1
|
Sang CY, Liu JR, Zheng YD, Chai T, Shi JT, Naghavi MR, Alibekovna KE, Solievich BA, Yang JL. Obacunone potentiated PD-1 immunotherapy in pancreatic cancer by mediating CD36. Eur J Pharmacol 2025; 994:177367. [PMID: 39986594 DOI: 10.1016/j.ejphar.2025.177367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Chemotherapy for patients with pancreatic cancer typically has a poor prognosis. Immunotherapy is currently a hot therapeutical approach to treat tumors. Various studies have shown that natural products have numerous activities, especially in the anti-tumor field. The triterpenoid class compound Obacunone has been shown to have various bioactivities, including anti-cancer properties. In this study, combining Obacunone with anti-PD-1 to treat pancreatic cancer in mice enhanced the anti-cancer activity of anti-PD-1 and suppressed tumor growth significantly. Proteomic analysis, immunofluorescence, Western blot, and flow cytometry revealed that this combination of compounds modulated the CD36-mediated PPAR signaling pathway to improve the infiltration and number of immune-associated CD4+ and CD8+ T cells in tumors. This report provides a new strategy for discovering immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Chun-Yan Sang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Jia-Rong Liu
- Department of Medicine, Northwest Minzu University, Lanzhou, 730030, China
| | - Yi-Dan Zheng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Tian Chai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Jiao-Tai Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | | | - Komila Eshbakova Alibekovna
- S.Yu.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences, Tashkent, 100170, Uzbekistan
| | | | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China.
| |
Collapse
|
2
|
Xu DG, Tan J. Interplay of genetic and clinical factors in cancer-associated thrombosis: Deciphering the prothrombotic landscape of colorectal cancer. World J Gastroenterol 2025; 31:103901. [PMID: 40248375 PMCID: PMC12001197 DOI: 10.3748/wjg.v31.i14.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Colorectal cancer (CRC), the third most prevalent cancer globally, exhibits a notable association with venous thromboembolism (VTE), significantly impacting patient morbidity and mortality. We delve into the complex pathogenesis of cancer-associated thrombosis (CAT) in CRC, highlighting the interplay of clinical risk factors and tumor-specific mechanisms. Our comprehensive review synthesizes the current understanding of CRC's pro-thrombotic tendencies, examining both general clinical factors (e.g., age, gender, obesity, prior VTE history) and tumor-specific aspects (e.g., tumor location, stage, targeted therapies). Key findings illustrate how CRC cells themselves actively contribute to coagulation cascade activation through various procoagulant elements such as tissue factor, cancer procoagulant, and extracellular vesicles. We also explore how CRC influences host cells to adopt a procoagulant phenotype, thereby exacerbating thrombotic risks. This review underscores the role of genetic mutations in CRC (e.g., KRAS, p53) in modulating coagulation-related protein expression and thrombosis risks. An in-depth understanding of the genetic landscape specific to CRC subtypes is essential for developing targeted anticoagulation strategies and could significantly advance thrombosis prevention while improving the overall management of patients with CRC. This highlights the urgent need for precision in addressing CAT within clinical settings.
Collapse
Affiliation(s)
- Duo-Gang Xu
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| | - Jing Tan
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| |
Collapse
|
3
|
Hu S, Sun D, Tang L, Kong L, Liu Y, Liu F, Tang D, Lu X, Wang Y. Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Int J Pharm 2025; 672:125334. [PMID: 39933608 DOI: 10.1016/j.ijpharm.2025.125334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION The silent killer epithelial ovarian cancer (EOC) is a lethal malignancy with high mortality rate and often diagnosed at an advanced stage. Traditional chemotherapy for EOC remains unsatisfactory as the tumor microenvironment (TME) is complicated and contains multiple factors such as tumor associated macrophages (TAMs). Therefore, a drug delivery system which codelivery chemotherapy drug and immune modulator for EOC treatment is urgently needed. METHODS Follicle-stimulating hormone peptide-conjugated paclitaxel and ginsenoside Rh2 codelivery liposomes (FSH@PTX-Rh2-Lips) were prepared in this study. FSH was decorated on the liposomal surface to enhance cellar uptake, PTX was used to kill cancer cells, and Rh2 was added to induce macrophages repolarization as well as a member material. The targeting, anti-tumor effect and impact on macrophage repolarization of FSH@PTX-Rh2-Lips were evaluated in vitro and in vivo. RESULTS With the ideal physicochemical properties, FSH@PTX-Rh2-Lips displayed increased cellular uptake, strong cytotoxicity to ID8 cells, inhibitory effect of tumor cell metastasis, and ability to induce macrophage repolarization from M2 to M1 in vitro. The tumor-bearing mice model suggested FSH@PTX-Rh2-Lips showed significant effect on antitumor and tumor recurrence, and the mechanism of FSH@PTX-Rh2-Lips in treatment of EOC was related to inhibiting tumor growth and inducing macrophage repolarization. CONCLUSION FSH@PTX-Rh2-Lips with function of affecting TAMs repolarization and altering the TME were successfully prepared and might offer an effective therapeutic strategy against EOC.
Collapse
Affiliation(s)
- Shengxia Hu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Dan Sun
- Department of Obstetrics and Gynecology, Dalian Women and Children's Medical Center (Group), Dalian, People's Republic of China
| | - Ling Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Fang Liu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Dongmei Tang
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Xuhong Lu
- Department of Obstetrics and Gynecology, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.
| | - Yuanyuan Wang
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.
| |
Collapse
|
4
|
Baghel K, Mehrotra S, Prajapati VK. Revolutionizing pancreatic cancer treatment with CAR-T therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:331-353. [PMID: 39978971 DOI: 10.1016/bs.apcsb.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Pancreatic cancer remains one of the most lethal malignancies, with a five-year survival rate among the lowest of all cancers. This poor prognosis is largely due to the aggressive nature of the disease and its resistance to conventional treatments such as surgery, chemotherapy, and radiation therapy. Chimeric antigen receptor (CAR) T-cell therapy, a novel immunotherapeutic approach leverages the patient's own immune system to specifically target and eliminate cancer cells by genetically engineering T cells to express CARs that recognize tumor-specific antigens. While CAR-T therapy has demonstrated remarkable success in treating hematologic malignancies, its application to solid tumors like pancreatic cancer presents significant challenges. Recent advancements in CAR-T cell design, like the addition of co-stimulatory domains and dual-targeting CARs, have enhanced their efficacy against solid tumors. Additionally, strategies to modify the tumor microenvironment (TME), such as combining CAR-T therapy with immune checkpoint inhibitors and cytokine modulation, are being investigated to boost CAR-T cell activity against pancreatic cancer. Early-phase clinical trials targeting antigens such as carcinoembryonic antigen (CEA) and mesothelin (MSLN) in pancreatic cancer have yielded encouraging results, though obstacles like antigen escape and limited T-cell persistence remain significant challenges. This chapter outlines the current state of CAR-T therapy for pancreatic cancer, focusing on the emerging approaches to address these obstacles and underscore the potential of CAR-T therapy to transform the future of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Kirti Baghel
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
5
|
Duan Y, Ren X, Guo X, Xie J, Liu Z, Li L. VISTA in hematological malignancies: a review of the literature. Front Immunol 2024; 15:1466839. [PMID: 39742253 PMCID: PMC11685136 DOI: 10.3389/fimmu.2024.1466839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, tumor immunotherapy has become an active research area, with the emergence of immune checkpoint inhibitors (ICIs) revolutionizing immunotherapy. Clinical evidence indicates that programmed cell death protein 1 (PD-1) monoclonal antibodies and other drugs have remarkable therapeutic effects. V-domain Ig suppressor of T-cell activation (VISTA) is a new type of immune checkpoint receptor that is highly expressed in various tumors. It is co-expressed with PD-1, T-cell immunoglobulin domain, mucin domain-3 (Tim-3), T-cell immunoglobulin, and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and is associated with prognosis, which suggests that it may be a target for immunotherapy. As an immune checkpoint receptor with no mature drugs, VISTA is highly expressed in acute myeloid leukemia (AML), multiple myeloma (MM), and other hematological malignancies; however, its pathogenic mechanism should be defined to better guide treatment.
Collapse
Affiliation(s)
- Yuanjia Duan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Jiayi Xie
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| |
Collapse
|
6
|
Asadi M, Zafari V, Sadeghi-Mohammadi S, Shanehbandi D, Mert U, Soleimani Z, Caner A, Zarredar H. The role of tumor microenvironment and self-organization in cancer progression: Key insights for therapeutic development. BIOIMPACTS : BI 2024; 15:30713. [PMID: 40256216 PMCID: PMC12008505 DOI: 10.34172/bi.30713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction The tumor microenvironment (TME) plays a pivotal role in cancer progression, influencing tumor initiation, growth, invasion, metastasis, and response to therapies. This study explores the dynamic interactions within the TME, particularly focusing on self-organization-a process by which tumor cells and their microenvironment reciprocally shape one another, leading to cancer progression and resistance. Understanding these interactions can reveal new prognostic markers and therapeutic targets within the TME, such as extracellular matrix (ECM) components, immune cells, and cytokine signaling pathways. Methods A comprehensive search method was employed to investigate the current academic literature on TME, particularly focusing on self-organization in the context of cancer progression and resistance across the PubMed, Google Scholar, and Science Direct databases. Results Recent studies suggest that therapies that disrupt TME self-organization could improve patient outcomes by defeating drug resistance and increasing the effectiveness of conventional therapy. Additionally, this research highlights the essential of understanding the biophysical properties of the TME, like cytoskeletal alterations, in the development of more effective malignancy therapy. Conclusion This review indicated that targeting the ECM and immune cells within the TME can improve therapy effectiveness. Also, by focusing on TME self-organization, we can recognize new therapeutic plans to defeat drug resistance.
