1
|
Kim D, Ansari MM, Ghosh M, Heo Y, Choi KC, Son YO. Implications of obesity-mediated cellular dysfunction and adipocytokine signaling pathways in the pathogenesis of osteoarthritis. Mol Aspects Med 2025; 103:101361. [PMID: 40156972 DOI: 10.1016/j.mam.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation, bone sclerosis, and chronic low-grade inflammation. Aging and injury play key roles in OA pathogenesis by triggering the release of proinflammatory factors from adipose tissue and other sources. Obesity and aging impair the function of endoplasmic reticulum (ER) chaperones, leading to ER stress, protein misfolding, and cellular apoptosis. Obesity also induces mitochondrial dysfunction in OA through oxidative stress and disrupts mitochondrial dynamics, exacerbating chondrocyte damage. These factors contribute to inflammation, matrix imbalance, and chondrocyte apoptosis. Adipocytes, the primary source of adipokines, release inflammatory mediators that affect joint cells. Several adipocytokines have a central role in the regulation of many aspects of inflammation. Adiponectin and leptin are the two most abundant adipocytokines that are strongly associated with OA progression. This literature review suggests that adipokines activate many signaling pathways to exert downstream effects and play significant roles in obesity-induced OA. Understanding this rapidly growing family of mainly adipocyte-derived mediators and obesity-mediated cellular dysfunction may be important in the development of new therapies for obesity-associated OA management.
Collapse
Affiliation(s)
- Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, 55365, Republic of Korea.
| | - Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea.
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea.
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life, Sciences Jeju National University, Jeju-si, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
2
|
Düsterhöft S, Greve JN, Garbers C. Investigating plasticity within the interleukin-6 family with AlphaFold-Multimer. Comput Struct Biotechnol J 2025; 27:946-959. [PMID: 40151527 PMCID: PMC11946507 DOI: 10.1016/j.csbj.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Cytokines are important soluble mediators that are involved in physiological and pathophysiological processes. Among them, members of the interleukin-6 (IL-6) family of cytokines have gained remarkable attention, because especially the name-giving cytokine IL-6 has been shown to be an excellent target to treat inflammatory and autoimmune diseases. The IL-6 family consists of nine members, which activate their target cells via combinations of non-signaling α- and/or signal-transducing β-receptors. While some receptor combinations are exclusively used by a single cytokine, other cytokine receptor combinations are used by multiple cytokines. Research in recent years unraveled another level of complexity: several cytokine cannot only signal via their canonical receptors, but can bind to and signal via additional α- and/or β-receptors, albeit with less affinity. While several examples of such cytokine plasticity have been reported, a systematic analysis of this phenomenon is lacking. The development of artificial intelligence programs like AlphaFold allows the computational analysis of protein complexes in a systematic manner. Here, we develop a analysis pipeline for cytokine:cytokine receptor interaction and show that AlphaFold-Multimer correctly predicts the canonical ligands of the IL-6 family. However, AlphaFold-Multimer does not provide sufficient insight to conclusively predict alternative, low-affinity ligands for receptors within the IL-6 family.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Johannes N. Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz-Hartmann-Centre for Medical Research, Hannover, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
3
|
Lokau J, Bollmann M, Garbers Y, Feist E, Lohmann CH, Bertrand J, Garbers C. Transforming growth factor beta induces interleukin-11 expression in osteoarthritis. Cytokine 2025; 187:156863. [PMID: 39879889 DOI: 10.1016/j.cyto.2025.156863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/04/2025] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Interleukin-11 (IL-11) is a member of the IL-6 family of cytokines and possesses both pro- and anti-inflammatory properties. IL-11 activates its target cells via binding to a membrane-bound IL-11R and subsequent formation of a homodimer of the signal-transducing receptor gp130. Thus, the expression pattern of the IL-11R determines which cells can be activated by IL-11. However, knowledge about IL-11 target cells and cells that secrete IL-11 are sparse, and the overall roles of IL-11 in inflammatory diseases are largely unexplored. In this study, we show that high amounts of IL-11 can be detected via ELISA in the synovial fluid of osteoarthritis (OA) patients in comparison to rheumatoid arthritis (RA) patients. Using primary cells and tissue of OA patients, we show that IL-11 is expressed by chondrocytes in cartilage, but not in the synovium. We further identify the cytokine transforming growth factor β 1(TGF-β1) as a potent inducer of IL-11 secretion in both primary chondrocytes and fibroblasts, and TGF-β1 and IL-11 levels correlate significantly in the synovial fluid of OA patients. Using immunohistochemistry, we show that both cartilage and synovium express IL-11R, and the amount of IL-11R is independent of the disease severity. Primary chondrocytes and fibroblasts from OA patients respond to IL-11 stimulation with potent activation of the Jak/STAT3 signaling cascade, suggesting that these cell types are not only the source, but also the targets of IL-11 in OA patients. Our results uncover IL-11 as a potential new target for therapy in OA.
Collapse
Affiliation(s)
- Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Department of Pathology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Miriam Bollmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Yvonne Garbers
- Faculty of Management, Culture and Technology (Lingen campus), Osnabrück University of Applied Sciences, 49809 Lingen, (Ems), Germany
| | - Eugen Feist
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, and Experimental Rheumatology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany; Department of Pathology, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
4
|
Manilall A, Mokotedi L, Gunter S, Roux RL, Fourie S, Millen AM. Tocilizumab does not ameliorate inflammation-induced left ventricular dysfunction in a collagen-induced arthritis rat model. Cardiovasc Pathol 2025; 75:107711. [PMID: 39734025 DOI: 10.1016/j.carpath.2024.107711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is an attractive therapeutic target due to its diverse roles in the pathogenesis of conditions characterized by systemic inflammation. IL-6 has also been implicated in the pathophysiology of heart failure. This study aimed to investigate the impact of IL-6 receptor blockade with tocilizumab on the molecular pathways underlying systemic inflammation-induced left ventricular (LV) dysfunction in a collagen-induced arthritis (CIA) rat model. METHODS Seventy-three Sprague-Dawley rats were divided into three groups: control (n=28), CIA (n=29), and CIA+IL-6 blocker (n=16). Inflammation was induced in the CIA and CIA+IL-6 blocker groups using bovine type II collagen emulsified in incomplete Freund's adjuvant. After arthritis onset, the CIA+IL-6 blocker group received tocilizumab for six weeks. Circulating inflammatory markers, relative LV mRNA gene expressions, and LV systolic and diastolic function were assessed. RESULTS CIA rats developed LV diastolic and early-stage LV systolic dysfunction, which was not ameliorated by IL-6 blocker administration (p > 0.05). IL-6 blocker administration did not impact circulating inflammatory markers (all p > 0.05) or LV mRNA expression of inflammatory markers compared to the CIA group, nor did it reverse inflammation-induced increases in LV mRNA expression of genes involved in fibrosis and collagen turnover, regulation of titin phosphorylation, Ca2+ handling, mitochondrial function, or apoptosis (all p > 0.05). However, LV mRNA expressions of CD68 and LOX, genes involved in macrophage infiltration and collagen cross-linking, were increased in the CIA group (p = 0.03, p = 0.0004), but not in the CIA+IL-6 blocker group compared to controls (p > 0.05). CONCLUSION These results suggest that although IL-6 blockade by tocilizumab may prevent inflammation-induced collagen cross-linking, the current treatment regimen may not protect against inflammation-induced LV dysfunction. Therefore, the role of IL-6 in the molecular mechanisms of inflammation-induced LV dysfunction remains inconclusive.
Collapse
MESH Headings
- Animals
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Rats, Sprague-Dawley
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/pathology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/chemically induced
- Antibodies, Monoclonal, Humanized/pharmacology
- Ventricular Function, Left/drug effects
- Interleukin-6/metabolism
- Interleukin-6/genetics
- Male
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/metabolism
- Inflammation Mediators/metabolism
- Rats
- Anti-Inflammatory Agents/pharmacology
- Collagen Type II
- Inflammation/metabolism
- Inflammation/drug therapy
- Inflammation/pathology
- Ventricular Remodeling/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa.
| | - Lebogang Mokotedi
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| | - Sulè Gunter
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| | - Regina Le Roux
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| | - Serena Fourie
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| | - Aletta Me Millen
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| |
Collapse
|
5
|
Zhang L, Guo X, Sun X, Liao J, Liu Q, Ye Y, Yang Z, Cressey R, He Q, Yuan Q. Analysis of tumor-infiltrating exhausted T cells highlights IL-6 and PD1 blockade as a combined immunotherapy strategy for non-small cell lung cancer. Front Immunol 2025; 16:1486329. [PMID: 40040705 PMCID: PMC11876966 DOI: 10.3389/fimmu.2025.1486329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/20/2025] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE Given the limitations of immunotherapy for treating non-small cell lung cancer (NSCLC), we investigated the phenotype and function of exhausted CD8+T cells and analyzed a novel combination immunotherapy to restore the effector killing function of tumor-infiltrating CD8+T lymphocyte (TIL). METHODS We examined the expression and function of immunosuppressive molecules on CD8+T cells of peripheral blood mononuclear cells (PBMCs) and TILs by using prospectively collected peripheral blood, pleural effusions, and tumor tissues from patients with NSCLC and correlated the results with clinical data. We then evaluated the effect of interleukin 6 (IL-6) stimulation on CD8+T cells. Finally, we assessed the effects of combined blockade of PD1 and IL-6 on macrophage recruitment in a zebrafish macrophage model and CD8+ T cell function and tumor growth in PBMC humanized mouse model. RESULTS The expression of exhaustion markers on CD8+ T cells was found to be notably higher in both tumor and paraneoplastic tissues compared to peripheral blood. Furthermore, the degree of CD8+ T cell exhaustion exhibited a progressive increase with proximity to the tumor. When CD8+ T cells from peripheral blood and tumor tissues of NSCLC patients were stimulated with IL-6, the expression level of exhaustion markers, especially PD1, was further elevated. In the in vitro experiment, the combined inhibition of IL-6 and PD1 substantially enhanced the effector killing function of CD8+ T cells in NSCLC pleural effusion samples. In a macrophage-labeled zebrafish model, combined blockade of IL-6 and PD1 enhanced the recruitment of macrophages. In PBMC humanized mouse model, combined blockade of IL-6 and PD1 enhanced the inhibition of tumor growth. CONCLUSION Our data suggest that CD8+ T cells in NSCLC patients were in a state of exhaustion and combined blockade of IL-6 and PD1 to restore CD8+ T cell function to inhibit tumor growth may be an effective clinical strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lulu Zhang
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Blood Distribution Department Nanjing Red Cross Blood Center, Nanjing, Jiangsu, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xiaoke Sun
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jue Liao
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Liu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ratchada Cressey
- Division of Clinical Chemistry, Department of Medical Technology, Faculty of Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Qing He
- Department of Head and Neck Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Weitz HT, Ettich J, Rafii P, Wittich C, Schultz L, Frank NC, Heise D, Krusche M, Lokau J, Garbers C, Behnke K, Floss DM, Kolmar H, Moll JM, Scheller J. Interleukin-11 receptor is an alternative α-receptor for interleukin-6 and the chimeric cytokine IC7. FEBS J 2025; 292:523-536. [PMID: 39473075 PMCID: PMC11796321 DOI: 10.1111/febs.17309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 10/16/2024] [Indexed: 02/06/2025]
Abstract
The cytokine interleukin 6 (IL-6) signals via the IL-6 α-receptor (IL-6Rα or IL-6R) in complex with the gp130 β-receptor. Cell type restricted expression of the IL-6R limits the action of IL-6 mainly to hepatocytes and some immune cells. Here, we show that IL-6 also binds to the IL-11 α receptor (IL-11Rα or IL-11R) and induces signaling via IL-11R:gp130 complexes, albeit with a lower affinity compared to IL-11. Antagonistic antibodies directed against IL-11R, but not IL-6R, inhibit IL-6 signaling via IL-11R:gp130 receptor complexes. Notably, IL-11 did not cross-react with IL-6R. IL-11R has also been identified as an alternative α receptor for the CNTF/IL-6-derived chimeric cytokine IC7, which has recently been shown to induce weight loss in mice. Accordingly, the effects of therapeutic monoclonal antibodies against IL-6 or IL-6R, which both block IL-6 signaling, may be slightly different. These findings provide new insights into IL-6 signaling and therefore offer new potential therapeutic intervention options in the future.
