased in active Treg cells, providing a new approach for Treg-related immunotherapy. The IL-33/ST2 signaling pathway regulates multiple immune-related cells by activating various intracellular kinases and factors in the tumor microenvironment (TME). Here, we review the latest studies on the role of the IL-33/ST2 signaling pathway in TME and Treg immunotherapy.
Collapse
Affiliation(s)
- Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xiangfeng Zhao
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Lihua Zhou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Guangying Qi
- Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jinfeng Yang
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China,Jinfeng Yang.
| |
Collapse
|
47
|
Hashimoto M, Miyagaki T, Komaki R, Takeuchi S, Kadono T. Development of Nodular Lesions after Dupilumab Therapy in Erythrodermic Mycosis Fungoides with Interleukin-13 Receptor alpha2 Expression. Acta Derm Venereol 2022; 102:adv00766. [PMID: 36000994 PMCID: PMC9593494 DOI: 10.2340/actadv.v102.2234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Tomomitsu Miyagaki
- Department of Dermatology, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | | | | | | |
Collapse
|
48
|
Wang J, Johnston B, Berraondo P. Editorial: Cytokine and cytokine receptor-based immunotherapies: Updates, controversies, challenges, and future perspectives. Front Immunol 2022; 13:985326. [PMID: 35958607 PMCID: PMC9361787 DOI: 10.3389/fimmu.2022.985326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jun Wang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pediatrics, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.,Canadian Center for Vaccinology, Halifax, NS, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
49
|
Vav1 accelerates Ras-driven lung cancer and modulates its tumor microenvironment. Cell Signal 2022; 97:110395. [PMID: 35752351 DOI: 10.1016/j.cellsig.2022.110395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022]
Abstract
The potential impact of Vav1 on human cancer was only recently acknowledged, as it is detected as a mutant or an overexpressed gene in various cancers, including lung cancer. Vav1, which is normally and exclusively expressed in the hematopoietic system functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. To investigate whether Vav1 plays a causative or facilitating role in-vivo in lung cancer development and to examine whether it co-operates with other oncogenes, such as mutant K-Ras, we generated novel mouse strains that express: Vav1 or K-RasG12D in type II pneumocytes, as well as a transgenic mouse line that expresses both Vav1 and K-RasG12D in these cells. Coexpression of Vav1 and K-RasG12D in the lungs dramatically increased malignant lung cancer lesions, and did so significantly faster than K-RasG12D alone, strongly suggesting that these two oncogenes synergize to enhance lung tumor development. Vav1 expression alone had no apparent effects on lung tumorigenesis. The increase in lung cancer in K-RasG12D/Vav1 mice was accompanied by an increase in B-cell, T-cells, and monocyte infiltration in the tumor microenvironment. Concomitantly, ERK phosphorylation was highly elevated in the lungs of K-RasG12 D/Vav1 mice. Also, several cytokines such as IL-4 and IL-13 which play a significant role in the immune system, were elevated in lungs of Vav1 and K-RasG12 D/Vav1 mice. Our findings emphasize the contribution of Vav1 to lung tumor development through its signaling properties.
Collapse
|
50
|
Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol (Dordr) 2022; 45:333-353. [PMID: 35587857 DOI: 10.1007/s13402-022-00667-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
Collapse
|