Collapse
Affiliation(s)
- Milad Asadi
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Venus Zafari
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ufuk Mert
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Zahra Soleimani
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayşe Caner
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Xu J, Xu X, Zhang H, Wu J, Pan R, Zhang B. Tumor-associated inflammation: The role and research progress in tumor therapy. J Drug Deliv Sci Technol 2024; 102:106376. [DOI: 10.1016/j.jddst.2024.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Yin M, Liu Z, Zhou Y, Li W, Yan J, Cao D, Yin L. Two-pronged anti-cancer nanovaccines enpowered by exogenous/endogenous tumor-associated antigens. J Control Release 2024; 373:358-369. [PMID: 39009083 DOI: 10.1016/j.jconrel.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Cancer vaccines based on single-source (exogenous or endogenous) tumor-associated antigens (TAAs) are often challenged by the insufficient T cell response and the immunosuppressive tumor microenvironment (TME). Herein, a dual TAAs-boosted nanovaccine based on cancer cell (4T1) membrane-cloaked, CO-immobilized Prussian blue nanoparticles (4T1-PB-CO NPs) is developed and coupled with anti-interleukin (IL)-10 therapy to maximize the efficacy of antitumor immunotherapy. 4T1 cell membrane not only endows NPs with tumor targeting ability, but also serves as exogenous TAAs to trigger CD4+ T cell response and M1-phenotype polarization of tumor-associated macrophages. Under near-infrared light irradiation, 4T1-PB-CO NPs release CO to induce immunogenic cell death (ICD) of tumor cells, thus generating endogenous TAAs to activate CD8+ T cell response. Meanwhile, ICD triggers release of damage-associated molecular patterns, which can promote DC maturation to amplify the antitumor T cell response. When combined with anti-IL-10 that reverses the immunosuppressive TME, 4T1-PB-CO NPs efficiently suppress the primary tumors and produce an abscopal effect to inhibit distant tumors in a breast tumor-bearing mouse model. Such a two-pronged cancer vaccine represents a promising paradigm for robust antitumor immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Zhongmin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Wei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jing Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Desheng Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Lorestani P, Dashti M, Nejati N, Habibi MA, Askari M, Robat-Jazi B, Ahmadpour S, Tavakolpour S. The complex role of macrophages in pancreatic cancer tumor microenvironment: a review on cancer progression and potential therapeutic targets. Discov Oncol 2024; 15:369. [PMID: 39186144 PMCID: PMC11347554 DOI: 10.1007/s12672-024-01256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers worldwide with low survival rates and poor outcomes. The treatment landscape for PC is fraught with obstacles, including drug resistance, lack of effective targeted therapies and the immunosuppressive tumor microenvironment (TME). The resistance of PC to existing immunotherapies highlights the need for innovative approaches, with the TME emerging as a promising therapeutic target. The recent advancements in understanding the role of macrophages, this context highlight their significant impact on tumor development and progression. There are two important types of macrophages: M1 and M2, which play critical roles in the TME. Therapeutics strategies including, depletion of tumor-associated macrophages (TAMs), reprogramming TAMs to promote anti-tumor activity, and targeting macrophage recruitment can lead to promising outcomes. Targeting macrophage-related pathways may offer novel strategies for modulating immune responses, inhibiting angiogenesis, and overcoming resistance to chemotherapy in PC treatment.
Collapse
Affiliation(s)
- Parsa Lorestani
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Dashti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Askari
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behruz Robat-Jazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Soheil Tavakolpour
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Bidan N, Dunsmore G, Ugrinic M, Bied M, Moreira M, Deloménie C, Ginhoux F, Blériot C, de la Fuente M, Mura S. Multicellular tumor spheroid model to study the multifaceted role of tumor-associated macrophages in PDAC. Drug Deliv Transl Res 2024; 14:2085-2099. [PMID: 38062286 DOI: 10.1007/s13346-023-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 06/27/2024]
Abstract
While considerable efforts have been made to develop new therapies, progress in the treatment of pancreatic cancer has so far fallen short of patients' expectations. This is due in part to the lack of predictive in vitro models capable of accounting for the heterogeneity of this tumor and its low immunogenicity. To address this point, we have established and characterized a 3D spheroid model of pancreatic cancer composed of tumor cells, cancer-associated fibroblasts, and blood-derived monocytes. The fate of the latter has been followed from their recruitment into the tumor spheroid to their polarization into a tumor-associated macrophage (TAM)-like population, providing evidence for the formation of an immunosuppressive microenvironment.This 3D model well reproduced the multiple roles of TAMs and their influence on drug sensitivity and cell migration. Furthermore, we observed that lipid-based nanosystems consisting of sphingomyelin and vitamin E could affect the phenotype of macrophages, causing a reduction of characteristic markers of TAMs. Overall, this optimized triple coculture model gives a valuable tool that could find useful application for a more comprehensive understanding of TAM plasticity as well as for more predictive drug screening. This could increase the relevance of preclinical studies and help identify effective treatments.
Collapse
Affiliation(s)
- Nadège Bidan
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | | - Martina Ugrinic
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Mathilde Bied
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Marco Moreira
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Claudine Deloménie
- Inserm US31, CNRS UAR3679, Ingénierie Et Plateformes Au Service de L'Innovation Thérapeutique (UMS-IPSIT), Université Paris-Saclay, 91400, Orsay, France
| | | | - Camille Blériot
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
- CNRS UMR8253, Institut Necker Enfants Malades, 75015, Paris, France
| | - Maria de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela SERGAS, 15706, Santiago de Compostela, Spain
- Biomedical Research Networking Center On Oncology (CIBERONC), 28029, Madrid, Spain
- DIVERSA Technologies SL, 15782, Santiago de Compostela, Spain
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
11
|
Hadad S, Khalaji A, Sarmadian AJ, Sarmadian PJ, Janagard EM, Baradaran B. Tumor-associated macrophages derived exosomes; from pathogenesis to therapeutic opportunities. Int Immunopharmacol 2024; 136:112406. [PMID: 38850795 DOI: 10.1016/j.intimp.2024.112406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tumor-associated macrophages (TAMs) exert profound influences on cancer progression, orchestrating a dynamic interplay within the tumor microenvironment. Recent attention has focused on the role of TAM-derived exosomes, small extracellular vesicles containing bioactive molecules, in mediating this intricate communication. This review comprehensively synthesizes current knowledge, emphasizing the diverse functions of TAM-derived exosomes across various cancer types. The review delves into the impact of TAM-derived exosomes on fundamental cancer hallmarks, elucidating their involvement in promoting cancer cell proliferation, migration, invasion, and apoptosis evasion. By dissecting the molecular cargo encapsulated within these exosomes, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and proteins, the review uncovers key regulatory mechanisms governing these effects. Noteworthy miRNAs, such as miR-155, miR-196a-5p, and miR-221-3p, are highlighted for their pivotal roles in mediating TAM-derived exosomal communication and influencing downstream targets. Moreover, the review explores the impact of TAM-derived exosomes on the immune microenvironment, particularly their ability to modulate immune cell function and foster immune evasion. The discussion encompasses the regulation of programmed cell death ligand 1 (PD-L1) expression and subsequent impairment of CD8 + T cell activity, unraveling the immunosuppressive effects of TAM-derived exosomes. With an eye toward clinical implications, the review underscores the potential of TAM-derived exosomes as diagnostic markers and therapeutic targets. Their involvement in cancer progression, metastasis, and therapy resistance positions TAM-derived exosomes as key players in reshaping treatment strategies. Finally, the review outlines future directions, proposing avenues for targeted therapies aimed at disrupting TAM-derived exosomal functions and redefining the tumor microenvironment.
Collapse
Affiliation(s)
- Sara Hadad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Saadh MJ, Mustafa MA, Malathi H, Ahluwalia G, Kaur S, Al-Dulaimi MAAH, Alubiady MHS, Zain Al-Abdeen SH, Shakier HG, Ali MS, Ahmad I, Abosaoda MK. Targeting the pancreatic tumor microenvironment by plant-derived products and their nanoformulations. Med Oncol 2024; 41:201. [PMID: 39001987 DOI: 10.1007/s12032-024-02443-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Gunveen Ahluwalia
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, 303012, Rajasthan, India
| | - Sumeet Kaur
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | | | | | | | | | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
13
|
Cysneiros MADPC, Cirqueira MB, Barbosa LDF, Chaves de Oliveira Ê, Morais LK, Wastowski IJ, Floriano VG. Immune cells and checkpoints in pancreatic adenocarcinoma: Association with clinical and pathological characteristics. PLoS One 2024; 19:e0305648. [PMID: 38954689 PMCID: PMC11218951 DOI: 10.1371/journal.pone.0305648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
INTRODUCTION Pancreatic adenocarcinoma is an extremely aggressive neoplasm, with many challenges to be overcome in order to achieve a truly effective treatment. It is characterized by a mostly immunosuppressed environment, with dysfunctional immune cells and active immunoinhibitory pathways that favor tumor evasion and progression. Thus, the study and understanding of the tumor microenvironment and the various cells subtypes and their functional capacities are essential to achieve more effective treatments, especially with the use of new immunotherapeutics. METHODS Seventy cases of pancreatic adenocarcinoma divided into two groups 43 with resectable disease and 27 with unresectable disease were analyzed using immunohistochemical methods regarding the expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), and human leukocyte antigen G (HLA-G) molecules as well as the populations of CD4+ and CD8+ T lymphocytes, regulatory T cells (Tregs), and M2 macrophages (MM2). Several statistical tests, including multivariate analyses, were performed to examine how those immune cells and immunoinhibitory molecules impact the evolution and prognosis of pancreatic adenocarcinoma. RESULTS CD8+ T lymphocytes and M2 macrophages predominated in the group operated on, and PD-L2 expression predominated in the unresectable group. PD-L2 was associated with T stage, lymph node metastasis, and clinical staging, while in survival analysis, PD-L2 and HLA-G were associated with a shorter survival. In the inoperable cases, Tregs cells, MM2, PD-L1, PD-L2, and HLA-G were positively correlated. CONCLUSIONS PD-L2 and HLA-G expression correlated with worse survival in the cases studied. Tumor microenvironment was characterized by a tolerant and immunosuppressed pattern, mainly in unresectable lesions, where a broad positive influence was observed between immunoinhibitory cells and immune checkpoint proteins expressed by tumor cells.
Collapse
Affiliation(s)
| | - Magno Belém Cirqueira
- Diagnostic and Therapeutic Support Division of Clinical Hospital, Federal University of Goias, Goiania, Brazil
| | | | | | - Lucio Kenny Morais
- Surgery Department of Medicine College, Federal University of Goias, Goiania, Brazil
| | | | - Vitor Gonçalves Floriano
- Clinics Department of Medicine College, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
14
|
Du M, Sun L, Guo J, Lv H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol Res 2024; 204:107198. [PMID: 38692466 DOI: 10.1016/j.phrs.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In-depth studies of the tumor microenvironment (TME) have helped to elucidate its cancer-promoting mechanisms and inherent characteristics. Cellular senescence, which acts as a response to injury and can the release of senescence-associated secretory phenotypes (SASPs). These SASPs release various cytokines, chemokines, and growth factors, remodeling the TME. This continual development of a senescent environment could be associated with chronic inflammation and immunosuppressive TME. Additionally, SASPs could influence the phenotype and function of macrophages, leading to the recruitment of tumor-associated macrophages (TAMs). This contributes to tumor proliferation and metastasis in the senescent microenvironment, working in tandem with immune regulation, angiogenesis, and therapeutic resistance. This comprehensive review covers the evolving nature of the senescent microenvironment, macrophages, and TAMs in tumor development. We also explored the links between chronic inflammation, immunosuppressive TME, cellular senescence, and macrophages. Moreover, we compiled various tumor-specific treatment strategies centered on cellular senescence and the current challenges in cellular senescence research. This study aimed to clarify the mechanism of macrophages and the senescent microenvironment in tumor progression and advance the development of targeted tumor therapies.