Collapse
Affiliation(s)
- Hendrik T. Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Laura Schultz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Nils C. Frank
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Denise Heise
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Matthias Krusche
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Juliane Lokau
- Institute of Clinical BiochemistryHannover Medical SchoolGermany
| | | | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Doreen M. Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtGermany
- Centre of Synthetic BiologyTechnical University of DarmstadtGermany
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| |
Collapse
|
7
|
Rose‐John S, Jones SA. More and more pleiotropy within the IL-6 family of cytokines. FEBS J 2025; 292:519-522. [PMID: 39673075 PMCID: PMC11796313 DOI: 10.1111/febs.17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Historically, cytokines belonging to the gp130 family bind to specific ligand-binding receptors that stimulate cell signaling through a receptor complex comprising gp130 or gp130 together with another structurally related signaling receptor. However, recent findings increasingly dispel these stereotypes and suggest that the receptor specificity of gp130-activating cytokines is less strict than originally assumed. Weitz et al. now provide the latest example of this pleiotropy and report that human interleukin-6 can bind and stimulate signaling via the interleukin-11 receptor. Possible biological and therapeutic consequences of these findings are discussed.
Collapse
Affiliation(s)
- Stefan Rose‐John
- Department of BiochemistryChristian‐Albrechts‐University Medical SchoolKielGermany
| | - Simon A. Jones
- Department of Infection, Immunity and Biochemistry, The School of MedicineCardiff UniversityUK
| |
Collapse
|
8
|
Aldrete CA, Call CC, Sant'Anna LE, Vlahos AE, Pei J, Cong Q, Gao XJ. Orthogonalized human protease control of secreted signals. Nat Chem Biol 2025:10.1038/s41589-024-01831-x. [PMID: 39814991 DOI: 10.1038/s41589-024-01831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. Although protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. In this study, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins. We sourced a specific human protease and its FDA-approved inhibitor. We engineered cytokines (IL-2, IL-6 and IL-10) whose activities can be activated and abrogated by proteolytic cleavage. We used species specificity and re-localization strategies to orthogonalize the cytokines and protease from the human context that they would be deployed in. hDIRECT should enable local cytokine activation to support a variety of cell-based therapies, such as muscle regeneration and cancer immunotherapy. Our work offers a proof of concept for the emerging appreciation of humanization in synthetic biology for human health.
Collapse
Affiliation(s)
- Carlos A Aldrete
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Lucas E Sant'Anna
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alexander E Vlahos
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Nasser M, Wadie M, Farid A, Amir AE. The effect of pro-inflammatory cytokines on the development of atherosclerosis in systemic lupus erythematosus patients: ultrasonographic assessment of intimal medial thickness and resistive index. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2025; 52:1. [DOI: 10.1186/s43166-024-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Abstract
Background
Systemic lupus erythematosus (SLE) is a debilitating rheumatic condition that results in the dysfunction of multiple organs in the body. Atherosclerosis is a common occurrence in people with SLE and is exacerbated by an overabundant of various cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), and their soluble receptors, such as soluble tumor necrosis factor receptor I (sTNFR I) and soluble interleukin-6 receptor (sIL-6R) (known as SLE risk factors) and high concentrations of lipids (known as dyslipidemia risk factors). The intimal medial thickness (IMT) of the internal carotid artery (ICA) is a sonographic measurement that assesses the extent of atherosclerosis. On the other hand, the resistive index (RI) is primarily employed to evaluate the severity of chronic kidney diseases (CKDs), but it is seldom utilized to estimate atherosclerosis in ICA. So, the objective of this study was to conduct retrospective cohort study among SLE patients to define which risk factor, inflammation or dyslipidemia, correlated with the development of atherosclerosis in SLE and which ultrasound assessment, CIMT or RI, is more useful in identifying atherosclerosis.
Results
TNF-α, sTNFR I, IL-6, and sIL-6R were significantly elevated (P < 0.0001) in SLE patients (n = 75) compared to the controls (n = 15); also, both CIMT and RI showed significant higher levels in patient’s group (P = 0.001 and 0.0025, respectively). Systemic lupus disease activity index (SLEDAI) (P = 0.002), total cholesterol (TC) (P = 0.025), CIMT (P = 0.00045), TNF-α (P < 0.0001), IL-6 (P < 0.0001), sTNFR I (P = 0.006), and sIL-6R (P < 0.0001) rates were significantly higher in atherosclerotic SLE patients (n = 27) than in non-atherosclerotic patients (n = 48). There were clear and meaningful positive correlations (r = 0.82, P = 0.003) observed between CIMT and SLEDAI, as well as between investigated cytokines and their soluble receptors. RI showed no significant differences between two studied groups of patients and also no significant correlations with the studied parameters except with age (r = 0.45, P = 0.035).
Conclusion
Inflammation is a more prevalent cause of atherosclerosis than dyslipidemia in SLE, thereby making it a recognized risk factor for SLE. In comparison to RI, CIMT is a valuable sonographic measure for identifying incidence of atherosclerosis.
Collapse
|
10
|
Lokau J, Garbers Y, Vicente MM, Dittrich A, Meltendorf S, Lingel H, Münster-Kühnel AK, Brunner-Weinzierl M, Garbers C. Long-term increase in soluble interleukin-6 receptor levels in convalescents after mild COVID-19 infection. Front Immunol 2025; 15:1488745. [PMID: 39835136 PMCID: PMC11743636 DOI: 10.3389/fimmu.2024.1488745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Serum levels of interleukin-6 (IL-6) are increased in COVID-19 patients. IL-6 is an effective therapeutic target in inflammatory diseases and tocilizumab, a monoclonal antibody that blocks signaling via the IL-6 receptor (IL-6R), is used to treat patients with severe COVID-19. However, the IL-6R exists in membrane-bound and soluble forms (sIL-6R), and the sIL-6R in combination with soluble glycoprotein 130 (sgp130) forms an IL-6-neutralizing buffer system capable of neutralizing small amounts of IL-6. Methods In this study, we analyzed serum levels of IL-6, sIL-6R and sgp130 in the serum of COVID-19 convalescent individuals with a history of mild COVID-19 disease and in acute severely ill COVID-19 patients compared to uninfected control subjects. Furthermore, we used single cell RNA sequencing data in order to determine which immune cell types are sources and targets of the individual cytokines and whether their expression is altered in severe COVID-19 patients. Results We find that sIL-6R levels are not only increased in acute severely ill patients, but also in convalescents after a mild COVID-19 infection. We show that this increase in sIL-6R results in an enhanced capacity of the sIL-6R/sgp130 buffer system, but that significantly enhanced free IL-6 is still present due to an overload of the buffer. Further, we identify IL-6 serum levels, age and the number of known pre-existing medical conditions as crucial determinants of disease outcome for the patients. We also show that IL-11 has no major systemic role in COVID-19 patients and that sCD25 is only increased in acute severely ill COVID-19 patients, but not in mild convalescent individuals. Discussion In conclusion, our study shows long-lasting alterations of the IL-6 system after COVID-19 disease, which might be relevant when applying anti-IL-6 or anti-IL-6R therapy.
Collapse
Affiliation(s)
- Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Yvonne Garbers
- Faculty of Management, Culture and Technology (Lingen campus), Osnabrück University of Applied Sciences, Lingen, Germany
| | - Manuel M. Vicente
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Anna Dittrich
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Stefan Meltendorf
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Monika Brunner-Weinzierl
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| |
Collapse
|
11
|
Ye M, Deng G, Liu Q, Jiang X, Wang T, Tan G, Ai J, Liu H. SO 2 activates Th17 cells through the JAK1,2/STAT3 signaling pathway. Int Immunopharmacol 2024; 143:113263. [PMID: 39353391 DOI: 10.1016/j.intimp.2024.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE To investigate the effect of SO2 on Th1/Th2/Th17 cells in allergic rhinitis (AR) and the role of JAK1, 2/STAT3 signaling pathways.To Provide potential directions for the treatment of AR. METHODS Fifteen AR patients were enrolled as the experimental group, while 15 healthy volunteers served as the normal control group. After collecting venous blood, peripheral blood mononuclear cells (PBMCs) were isolated and cultured, followed by the addition of SO2 derivatives and the JAK inhibitor Ruxolitinib. Flow cytometry was employed to assess alterations in the Th1/Th2 and Th17/Treg cell balance upon stimulation with SO2 and Ruxolitinib. qRT-PCR was utilized to detect the expression of Th1-related cytokines IL-2 and IFN-γ, Th2-related cytokines IL-4 and IL-5, Th17-related cytokines IL-17A and RORγt, as well as genes JAK1, JAK2, and STAT3. Flow cytometric cytokine analysis was conducted for quantitative assessment of the expression levels of inflammation-related cytokines in PBMC culture supernatants after stimulation. In addition, we stimulated the Jurkat T lymphocyte cell line with SO2 derivatives, added Ruxolitinib as an inhibitor, and used Western blot analysis to further determine the effects of SO2 on Th cells and the role of the JAK1,2/STAT3 signaling pathway in this process. RESULTS Stimulation with SO2 derivatives upregulated the expression levels of Th2 cells and associated cytokines, as well as Th1 cells and associated cytokines. both AR patients and healthy individuals displayed increased percentages of Th17 cells and Th17/Treg ratios in PBMCs. The expression of IL-17A, RORγt, and IL-6 was also elevated. Under SO2 stimulation, the expression of JAK1, JAK2, STAT3, and RORγt in Jurkat cells increased. Moreover, after the application of Ruxolitinib, the JAK/STAT signaling pathway was inhibited. This led to a reduction in Th17 cells and IL-17A levels in both AR patients and healthy individuals, as well as a decrease in RORγt expression in Jurkat cells. Additionally, the expression of IL-5 decreased in healthy individuals. CONCLUSION SO2 exposure exacerbated Th1/Th2/Th17 inflammation in AR patients and induced Th1 and Th17 inflammation in healthy individuals. The stimulatory effect of SO2 on Th17 cell differentiation could be inhibited by Ruxolitinib. This suggests that the Th17 inflammation induced by SO2 stimulation may be related to the activation of the JAK/STAT signaling pathway, and this has been confirmed in the Jurkat cell line.
Collapse
Affiliation(s)
- Maoyu Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, China
| | - Guohao Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, China
| | - Qian Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Soochow University, China
| | - Xian Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, China
| | - Tiansheng Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, China
| | - Guolin Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, China
| | - Jingang Ai
- Department of Otorhinolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, China.
| | - Honghui Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Third Xiangya Hospital, Central South University, China.
| |
Collapse
|
12
|
Wang Z, Pu N, Zhao W, Chen X, Zhang Y, Sun Y, Bo X. RNA sequencing reveals dynamic expression of genes related to innate immune responses in canine small intestinal epithelial cells induced by Echinococcus granulosus protoscoleces. Front Vet Sci 2024; 11:1503995. [PMID: 39679172 PMCID: PMC11638162 DOI: 10.3389/fvets.2024.1503995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Background Dogs are definitive hosts of Echinococcus granulosus, with the small intestine being the only site of parasitic infections. However, the immunomodulatory processes that occur during interactions between E. granulosus and its definitive host remain unclear. Therefore, this study aimed to evaluate gene transcription patterns in canine small intestinal epithelial cells (CIECs) following stimulation by E. granulosus protoscoleces (PSCs). Particularly, this study investigated the roles of pattern recognition receptors (PRRs), involved in recognizing pathogen-associated molecular patterns (PAMPs) and mediating the host innate immune response to the tapeworm E. granulosus. Methods RNA sequencing (RNA-seq) was used to examine gene transcription patterns in CIECs following stimulation with PSCs for 12 and 24 h. The potential roles of differentially expressed (DE) genes were inferred through Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results RNA-seq analysis identified 78,206,492-90,548,214 clean reads in 12 RNA samples. This included six samples stimulated with PSCs for 12 h (PSC1_12h-PSC3_12h) and 24 h (PSC1_24h-PSC3_24h) and six corresponding control samples (PBS1_12h-PBS3_12h and PBS1_24h-PBS3_24h). In the PSC_12h vs. PBS_12h and PSC_24h vs. PBS_24h groups, 3,520 (2,359 upregulated and 1,161 downregulated) and 3,287 (1765 upregulated and 1,522 downregulated) DEgenes were identified, respectively. The expression of 45 PRRs genes was upregulated in the PSC_12h and PSC_24h groups compared to those in the control groups, including 4 Toll-like receptors (TLRs), 4C-type lectin receptors (CLRs), 3 NOD-like receptors (NLRs), 17 G protein-coupled receptors (GPCRs), 4 scavenger receptors (SRs), and 13 leucine-rich repeat-containing proteins (LRRCs). GO enrichment and KEGG analyses revealed that these DEgenes were mainly involved in the regulation of host immune response processes and molecules. These included antigen processing and presentation, Th17, PI3K-Akt, Th1, and Th2 cell differentiation, neutrophil extracellular trap formation, NOD- and Toll-like receptors, TNF, intestinal immune network for IgA production and IL-17 signaling pathway. Furthermore, the identified DEgenes were involved in the regulation of signaling molecules and interaction (e.g., cell adhesion molecules and ECM-receptor interaction). Conclusion These preliminary findings provide novel perspectives on the host innate immune response to E. granulosus PSC stimulation, with a focus on the involvement of E. granulosus-specific PRRs in host defense mechanisms against infection.