Collapse
Affiliation(s)
- Ming Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lu Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Huina Lv
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
15
|
Zhong Z, Yang K, Li Y, Zhou S, Yao H, Zhao Y, Huang Y, Zou J, Li Y, Jiajia Li, Lian G, Huang K, Chen S. Tumor-associated macrophages drive glycolysis through the IL-8/STAT3/GLUT3 signaling pathway in pancreatic cancer progression. Cancer Lett 2024; 588:216784. [PMID: 38458594 DOI: 10.1016/j.canlet.2024.216784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Glycolytic metabolism is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and tumor-associated stromal cells play important roles in tumor metabolism. We previously reported that tumor-associated macrophages (TAMs) facilitate PDAC progression. However, little is known about whether TAMs are involved in regulating glycolysis in PDAC. Here, we found a positive correlation between CD68+ TAM infiltration and FDG maximal standardized uptake (FDG SUVmax) on PET-CT images of PDAC. We discovered that the glycolytic gene set was prominently enriched in the high TAM infiltration group through Gene Set Enrichment Analysis using The Cancer Genome Atlas database. Mechanistically, TAMs secreted IL-8 to promote GLUT3 expression in PDAC cells, enhancing tumor glycolysis both in vitro and in vivo, whereas this effect could be blocked by the IL-8 receptor inhibitor reparixin. Furthermore, IL-8 promoted the translocation of phosphorylated STAT3 into the nucleus to activate the GLUT3 promoter. Overall, we demonstrated that TAMs boosted PDAC cell glycolysis through the IL-8/STAT3/GLUT3 signaling pathway. Our cumulative findings suggest that the abrogation of TAM-induced tumor glycolysis by reparixin might exhibit an antitumor impact and offer a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Ziyi Zhong
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Kege Yang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Yunlong Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Shurui Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, PR China
| | - Hanming Yao
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Yue Zhao
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Yuzhou Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Jinmao Zou
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Yaqing Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Guoda Lian
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| | - Shaojie Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| |
Collapse
|
16
|
Xu BB, Jin N, Liu JC, Liao AQ, Lin HY, Qin XY. Arene-Arene Coupled Disulfamethazines (or Sulfadiazine)-Phenanthroline-Metal(II) Complexes were Synthesized by In Situ Reactions and Inhibited the Growth and Development of Triple-Negative Breast Cancer through the Synergistic Effect of Antiangiogenesis, Anti-Inflammation, Pro-Apoptosis, and Cuproptosis. J Med Chem 2024. [PMID: 38634624 DOI: 10.1021/acs.jmedchem.3c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The novel metal(II)-based complexes HA-Cu, HA-Co, and HA-Ni with phenanthroline, sulfamethazine, and aromatic-aromatic coupled disulfamethazines as ligands were synthesized and characterized. HA-Cu, HA-Co, and HA-Ni all showed a broad spectrum of cytotoxicity and antiangiogenesis. HA-Cu was superior to HA-Co and HA-Ni, and even superior to DDP, showing significant inhibitory effect on the growth and development of tripe-negative breast cancer in vivo and in vitro. HA-Cu exhibited observable synergistic effects of antiproliferation, antiangiogenesis, anti-inflammatory, pro-apoptosis, and cuproptosis to effectively inhibited tumor survival and development. The molecular mechanism was confirmed that HA-Cu could downregulate the expression of key proteins in the VEGF/VEGFR2 signaling pathway and the expression of inflammatory cytokines, enhance the advantage of pro-apoptotic protein Bax, and enforce cuproptosis by weakening the expression of FDX1 and enhancing the expression of HSP70. Our research will provide a theoretical and practical reference for the development of metal-sulfamethazine and its derivatives as chemotherapy drugs for cancer treatment.
Collapse
Affiliation(s)
- Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Ji-Cheng Liu
- Nanning Institute for Food and Drug Control, Nanning, Guangxi 530007, China
| | - Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541004, China
| |
Collapse
|
17
|
Xu B, Qiu H, Ou B, Chen S, Du D, Liu Y, Zhang X, Liang Y. The inflammatory-nutritional score and nomogram for R0 resected head and neck soft tissue sarcoma. Oral Dis 2024; 30:1139-1151. [PMID: 36630573 DOI: 10.1111/odi.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To explore the predictive value of inflammatory-nutritional score (INS) and a nomogram for survivals in head and neck soft tissue sarcoma (HNSTS) patients with negative resection margins (R0). METHODS Clinical characteristics and hematological features of 315 HNSTS patients underwent R0 surgery were analyzed. RESULTS The 5-year overall survival (OS) rate, 3-year recurrence-free survival rate and disease-free survival (DFS) rate were 77.3%, 61.0% and 55.4%, respectively. High INS was associated with a deep tumor location (p < 0.001), high tumor grade (p < 0.001), and advanced AJCC stage (p < 0.001). The low-risk group (INS 0) exhibited a higher 5-year OS rate and 3-year DFS rate than others (87.6% vs. 81.3% vs. 53.3%, p < 0.001; 62.2% vs. 56.9% vs. 37.9%, p = 0.007). The INS (p = 0.023), tumor depth (p < 0.001), pT classification (p = 0.022), pN classification (p < 0.001) and tumor grade (p < 0.001) were independent survival predictors. Moreover, a novel nomogram for predicting OS was generated and assessed by the concordance index, exhibiting a better performance than the p7TNMG classification alone (p < 0.001). CONCLUSIONS For R0 resected HNSTS patients, the oncological outcomes can be predicted using the INS system and a specific nomogram.
Collapse
Affiliation(s)
- Bushu Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haibo Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Biyi Ou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuwei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dingfu Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Melanoma and Sarcoma Medical Oncology Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yao Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
18
|
Lin Y, Choukrani G, Dubbel L, Rockstein L, Freile JA, Qi Y, Wiersma V, Zhang H, Koch KW, Ammatuna E, Schuringa JJ, van Meerten T, Huls G, Bremer E. VISTA drives macrophages towards a pro-tumoral phenotype that promotes cancer cell phagocytosis yet down-regulates T cell responses. Exp Hematol Oncol 2024; 13:35. [PMID: 38553748 PMCID: PMC10979580 DOI: 10.1186/s40164-024-00501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND VISTA is a well-known immune checkpoint in T cell biology, but its role in innate immunity is less established. Here, we investigated the role of VISTA on anticancer macrophage immunity, with a focus on phagocytosis, macrophage polarization and concomitant T cell activation. METHODS Macrophages, differentiated from VISTA overexpressed THP-1 cells and cord blood CD34+ cell-derived monocytes, were used in phagocytosis assay using B lymphoma target cells opsonized with Rituximab. PBMC-derived macrophages were used to assess the correlation between phagocytosis and VISTA expression. qRT-PCR, flow cytometry, and enzyme-linked immunosorbent assay were performed to analyze the impact of VISTA on other checkpoints and M1/M2-like macrophage biology. Additionally, flow cytometry was used to assess the frequency of CD14+ monocytes expressing VISTA in PBMCs from 65 lymphoma patients and 37 healthy donors. RESULTS Ectopic expression of VISTA in the monocytic model cell line THP-1 or in primary monocytes triggered differentiation towards the macrophage lineage, with a marked increase in M2-like macrophage-related gene expression and decrease in M1-like macrophage-related gene expression. VISTA expression in THP-1 and monocyte-derived macrophages strongly downregulated expression of SIRPα, a prominent 'don't eat me' signal, and augmented phagocytic activity of macrophages against cancer cells. Intriguingly, expression of VISTA's extracellular domain alone sufficed to trigger phagocytosis in ∼ 50% of cell lines, with those cell lines also directly binding to recombinant human VISTA, indicating ligand-dependent and -independent mechanisms. Endogenous VISTA expression was predominantly higher in M2-like macrophages compared to M0- or M1-like macrophages, with a positive correlation observed between VISTA expression in M2c macrophages and their phagocytic activity. VISTA-expressing macrophages demonstrated a unique cytokine profile, characterized by reduced IL-1β and elevated IL-10 secretion. Furthermore, VISTA interacted with MHC-I and downregulated its surface expression, leading to diminished T cell activation. Notably, VISTA surface expression was identified in monocytes from all lymphoma patients but was less prevalent in healthy donors. CONCLUSIONS Collectively, VISTA expression associates with and drives M2-like activation of macrophages with a high phagocytic capacity yet a decrease in antigen presentation capability to T cells. Therefore, VISTA is a negative immune checkpoint regulator in macrophage-mediated immune suppression.
Collapse
Affiliation(s)
- Yusheng Lin
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Ghizlane Choukrani
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Lena Dubbel
- Faculty VI, School of Medicine and Health Sciences, Department for human Medicine, Carl von Ossietzky Universität Oldenburg, University Clinic for Gynecology, Oldenburg, Germany
| | - Lena Rockstein
- Faculty VI, School of Medicine and Health Sciences, Department for human Medicine, Carl von Ossietzky Universität Oldenburg, University Clinic for Gynecology, Oldenburg, Germany
| | - Jimena Alvarez Freile
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Yuzhu Qi
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Valerie Wiersma
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
| | - Karl-Wilhelm Koch
- Faculty VI, School of Medicine and Health Sciences, Dept. of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Jan Jacob Schuringa
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Tom van Meerten
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands.
| |
Collapse
|
19
|
Jiang T, Wang B, Wang T, Zhang L, Chen X, Zhao X. TAM-Hijacked Immunoreaction Rescued by Hypoxia-Pathway-Intervened Strategy for Enhanced Metastatic Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305728. [PMID: 37752692 DOI: 10.1002/smll.202305728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Immunotherapy is regarded as a prospective strategy against metastatic cancer. However, tumor-associated macrophages (TAMs), which accumulate in hypoxic tumor microenvironment, reduce the effectiveness of immunotherapy by blocking or "hijacking" the initiation of the immune response. Here, a novel tumor-targeted nanoplatform loaded with hypoxia-pathway-intervened docosahexaenoic acid (DHA) and chemotherapeutic drug carfilzomib (CFZ) is developed, which realizes the rescue of TAM-hijacked immune response and effective metastatic cancer immunotherapy. DHA is conjugated to fucoidan (Fuc) via a reduction cleavable selenylsulfide bond (SSe) for micelle preparation, and CFZ is encapsulated in the hydrophobic cores of micelles. The functionalized nanoplatforms (Fuc─SSe─DHA (FSSeD)-CFZs) induce immunogenic cell death, inhibit hypoxia-inducible factor-1α expression, and improve immunosuppression by TAM suppression. FSSeD-CFZs enhance immune response against primary tumor development and metastasis formation. In brief, the novel rescue strategy for TAM-hijacked immunoreaction by inhibiting hypoxia pathway has the potential and clinically translational significance for enhanced metastatic cancer immunotherapy.
Collapse
Affiliation(s)
- Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lianxiao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
20
|
Sheikh E, Agrawal K, Roy S, Burk D, Donnarumma F, Ko YH, Guttula PK, Biswal NC, Shukla HD, Gartia MR. Multimodal Imaging of Pancreatic Cancer Microenvironment in Response to an Antiglycolytic Drug. Adv Healthc Mater 2023; 12:e2301815. [PMID: 37706285 PMCID: PMC10842640 DOI: 10.1002/adhm.202301815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/15/2023]
Abstract
Lipid metabolism and glycolysis play crucial roles in the progression and metastasis of cancer, and the use of 3-bromopyruvate (3-BP) as an antiglycolytic agent has shown promise in killing pancreatic cancer cells. However, developing an effective strategy to avoid chemoresistance requires the ability to probe the interaction of cancer drugs with complex tumor-associated microenvironments (TAMs). Unfortunately, no robust and multiplexed molecular imaging technology is currently available to analyze TAMs. In this study, the simultaneous profiling of three protein biomarkers using SERS nanotags and antibody-functionalized nanoparticles in a syngeneic mouse model of pancreatic cancer (PC) is demonstrated. This allows for comprehensive information about biomarkers and TAM alterations before and after treatment. These multimodal imaging techniques include surface-enhanced Raman spectroscopy (SERS), immunohistochemistry (IHC), polarized light microscopy, second harmonic generation (SHG) microscopy, fluorescence lifetime imaging microscopy (FLIM), and untargeted liquid chromatography and mass spectrometry (LC-MS) analysis. The study reveals the efficacy of 3-BP in treating pancreatic cancer and identifies drug treatment-induced lipid species remodeling and associated pathways through bioinformatics analysis.
Collapse
Affiliation(s)
- Elnaz Sheikh
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kirti Agrawal
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Sanjit Roy
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David Burk
- Department of Cell Biology and Bioimaging, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Young H Ko
- NewG Lab Pharma, 701 East Pratt Street, Columbus Center, Baltimore, MD, 21202, USA
| | - Praveen Kumar Guttula
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Nrusingh C Biswal
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hem D Shukla
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
21
|
Zhu Z, Yi B, Tang Z, Chen X, Li M, Xu T, Zhao Z, Tang C. Lactobacillus casei combined with Lactobacillus reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis. BMC Cancer 2023; 23:1044. [PMID: 37904102 PMCID: PMC10614400 DOI: 10.1186/s12885-023-11557-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a highly lethal disease with no effective treatments. Lactobacillus casei (L. casei) and Lactobacillus reuteri (L. reuteri) exhibited therapeutic effects on several cancers, but their roles in pancreatic cancer are unknown. This study aims to explore how L. casei & L. reuteri influence pancreatic cancer and the underlying mechanisms. METHODS Pancreatic cancer cells were treated with L. casei & L. reuteri and co-cultured with macrophages in a transwell system in vitro. Pancreatic cancer xenograft model was established and L. casei & L. reuteri was used to treat mice in vivo. MTT, CCK-8 assay or immunohistochemical staining were used to determine the proliferation of pancreatic cancer cells or tumor tissues. Transwell assay was applied to test the migration and invasion of pancreatic cells. RT-qPCR was utilized to assess TLR4 and MyD88 expressions in pancreatic cells or tumor tissues. WB, immunofluorescence staining, or flow cytometry was used to evaluate the M1/M2 polarization of macrophages. Besides, the composition of gut microbiota of tumor-bearing mice was determined by 16 S rRNA sequencing, and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) untargeted metabolomics was used to evaluate the metabolic profiles of feces. RESULTS L. casei & L. reuteri inhibited the proliferation, migration, invasion of pancreatic cancer cells and pancreatic cancer cell-induced M2 polarization of macrophages by suppressing TLR4. Meanwhile, L. casei & L. reuteri repressed pancreatic cancer growth and promoted M1 macrophage polarization. Besides, L. casei & L. reuteri reduced fecal Alloprevotella and increased fecal azelate and glutamate in nude mice, while TLR4 inhibitor TAK-242 increased Clostridia UCG-014, azelate, uridine, methionine sulfoxide, oxypurinol, and decreased glyceryl monoester in the feces of pancreatic tumor-bearing mice. Fecal oxypurinol and glyceryl monoester levels were positively or negatively associated with gut Clostridia UCG-014 abundance, respectively. CONCLUSION L. casei & L. reuteri alleviate pancreatic cancer by inhibiting TLR4 to promote macrophage M1 polarization and regulate gut microbial homeostasis.
Collapse
Affiliation(s)
- Zemin Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Bo Yi
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zikai Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Xun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Ming Li
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China
| | - Tao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Zhijian Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
| | - Caixi Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhuzhou Central Hospital, Zhuzhou, China.
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, China.
| |
Collapse
|
22
|
Fard D, Giraudo E, Tamagnone L. Mind the (guidance) signals! Translational relevance of semaphorins, plexins, and neuropilins in pancreatic cancer. Trends Mol Med 2023; 29:817-829. [PMID: 37598000 DOI: 10.1016/j.molmed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.
Collapse
Affiliation(s)
- Damon Fard
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy
| | - Enrico Giraudo
- Department of Science and Drug Technology, University of Turin, Turin, Italy; Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy; Fondazione Policlinico Gemelli, IRCCS, Rome, Italy.
| |
Collapse
|
23
|
Li Y, Yang KD, Duan HY, Du YN, Ye JF. Phage-based peptides for pancreatic cancer diagnosis and treatment: alternative approach. Front Microbiol 2023; 14:1231503. [PMID: 37601380 PMCID: PMC10433397 DOI: 10.3389/fmicb.2023.1231503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Pancreatic cancer is a devastating disease with a high mortality rate and a lack of effective therapies. The challenges associated with early detection and the highly aggressive nature of pancreatic cancer have limited treatment options, underscoring the urgent need for better disease-modifying therapies. Peptide-based biotherapeutics have become an attractive area of research due to their favorable properties such as high selectivity and affinity, chemical modifiability, good tissue permeability, and easy metabolism and excretion. Phage display, a powerful technique for identifying peptides with high affinity and specificity for their target molecules, has emerged as a key tool in the discovery of peptide-based drugs. Phage display technology involves the use of bacteriophages to express peptide libraries, which are then screened against a target of interest to identify peptides with desired properties. This approach has shown great promise in cancer diagnosis and treatment, with potential applications in targeting cancer cells and developing new therapies. In this comprehensive review, we provide an overview of the basic biology of phage vectors, the principles of phage library construction, and various methods for binding affinity assessment. We then describe the applications of phage display in pancreatic cancer therapy, targeted drug delivery, and early detection. Despite its promising potential, there are still challenges to be addressed, such as optimizing the selection process and improving the pharmacokinetic properties of phage-based drugs. Nevertheless, phage display represents a promising approach for the development of novel targeted therapies in pancreatic cancer and other tumors.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Ya-nan Du
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
24
|
Wang YN, Wang YY, Wang J, Bai WJ, Miao NJ, Wang J. Vinblastine resets tumor-associated macrophages toward M1 phenotype and promotes antitumor immune response. J Immunother Cancer 2023; 11:e007253. [PMID: 37652576 PMCID: PMC10476141 DOI: 10.1136/jitc-2023-007253] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Massive tumor-associated macrophage (TAM) infiltration is observed in many tumors, which usually display the immune-suppressive M2-like phenotype but can also be converted to an M1-like antitumor phenotype due to their high degree of plasticity. The macrophage polarization state is associated with changes in cell shape, macrophage morphology is associated with activation status. M1 macrophages appeared large and rounded, while M2 macrophages were stretched and elongated cells. Manipulating cell morphology has been shown to affect the polarization state of macrophages. The shape of the cell is largely dependent on cytoskeletal proteins, especially, microtubules. As a microtubule-targetting drug, vinblastine (VBL) has been used in chemotherapy. However, no study to date has explored the effect of VBL on TAM shape changes and its role in tumor immune response. METHOD We used fluorescent staining of the cytoskeleton and quantitative analysis to reveal the morphological differences between M0, M1, M2, TAM and VBL-treated TAM. Flow cytometry was used to confirm the polarization states of these macrophages using a cell surface marker-based classification. In vivo antibody depletion experiments in tumor mouse models were performed to test whether macrophages and CD8+ T cell populations were required for the antitumor effect of VBL. VBL and anti-PD-1 combination therapy was then investigated in comparison with monotherapy. RNA-seq of TAM of treated and untreated with VBL was performed to explore the changes in pathway activities. siRNA mediated knockdown experiments were performed to verify the target pathway that was affected by VBL treatment. RESULTS Here, we showed that VBL, an antineoplastic agent that destabilizes microtubule, drove macrophage polarization into the M1-like phenotype both in vitro and in tumor models. The antitumor effect of VBL was attenuated in the absence of macrophages or CD8+ T cells. Mechanistically, VBL induces the activation of NF-κB and Cyba-dependent reactive oxygen species generation, thus polarizing TAMs to the M1 phenotype. In parallel, VBL promotes the nuclear translocation of transcription factor EB, inducing lysosome biogenesis and a dramatic increase in phagocytic activity in macrophages. CONCLUSIONS This study explored whether manipulating cellular morphology affects macrophage polarization and consequently induces an antitumor response. Our data reveal a previously unrecognized antitumor mechanism of VBL and suggest a drug repurposing strategy combining VBL with immune checkpoint inhibitors to improve malignant tumor immunotherapy.
Collapse
Affiliation(s)
- Yi-Na Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Yuan Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Juan Bai
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nai-Jun Miao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Lin HJ, Liu Y, Caroland K, Lin J. Polarization of Cancer-Associated Macrophages Maneuver Neoplastic Attributes of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:3507. [PMID: 37444617 DOI: 10.3390/cancers15133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mounting evidence links the phenomenon of enhanced recruitment of tumor-associated macrophages towards cancer bulks to neoplastic growth, invasion, metastasis, immune escape, matrix remodeling, and therapeutic resistance. In the context of cancer progression, naïve macrophages are polarized into M1 or M2 subtypes according to their differentiation status, gene signatures, and functional roles. While the former render proinflammatory and anticancer effects, the latter subpopulation elicits an opposite impact on pancreatic ductal adenocarcinoma. M2 macrophages have gained increasing attention as they are largely responsible for molding an immune-suppressive landscape. Through positive feedback circuits involving a paracrine manner, M2 macrophages can be amplified by and synergized with neighboring neoplastic cells, fibroblasts, endothelial cells, and non-cell autonomous constituents in the microenvironmental niche to promote an advanced disease state. This review delineates the molecular cues expanding M2 populations that subsequently convey notorious clinical outcomes. Future therapeutic regimens shall comprise protocols attempting to abolish environmental niches favoring M2 polarization; weaken cancer growth typically assisted by M2; promote the recruitment of tumoricidal CD8+ T lymphocytes and dendritic cells; and boost susceptibility towards gemcitabine as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA
| | - Kailey Caroland
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Zhang J, Song J, Tang S, Zhao Y, Wang L, Luo Y, Tang J, Ji Y, Wang X, Li T, Zhang H, Shao W, Sheng J, Liang T, Bai X. Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation. Cell Rep 2023; 42:112620. [PMID: 37285267 DOI: 10.1016/j.celrep.2023.112620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically demonstrates resistance to chemotherapy. Tumor-associated macrophages (TAMs) are essential in tumor microenvironment (TME) regulation, including promoting chemoresistance. However, the specific TAM subset and mechanisms behind this promotion remain unclear. We employ multi-omics strategies, including single-cell RNA sequencing (scRNA-seq), transcriptomics, multicolor immunohistochemistry (mIHC), flow cytometry, and metabolomics, to analyze chemotherapy-treated samples from both humans and mice. We identify four major TAM subsets within PDAC, among which proliferating resident macrophages (proliferating rMφs) are strongly associated with poor clinical outcomes. These macrophages are able to survive chemotherapy by producing more deoxycytidine (dC) and fewer dC kinases (dCKs) to decrease the absorption of gemcitabine. Moreover, proliferating rMφs promote fibrosis and immunosuppression in PDAC. Eliminating them in the transgenic mouse model alleviates fibrosis and immunosuppression, thereby re-sensitizing PDAC to chemotherapy. Consequently, targeting proliferating rMφs may become a potential treatment strategy for PDAC to enhance chemotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yandong Luo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Taohong Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| |
Collapse
|
27
|
Cui Y, Yuan Q, Chen J, Jiang J, Guan H, Zhu R, Li N, Liu W, Wang C. Determination and characterization of molecular heterogeneity and precision medicine strategies of patients with pancreatic cancer and pancreatic neuroendocrine tumor based on oxidative stress and mitochondrial dysfunction-related genes. Front Endocrinol (Lausanne) 2023; 14:1127441. [PMID: 37223030 PMCID: PMC10200886 DOI: 10.3389/fendo.2023.1127441] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 05/25/2023] Open
Abstract
Background Mitochondria are significant both for cellular energy production and reactive oxygen/nitrogen species formation. However, the significant functions of mitochondrial genes related to oxidative stress (MTGs-OS) in pancreatic cancer (PC) and pancreatic neuroendocrine tumor (PNET) are yet to be investigated integrally. Therefore, in pan-cancer, particularly PC and PNET, a thorough assessment of the MTGs-OS is required. Methods Expression patterns, prognostic significance, mutation data, methylation rates, and pathway-regulation interactions were studied to comprehensively elucidate the involvement of MTGs-OS in pan-cancer. Next, we separated the 930 PC and 226 PNET patients into 3 clusters according to MTGs-OS expression and MTGs-OS scores. LASSO regression analysis was utilized to construct a novel prognostic model for PC. qRT-PCR(Quantitative real-time PCR) experiments were performed to verify the expression levels of model genes. Results The subtype associated with the poorest prognosis and lowerest MTGs-OS scores was Cluster 3, which could demonstrate the vital function of MTGs-OS for the pathophysiological processes of PC. The three clusters displayed distinct variations in the expression of conventional cancer-associated genes and the infiltration of immune cells. Similar molecular heterogeneity was observed in patients with PNET. PNET patients with S1 and S2 subtypes also showed distinct MTGs-OS scores. Given the important function of MTGs-OS in PC, a novel and robust MTGs-related prognostic signature (MTGs-RPS) was established and identified for predicting clinical outcomes for PC accurately. Patients with PC were separated into the training, internal validation, and external validation datasets at random; the expression profile of MTGs-OS was used to classify patients into high-risk (poor prognosis) or low-risk (good prognosis) categories. The variations in the tumor immune microenvironment may account for the better prognoses observed in high-risk individuals relative to low-risk ones. Conclusions Overall, our study for the first time identified and validated eleven MTGs-OS remarkably linked to the progression of PC and PNET, and elaborated the biological function and prognostic value of MTGs-OS. Most importantly, we established a novel protocol for the prognostic evaluation and individualized treatment for patients with PC.