Collapse
Affiliation(s)
- Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Na Pu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenqing Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Xuke Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yan Sun
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
13
|
Li J, Liu Y, Xiao Z, Zang C, Li P, Xiao B, Zhou L. Exploring the therapeutic potential of interleukin-6 receptor blockade in autoimmune diseases using drug target mendelian randomization. Immunogenetics 2024; 77:3. [PMID: 39589413 DOI: 10.1007/s00251-024-01360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
The blockade of the interleukin 6 receptor (IL-6R) demonstrates significant potential in various autoimmune diseases (ADs); however, the underlying therapeutic efficacy associated with this approach remains elusive. We conducted a comprehensive Mendelian randomization (MR) analysis based on large-scale genome-wide association studies to investigate the causal relationships between genetically proxied IL-6R blockade weighted by serum C-reactive protein levels and eighteen common ADs. Rheumatoid arthritis, COVID-19 infection, and COVID-19 critical illness were utilized as positive controls. The inverse-variance weighted (IVW) method was utilized as the primary analytical tool, while genetic colocalization analysis was conducted to further substantiate the causalities. Genetically proxied IL-6R blockade exhibited causally protective effects on all positive control diseases. After Bonferroni correction to IVW estimates, genetically proxied IL-6R blockade may significantly increase the risk of asthma (OR=1.031, P=2.15×10-12) and eczema (OR=1.066, P=5.92×10-22), while reducing the risk of ankylosing spondylitis (OR=0.341, P=1.39×10-5), Crohn's disease (OR=0.556, P=2.21×10-3), and type 1 diabetes (OR=0.410, P=1.78×10-7). Additionally, genetically proxied IL-6R blockade would suggestively reduce the risk of multiple sclerosis (OR=0.713, P=1.13×10-2). The results were robust under sensitivity analysis. For genetic colocalization analysis, we identified a shared causal variant rs531479718 linking serum C-reactive protein levels and asthma (posterior probability H4=0.998). Overall, our MR study demonstrated that genetically proxied IL-6R blockade may be causally associated with an increased risk of asthma and eczema, while concurrently diminishing the risk of ankylosing spondylitis, Crohn's disease, type 1 diabetes, and multiple sclerosis. These findings carry substantial implications for informing the therapeutic utilization of IL-6R blockade in the management of ADs.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yalin Liu
- Department of Clinical Nutrition, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Xiao
- Department of Pathology, First Hospital of Changsha, Changsha, Hunan, China
| | - Chenyang Zang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peihong Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Gamarra-Morales Y, Molina-López J, Santiago-Ruiz FC, Herrera-Quintana L, Vázquez-Lorente H, Gascón-Luna F, Planells E. Efficiency of IL-6 in Early Prognosis and Follow-Up in Critically Ill Patients with Septic Shock. Diseases 2024; 12:298. [PMID: 39589972 PMCID: PMC11592789 DOI: 10.3390/diseases12110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The aim of this study was to investigate the response of interleukin-6 (IL-6) during the first few hours of a patient's stay in the Intensive Care Unit (ICU) in a sample of critically ill patients with septic shock, compared to healthy subjects as controls. Additionally, the study examined the association of IL-6 with morbidity and mortality in these patients, as well as its relationship with biomarkers such as lactic acid, C-reactive protein (CRP) and procalcitonin (PCT). Methods: This was a prospective analytical study involving 28 critically ill patients with septic shock, monitored from ICU admission through to their first three days of stay. Demographic data, comorbidities and clinical information, including IL-6 and severity scores, were recorded. Results: IL-6 levels were significantly higher in patients with septic shock compared to healthy subjects (p < 0.001) upon admission. IL-6 levels decreased by the third day of ICU stay (p < 0.005). An association between IL-6 and mortality was observed (areas under the curve 0.826, confidence interval (CI) 95% 0.659-0.994, p < 0.008). Significant correlations between IL-6 and lactic acid (p < 0.009 and p < 0.018) and partial thromboplastin time (p < 0.004 and p < 0.007) were found on the first and third days, respectively. IL-6 was also the correlated with an anion gap at admission to the ICU (p < 0.009). Conclusions: In conclusion, this study suggests that IL-6 could be a valuable marker for early sepsis follow-up in ICU patients, particularly during the first 72 h of hospitalization, providing important prognostic information in patients with septic shock.
Collapse
Affiliation(s)
| | - Jorge Molina-López
- Faculty of Education, Psychology and Sports Sciences, University of Huelva, 21007 Huelva, Spain
| | | | - Lourdes Herrera-Quintana
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (E.P.)
| | - Héctor Vázquez-Lorente
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (E.P.)
| | - Félix Gascón-Luna
- Clinical Analysis Unit, Valle de los Pedroches Hospital, 14400 Córdoba, Spain;
| | - Elena Planells
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (E.P.)
| |
Collapse
|
15
|
Aldrete CA, Call CC, Sant'Anna LE, Vlahos AE, Pei J, Cong Q, Gao XJ. Orthogonalized human protease control of secreted signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576308. [PMID: 39484520 PMCID: PMC11526856 DOI: 10.1101/2024.01.18.576308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. While protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. Here, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins. We sourced a specific human protease and its FDA-approved inhibitor. We engineered cytokines (IL-2, IL-6, and IL-10) whose activities can be activated and abrogated by proteolytic cleavage. We utilized species specificity and re-localization strategies to orthogonalize the cytokines and protease from the human context that they would be deployed in. hDIRECT should enable local cytokine activation to support a variety of cell-based therapies such as muscle regeneration and cancer immunotherapy. Our work offers a proof of concept for the emerging appreciation of humanization in synthetic biology for human health.
Collapse
Affiliation(s)
- Carlos A Aldrete
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Lucas E Sant'Anna
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Alexander E Vlahos
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| |
Collapse
|
16
|
Ahmed IA, Kharboush TG, Al-Amodi HS, Kamel HFM, Darwish E, Mosbeh A, Galbt HA, Abdel-Kareim AM, Abdelsattar S. Interleukin-1 Beta rs16944 and rs1143634 and Interleukin-6 Receptor rs12083537 Single Nucleotide Polymorphisms as Potential Predictors of COVID-19 Severity. Pathogens 2024; 13:915. [PMID: 39452786 PMCID: PMC11510688 DOI: 10.3390/pathogens13100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Host genetic variation has been recognized as a key predictor of diverse clinical sequelae among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients. Insights into the link between the Interleukin-6 receptor (IL-6R) and Interleukin-1 beta (IL-1β) genetic variation and severe coronavirus disease 2019 (COVID-19) are crucial for developing new predictors and therapeutic targets. We aimed to investigate the association of IL-6R rs12083537, IL-1β rs16944, and IL-1β rs1143634 SNPs with the severity of COVID-19. Our study was conducted on 300 COVID-19-negative individuals (control group) and 299 COVID-19-positive cases, classified into mild, moderate, and severe subgroups. Analyses of IL-1β (rs16944, rs1143634) and IL-6R (rs12083537) SNPs' genotypes were performed using qPCR genotyping assays. The IL-1β (rs16944) CC genotype and IL-6R (rs12083537) GG genotype were substantially related to COVID-19 severity, which was also associated with comorbidities and some laboratory parameters (p < 0.001). The IL-1β (rs1143634) TT genotype was found to be protective. Likewise, the IL-1β (rs16944) CC genotype was associated with increased mortality. IL-1β rs16944 and IL-6R rs12083537 SNPs are promising potential predictors of SARS-CoV-2 disease severity. Meanwhile, the rs1143634 SNP T allele was protective against severity and mortality risk.
Collapse
Affiliation(s)
- Inas A. Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
- Central Laboratory for Research, Faculty of Medicine, Benha University, Benha 13518, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha National University, El-Obour 11828, Egypt
| | - Taghrid G. Kharboush
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Hiba S. Al-Amodi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (H.S.A.-A.); (H.F.M.K.)
| | - Hala F. M. Kamel
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (H.S.A.-A.); (H.F.M.K.)
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Ehab Darwish
- Department of Tropical Medicine, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt;
- Department of Internal Medicine, Faculty of Medicine, King Faisal University, AI-Ahsa 31982, Saudi Arabia
| | - Asmaa Mosbeh
- Department of Pathology, National Liver Institute, Menoufia University, Menoufia 32511, Egypt;
| | - Hossam A. Galbt
- Department of Clinical Pathology, National Liver Institute, Menoufia University, Menoufia 32511, Egypt;
| | - Amal M. Abdel-Kareim
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt;
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Menoufia 32511, Egypt;
| |
Collapse
|
17
|
Huang K, Wang R, Hu G, Zhou W, Li W, Zou H, Wang G, Li M. Immune response of Rhinogobio ventralis to Ichthyophthirius multifiliis infection: Insights from histopathological and real-time gene expression analyses. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109801. [PMID: 39096983 DOI: 10.1016/j.fsi.2024.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Ichthyophthirius multifiliis is a parasite that poses a considerable threat to aquaculture and the ornamental fish industry, but with limited effective treatment options available. This study employed RT-qPCR to detect and analyze the expression changes of partial toll-like receptor (TLR) genes (TLR1 and TLR21), adapter protein and signal transduction molecule genes (MyD88, TRIF, NF-κB, IRAK4, and IRF3), and cytokines (IL-6, IL-8, IL-13, CXC-α and CXCR1), as well as complement C3, in the skin, gill, fin, liver, head kidney and spleen of Rhinogobio ventralis under different infection conditions. Additionally, tissue sections and scanning electron microscopy were utilized to observe the pathological changes in the gills and fins of R. ventralis after infection with I. multifiliis. The expression patterns of TLR-related DEGs (differentially expressed genes) in diseased wild fish were analyzed, revealing upregulation of TLR1, TLR21, MyD88, NF-κB, IRAK4, TRIF, IRF3, IL-6, IL-8, IL-13, CXC-α, CXCR1, and C3 genes in various tissues, indicating that these genes may be involved in the immune response of R. ventralis to I. multifiliis infection. To further analyze the gene expression of sampled from the field, an artificial infection model of R. ventralis was established under laboratory conditions, with additional sampling from the skin and fins. These genes continued to show varying degrees of upregulation, but the results were not entirely consistent with those from Wudongde samples, which may be due to the more complex environment in the wild or differences in the degree of I. multifiliis infection in wild fish. The infection of I. multifiliis caused severe damage to the gills and fins of R. ventralis, characterized by extensive secretions on the gill and fin surfaces, with the presence of attached I. multifiliis trophonts, including damage and loss of gill filaments, swollen gill lamellae, and deformed gill plates, as well as cell proliferation and necrosis of gill epithelial cells. This study sheds light on the role of the TLR signaling pathway in resisting I. multifiliis infection and its associated histopathological changes in R. ventralis, providing valuable insights for the prevention and treatment of I. multifiliis infection in R. ventralis.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runqiu Wang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Guangran Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weitian Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guitang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
18
|
Agca S, Kir S. The role of interleukin-6 family cytokines in cancer cachexia. FEBS J 2024; 291:4009-4023. [PMID: 38975832 DOI: 10.1111/febs.17224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.
Collapse
Affiliation(s)
- Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| |
Collapse
|
19
|
Akhtar S, Ahmad F, Alam M, Ansari AW, Uddin S, Steinhoff M, Buddenkotte J, Ahmad A, Datsi A. Interleukin-31: The Inflammatory Cytokine Connecting Pruritus and Cancer. FRONT BIOSCI-LANDMRK 2024; 29:312. [PMID: 39344323 DOI: 10.31083/j.fbl2909312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Interleukin 31 (IL-31) is a proinflammatory cytokine, mainly secreted by Type II helper T cells. It signals through a heterodimeric receptor complex composed of IL-31 receptor α and oncostatin-M receptor β chain. The hallmark feature of IL-31, in its pathological role, is its ability to induce pruritus in mammals. Pruritus is a common symptom and major reason of morbidity in cancer patients, compromising their quality of life. Although, IL-31 is differentially expressed in different tumor types and could promote or inhibit cancer progression, high expression of IL-31 is a contributing factor to advanced stage tumor and severity of pruritus. The simultaneous existence of pruritus and cancer could either result from the aberrations in common proteins that co-exist in both cancer and pruritus or the therapeutic treatment of cancer could indirectly induce pruritus. Although the biology of IL-31 has predominantly been described in skin diseases such as atopic dermatitis and other inflammatory diseases, the precise role of IL-31 in the tumor biology of different cancer types remains elusive. Herein, we summarize the current understanding on the role of this cytokine in the pathogenesis of different cancers.