Collapse
Affiliation(s)
- Yougang Cui
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junhong Chen
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jian Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hewen Guan
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ruiping Zhu
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ning Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, Wafangdian Central Hospital, Dalian, Liaoning, China
| | - Wenzhi Liu
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Changmiao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
28
|
Zhang Y, Tan W, Sultonova RD, Nguyen DH, Zheng JH, You SH, Rhee JH, Kim SY, Khim K, Hong Y, Min JJ. Synergistic cancer immunotherapy utilizing programmed Salmonella typhimurium secreting heterologous flagellin B conjugated to interleukin-15 proteins. Biomaterials 2023; 298:122135. [PMID: 37148758 DOI: 10.1016/j.biomaterials.2023.122135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
The use of appropriately designed immunotherapeutic bacteria is an appealing approach to tumor therapy because the bacteria specifically target tumor tissue and deliver therapeutic payloads. The present study describes the engineering of an attenuated strain of Salmonella typhimurium deficient in ppGpp biosynthesis (SAM) that could secrete Vibrio vulnificus flagellin B (FlaB) conjugated to human (hIL15/FlaB) and mouse (mIL15/FlaB) interleukin-15 proteins in the presence of L-arabinose (L-ara). These strains, named SAMphIF and SAMpmIF, respectively, secreted fusion proteins that retained bioactivity of both FlaB and IL15. SAMphIF and SAMpmIF inhibited the growth of MC38 and CT26 subcutaneous (sc) tumors in mice and increased mouse survival rate more efficiently than SAM expressing FlaB alone (SAMpFlaB) or IL15 alone (SAMpmIL15 and SAMphIL15), although SAMpmIF had slightly greater antitumor activity than SAMphIF. The mice treated with these bacteria showed enhanced macrophage phenotype shift, from M2-like to M1-like, as well as greater proliferation and activation of CD4+ T, CD8+ T, NK, and NKT cells in tumor tissues. After tumor eradication by these bacteria, ≥50% of the mice show no evidence of tumor recurrence upon rechallenge with the same tumor cells, indicating that they had acquired long-term immune memory. Treatment of mice of 4T1 and B16F10 highly malignant sc tumors with a combination of these bacteria and an immune checkpoint inhibitor, anti-PD-L1 antibody, significantly suppressed tumor metastasis and increased mouse survival rate. Taken together, these findings suggest that SAM secreting IL15/FlaB is a novel therapeutic candidate for bacterial-mediated cancer immunotherapy and that its antitumor activity is enhanced by combination with anti-PD-L1 antibody.
Collapse
Affiliation(s)
- Ying Zhang
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, China
| | - Rukhsora D Sultonova
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Jin Hai Zheng
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | | | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Koemchhoy Khim
- Department of Microbiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Microbiology, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
29
|
Gu Y, Hua Q, Li Z, Zhang X, Lou C, Zhang Y, Wang W, Cai P, Zhao J. Diagnostic value of combining preoperative inflammatory markers ratios with CA199 for patients with early-stage pancreatic cancer. BMC Cancer 2023; 23:227. [PMID: 36899319 PMCID: PMC9999638 DOI: 10.1186/s12885-023-10653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND An early diagnosis of pancreatic cancer (PC) is extremely difficult because of the lack of sensitive liquid biopsy methods and effective biomarkers. We attempted to evaluate whether circulating inflammatory marker could complement CA199 for the detection of early-stage PC. METHODS We enrolled 430 patients with early-stage PC, 287 patients with other pancreatic tumors (OPT), and 401 healthy controls (HC). The patients and HC were randomly divided into a training set (n = 872) and two testing sets (n1 = 218, n2 = 28). The receiver operating characteristic (ROC) curves were investigated to evaluate the diagnostic performance of circulating inflammatory markers ratios, CA199, and combinations of the markers ratios in the training set, which would then be validated in the two testing sets. RESULTS Circulating fibrinogen, neutrophils, and monocytes in patients with PC were significantly higher while circulating albumin, prealbumin, lymphocytes, and platelets of patients with PC were significantly lower compared to those of HC and OPT (all P < 0.05). The fibrinogen-to-albumin (FAR), fibrinogen-to-prealbumin (FPR), neutrophil-to-lymphocyte (NLR), platelet-to-lymphocyte (PLR), monocyte-to-lymphocyte (MLR), and fibrinogen-to-lymphocyte (FLR) ratios were significantly higher while the prognostic nutrition index values (PNI) were lower in patients with PC than in HC and OPT (all P < 0.05). Combining the FAR, FPR, and FLR with CA199 exhibited the best diagnostic value for distinguishing patients with early-stage PC from HC with an area under the curve (AUC) of 0.964, and for distinguishing patients with early-stage PC from OPT with an AUC of 0.924 in the training sets. In the testing set, compared with HC, the combination markers had powerful efficiency for PC with an AUC 0.947 and AUC 0.942 when comparing PC with OPT. The AUC was 0.915 for the combination of CA199, FAR, FPR, and FLR for differentiating between patients with pancreatic head cancer (PHC) and other pancreatic head tumors (OPHT), and 0.894 for differentiating between patients with pancreatic body and tail cancer (PBTC) and other pancreatic body and tail tumors (OPBTT). CONCLUSION A combination of FAR, FPR, FLR, and CA199 may serve as a potential non-invasive biomarker for differentiating early-stage PC from HC and OPT, especially early-stage PHC.
Collapse
Affiliation(s)
- Yuanlong Gu
- Department of Interventional Oncology, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qianjin Hua
- Department of Interventional Oncology, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Zhipeng Li
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Xingli Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Changjie Lou
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yangfen Zhang
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Wei Wang
- Department of Interventional Oncology, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Peiyuan Cai
- Department of Interventional Oncology, Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Juan Zhao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
30
|
Ye D, Desai J, Shi J, Liu SYM, Shen W, Liu T, Shi Y, Wang D, Liang L, Yang S, Ma X, Jin W, Zhang P, Huang R, Shen Z, Zhang Y, Wu YL. Co-enrichment of CD8-positive T cells and macrophages is associated with clinical benefit of tislelizumab in solid tumors. Biomark Res 2023; 11:25. [PMID: 36879284 PMCID: PMC9990338 DOI: 10.1186/s40364-023-00465-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Activated immune cells (IC) in the tumor microenvironment (TME) are critical for anti-tumor efficacy. Greater understanding of the dynamic diversity and crosstalk between IC is needed to clarify their association with immune checkpoint inhibitor efficacy. METHODS Patients from three tislelizumab monotherapy trials in solid tumors (NCT02407990, NCT04068519, NCT04004221) were retrospectively divided into subgroups by CD8+ T-cell and macrophage (Mφ) levels, assessed via multiplex immunohistochemistry (mIHC; n = 67) or gene expression profiling (GEP; n = 629). RESULTS A trend of longer survival was observed in patients with both high CD8+ T-cell and Mφ levels versus other subgroups in the mIHC analysis (P = 0.11), which was confirmed with greater statistical significance in the GEP analysis (P = 0.0001). Co-existence of CD8+ T cells and Mφ was coupled with elevated CD8+ T-cell cytotoxicity, T-cell trafficking, MHC class I antigen presentation signatures/genes, and enrichment of the pro-inflammatory Mφ polarization pathway. Additionally, a high level of pro-inflammatory CD64+ Mφ density was associated with an immune-activated TME and survival benefit with tislelizumab (15.2 vs. 5.9 months for low density; P = 0.042). Spatial proximity analysis revealed that closer proximity between CD8+ T cells and CD64+ Mφ was associated with a survival benefit with tislelizumab (15.2 vs. 5.3 months for low proximity; P = 0.024). CONCLUSIONS These findings support the potential role of crosstalk between pro-inflammatory Mφ and cytotoxic T cells in the clinical benefit of tislelizumab. TRIAL REGISTRATION NCT02407990, NCT04068519, NCT04004221.
Collapse
Affiliation(s)
- Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre and the University of Melbourne, Melbourne, Australia
| | - Jingwen Shi
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Si-Yang Maggie Liu
- Department of Hematology, First Affiliated Hospital, The Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Wei Shen
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Tengfei Liu
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Yang Shi
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Dan Wang
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Liang Liang
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Silu Yang
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Xiaopeng Ma
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Wei Jin
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Pei Zhang
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Ruiqi Huang
- Department of Statistics, BeiGene (Shanghai) Co., Ltd., Shanghai, China
| | - Zhirong Shen
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China
| | - Yun Zhang
- Clinical Biomarkers, BeiGene (Beijing) Co., Ltd., 6 Jianguomenwai Avenue, Central International Trade Center, 18th Floor, Tower D Chaoyang District, Beijing, 100022, China.
| | - Yi-Long Wu
- Department of Pulmonary Oncology, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 51008, China.
| |
Collapse
|
31
|
Pu N, Chen Q, Zhang J, Yin H, Wang D, Ji Y, Rao S, Kuang T, Xu X, Wu W, Lou W. Circulating cytokines allow for identification of malignant intraductal papillary mucinous neoplasms of the pancreas. Cancer Med 2023; 12:3919-3930. [PMID: 35871313 PMCID: PMC9972143 DOI: 10.1002/cam4.5051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Intraductal papillary mucinous neoplasms (IPMNs) are the precursor lesions of pancreatic cancers, requiring active surgical intervention during cancer development. However, the current criteria for predicting malignant IPMNs remain challenging and limited. Hence, this study aimed to assess the discriminatory performance of circulating cytokines, including TNF-α, IL-2R, IL-6, and IL-8, then build a novel predictive model to improve the diagnostic accuracy. METHOD A total of 131 retrospective (from March 2016 to December 2019) and 53 prospective (from March 2020 to January 2021) patients who were histologically confirmed as IPMNs were consecutively collected and analyzed. RESULT The circulating levels of TNF-α, IL-2R, IL-6, and IL-8 were significantly elevated in malignant IPMNs, and were verified as independent factors for malignant IPMNs (p < 0.05). Then, a novel score, the circulating cytokine score (CCS), was calculated and demonstrated as an independent predictive indicator with a higher area under the curve (AUC) than each cytokine alone (p < 0.001). Besides the CCS, two high-risk stigmata features, the presence of solid component (PSC), and main pancreatic duct (MPD) dilation ≥10 mm were also demonstrated as independent indicators for predicting malignant IPMNs. Finally, a novel nomogram incorporating the CCS and these two high-risk stigmata features presented a remarkable diagnostic performance, both in the training and validation cohorts with AUCs of 0.928 and 0.873, respectively. CONCLUSION The CCS can be considered a novel independent predictive indicator for malignant IPMNs. Additionally, the formulated nomogram model integrating the CCS, PSC, and MPD ≥10 mm can be a valuable and promising tool for predicting the malignant transformation of IPMNs during long-term follow-ups to assist in timely and accurate surgical decisions.
Collapse
Affiliation(s)
- Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jicheng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengxiang Rao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Fei Y, Wang Z, Huang M, Wu X, Hu F, Zhu J, Yu Y, Shen H, Wu Y, Xie G, Zhou Z. MiR-155 regulates M2 polarization of hepatitis B virus-infected tumour-associated macrophages which in turn regulates the malignant progression of hepatocellular carcinoma. J Viral Hepat 2023; 30:417-426. [PMID: 36704832 DOI: 10.1111/jvh.13809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) initiated by hepatitis B virus (HBV) infection is a complicated process. MiR-155 can alter the immune microenvironment to affect the host's anti-infective ability. This study investigated the mechanism by which miR-155 affects tumour-associated macrophage (TAM) polarization at a molecular level, thus affecting the malignant progression of HBV+ HCC. MiR-155 and TAM-related cytokine expression were analysed by qRT-PCR. The distribution of TAMs was detected by immunohistochemistry. The effect of the aberrant miR-155 expression on macrophage polarization was examined by flow cytometry. The targeted relationship was verified by dual-luciferase assay, and the protein level of src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) was detected by western blot. The proliferation of HCC cells was examined by CCK-8 and colony formation assays. Invasion and migration of HCC cells were detected by transwell assay. In HBV+ HCC tissues, miR-155 was significantly highly expressed and the number of CD206-positive TAM (CD206+ TAM) and CD68-positive TAM (CD68+ TAM) were higher than those in HBV- HCC tissues. In addition, miR-155 overexpression significantly promoted M2-type macrophage polarization, whilst miR-155 silencing expression significantly promoted M1-type macrophage polarization. Besides, the miR-155/SHIP1 axis accelerated HCC cell invasion, proliferation and migration by inducing M2-type macrophage polarization. MiR-155 accelerates HCC cell proliferation, migration and invasion by targeting SHIP1 expression and inducing macrophage M2 polarization. This finding provides new insights into the development of novel therapeutic strategies for combatting HBV+ HCC and a new reference for exploring anti-tumour immunotherapy.
Collapse
Affiliation(s)
- Yingming Fei
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Zhiwei Wang
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Minmin Huang
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Xinjuan Wu
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Fangqin Hu
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Jinlong Zhu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Youlin Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Huajiang Shen
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Yong Wu
- Infectious Disease Department (Hepatology Department), Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Guilin Xie
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital), Shaoxing, China
| | - Zumo Zhou
- Department of Infectious Diseases, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| |
Collapse
|
33
|
Chen L, Zhang S, Li Q, Li J, Deng H, Zhang S, Meng R. Emerging role of Protein Kinase CK2 in Tumor immunity. Front Oncol 2022; 12:1065027. [DOI: 10.3389/fonc.2022.1065027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase CK2, a conserved serine/threonine-protein kinase, is ubiquitous in cells and regulates various intracellular processes, especially in tumor cells. As one of the earliest discovered protein kinases in humans, CK2 plays a crucial role in phosphorylating or associating with hundreds of substrates to modulate several signaling pathways. Excellent reviews have reported that the overexpression of CK2 could be observed in many cancers and was closely associated with tumor occurrence and development. The elevation of CK2 is also an indicator of a poor prognosis. Recently, increasing attention has been paid to the relationship between CK2 and tumor immunity. However, there is no comprehensive description of how CK2 regulates the immune cells in the tumor microenvironment (TME). Also, the underlying mechanisms are still not very clear. In this review, we systematically summarized the correlation between CK2 and tumor immunity, primarily the effects on various immune cells, both in innate and adaptive immunity in the TME. With the comprehensive development of immunotherapy and the mounting transformation research of CK2 inhibitors from the bench to the clinic, this review will provide vital information to find new treatment options for enhancing the efficacy of immunotherapy.
Collapse
|
34
|
Gao C, Cheng K, Li Y, Gong R, Zhao X, Nie G, Ren H. Injectable Immunotherapeutic Hydrogel Containing RNA-Loaded Lipid Nanoparticles Reshapes Tumor Microenvironment for Pancreatic Cancer Therapy. NANO LETTERS 2022; 22:8801-8809. [PMID: 36251255 DOI: 10.1021/acs.nanolett.2c01994] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pancreatic cancer immunotherapy is becoming a promising strategy for improving the survival rate of postsurgical patients. However, the low response rate to immunotherapy suggests a low number of antigen-specific T cells and a high number of immunosuppressive tumor-associated macrophages in the pancreatic tumor microenvironment. Herein, we developed an in situ injectable thermosensitive chitosan hydrogel loaded with lipid-immune regulatory factor 5 (IRF5) mRNA/C-C chemokine ligand 5 (CCL5) siRNA (LPR) nanoparticle complexes (LPR@CHG) that reprogram the antitumoral immune niche. The LPR@CHG hydrogel upregulates IRF5 and downregulates CCL5 secretion, which contribute to a significant increase in M1 phenotype macrophages. Tumor growth is controlled by effective M1 phenotype macrophage that initiate T cell-mediated immune responses. Overall, the LPR@CHG hydrogel is expected to be a meaningful immunotherapy platform that can reshape the immunosuppressive tumor microenvironment and improve the efficacy of current pancreatic immunotherapies while minimizing systemic toxicity.
Collapse
Affiliation(s)
- Chao Gao
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruining Gong
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Ren
- Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
35
|
Wang R, Zhang C, Li D, Yao Y. Tumor-on-a-chip: Perfusable vascular incorporation brings new approach to tumor metastasis research and drug development. Front Bioeng Biotechnol 2022; 10:1057913. [PMID: 36483772 PMCID: PMC9722735 DOI: 10.3389/fbioe.2022.1057913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 07/21/2023] Open
Abstract
The extracellular matrix interacts with cancer cells and is a key factor in the development of cancer. Traditional two-dimensional models cannot mimic the natural in situ environment of cancer tissues, whereas three-dimensional (3D) models such as spherical culture, bioprinting, and microfluidic approaches can achieve in vitro reproduction of certain structures and components of the tumor microenvironment, including simulation of the hypoxic environment of tumor tissue. However, the lack of a perfusable vascular network is a limitation of most 3D models. Solid tumor growth and metastasis require angiogenesis, and tumor models with microvascular networks have been developed to better understand underlying mechanisms. Tumor-on-a-chip technology combines the advantages of microfluidics and 3D cell culture technology for the simulation of tumor tissue complexity and characteristics. In this review, we summarize progress in constructing tumor-on-a-chip models with efficiently perfused vascular networks. We also discuss the applications of tumor-on-a-chip technology to studying the tumor microenvironment and drug development. Finally, we describe the creation of several common tumor models based on this technology to provide a deeper understanding and new insights into the design of vascularized cancer models. We believe that the tumor-on-a-chip approach is an important development that will provide further contributions to the field.
Collapse
Affiliation(s)
| | | | - Danxue Li
- *Correspondence: Danxue Li, ; Yang Yao,
| | - Yang Yao
- *Correspondence: Danxue Li, ; Yang Yao,
| |
Collapse
|
36
|
Li L, Wang J, Zhang Z, Yang Q, Deng Z, Zou W, Ge X, Pan K, Li C, Liu R. Identification of CKS1B as a prognostic indicator and a predictive marker for immunotherapy in pancreatic cancer. Front Immunol 2022; 13:1052768. [PMID: 36405738 PMCID: PMC9668883 DOI: 10.3389/fimmu.2022.1052768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/19/2022] [Indexed: 01/10/2024] Open
Abstract
As a regulatory subunit of cyclin kinase, CKS1B promotes cancer development and is associated with poor prognosis in multiple cancer patients. However, the intrinsic role of CKS1B in pancreatic cancer remains elusive. In our research, CKS1B expression in pancreatic tumor tissue was higher than that in normal tissue by TCGA, Oncomine and CPTAC databases analysis. Similar result was verified in our center tissues by qRT-PCR. CKS1B expression was closely relevant to histologic grading, prognosis, and TMB. GSEA showed that CKS1B mainly participated in the regulation of autophagy and T cell receptor signaling pathway. Furthermore, CIBERSORT analysis showed that there was a strong correlation between CKS1B expression and tumor immune cells infiltration. Drug sensitivity analysis showed that patients with high CKS1B expression appeared to be more sensitive to gemcitabine, 5-fluorouracil, and paclitaxel. We then investigated cell viability and migratory ability by CCK8 and transwell assay, respectively. Results indicated that CKS1B knockdown by short hairpin RNA significantly reduced pancreatic cancer cell viability and invasion via regulating PD-L1 expression. In conclusion, our research further demonstrates the role of CKS1B in pancreatic cancer and the signaling pathways involved. The association of CKS1B with immune infiltration and immune checkpoint may provide a new direction for immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Lincheng Li
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Zhuochao Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiyue Yang
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Zhaoda Deng
- Medical School of Chinese PLA, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenbo Zou
- Department of General Surgery, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Xinlan Ge
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Ke Pan
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Chonghui Li
- Key Laboratory of Digital Hepetobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
37
|
Zhuo S, Yang L, Chen S, Tang C, Li W, Gao Z, Feng J, Yang K. Ferroptosis: A potential opportunity for intervention of pre-metastatic niche. Front Oncol 2022; 12:980620. [PMID: 36158661 PMCID: PMC9500500 DOI: 10.3389/fonc.2022.980620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
It is widely thought that the tumor microenvironment (TME) provides the "soil" for malignant tumors to survive. Prior to metastasis, the interaction at the host site between factors secreted by primary tumors, bone-marrow-derived cells, with stromal components initiates and establishes a pre-metastatic niche (PMN) characterized by immunosuppression, inflammation, angiogenesis and vascular permeability, as well as lymphangiogenesis, reprogramming and organotropism. Ferroptosis is a non-apoptotic cell death characterized by iron-dependent lipid peroxidation and metabolic constraints. Ferroptotic cancer cells release various signal molecules into the TME to either suppress or promote tumor progression. This review highlights the important role played by ferroptosis in PMN, focusing on the relationship between ferroptosis and PMN characteristics, and discusses future research directions.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Liangwang Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shenbo Chen
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Caiying Tang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Weicheng Li
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhenzhong Gao
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jigao Feng
- Department of Neurosurgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kun Yang
- Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
38
|
Ye H, Hu X, Wen Y, Tu C, Hornicek F, Duan Z, Min L. Exosomes in the tumor microenvironment of sarcoma: from biological functions to clinical applications. J Nanobiotechnology 2022; 20:403. [PMID: 36064358 PMCID: PMC9446729 DOI: 10.1186/s12951-022-01609-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
The current diagnosis and treatment of sarcoma continue to show limited timeliness and efficacy. In order to enable the early detection and management of sarcoma, increasing attentions have been given to the tumor microenvironment (TME). TME is a dynamic network composed of multiple cells, extracellular matrix, vasculature, and exosomes. Exosomes are nano-sized extracellular vesicles derived from various cells in the TME. The major function of exosomes is to promote cancer progress and metastasis through mediating bidirectional cellular communications between sarcoma cells and TME cells. Due to the content specificity, cell tropism, and bioavailability, exosomes have been regarded as promising diagnostic and prognostic biomarkers, and therapeutic vehicles for sarcoma. This review summarizes recent studies on the roles of exosomes in TME of sarcoma, and explores the emerging clinical applications.