Collapse
Affiliation(s)
- Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050 Doha, Qatar
| | - Angeliki Datsi
- Institute of Transplantation Diagnostics and Cell Therapeutics, University Hospital Dusseldorf, 40225 Dusseldorf, Germany
| |
Collapse
|
20
|
Yao L, Wang L, Liu S, Qu H, Mao Y, Li Y, Zheng L. Evolution of a bispecific G-quadruplex-forming circular aptamer to block IL-6/sIL-6R interaction for inflammation inhibition. Chem Sci 2024; 15:13011-13020. [PMID: 39148786 PMCID: PMC11323322 DOI: 10.1039/d4sc02183e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
IL-6 (interleukin-6) is an essential cytokine that participates in many inflammatory and immune responses, and disrupting the interaction between IL-6 and its receptor sIL-6R (soluble form of IL-6 receptor) represents a promising treatment strategy for inflammation and related diseases. Herein we report the first-ever effort of evolving a bispecific circular aptamer, named CIL-6A6-1, that is capable of binding both IL-6 and sIL-6R with nanomolar affinities and is stable in serum for more than 48 hours. CIL-6A6-1 can effectively block the IL-6/sIL-6R interaction and significantly inhibit cell inflammation. Most importantly, this bispecific aptamer is much more effective than aptamers that bind IL-6 and sIL-6R alone as well as tocilizumab, a commercially available humanized monoclonal antibody against sIL-6R, highlighting the advantage of selecting bispecific circular aptamers as molecular tools for anti-inflammation therapy. Interestingly, CIL-6A6-1 is predicted to adopt a unique structural fold with two G-quadruplex motifs capped by a long single-stranded region, which differs from all known DNA aptamers. This unique structural fold may also contribute to its excellent functionality and high stability in biological complex media. We anticipate that our study will represent a significant step forward towards demonstrating the practical utility of bispecific DNA aptamers for therapeutic applications.
Collapse
Affiliation(s)
- Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton L8S4K1 Canada
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| |
Collapse
|
21
|
Awasthi BP, Chaudhary P, Lim D, Yadav K, Lee IH, Banskota S, Chaudhary CL, Karmacharya U, Lee J, Im SM, Nam Y, Eun JW, Lee S, Lee JM, Kim ES, Ryou C, Kim TH, Park HD, Kim JA, Nam TG, Jeong BS. G Protein-Coupled Estrogen Receptor-Mediated Anti-Inflammatory and Mucosal Healing Activity of a Trimethylpyridinol Analogue in Inflammatory Bowel Disease. J Med Chem 2024; 67:10601-10621. [PMID: 38896548 DOI: 10.1021/acs.jmedchem.3c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by abnormal immune responses, including elevated proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in the gastrointestinal (GI) tract. This study presents the synthesis and anti-inflammatory evaluation of 2,4,5-trimethylpyridin-3-ol analogues, which exhibit dual inhibition of TNFα- and IL-6-induced inflammation. Analysis using in silico methods, including 3D shape-based target identification, modeling, and docking, identified G protein-coupled estrogen receptor 1 (GPER) as the molecular target for the most effective analogue, 6-26, which exhibits remarkable efficacy in ameliorating inflammation and restoring colonic mucosal integrity. This was further validated by surface plasmon resonance (SPR) assay results, which showed direct binding to GPER, and by the results showing that GPER knockdown abolished the inhibitory effects of 6-26 on TNFα and IL-6 actions. Notably, 6-26 displayed no cytotoxicity, unlike G1 and G15, a well-known GPER agonist and an antagonist, respectively, which induced necroptosis independently of GPER. These findings suggest that the GPER-selective compound 6-26 holds promise as a therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Bhuwan Prasad Awasthi
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prakash Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dongchul Lim
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Kiran Yadav
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Iyn-Hyang Lee
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suhrid Banskota
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chhabi Lal Chaudhary
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ujjwala Karmacharya
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jiwoo Lee
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - So Myoung Im
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - YeonJu Nam
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229, Republic of Korea
| | - Ji Won Eun
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sungeun Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Ji-Min Lee
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Tae Hun Kim
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Hee Dong Park
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae-Gyu Nam
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Byeong-Seon Jeong
- College of Pharmacy and Institute for Drug Research, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
22
|
Tang M, Xu M, Wang J, Liu Y, Liang K, Jin Y, Duan W, Xia S, Li G, Chu H, Liu W, Wang Q. Brain Metastasis from EGFR-Mutated Non-Small Cell Lung Cancer: Secretion of IL11 from Astrocytes Up-Regulates PDL1 and Promotes Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306348. [PMID: 38696655 PMCID: PMC11234401 DOI: 10.1002/advs.202306348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Patients who have non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations are more prone to brain metastasis (BM) and poor prognosis. Previous studies showed that the tumor microenvironment of BM in these patients is immunosuppressed, as indicated by reduced T-cell abundance and activity, although the mechanism of this immunosuppression requires further study. This study shows that reactive astrocytes play a critical role in promoting the immune escape of BM from EGFR-mutated NSCLC by increasing the apoptosis of CD8+ T lymphocytes. The increased secretion of interleukin 11(IL11) by astrocytes promotes the expression of PDL1 in BM, and this is responsible for the increased apoptosis of T lymphocytes. IL11 functions as a ligand of EGFR, and this binding activates EGFR and downstream signaling to increase the expression of PDL1, culminating in the immune escape of tumor cells. IL11 also promotes immune escape by binding to its intrinsic receptor (IL11Rα/glycoprotein 130 [gp130]). Additional in vivo studies show that the targeted inhibition of gp130 and EGFR suppresses the growth of BM and prolongs the survival time of mice. These results suggest a novel therapeutic strategy for treatment of NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Mengyi Tang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Mingxin Xu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Jian Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Kun Liang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Yinuo Jin
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Wenzhe Duan
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Shengkai Xia
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenwen Liu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian, Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Qi Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| |
Collapse
|
23
|
Fedorka CE, Scoggin KE, El-Sheikh Ali H, Troedsson MHT. Evaluating the IL-6 Family of Cytokines Throughout Equine Gestation. Am J Reprod Immunol 2024; 92:e13910. [PMID: 39072818 DOI: 10.1111/aji.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION The interleukin (IL)-6 family of cytokines is grouped by a common receptor subunit (gp130), but functions in distinct but overlapping physiological activities, including regulation of acute phase reaction and the balance between effector and regulatory T cell populations-both of which play a role in successful pregnancy maturation. METHODS Here, we aim to assess the expression profiles of members of the IL-6 cytokine family throughout equine gestation. To do so, RNA Sequencing was performed on chorioallantois and endometrium of mares at 120, 180, 300, and 330 days of gestation (n = 4/stage), as well as 45-day chorioallantois (n = 4) and diestrus endometrium (n = 3). Expression levels of members of the IL-6 cytokine family including ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1), cardiotrophin-like cytokine factor 1 (CLCF1), galectin-10, oncostatin M (OSM), and IL-6, -11, and -27 were evaluated in addition to the receptors for IL-6 (IL-6R) and the common receptor subunit gp130. Additionally, peripheral concentration of IL-6 was assessed. RESULTS In the chorioallantois, differential expression of IL-6, IL-11, CNTF, CLCF1, OSM, and CT-1 was noted. In the endometrium, the gestational age of pregnancy impacted the expression of IL-11, CNTF, and CT-1. Circulatory IL-6 concentrations reached their highest concentrations at 120 days, with lesser concentrations noted at 45, 180, 300, and 330 days. Both IL-6R and gp130 altered in expression throughout equine gestation. CONCLUSION In conclusion, members of the IL-6 cytokine family appear to fluctuate constantly throughout equine pregnancy, with varying expression profiles noted when comparing individual members. Additionally, different expression profiles were noted when comparing chorioallantois, endometrium, and circulation, indicating that the function of the cytokine is tissue-specific.
Collapse
Affiliation(s)
- Carleigh E Fedorka
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kirsten E Scoggin
- Department of Veterinary Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Hossam El-Sheikh Ali
- Department of Veterinary Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Mats H T Troedsson
- Department of Veterinary Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
24
|
Mao N, Yu Y, He J, Yang Y, Liu Z, Lu Y, Wang D. Matrine Ameliorates DSS-Induced Colitis by Suppressing Inflammation, Modulating Oxidative Stress and Remodeling the Gut Microbiota. Int J Mol Sci 2024; 25:6613. [PMID: 38928319 PMCID: PMC11204106 DOI: 10.3390/ijms25126613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Matrine (MT) possesses anti-inflammatory, anti-allergic and antioxidative properties. However, the impact and underlying mechanisms of matrine on colitis are unclear. The purpose of this research was to examine the protective impact and regulatory mechanism of matrine on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. MT alleviated DSS-induced UC by inhibiting weight loss, relieving colon shortening and reducing the disease activity index (DAI). Moreover, DSS-induced intestinal injury and the number of goblet cells were reversed by MT, as were alterations in the expression of zonula occludens-1 (ZO-1) and occludin in colon. Simultaneously, matrine not only effectively restored DSS-induced oxidative stress in colonic tissues but also reduced the production of inflammatory cytokines. Furthermore, MT could treat colitis mice by regulating the regulatory T cell (Treg)/T helper 17 (Th17) cell imbalance. We observed further evidence that MT alleviated the decrease in intestinal flora diversity, reduced the proportion of Firmicutes and Bacteroidetes, decreased the proportion of Proteobacteria and increased the relative abundance of Lactobacillus and Akkermansia in colitis mice. In conclusion, these results suggest that MT may mitigate DSS-induced colitis by enhancing the colon barrier integrity, reducing the Treg/Th17 cell imbalance, inhibiting intestinal inflammation, modulating oxidative stress and regulating the gut microbiota. These findings provide strong evidence for the development and application of MT as a dietary treatment for UC.
Collapse
MESH Headings
- Animals
- Alkaloids/pharmacology
- Gastrointestinal Microbiome/drug effects
- Oxidative Stress/drug effects
- Quinolizines/pharmacology
- Quinolizines/therapeutic use
- Dextran Sulfate
- Matrines
- Mice
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Male
- Colitis/chemically induced
- Colitis/drug therapy
- Colitis/metabolism
- Colitis/microbiology
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Zonula Occludens-1 Protein/metabolism
- Colon/pathology
- Colon/metabolism
- Colon/drug effects
- Colon/microbiology
- Th17 Cells/drug effects
- Th17 Cells/metabolism
- Th17 Cells/immunology
- Disease Models, Animal
- Cytokines/metabolism
- Mice, Inbred C57BL
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/microbiology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Occludin/metabolism
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.Y.); (J.H.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Lin Y, Zhang L, Ji M, Shen S, Chen Y, Wu S, Wu X, Liu NQ, Lu J. MiR-653-5p drives osteoarthritis pathogenesis by modulating chondrocyte senescence. Arthritis Res Ther 2024; 26:111. [PMID: 38812033 PMCID: PMC11134905 DOI: 10.1186/s13075-024-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/28/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Due to the unclear pathogenesis of osteoarthritis (OA), effective treatment for this ailment is presently unavailable. Accumulating evidence points to chondrocyte senescence as a key driver in OA development. This study aims to identify OA-specific microRNAs (miRNAs) targeting chondrocyte senescence to alleviate OA progression. METHODS We screened and identified miRNAs differentially expressed in OA and normal cartilage, then confirmed the impact of miR-653-5p on chondrocyte functions and senescence phenotypes through in vitro experiments with overexpression/silencing. We identified interleukin 6 (IL-6) as the target gene of miR-653-5p and confirmed the regulatory influence of miR-653-5p on the IL-6/JAK/STAT3 signaling pathway through gain/loss-of-function studies. Finally, we assessed the therapeutic efficacy of miR-653-5p on OA using a mouse model with destabilization of the medial meniscus. RESULTS MiR-653-5p was significantly downregulated in cartilage tissues and chondrocytes from OA patients. Overexpression of miR-653-5p promoted chondrocyte matrix synthesis and proliferation while inhibiting chondrocyte senescence. Furthermore, bioinformatics target prediction and the luciferase reporter assays identified IL-6 as a target of miR-653-5p. Western blot assays demonstrated that miR-653-5p overexpression inhibited the protein expression of IL-6, the phosphorylation of JAK1 and STAT3, and the expression of chondrocyte senescence phenotypes by regulating the IL-6/JAK/STAT3 signaling pathway. More importantly, the cartilage destruction was significantly alleviated and chondrocyte senescence phenotypes were remarkably decreased in the OA mouse model treated by agomiR-653-5p compared to the control mice. CONCLUSIONS MiR-653-5p showed a significant decrease in cartilage tissues of individuals with OA, leading to an upregulation of chondrocyte senescence phenotypes in the articular cartilage. AgomiR-653-5p emerges as a potential treatment approach for OA. These findings provide further insight into the role of miR-653-5p in chondrocyte senescence and the pathogenesis of OA.