Collapse
Affiliation(s)
- Huali Ye
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xin Hu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Li Min
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
39
|
Jiang T, Xie L, Zhou S, Liu Y, Huang Y, Mei N, Ma F, Gong J, Gao X, Chen J. Metformin and histone deacetylase inhibitor based anti-inflammatory nanoplatform for epithelial-mesenchymal transition suppression and metastatic tumor treatment. J Nanobiotechnology 2022; 20:394. [PMID: 36045429 PMCID: PMC9429706 DOI: 10.1186/s12951-022-01592-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a differentiation process with aberrant changes of tumor cells, is identified as an initial and vital procedure for metastatic processes. Inflammation is a significant inducer of EMT and provides an indispensable target for blocking EMT, however, an anti-inflammatory therapeutic with highlighted safety and efficacy is deficient. Metformin is a promising anti-inflammatory agent with low side effects, but tumor monotherapy with an anti-inflammation drug could generate therapy resistance, cell adaptation or even promote tumor development. Combination therapies with various anti-inflammatory mechanisms can be favorable options improving therapeutic effects of metformin, here we develop a tumor targeting hybrid micelle based on metformin and a histone deacetylase inhibitor propofol-docosahexaenoic acid for efficient therapeutic efficacies of anti-inflammatory drugs. Triptolide is further encapsulated in hybrid micelles for orthotopic tumor therapies. The final multifunctional nanoplatforms (HAOPTs) with hyaluronic acid (HA) modification can target tumor efficiently, inhibit tumor cell EMT processes, repress metastasis establishment and suppress metastatic tumor development in a synergistic manner. Collectively, the results afford proof of concept that the tumor targeting anti-inflammatory nanoplatform can provide a potent, safe and clinical translational approach for EMT inhibition and metastatic tumor therapy.
Collapse
Affiliation(s)
- Tianze Jiang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, People's Republic of China
| | - Laozhi Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yipu Liu
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Yukun Huang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Ni Mei
- Shanghai Center for Drug Evaluation and Inspection, Lane 58, HaiQv Road, Shanghai, 201210, People's Republic of China
| | - Fenfen Ma
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.,Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China
| | - Jingru Gong
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China. .,Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, People's Republic of China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China.
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China. .,Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
40
|
Li X, Chen L, Peng X, Zhan X. Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Front Oncol 2022; 12:911410. [PMID: 35965509 PMCID: PMC9366252 DOI: 10.3389/fonc.2022.911410] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
As a significant public health problem with high morbidity and mortality worldwide, tumor is one of the major diseases endangering human life. Moreover, metastasis is the most important contributor to the death of tumor patients. Epithelial-mesenchymal transition (EMT) is an essential biological process in developing primary tumors to metastasis. It underlies tumor progression and metastasis by inducing a series of alterations in tumor cells that confer the ability to move and migrate. Tumor-associated macrophages (TAMs) are one of the primary infiltrating immune cells in the tumor microenvironment, and they play an indispensable role in the EMT process of tumor cells by interacting with tumor cells. With the increasing clarity of the relationship between TAMs and EMT and tumor metastasis, targeting TAMs and EMT processes is emerging as a promising target for developing new cancer therapies. Therefore, this paper reviews the recent research progress of tumor-associated macrophages in tumor epithelial-mesenchymal transition and briefly discusses the current anti-tumor therapies targeting TAMs and EMT processes.
Collapse
Affiliation(s)
| | | | - Xiaobo Peng
- *Correspondence: Xiaobo Peng, ; Xianbao Zhan,
| | | |
Collapse
|
41
|
Husain K, Villalobos-Ayala K, Laverde V, Vazquez OA, Miller B, Kazim S, Blanck G, Hibbs ML, Krystal G, Elhussin I, Mori J, Yates C, Ghansah T. Apigenin Targets MicroRNA-155, Enhances SHIP-1 Expression, and Augments Anti-Tumor Responses in Pancreatic Cancer. Cancers (Basel) 2022; 14:3613. [PMID: 35892872 PMCID: PMC9331563 DOI: 10.3390/cancers14153613] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is a deadly disease with a grim prognosis. Pancreatic tumor derived factors (TDF) contribute to the induction of an immunosuppressive tumor microenvironment (TME) that impedes the effectiveness of immunotherapy. PC-induced microRNA-155 (miRNA-155) represses expression of Src homology 2 (SH2) domain-containing Inositol 5'-phosphatase-1 (SHIP-1), a regulator of myeloid cell development and function, thus impacting anti-tumor immunity. We recently reported that the bioflavonoid apigenin (API) increased SHIP-1 expression which correlated with the expansion of tumoricidal macrophages (TAM) and improved anti-tumor immune responses in the TME of mice with PC. We now show that API transcriptionally regulates SHIP-1 expression via the suppression of miRNA-155, impacting anti-tumor immune responses in the bone marrow (BM) and TME of mice with PC. We discovered that API reduced miRNA-155 in the PC milieu, which induced SHIP-1 expression. This promoted the restoration of myelopoiesis and increased anti-tumor immune responses in the TME of heterotopic, orthotopic and transgenic SHIP-1 knockout preclinical mouse models of PC. Our results suggest that manipulating SHIP-1 through miR-155 may assist in augmenting anti-tumor immune responses and aid in the therapeutic intervention of PC.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Valentina Laverde
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Oscar A. Vazquez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Bradley Miller
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Samra Kazim
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Joakin Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
42
|
Yang J, Liu F, Wang Y, Qu L, Lin A. LncRNAs in tumor metabolic reprogramming and immune microenvironment remodeling. Cancer Lett 2022; 543:215798. [PMID: 35738332 DOI: 10.1016/j.canlet.2022.215798] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Evidence accumulated over the past decade has verified that long non-coding RNAs (lncRNAs) exert important functions in multiple cell programs. As a novel class of cellular regulatory molecules, lncRNAs interact with different molecules, such as DNA, RNA or proteins, depending on their subcellular distribution, to modulate gene transcription and kinase cascades. It has been widely clarified that lncRNAs play important roles in modulating metabolic reprogramming and reshaping the immune landscape and serve as hinges bridging tumor metabolism and anti-tumor immunity. Given these facts, lncRNAs, as putative regulators of tumor initiation and progression, have attracted extensive attention in recent years. In this review, we summarized the current research progress on the role of lncRNAs in tumor metabolic reprogramming and tumor-immune microenvironment remodeling, and conclude with our laboratory's contributions in advancing the clinical applications of lncRNAs.
Collapse
Affiliation(s)
- Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, 310058, China; Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China; International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China; ZJU-QILU Joint Research Institute, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
43
|
The Clinical Observation and Mechanism of Acupuncture on Cancer-Related Fatigue of Breast Cancer Based on “Gut-Brain Axis”: Study Protocol for a Randomized Controlled Trial. DISEASE MARKERS 2022; 2022:8099595. [PMID: 35578688 PMCID: PMC9107368 DOI: 10.1155/2022/8099595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2022]
Abstract
Background. Cancer-related fatigue (CRF) is a painful, persistent feeling of physical and cognitive subjective fatigue related to cancer or cancer remedy. The occurrence of CRF may be related to the hypothalamic-pituitary-adrenaline (HPA) axis, inflammatory mediator theory, and gut microbiota. Moreover, acupuncture could play a vital part in the therapy of CRF. The study will evaluate whether acupuncture can improve fatigue symptoms of CRF patients after breast cancer chemotherapy by regulating the gut-brain axis. Methods/design. Seventy patients with CRF will be enrolled in this study, with 35 patients randomly assigned to each group. Blood and feces will be collected at the beginning and end of treatment. Piper fatigue scale, KPS score scale, and quality-of-life scale will be used to observe the changes of fatigue symptoms and life quality of CRF patients and to evaluate the effect of acupuncture on CRF. Then, the method of ELISA will be used to explore the regulatory effect of acupuncture on the HPA axis and inflammatory cytokines. Moreover, based on 16SrDNA, the changes of gut microbiota structure and flora of CRF patients will be observed. Ultimately, the correlation analysis of gut microbiota can be related to inflammatory cytokines, HPA axis, and clinical efficacy evaluation. Discussion. This study will identify the effect and the mechanism of acupuncture therapy in CRF. And it will offer an alternative treatment modality for the treatment of CRF after chemotherapy for breast cancer. Furthermore, it will also provide the clinical and theoretical bases for the extensive application of acupuncture therapy in tumor rehabilitation. Trial Status. Protocol version number and date: V2.0, 6 May 2021. The trial is registered with the Chinese Clinical Trial Registry on 20 June 2021 (trial identifier: ChiCTR2100047510).