Collapse
Affiliation(s)
- Yucheng Lin
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Lu Zhang
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Mingliang Ji
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Sinuo Shen
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yuzhi Chen
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Shichao Wu
- Department of Biochemistry and Molecular Biology, Wayne State University of Medicine, Detroit, MI, 48201, USA
| | - Xiaotao Wu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Nancy Q Liu
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA.
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
27
|
Cook CE, Keter D, Cade WT, Winkelstein BA, Reed WR. Manual therapy and exercise effects on inflammatory cytokines: a narrative overview. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1305925. [PMID: 38745971 PMCID: PMC11091266 DOI: 10.3389/fresc.2024.1305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Background Matching disease and treatment mechanisms is a goal of the Precision Medicine Initiative. Pro- and anti-inflammatory cytokines (e.g., Tumor Necrosis Factor-alpha, Transforming Growth Factor-beta, and Interleukin-2, 10, and 12) have gained a significant amount of interest in their potential role in persistent pain for musculoskeletal (MSK) conditions. Manual therapy (MT) and exercise are two guideline-recommended approaches for treating MSK conditions. The objective of this narrative overview was to investigate of the effects of MT and exercise on pro- and anti-inflammatory cytokines and determine the factors that lead to variability in results. Methods Two reviewers evaluated the direction and variabilities of MT and exercise literature. A red, yellow, and green light scoring system was used to define consistencies. Results Consistencies in responses were seen with acute and chronic exercise and both pro- and anti-inflammatory cytokines. Chronic exercise is associated with a consistent shift towards a more anti-inflammatory cytokine profile (Transforming Growth Factor-beta, and Interleukin-2 and 13, whereas acute bouts of intense exercise can transiently increase pro-inflammatory cytokine levels. The influence of MT on cytokines was less commonly studied and yielded more variable results. Conclusion Variability in findings is likely related to the subject and their baseline condition or disease, when measurement occurs, and the exercise intensity, duration, and an individual's overall health and fitness.
Collapse
Affiliation(s)
- Chad E. Cook
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
- Department of Population Health Sciences, Duke University, Durham, NC, United States
- Duke Clinical Research Institute, Duke University, Durham, NC, United States
| | - Damian Keter
- Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - William Todd Cade
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
| | - Beth A. Winkelstein
- Departments of Bioengineering & Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - William R. Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Swaroop AK, Negi P, Kar A, Mariappan E, Natarajan J, Namboori P K K, Selvaraj J. Navigating IL-6: From molecular mechanisms to therapeutic breakthroughs. Cytokine Growth Factor Rev 2024; 76:48-76. [PMID: 38220583 DOI: 10.1016/j.cytogfr.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
This concise review navigates the intricate realm of Interleukin-6 (IL-6), an important member of the cytokine family. Beginning with an introduction to cytokines, this narrative review unfolds with the historical journey of IL-6, illuminating its evolving significance. A crucial section unravels the three distinct signaling modes employed by IL-6, providing a foundational understanding of its versatile interactions within cellular landscapes. Moving deeper, the review meticulously dissects IL-6's signaling mechanisms, unraveling the complexities of its pleiotropic effects in both physiological responses and pathological conditions. A significant focus is dedicated to the essential role IL-6 plays in inflammatory diseases, offering insights into its associations and implications for various health conditions. The review also takes a therapeutic turn by exploring the emergence of anti-IL-6 monoclonal inhibitors, marking a profound stride in treatment modalities. Diving into the molecular realm, the review explores small molecules as agents for IL-6 inhibition, providing a nuanced perspective on diverse intervention strategies. As the review embarks on the final chapters, it contemplates future aspects, offering glimpses into potential research trajectories and the evolving landscape of IL-6-related studies.
Collapse
Affiliation(s)
- Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Preeya Negi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Ayushi Kar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Esakkimuthukumar Mariappan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research lab, Amrita Vishwavidyapeetham, Amrita Nagar, Ettimadai, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India.
| |
Collapse
|
29
|
Kespohl B, Hegele AL, Düsterhöft S, Bakker H, Buettner FFR, Hartig R, Lokau J, Garbers C. Molecular characterization of the craniosynostosis-associated interleukin-11 receptor variants p.T306_S308dup and p.E364_V368del. FEBS J 2024; 291:1667-1683. [PMID: 37994264 DOI: 10.1111/febs.17015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Interleukin-11 (IL-11) is a member of the IL-6 family of cytokines and is an important factor for bone homeostasis. IL-11 binds to and signals via the membrane-bound IL-11 receptor (IL-11R, classic signaling) or soluble forms of the IL-11R (sIL-11R, trans-signaling). Mutations in the IL11RA gene, which encodes the IL-11R, are associated with craniosynostosis, a human condition in which one or several of the sutures close prematurely, resulting in malformation of the skull. The biological mechanisms of how mutations within the IL-11R are linked to craniosynostosis are mostly unexplored. In this study, we analyze two variants of the IL-11R described in craniosynostosis patients: p.T306_S308dup, which results in a duplication of three amino-acid residues within the membrane-proximal fibronectin type III domain, and p.E364_V368del, which results in a deletion of five amino-acid residues in the so-called stalk region adjacent to the plasma membrane. The stalk region connects the three extracellular domains to the transmembrane and intracellular region of the IL-11R and contains cleavage sites for different proteases that generate sIL-11R variants. Using a combination of bioinformatics and different biochemical, molecular, and cell biology methods, we show that the IL-11R-T306_S308dup variant does not mature correctly, is intracellularly retained, and does not reach the cell surface. In contrast, the IL-11R-E364_V368del variant is fully biologically active and processed normally by proteases, thus allowing classic and trans-signaling of IL-11. Our results provide evidence that mutations within the IL11RA gene may not be causative for craniosynostosis and suggest that other regulatory mechanism(s) are involved but remain to be identified.
Collapse
Affiliation(s)
- Birte Kespohl
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
| | - Anna-Lena Hegele
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, RWTH Aachen University, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology and Service Unit Multiparametric Bioimaging and Cytometry, Medical Faculty, University of Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Germany
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| |
Collapse
|
30
|
Guo D, Dong W, Cong Y, Liu Y, Liang Y, Ye Z, Zhang J, Zhou Y. LIF Aggravates Pulpitis by Promoting Inflammatory Response in Macrophages. Inflammation 2024; 47:307-322. [PMID: 37782452 DOI: 10.1007/s10753-023-01910-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Leukemia inhibitory factor (LIF) has been recognized as a novel inflammatory modulator in inflammation-associated diseases. This study aimed to investigate the modulation of LIF in dental pulp inflammation. Experimental pulpitis was established in wild-type (WT) and Lif-deficient (Lif-/-) mice. Histological and immunostaining analyses were conducted to assess the role of LIF in the progression of pulpitis. Mouse macrophage cell line (RAW264.7) was treated with LPS to simulate an inflammatory environment. Exogenous LIF was added to this system to examine its modulation in macrophage inflammatory response in vitro. Primary bone marrow-derived macrophages (BMDMs) from WT and Lif-/- mice were isolated and stimulated with LPS to confirm the effect of Lif deletion on macrophage inflammatory response. Supernatants from LIF and LPS-treated human dental pulp cells (hDPCs) were collected and added to macrophages. Macrophage chemotaxis was assessed using transwell assays. The results showed an increased expression of LIF and LIFR with the progression of pulpitis, and LIFR was highly expressed in macrophages. Lif deficiency alleviated experimental pulpitis with the reduction of pro-inflammatory cytokines and macrophage infiltration. Exogenous LIF promoted inflammatory response of LPS-induced macrophages through a STAT3/p65-dependent pathway. Consistently, Lif deletion inhibited macrophage inflammatory response in vitro. Supernatants of LIF-treated hDPCs enhanced macrophage migration in LPS-induced inflammatory environment. Our findings demonstrated that LIF aggravates pulpitis by promoting macrophage inflammatory response through a STAT3/p65-dependent pathway. Furthermore, LIF plays a crucial role in driving the recruitment of macrophages to inflamed pulp tissue by promoting chemokine secretion in DPCs.
Collapse
Affiliation(s)
- Donghua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaqi Cong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yi Liu
- Department of Stomatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Youde Liang
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R, China
| | - Jiali Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yi Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
31
|
Hu B, Zheng X, Zhang W. Resveratrol-βcd inhibited premature ovarian insufficiency progression by regulating granulosa cell autophagy. J Ovarian Res 2024; 17:18. [PMID: 38221630 PMCID: PMC10789063 DOI: 10.1186/s13048-024-01344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND The ovarian environment of premature ovarian insufficiency (POI) patients exhibits immune dysregulation, which leads to excessive secretion of numerous proinflammatory cytokines that affect ovarian function. An abnormal level of macrophage polarization directly or indirectly inhibits the differentiation of ovarian granulosa cells and steroid hormone production, ultimately leading to POI. Resveratrol, as a health supplement, has been widely recognized for its safety. There is a substantial amount of evidence indicating that resveratrol and its analogs possess significant immune-regulatory functions. It has also been reported that resveratrol can effectively inhibit the progression of POI. However, the underlying immunological and molecular mechanisms through which resveratrol inhibits the progression of POI are still unclear. RESULTS Our preliminary reports have shown that resveratrol-βcd, the beta-cyclodextrin complex of resveratrol, significantly enhances the stability of resveratrol. Resveratrol-βcd could regulate the dysfunctional immune status of macrophages and T cells in the tumor microenvironment. In this study, we treated busulfan and cyclophosphamide (B/C)-treated mice, which were used as a POI model, with resveratrol-βcd. After resveratrol-βcd treatment, the levels of IL-6 in the ovaries were significantly increased, and the progression of POI was suppressed. IL-6 activated granulosa cells (GCs) through soluble IL-6R (sIL-6R), promoting autophagy in GCs. Resveratrol-βcd and IL-6 had a synergistic effect on enhancing autophagy in GCs and promoting E2 secretion. CONCLUSIONS We partially elucidated the immune mechanism by which resveratrol inhibits the progression of POI and the autophagy-regulating function of GCs. This provides a theoretical basis for using resveratrol to prevent POI in future studies and clinical guidance.
Collapse
Affiliation(s)
- Bingbing Hu
- The Reproductive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
| | - Xiushuang Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
32
|
Hamilton OS, Iob E, Ajnakina O, Kirkbride JB, Steptoe A. Immune-neuroendocrine patterning and response to stress. A latent profile analysis in the English longitudinal study of ageing. Brain Behav Immun 2024; 115:600-608. [PMID: 37967661 DOI: 10.1016/j.bbi.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Psychosocial stress exposure can disturb communication signals between the immune, nervous, and endocrine systems that are intended to maintain homeostasis. This dysregulation can provoke a negative feedback loop between each system that has high pathological risk. Here, we explore patterns of immune-neuroendocrine activity and the role of stress. Using data from the English Longitudinal Study of Ageing (ELSA), we first identified the latent structure of immune-neuroendocrine activity (indexed by high sensitivity C-reactive protein [CRP], fibrinogen [Fb], hair cortisol [cortisol], and insulin growth-factor-1 [IGF-1]), within a population-based cohort using latent profile analysis (LPA). Then, we determined whether life stress was associated with membership of different immune-neuroendocrine profiles. We followed 4,934 male and female participants, with a median age of 65 years, over a four-year period (2008-2012). A three-class LPA solution offered the most parsimonious fit to the underlying immune-neuroendocrine structure in the data, with 36 %, 40 %, and 24 % of the population belonging to profiles 1 (low-risk), 2 (moderate-risk), and 3 (high-risk), respectively. After adjustment for genetic predisposition, sociodemographics, lifestyle, and health, higher exposure to stress was associated with a 61 % greater risk of belonging to the high-risk profile (RRR: 1.61; 95 %CI = 1.23-2.12, p = 0.001), but not the moderate-risk profile (RRR = 1.10, 95 %CI = 0.89-1.35, p = 0.401), as compared with the low-risk profile four years later. Our findings extend existing knowledge on psychoneuroimmunological processes, by revealing how inflammation and neuroendocrine activity cluster in a representative sample of older adults, and how stress exposure was associated with immune-neuroendocrine responses over time.
Collapse
Affiliation(s)
- Odessa S Hamilton
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK; Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK; Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Eleonora Iob
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK; Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Memory Lane, London SE5 8AF, UK
| | - Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - James B Kirkbride
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
| |
Collapse
|
33
|
Wu G, Qi G, Liu Y, Gan J, Xie C, Wu Q, Cui W, Wang C, Wang Z. ER-α36 is involved in calycosin inhibition of IL-6 production in macrophages. J Cell Mol Med 2024; 28:e18037. [PMID: 37974543 PMCID: PMC10805506 DOI: 10.1111/jcmm.18037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
The tumour microenvironment (TME) is crucial for tumour development and progression. Tumour-associated macrophages (TAMs) in the TME can promote tumour progression and metastasis by releasing cytokines, such as IL-6. Calycosin, a phytoestrogen that is one of the active compounds in Radix Astragali, has been shown to inhibit tumour growth and metastasis. However, the underlying mechanism by which calycosin inhibits tumour growth remains unclear. Thus, this study aimed to investigate the effect of calycosin on IL-6 production in peripheral blood mononuclear cell (PBMC)- and THP-1-derived macrophages and explore its potential mechanisms using co-immunoprecipitation, western blotting, immunofluorescence, chromatin immunoprecipitation and luciferase assays. We found that calycosin treatment substantially upregulated the expression of ER-α36, a variant of the ER, and reduced IL-6 production in macrophages. Mechanistically, ER-α36 physically interacted with NF-κBp65 and retained p65 in the cytoplasm to attenuate NF-κB function as an IL-6 transcriptional inducer. In conclusion, our result indicated that calycosin inhibited IL-6 production by enhancing ER-α36 expression and its interaction with p65, which attenuated NF-κB function as an IL-6 inducer. Therefore, calycosin can be developed as an effective agent for cancer therapy by targeting TAMs.
Collapse
Affiliation(s)
- Guoli Wu
- Xiangya HospitalCentral South UniversityChangshaChina
| | - Guangying Qi
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Yu Liu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Chichu Xie
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Qi Wu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Wei Cui
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Chunhua Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| | - Zhaoyi Wang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Department of Basic MedicineGuilin Medical UniversityGuilinChina
| |
Collapse
|
34
|
Garbers C, Lokau J. Cytokines of the interleukin-6 family as emerging targets in inflammatory bowel disease. Expert Opin Ther Targets 2024; 28:57-65. [PMID: 38217849 DOI: 10.1080/14728222.2024.2306341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is an umbrella term that includes different chronic inflammatory diseases of the gastrointestinal tract, most commonly Crohn's disease and ulcerative colitis. IBD affects more than 6 million people worldwide and constitutes not only a debilitating disease for the patients, but also a significant factor for society due to costs for health care and reduced working capacity. Despite the introduction of biologicals for the treatment of IBD, the identification of novel targets that could lead to novel therapeutics is still needed. AREAS COVERED In this review, we summarize current knowledge about the interleukin-6 family of cytokines as potential therapeutic targets for improving the therapy of patients with IBD. We discuss cytokines like IL-6 itself for which therapeutics such as inhibitory monoclonal antibodies have already entered the clinics, but also focus on other family members whose therapeutic potential has not been explored yet. EXPERT OPINION The different cytokines of the IL-6 family offer multiple therapeutic targets that can potentially be used to treat patients with inflammatory bowel disease, but unwanted side effects like inhibition of epithelial regeneration have to be considered.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Xu X, Fukuda T, Takai J, Morii S, Sun Y, Liu J, Ohno S, Isaji T, Yamaguchi Y, Nakano M, Moriguchi T, Gu J. Exogenous l-fucose attenuates neuroinflammation induced by lipopolysaccharide. J Biol Chem 2024; 300:105513. [PMID: 38042483 PMCID: PMC10772726 DOI: 10.1016/j.jbc.2023.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.
Collapse
Affiliation(s)
- Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
36
|
Patnaik R, Riaz S, Sivani BM, Faisal S, Naidoo N, Rizzo M, Banerjee Y. Evaluating the potential of Vitamin D and curcumin to alleviate inflammation and mitigate the progression of osteoarthritis through their effects on human chondrocytes: A proof-of-concept investigation. PLoS One 2023; 18:e0290739. [PMID: 38157375 PMCID: PMC10756552 DOI: 10.1371/journal.pone.0290739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 01/03/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder primarily affecting the elderly, characterized by a prominent inflammatory component. The long-term side effects associated with current therapeutic approaches necessitate the development of safer and more efficacious alternatives. Nutraceuticals, such as Vitamin D and curcumin, present promising therapeutic potentials due to their safety, efficacy, and cost-effectiveness. In this study, we utilized a proinflammatory human chondrocyte model of OA to assess the anti-inflammatory properties of Vitamin D and curcumin, with a particular focus on the Protease-Activated Receptor-2 (PAR-2) mediated inflammatory pathway. Employing a robust siRNA approach, we effectively modulated the expression of PAR-2 to understand its role in the inflammatory process. Our results reveal that both Vitamin D and curcumin attenuate the expression of PAR-2, leading to a reduction in the downstream proinflammatory cytokines, such as Tumor Necrosis Factor-alpha (TNF-α), Interleukin 6 (IL-6), and Interleukin 8 (IL-8), implicated in the OA pathogenesis. Concurrently, these compounds suppressed the expression of Receptor Activator of Nuclear Factor kappa-Β Ligand (RANKL) and its receptor RANK, which are associated with PAR-2 mediated TNF-α stimulation. Additionally, Vitamin D and curcumin downregulated the expression of Interferon gamma (IFN-γ), known to elevate RANKL levels, underscoring their potential therapeutic implications in OA. This study, for the first time, provides evidence of the mitigating effect of Vitamin D and curcumin on PAR-2 mediated inflammation, employing an siRNA approach in OA. Thus, our findings pave the way for future research and the development of novel, safer, and more effective therapeutic strategies for managing OA.
Collapse
Affiliation(s)
- Rajashree Patnaik
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Sumbal Riaz
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Bala Mohan Sivani
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Shemima Faisal
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Nerissa Naidoo
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine, and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Yajnavalka Banerjee
- College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine, and Health Sciences (MBRU), Dubai, United Arab Emirates
- Centre for Medical Education, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
37
|
Liu Y, John P, Nishitani K, Cui J, Nishimura CD, Christin JR, Couturier N, Ren X, Wei Y, Pulanco MC, Galbo PM, Zhang X, Fu W, Cui W, Bartholdy BA, Zheng D, Lauvau G, Fineberg SA, Oktay MH, Zang X, Guo W. A SOX9-B7x axis safeguards dedifferentiated tumor cells from immune surveillance to drive breast cancer progression. Dev Cell 2023; 58:2700-2717.e12. [PMID: 37963469 PMCID: PMC10842074 DOI: 10.1016/j.devcel.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
How dedifferentiated stem-like tumor cells evade immunosurveillance remains poorly understood. We show that the lineage-plasticity regulator SOX9, which is upregulated in dedifferentiated tumor cells, limits the number of infiltrating T lymphocytes in premalignant lesions of mouse basal-like breast cancer. SOX9-mediated immunosuppression is required for the progression of in situ tumors to invasive carcinoma. SOX9 induces the expression of immune checkpoint B7x/B7-H4 through STAT3 activation and direct transcriptional regulation. B7x is upregulated in dedifferentiated tumor cells and protects them from immunosurveillance. B7x also protects mammary gland regeneration in immunocompetent mice. In advanced tumors, B7x targeting inhibits tumor growth and overcomes resistance to anti-PD-L1 immunotherapy. In human breast cancer, SOX9 and B7x expression are correlated and associated with reduced CD8+ T cell infiltration. This study, using mouse models, cell lines, and patient samples, identifies a dedifferentiation-associated immunosuppression mechanism and demonstrates the therapeutic potential of targeting the SOX9-B7x pathway in basal-like breast cancer.
Collapse
Affiliation(s)
- Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter John
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kenta Nishitani
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jihong Cui
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher D Nishimura
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John R Christin
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nicole Couturier
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaoxin Ren
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yao Wei
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marc C Pulanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Phillip M Galbo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenyan Fu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Cui
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gregoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susan A Fineberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10467, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Gruss-Lipper Biophotonic Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
38
|
He J, Luan T, Zhao G, Yang Y. Fusing WGCNA and Machine Learning for Immune-Related Gene Prognostic Index in Lung Adenocarcinoma: Precision Prognosis, Tumor Microenvironment Profiling, and Biomarker Discovery. J Inflamm Res 2023; 16:5309-5326. [PMID: 38026246 PMCID: PMC10658954 DOI: 10.2147/jir.s436431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Background The objective is to create an IRGPI (Immune-related genes prognostic index), which could predict the survival and effectiveness of immune checkpoint inhibitor (ICI) treatment for lung adenocarcinoma (LUAD). Methods By applying weighted gene co-expression network analysis (WGCNA), we ascertained 13 genes associated with immune functions. An IRGPI was constructed using four genes through multicox regression, and its validity was assessed in the GEO dataset. Next, we explored the immunological and molecular attributes and advantages of ICI treatment in subcategories delineated by IRGPI. The model genes were also validated by the random forest tree, and functional experiments were conducted to validate it. Results The IRGPI relied on the genes CD79A, IL11, CTLA-4, and CD27. Individuals categorized as low-risk exhibited significantly improved overall survival in comparison to those classified as high-risk. Extensive findings indicated that the low-risk category exhibited associations with immune pathways, significant infiltration of CD8 T cells, M1 macrophages, and CD4 T cells, a reduced rate of gene mutations, and improved sensitivity to ICI therapy. Conversely, the higher-risk group displayed metabolic signals, elevated frequencies of TP53, KRAS, and KEAP1 mutations, escalated levels of NK cells, M0, and M2 macrophage infiltration, and a diminished response to ICI therapy. Additionally, our study unveiled that the downregulation of IL11 effectively impedes the proliferation and migration of lung carcinoma cells, while also inducing cell cycle arrest. Conclusion IRGPI is a biomarker with significant potential for predicting the effectiveness of ICI treatment in LUAD patients and is closely related to the microenvironment and clinicopathological characteristics.
Collapse
Affiliation(s)
- Jiaming He
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Tiankuo Luan
- Department of Anatomy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Gang Zhao
- Department of Gastroenterology, Wushan County People’s Hospital of Chongqing, Chongqing, 404700, People’s Republic of China
| | - Yingxue Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
39
|
Li S, Su L, Luan Q, Liu G, Zeng W, Yu X. Regulatory B cells induced by interleukin-35 inhibit inflammation and alveolar bone resorption in ligature-induced periodontitis. J Periodontol 2023; 94:1376-1388. [PMID: 37086023 DOI: 10.1002/jper.23-0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Regulatory B cells (Bregs) have been reported to suppress immune responses and alveolar bone loss in murine periodontitis models. These cells could be induced by interleukin (IL)-35 which is increased upon periodontal inflammation. Thus, this study aimed to explore the role of Bregs induced by IL-35 in periodontitis. METHODS Experimental periodontitis was induced in mice by ligature. Two weeks after ligation, the test group was systemically treated with IL-35 for 1 week. Four weeks after ligation, all mice were euthanized, and alveolar bone loss was evaluated by microcomputed tomography. Cytokines associated with periodontitis were analyzed using reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Bregs in spleens, cervical lymph nodes, and periodontal tissues were detected by flow cytometry and immunofluorescence staining. RESULTS In the mouse model of periodontitis, IL-35 induced the expansion of CD1dhi CD5+ B10 cells with increased interleukin-10 (IL-10) and IL-35 production. IL-35 administration also attenuated alveolar bone loss and reduced the levels of proinflammatory cytokines in situ. CONCLUSIONS Following ligature-induced periodontitis in mice, IL-35 inhibited periodontal inflammation and alveolar bone resorption at least partially through the induction of B10 cells and IL-35+ Bregs.