Collapse
|
44
|
Li Y, Zhao W, Wang Y, Wang H, Liu S. Extracellular vesicle-mediated crosstalk between pancreatic cancer and stromal cells in the tumor microenvironment. J Nanobiotechnology 2022; 20:208. [PMID: 35501802 PMCID: PMC9063273 DOI: 10.1186/s12951-022-01382-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) interacts closely with the tumor microenvironment (TME). The TME is remodeled by crosstalk between pancreatic cancer cells and stromal cells, and is critical for cancer progression. Extracellular vesicles (EVs), including exosomes and microvesicles, help facilitate an exchange of information both within the TME and to distant organs. EVs have also been identified as potential diagnostic biomarkers, therapeutic targets, and drug carriers for pancreatic cancer treatment. Thus, understanding the selective packaging of EVs cargo and its mechanistic impact will increase our understanding of cancer biology. In this review, we collect and analyze recent findings of the pancreatic cancer-stromal cell interactions mediated by EVs and the mechanisms involved in cancer-related immunity and chemoresistance. These studies demonstrate the vital role of EVs in pancreatic cancer reprogramming and TME remodeling. We also summarize the EVs identified as potential PDAC diagnostic biomarkers and possible therapeutic targets. This greater understanding is a promising avenue for transitioning EVs from bench to bedside.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjing Zhao
- Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yanli Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
45
|
Jang B, Song HK, Hwang J, Lee S, Park E, Oh A, Hwang ES, Sung JY, Kim YN, Park K, Lee YM, Oh ES. Shed syndecan-2 enhances colon cancer progression by increasing cooperative angiogenesis in the tumor microenvironment. Matrix Biol 2022; 107:40-58. [DOI: 10.1016/j.matbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022]
|
46
|
Mouratidis PXE, ter Haar G. Latest Advances in the Use of Therapeutic Focused Ultrasound in the Treatment of Pancreatic Cancer. Cancers (Basel) 2022; 14:638. [PMID: 35158903 PMCID: PMC8833696 DOI: 10.3390/cancers14030638] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Traditional oncological interventions have failed to improve survival for pancreatic cancer patients significantly. Novel treatment modalities able to release cancer-specific antigens, render immunologically "cold" pancreatic tumours "hot" and disrupt or reprogram the pancreatic tumour microenvironment are thus urgently needed. Therapeutic focused ultrasound exerts thermal and mechanical effects on tissue, killing cancer cells and inducing an anti-cancer immune response. The most important advances in therapeutic focused ultrasound use for initiation and augmentation of the cancer immunity cycle against pancreatic cancer are described. We provide a comprehensive review of the use of therapeutic focused ultrasound for the treatment of pancreatic cancer patients and describe recent studies that have shown an ultrasound-induced anti-cancer immune response in several tumour models. Published studies that have investigated the immunological effects of therapeutic focused ultrasound in pancreatic cancer are described. This article shows that therapeutic focused ultrasound has been deemed to be a safe technique for treating pancreatic cancer patients, providing pain relief and improving survival rates in pancreatic cancer patients. Promotion of an immune response in the clinic and sensitisation of tumours to the effects of immunotherapy in preclinical models of pancreatic cancer is shown, making it a promising candidate for use in the clinic.
Collapse
Affiliation(s)
- Petros X. E. Mouratidis
- Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research: Royal Marsden Hospital, Sutton, London SM25NG, UK;
| | | |
Collapse
|
47
|
Davis JM, Cheng B, Drake MM, Yu Q, Yang B, Li J, Liu C, Younes M, Zhao X, Bailey JM, Shen Q, Ko TC, Cao Y. Pancreatic stromal Gremlin 1 expression during pancreatic tumorigenesis. Genes Dis 2022; 9:108-115. [PMID: 35005111 PMCID: PMC8720668 DOI: 10.1016/j.gendis.2020.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/07/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic pancreatitis (CP) is a major risk factor of pancreatic ductal adenocarcinoma (PDAC). How CP promotes pancreatic oncogenesis remains unclear. A characteristic feature of PDAC is its prominent desmoplasia in the tumor microenvironment, composed of activated fibroblasts and macrophages. Macrophages can be characterized as M1 or M2, with tumor-inhibiting or -promoting functions, respectively. We reported that Gremlin 1 (GREM1), a key pro-fibrogenic factor, is upregulated in the stroma of CP. The current study aimed to investigate the expression of GREM1 and correlation between GREM1 and macrophages within the pancreas during chronic inflammation and the development of PDAC. By mRNA in situ hybridization, we detected GREM1 mRNA expression within α-smooth muscle actin (SMA)-positive fibroblasts of the pancreatic stroma. These designated FibroblastsGrem1+ marginally increased from CP to pancreatic intraepithelial neoplasia (PanIN) and PDAC. Within PDAC, FibroblastsGrem1+ increased with higher pathological tumor stages and in a majority of PDAC subtypes screened. Additionally, FibroblastsGrem1+ positively correlated with total macrophages (MacCD68+) and M2 macrophages (M2CD163+) in PDAC. To begin exploring potential molecular links between FibroblastsGrem1+ and macrophages in PDAC, we examined the expression of macrophage migration inhibitory factor (MIF), an endogenous counteracting molecule of GREM1 and an M1 macrophage promoting factor. By IHC staining of MIF, we found MIF to be expressed by tumor cells, positively correlated with GREM1; by IHC co-staining, we found MIF to be negatively correlated with M2CD163+ expression. Our findings suggest that GREM1 expression by activated fibroblasts may promote PDAC development, and GREM1/MIF may play an important role in macrophage phenotype.
Collapse
Affiliation(s)
- Joy M. Davis
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Binglu Cheng
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Madeline M. Drake
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiang Yu
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baibing Yang
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing Li
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chunhui Liu
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mamoun Younes
- Department of Pathology & Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiurong Zhao
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer M. Bailey
- Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qiang Shen
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tien C. Ko
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yanna Cao
- Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
48
|
Guo C, Su Y, Wang B, Chen Q, Guo H, Kong M, Chen D. Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. J Drug Target 2021; 30:450-462. [PMID: 34927506 DOI: 10.1080/1061186x.2021.2020798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the increasing number of oncology patients and the use of chemotherapeutic agents, tumour multidrug resistance is becoming more and more prevalent. The search for new tumour treatment strategies to overcome tumour multidrug resistance is urgent. In this study, we designed GSH and ROS dual-responsive tumour-associated macrophages (TAMs)-targeted nanoparticles (NPs) for the co-delivery of the clinical first-line anti-breast cancer chemotherapy drug paclitaxel (PTX) and baicalin (Bai), which re-educates TAMs to alter their phenotype. We synthesised oligohyaluronic acid-mannose-folic acid (oHA-Man-FA, HMF) and astragalus polysaccharide-dithiodipropionic acid-paeoniflorol (APS-S-Pae, ASP), two hybrid materials that can self-assemble in water to form hybrid nanoparticles (HP-NPs) co-loaded with paclitaxel and baicalin (HP-NPs@PTX/Bai). The experimental results show that our designed hybrid nanoparticles can be specifically released in the tumour microenvironment and deliver the antitumor drug PTX as well as Bai, which reshapes the phenotype of TAMs, to the tumour site. The hybrid nanoparticles not only effectively re-educated TAMs from M2 TAM to M1 TAM, but also ameliorated the cytotoxic side effects caused by free PTX and provided better tumour suppression than free PTX and HP.
Collapse
Affiliation(s)
- Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Yanguo Su
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Bingjie Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China.,School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Qiang Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Huimin Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Yantai University, Yantai, PR China
| |
Collapse
|
49
|
Hu Q, Mao W, Wu T, Xu Z, Yu J, Wang C, Chen S, Chen S, Xu B, Xu Y, Chen M. High Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio Are Associated With Sarcopenia Risk in Hospitalized Renal Cell Carcinoma Patients. Front Oncol 2021; 11:736640. [PMID: 34760698 PMCID: PMC8573165 DOI: 10.3389/fonc.2021.736640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose This study aimed i) to identify the best cutoff points of neutrophil–lymphocyte ratio (NLR) and platelet–lymphocyte ratio (PLR) that predict sarcopenia and ii) to illustrate the association between sarcopenia risk and NLR or PLR in renal cell carcinoma (RCC) patients undergoing laparoscopic partial or radical nephrectomy. Methods A total of 343 RCC patients who underwent laparoscopic partial or radical nephrectomy between 2014 and 2019 were enrolled in our study. Sarcopenia was assessed by lumbar skeletal muscle index (SMI). Receiver operating characteristic (ROC) curve was used to identify the best cutoff point of NLR or PLR to predict sarcopenia risk. Univariate and multivariate logistic regression and dose–response analysis curves of restricted cubic spline function were conducted to assess the relationship between sarcopenia and NLR or PLR. Results The best cutoff points of NLR >2.88 or PLR >135.63 were confirmed by the ROC curve to predict sarcopenia risk. Dose–response curves showed that the risk of sarcopenia increased with raising NLR and PLR. Patients with NLR >2.88 or PLR >135.63 had a higher sarcopenia risk than those in the NLR ≤2.8 or PLR ≤135.63 group, respectively. By adjusting for all variables, we found that patients with NLR >2.88 and PLR >135.63 had 149% and 85% higher risk to develop sarcopenia, respectively, than those with NLR ≤2.8 (aOR = 2.49; 95% CI = 1.56–3.98; p < 0.001) or PLR ≤135.63 (aOR = 1.85; 95% CI = 1.16–2.95; p = 0.010). Conclusion In RCC patients receiving laparoscopic partial or radical nephrectomy, NLR and PLR, which were biomarkers of systemic inflammation, were associated with sarcopenia risk.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Weipu Mao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Tiange Wu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhipeng Xu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Junjie Yu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Can Wang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Saisai Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Bin Xu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.,Department of Clinical Research, Southeast University Medical School, Nanjing, China
| | - Yueshuang Xu
- Department of Pathology, School of Medicine, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.,Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
50
|
Activation of FGD5-AS1 Promotes Progression of Cervical Cancer through Regulating BST2 to Inhibit Macrophage M1 Polarization. J Immunol Res 2021; 2021:5857214. [PMID: 34692852 PMCID: PMC8536446 DOI: 10.1155/2021/5857214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/04/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence has elucidated the biological function of lncRNAs in various tumors. FGD5 antisense RNA 1 (FGD5-AS1) is identified as a significant tumor regulator in malignancies. Up to now, the detailed function of FGD5-AS1 in cervical cancer and its underlying molecular mechanisms remain uninvestigated. Bone marrow stromal cell antigen 2 (BST2) can play critical roles in immune response, and the roles of BST2 in cervical cancer was explored currently. The level of FGD5-AS1 and BST2 was detected by qRT-PCR in cervical cancer cells. FGD5-AS1 and BST2 expression was significantly upregulated in cervical cancer cells. Then, the decrease of FGD5-AS1 greatly repressed cervical cancer cell growth in vitro. In addition, FGD5-AS1 silencing repressed BST2 expression and suppressed M2 macrophage polarization. Mechanistically, we confirmed that FGD5-AS1 sponged miR-129-5p to reduce its inhibition on BST2. Furthermore, lack of BST2 depressed cervical cancer cell growth, while inducing apoptosis. Loss of BST2 induced M1 macrophage polarization while blocking M2 macrophage polarization. For another, we demonstrated that FGD5-AS1-triggered M2 macrophage polarization was remarkably reversed by miR-129-5p via suppressing BST2. In conclusion, FGD5-AS1 induced M2 macrophage polarization via sponging miR-129-5p and modulating BST2, thus contributing to cervical cancer development. Our findings revealed FGD5-AS1/miR-129-5p/BST2 as a new potential target for cervical cancer.
Collapse
|