Collapse
Affiliation(s)
- Shiyi Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guojing Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenmin Zeng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoqian Yu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
40
|
Aziz N, Shih R, Alexopoulos N, Jamieson BD, Mimiaga MJ, Martinez-Maza O, Detels R. Relationship among serum levels of IL-6, sIL-6R, s gp130 and CD126 on T-cell in HIV-1 infected and uninfected men participating in the Los Angeles Multi-Center AIDS Cohort Study. PLoS One 2023; 18:e0290702. [PMID: 37812611 PMCID: PMC10561848 DOI: 10.1371/journal.pone.0290702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/15/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION Interleukin 6 (IL-6) activates cells through its unique heterodimeric signaling complex of IL-6 receptor (IL6R) subunit and interleukin 6 signal transducer β-subunit glycoprotein 130 (gp130). The objective of this study was to investigate associations among serum levels of IL-6, sIL-6R, sgp130 and relative fluorescence intensity (RFI) of the α-subunit of the IL-6 receptor (CD126) on T-cells of HIV-1 infected and uninfected men. METHODS Blood samples were obtained from 69 HIV-1-infected men on Highly Active Antiretroviral Therapy (HAART) with mean age of 49.1 and 52 HIV-1-uninfected with mean age of 54.3 years -. All men were participating in the Los Angeles Multi-Center AIDS Cohort Study (MACS). Serum levels of IL-6, sIL-6R, sgp130 were measured by enzyme-linked immunoassays and T-cell phenotypic analysis and RFI of CD126 on CD4+ and CD8+ by flow cytometry. RESULTS Mean serum levels of IL-6, sIL6R, sgp130 and of CD126 RFI on CD4+ were 4.34 pg/mL, 39.3 ng/mL, 349 ng/mL and 526 RFI respectively for HIV-1-infected men and 2.74 pg/mL, 41.9 ng/mL, 318 ng/mL and 561 RFI respectively for HIV-1-uninfected men. The mean serum concentrations of IL-6, sIL-6R in HIV-1-infected and uninfected men were not significantly different (p>0.05). There was a positive correlation between plasma HIV-1 RNA and the levels of IL-6 (p<0.001), sIL6R (p = 0.002) but no correlation with sgp130 (p = 0.339). In addition, there was a negative correlation between serum levels of IL-6 with RFI of CD126 on CD4+ (p = 0.037) and a positive correlation between serum levels of sgp130 (p = 0.021) and sIL-6R in HIV-1-infected men. CONCLUSION Knowledge of biological variation, differences in the blood levels of biomarkers among healthy individuals and individuals experiencing illness, are very important for selection of appropriate tests for stage and progression of disease. Our data suggest no correlation among IL-6, and sIL-R6, in the treated phase of HIV-1 infection. The action and blood level of IL-6 and its receptors may be different at each stage of a disease progression.
Collapse
Affiliation(s)
- Najib Aziz
- Department of Epidemiology, Fielding School of Public Health, University California Los Angeles, Los Angeles, California, United States of America
| | - Roger Shih
- Department of Epidemiology, Fielding School of Public Health, University California Los Angeles, Los Angeles, California, United States of America
| | - Nicole Alexopoulos
- Department of Epidemiology, Fielding School of Public Health, University California Los Angeles, Los Angeles, California, United States of America
| | - Beth D. Jamieson
- Department of Medicine, David Geffen School of Medicine, University California Los Angeles, Los Angeles, California, United States of America
| | - Matthew J. Mimiaga
- Department of Epidemiology, Fielding School of Public Health, University California Los Angeles, Los Angeles, California, United States of America
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University California Los Angeles, Los Angeles, California, United States of America
| | - Otoniel Martinez-Maza
- Departments of Obstetrics & Gynecology and Microbiology Immunology and Molecular Genetics, UCLA, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Roger Detels
- Department of Epidemiology, Fielding School of Public Health, University California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
41
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
42
|
Majdinasab M, Lamy de la Chapelle M, Marty JL. Recent Progresses in Optical Biosensors for Interleukin 6 Detection. BIOSENSORS 2023; 13:898. [PMID: 37754132 PMCID: PMC10526799 DOI: 10.3390/bios13090898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Interleukin 6 (IL-6) is pleiotropic cytokine with pathological pro-inflammatory effects in various acute, chronic and infectious diseases. It is involved in a variety of biological processes including immune regulation, hematopoiesis, tissue repair, inflammation, oncogenesis, metabolic control, and sleep. Due to its important role as a biomarker of many types of diseases, its detection in small amounts and with high selectivity is of particular importance in medical and biological fields. Laboratory methods including enzyme-linked immunoassays (ELISAs) and chemiluminescent immunoassays (CLIAs) are the most common conventional methods for IL-6 detection. However, these techniques suffer from the complexity of the method, the expensiveness, and the time-consuming process of obtaining the results. In recent years, too many attempts have been conducted to provide simple, rapid, economical, and user-friendly analytical approaches to monitor IL-6. In this regard, biosensors are considered desirable tools for IL-6 detection because of their special features such as high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current progresses in different types of optical biosensors as the most favorable types of biosensors for the detection of IL-6 are discussed, evaluated, and compared.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran;
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux du Mans (IMMM—UMR 6283 CNRS), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France;
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
43
|
Wang R, Du TT, Liu WQ, Liu YC, Yang YD, Hu JP, Ji M, Yang BB, Li L, Chen XG. Discovery, Optimization, and Evaluation of Novel N-(Benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine Analogues as Potent STAT3 Inhibitors for Cancer Treatment. J Med Chem 2023; 66:12373-12395. [PMID: 37594012 DOI: 10.1021/acs.jmedchem.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive target for cancer therapy. However, identifying potent and selective STAT3 small-molecule inhibitors with drug-like properties remains challenging. Based on a scaffold combination strategy, compounds with a novel N-(benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine scaffold were designed and their inhibition of the interleukin-6 (IL-6)/JAK/STAT3 pathway was tested in HEK-Blue IL-6 reporter cells. After optimization of lead compound 12, compound 40 was identified as a selective STAT3 inhibitor that directly binds the SH2 domain to inhibit STAT3 phosphorylation, translocation, and downstream gene transcription. Compound 40 exhibited antiproliferative activities against STAT3-overactivated DU145 (IC50 value = 2.97 μM) and MDA-MB-231 (IC50 value = 3.26 μM) cancer cells and induced cell cycle arrest and apoptosis. In the DU145 xenograft model, compound 40 showed in vivo antitumor efficacy following intraperitoneal administration, with a tumor growth inhibition rate of 65.3% at 50 mg/kg, indicating promise for further development.
Collapse
Affiliation(s)
- Ru Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Ting-Ting Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Qiang Liu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Yi-Chen Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Jin-Ping Hu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050,China
| | - Xiao-Guang Chen
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
44
|
Krishna Swaroop A, Krishnan Namboori PK, Esakkimuthukumar M, Praveen TK, Nagarjuna P, Patnaik SK, Selvaraj J. Leveraging decagonal in-silico strategies for uncovering IL-6 inhibitors with precision. Comput Biol Med 2023; 163:107231. [PMID: 37421735 DOI: 10.1016/j.compbiomed.2023.107231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Interleukin-6 upregulation leads to various acute phase reactions such as local inflammation and systemic inflammation in many diseases like cancer, multiple sclerosis, rheumatoid arthritis, anemia, and Alzheimer's disease stimulating JAK/STAT3, Ras/MAPK, PI3K-PKB/Akt pathogenic pathways. Since no small molecules are available in the market against IL-6 till now, we have designed a class of small bioactive 1,3 - indanedione (IDC) molecules for inhibiting IL-6 using a decagonal approach computational studies. The IL-6 mutations were mapped in the IL-6 protein (PDB ID: 1ALU) from thorough pharmacogenomic and proteomics studies. The protein-drug interaction networking analysis for 2637 FFDA-approved drugs with IL-6 protein using Cytoscape software showed that 14 drugs have prominent interactions with IL-6. Molecular docking studies showed that the designed compound IDC-24 (-11.8 kcal/mol) and methotrexate (-5.20) bound most strongly to the 1ALU south asian population mutated protein. MMGBSA results indicated that IDC-24 (-41.78 kcal/mol) and methotrexate (-36.81 kcal/mol) had the highest binding energy when compared to the standard molecules LMT-28 (-35.87 kcal/mol) and MDL-A (-26.18 kcal/mol). These results we substantiated by the molecular dynamic studies in which the compound IDC-24 and the methotrexate had the highest stability. Further, the MMPBSA computations produced energies of -28 kcal/mol and -14.69 kcal/mol for IDC-24 and LMT-28. KDeep absolute binding affinity computations revealed energies of -5.81 kcal/mol and -4.74 kcal/mol for IDC-24 and LMT-28 respectively. Finally, our decagonal approach established the compound IDC-24 from the designed 1,3-indanedione library and methotrexate from protein drug interaction networking as suitable HITs against IL-6.
Collapse
Affiliation(s)
- Akey Krishna Swaroop
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - P K Krishnan Namboori
- Amrita Molecular Modeling and Synthesis (AMMAS) Research Lab, Amrita Vishwavidyapeetham, Amrita Nagar, Ettimadai, Coimbatore, Tamilnadu, India
| | - M Esakkimuthukumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - T K Praveen
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Palathoti Nagarjuna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Sunil Kumar Patnaik
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India.
| |
Collapse
|
45
|
Ahmad I, Lokau J, Kespohl B, Malik NA, Baig SM, Hartig R, Behme D, Schwab R, Altmüller J, Jameel M, Mucha S, Thiele H, Tariq M, Nürnberg P, Erdmann J, Garbers C. The interleukin-11 receptor variant p.W307R results in craniosynostosis in humans. Sci Rep 2023; 13:13479. [PMID: 37596289 PMCID: PMC10439179 DOI: 10.1038/s41598-023-39466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023] Open
Abstract
Craniosynostosis is characterized by the premature fusion and ossification of one or more of the sutures of the calvaria, often resulting in abnormal features of the face and the skull. In cases in which growth of the brain supersedes available space within the skull, developmental delay or cognitive impairment can occur. A complex interplay of different cell types and multiple signaling pathways are required for correct craniofacial development. In this study, we report on two siblings with craniosynostosis and a homozygous missense pathogenic variant within the IL11RA gene (c.919 T > C; p.W307R). The patients present with craniosynostosis, exophthalmos, delayed tooth eruption, mild platybasia, and a basilar invagination. The p.W307R variant is located within the arginine-tryptophan-zipper within the D3 domain of the IL-11R, a structural element known to be important for the stability of the cytokine receptor. Expression of IL-11R-W307R in cells shows impaired maturation of the IL-11R, no transport to the cell surface and intracellular retention. Accordingly, cells stably expressing IL-11R-W307R do not respond when stimulated with IL-11, arguing for a loss-of-function mutation. In summary, the IL-11R-W307R variant, reported here for the first time to our knowledge, is most likely the causative variant underlying craniosynostosis in these patients.
Collapse
Affiliation(s)
- Ilyas Ahmad
- Institute for Cardiogenetics, and University Heart Center, University of Lübeck, Building 67, BMF, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Lübeck, Germany.
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| | - Juliane Lokau
- Department of Pathology, Medical Faculty, Otto-Von-Guericke-University, 39120, Magdeburg, Germany
| | - Birte Kespohl
- Department of Pathology, Medical Faculty, Otto-Von-Guericke-University, 39120, Magdeburg, Germany
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Shahid Mahmood Baig
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, 74800, Pakistan
| | - Roland Hartig
- Institute for Molecular and Clinical Immunology and Service Unit Multiparametric Bioimaging and Cytometry, Medical Faculty, Otto-Von-Guericke-University, 39120, Magdeburg, Germany
| | - Daniel Behme
- University Clinic for Neuroradiology, Medical Faculty, Otto-Von-Guericke-University, 39120, Magdeburg, Germany
| | - Roland Schwab
- University Clinic for Neuroradiology, Medical Faculty, Otto-Von-Guericke-University, 39120, Magdeburg, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Muhammad Jameel
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, 74800, Pakistan
| | - Sören Mucha
- Institute for Cardiogenetics, and University Heart Center, University of Lübeck, Building 67, BMF, Ratzeburger Allee 160, 23562, Lübeck, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Lübeck, Germany
- Institute of Epidemiology, Kiel University, 24105, Kiel, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, 38000, Pakistan
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG) and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, and University Heart Center, University of Lübeck, Building 67, BMF, Ratzeburger Allee 160, 23562, Lübeck, Germany
- DZHK (German Research Center for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Lübeck, Germany
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-Von-Guericke-University, 39120, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-Von-Guericke-University, 39120, Magdeburg, Germany.
- Center for Health and Medical Prevention (ChaMP), Otto-Von-Guericke-University, 39120, Magdeburg, Germany.
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
46
|
Hamilton OS, Iob E, Ajnakina O, Kirkbride JB, Steptoe A. Immune-Neuroendocrine Patterning and Response to Stress. A latent profile analysis in the English Longitudinal Study of Ageing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.07.23292378. [PMID: 37461452 PMCID: PMC10350138 DOI: 10.1101/2023.07.07.23292378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Psychosocial stress exposure can disturb communication signals between the immune, nervous, and endocrine systems that are intended to maintain homeostasis. This dysregulation can provoke a negative feedback loop between each system that has high pathological risk. Here, we explore patterns of immune-neuroendocrine activity and the role of stress. Using data from the English Longitudinal Study of Ageing (ELSA), we first identified the latent structure of immune-neuroendocrine activity (indexed by high sensitivity C-reactive protein [CRP], fibrinogen [Fb], hair cortisol [cortisol], and insulin growth-factor-1 [IGF-1]), within a population-based cohort using latent profile analysis (LPA). Then, we determined whether life stress was associated with membership of different immune-neuroendocrine profiles. We followed 4,934 male and female participants with a median age of 65 years over a four-year period (2008-2012). A three-class LPA solution offered the most parsimonious fit to the underlying immune-neuroendocrine structure in the data, with 36%, 40%, and 24% of the population belonging to profiles 1 (low-risk), 2 (moderate-risk), and 3 (high-risk), respectively. After adjustment for genetic predisposition, sociodemographics, lifestyle, and health, higher exposure to stress was associated with a 61% greater risk of belonging to the high-risk profile (RRR: 1.61; 95%CI=1.23-2.12, p=0.001), but not the moderate-risk profile (RRR=1.10, 95%CI=0.89-1.35, p=0.401), as compared with the low-risk profile four years later. Our findings extend existing knowledge on psychoneuroimmunological processes, by revealing how inflammation and neuroendocrine activity cluster in a representative sample of older adults, and how stress exposure was associated with immune-neuroendocrine responses over time.
Collapse
Affiliation(s)
- Odessa S. Hamilton
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Eleonora Iob
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Memory Lane, London SE5 8AF, UK
| | - Olesya Ajnakina
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - James B. Kirkbride
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London, UK
| | - Andrew Steptoe
- Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
| |
Collapse
|
47
|
Rafii P, Seibel C, Weitz HT, Ettich J, Minafra AR, Petzsch P, Lang A, Floss DM, Behnke K, Köhrer K, Moll JM, Scheller J. Cytokimera GIL-11 rescued IL-6R deficient mice from partial hepatectomy-induced death by signaling via non-natural gp130:LIFR:IL-11R complexes. Commun Biol 2023; 6:418. [PMID: 37061565 PMCID: PMC10105715 DOI: 10.1038/s42003-023-04768-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
All except one cytokine of the Interleukin (IL-)6 family share glycoprotein (gp) 130 as the common β receptor chain. Whereas Interleukin (IL-)11 signal via the non-signaling IL-11 receptor (IL-11R) and gp130 homodimers, leukemia inhibitory factor (LIF) recruits gp130:LIF receptor (LIFR) heterodimers. Using IL-11 as a framework, we exchange the gp130-binding site III of IL-11 with the LIFR binding site III of LIF. The resulting synthetic cytokimera GIL-11 efficiently recruits the non-natural receptor signaling complex consisting of gp130, IL-11R and LIFR resulting in signal transduction and proliferation of factor-depending Ba/F3 cells. Besides LIF and IL-11, GIL-11 does not activate receptor complexes consisting of gp130:LIFR or gp130:IL-11R, respectively. Human GIL-11 shows cross-reactivity to mouse and rescued IL-6R-/- mice following partial hepatectomy, demonstrating gp130:IL-11R:LIFR signaling efficiently induced liver regeneration. With the development of the cytokimera GIL-11, we devise the functional assembly of the non-natural cytokine receptor complex of gp130:IL-11R:LIFR.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Anna Rita Minafra
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Alexander Lang
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
48
|
Shahini A, Shahini A. Role of interleukin-6-mediated inflammation in the pathogenesis of inflammatory bowel disease: focus on the available therapeutic approaches and gut microbiome. J Cell Commun Signal 2023; 17:55-74. [PMID: 36112307 PMCID: PMC10030733 DOI: 10.1007/s12079-022-00695-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic inflammatory and multifactorial disease of the gastrointestinal tract. Crohn's disease (CD) and ulcerative colitis (UC) are two types of chronic IBD. Although there is no accurate information about IBD pathophysiology, evidence suggests that various factors, including the gut microbiome, environment, genetics, lifestyle, and a dysregulated immune system, may increase susceptibility to IBD. Moreover, inflammatory mediators such as interleukin-6 (IL-6) are involved in the immunopathogenesis of IBDs. IL-6 contributes to T helper 17 (Th17) differentiation, mediating further destructive inflammatory responses in CD and UC. Moreover, Th1-mediated responses participate in IBD, and the antiapoptotic IL-6/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signals are responsible for preserving Th1 cells in the site of inflammation. It has been revealed that fecal bacteria isolated from UC-active and UC-remission patients stimulate the hyperproduction of several cytokines, such as IL-6, tumor necrosis factor-α (TNF-α), IL-10, and IL-12. Given the importance of the IL-6/IL-6R axis, various therapeutic options exist for controlling or treating IBD. Therefore, alternative therapeutic approaches such as modulating the gut microbiome could be beneficial due to the failure of the target therapies so far. This review article summarizes IBD immunopathogenesis focusing on the IL-6/IL-6R axis and discusses available therapeutic approaches based on the gut microbiome alteration and IL-6/IL-6R axis targeting and treatment failure.
Collapse
Affiliation(s)
- Arshia Shahini
- Department of Laboratory Sciences, School of Allied Medical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Bella YF, Oliveira CR, Mateus-Silva JR, Brandao-Rangel MAR, Silva-Reis A, Santos JDMB, Albertini R, Lopes-Martins RAB, de Oliveira LVF, Vieira RP. A phytotherapic blend immunity-6™ inhibits myeloid leukemic cells 2 activation involving purinergic signaling. Biomed Pharmacother 2023; 159:114263. [PMID: 36652732 DOI: 10.1016/j.biopha.2023.114263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Leukemia is among the most common types of hematological cancers and the use of herbal medicines to prevent and treat leukemia are under quick development. Among several molecular pathways involved in leukemia pathogenesis and exacerbations, purinergic signaling is revealed as a key component. In the present study, the effects of two doses (5 ug/mL and 10 ug/mL) of Immunity-6™, a phytocomplex composed by beta-glucan, green tea (Camelia sinensis), chamomile (Matricaria chamomilla), and ascorbic acid (vitamin C) was tested in vitro, using chronic myelogenous leukemia cell line (K-562; 5 ×104/mL/well), which were challenged with lipopolysaccharide (LPS; 1 ug/mL) for 24 h. The results demonstrated that both doses of Immunity-6™ inhibited ATP release (p < 0.001) and P2×7 receptor at mRNA levels expression (p < 0.001). Purinergic inhibition by Immunity-6™ was followed by reduced release of proinflammatory cytokines IL-1beta (p < 0.001) and IL-6 (p < 0.001), while only 5 ug/mL of Immunity-6™ reduced the release of TNF-alpha (p < 0.001). Beyond to inhibit the release of pro-inflammatory cytokines, both doses of Immunity-6™ induced the release of anti-inflammatory cytokine IL-10 (p < 0.001), while only the higher dose (10 ug/mL) of Immunity-6™ induced the release of anti-inflammatory IL-1ra (p < 0.05) and klotho (p < 0.001). Thus, Immunity-6™ may be a promising adjuvant in the treatment of leukemia and further clinical trials are guaranteed.
Collapse
Affiliation(s)
- Yanesko Fernandes Bella
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Carlos Rocha Oliveira
- Federal University of São Paulo (UNIFESP), Department of Biomedical Engineering, Rua Talim 330, São José dos Campos, SP 12231-280, Brazil
| | - José Roberto Mateus-Silva
- Federal University of São Paulo (UNIFESP), Department of Biomedical Engineering, Rua Talim 330, São José dos Campos, SP 12231-280, Brazil
| | - Maysa Alves Rodrigues Brandao-Rangel
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Anamei Silva-Reis
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Juliana de Melo Batista Santos
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Regiane Albertini
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil
| | - Rodrigo Alvaro Brandao Lopes-Martins
- Unievangelica, Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Avenida Universitária Km 3,5, Anápolis, GP 75083-515, Brazil
| | - Luis Vicente Franco de Oliveira
- Unievangelica, Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Avenida Universitária Km 3,5, Anápolis, GP 75083-515, Brazil
| | - Rodolfo P Vieira
- Federal University of Sao Paulo (UNIFESP), Post-graduate Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos- SP 11060-001, Brazil; Unievangelica, Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Avenida Universitária Km 3,5, Anápolis, GP 75083-515, Brazil; Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology, Rua Pedro Ernesto 240, São José dos Campos, SP 12245-520, Brazil; Universidade Brasil, Post-graduate Program in Bioengineering and Biomedical Engineering, Rua Carolina Fonseca 235, São Paulo, SP 08230-030, Brazil.
| |
Collapse
|
50
|
D'Antonio L, Fieni C, Ciummo SL, Vespa S, Lotti L, Sorrentino C, Di Carlo E. Inactivation of interleukin-30 in colon cancer stem cells via CRISPR/Cas9 genome editing inhibits their oncogenicity and improves host survival. J Immunother Cancer 2023; 11:jitc-2022-006056. [PMID: 36927528 PMCID: PMC10030651 DOI: 10.1136/jitc-2022-006056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Progression of colorectal cancer (CRC), a leading cause of cancer-related death worldwide, is driven by colorectal cancer stem cells (CR-CSCs), which are regulated by endogenous and microenvironmental signals. Interleukin (IL)-30 has proven to be crucial for CSC viability and tumor progression. Whether it is involved in CRC tumorigenesis and impacts clinical behavior is unknown. METHODS IL30 production and functions, in stem and non-stem CRC cells, were determined by western blot, immunoelectron microscopy, flow cytometry, cell viability and sphere formation assays. CRISPR/Cas9-mediated deletion of the IL30 gene, RNA-Seq and implantation of IL30 gene transfected or deleted CR-CSCs in NSG mice allowed to investigate IL30's role in CRC oncogenesis. Bioinformatics and immunopathology of CRC samples highlighted the clinical implications. RESULTS We demonstrated that both CR-CSCs and CRC cells express membrane-anchored IL30 that regulates their self-renewal, via WNT5A and RAB33A, and/or proliferation and migration, primarily by upregulating CXCR4 via STAT3, which are suppressed by IL30 gene deletion, along with WNT and RAS pathways. Deletion of IL30 gene downregulates the expression of proteases, such as MMP2 and MMP13, chemokine receptors, mostly CCR7, CCR3 and CXCR4, and growth and inflammatory mediators, including ANGPT2, CXCL10, EPO, IGF1 and EGF. These factors contribute to IL30-driven CR-CSC and CRC cell expansion, which is abrogated by their selective blockade. IL30 gene deleted CR-CSCs displayed reduced tumorigenicity and gave rise to slow-growing and low metastatic tumors in 80% of mice, which survived much longer than controls. Bioinformatics and CIBERSORTx of the 'Colorectal Adenocarcinoma TCGA Nature 2012' collection, and morphometric assessment of IL30 expression in clinical CRC samples revealed that the lack of IL30 in CRC and infiltrating leucocytes correlates with prolonged overall survival. CONCLUSIONS IL30 is a new CRC driver, since its inactivation, which disables oncogenic pathways and multiple autocrine loops, inhibits CR-CSC tumorigenicity and metastatic ability. The development of CRISPR/Cas9-mediated targeting of IL30 could improve the current therapeutic landscape of CRC.
Collapse
Affiliation(s)
- Luigi D'Antonio
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Simone Vespa
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Lavinia Lotti
- Department of Experimental Medicine, University of Rome La Sapienza, Rome, Italy
| | - Carlo Sorrentino
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| |
Collapse
|