1
|
Chen Y, Mao R, Chang Q, Yuan Y, Zhang H, Li F. A causal effects of neutrophil extracellular traps and its biomarkers on acute respiratory distress syndrome: a two-sample Mendelian randomization study. Sci Rep 2025; 15:11995. [PMID: 40199908 PMCID: PMC11978891 DOI: 10.1038/s41598-025-95676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Previous studies have indicated an association between neutrophil extracellular traps (NETs) and acute respiratory distress syndrome (ARDS). This study aimed to investigate the potential causal effects of NETs and NETs-related biomarkers on ARDS or vice-versa. A two-sample Mendelian randomization (MR) utilizing genome-wide association studies (GWAS) data was employed to analyze the causality. The primary analysis was conducted using inverse-variance weighted (IVW) methods; weighted median, MR-Egger, and weighted model methods were used to validate the results. Horizontal pleiotropy and outlier detection were assessed via MR-Egger and MR pleiotropy residual sum and outlier (MR-PRESSO), respectively; Cochran's Q test evaluated heterogeneity, while Leave-one-out analyses were used to evaluate the presence of predominant instrumental variables (IVs). IVW method suggested causal associations between genetically predicted IL-13 and a higher risk of ARDS [OR (95%CI) = 1.52 (1.03-2.23), P = 0.047], while there was no causal effect of other factors on ARDS (all P > 0.05). Also, ARDS had no effect on NETs and NETs-related biomarkers (all P > 0.05). Cochran's Q confirmed no significant heterogeneity. MR-Egger regression ruled out horizontal pleiotropy's influence, and MR-PRESSO analysis identified no outliers, reinforcing the study's findings. This MR study established a causal relationship between IL-13 and ARDS, suggesting its potential role as a therapeutic target and biomarker of ARDS. Future work should delve into the underlying mechanisms and clinical applications.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Ruolin Mao
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qing Chang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yueyang Yuan
- School of Mechanical and Electrical Engineering, Hu Nan City University, Yiyang, 413099, China
| | - Hai Zhang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Feng Li
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
2
|
Chavda VP, Bezbaruah R, Ahmed N, Alom S, Bhattacharjee B, Nalla LV, Rynjah D, Gadanec LK, Apostolopoulos V. Proinflammatory Cytokines in Chronic Respiratory Diseases and Their Management. Cells 2025; 14:400. [PMID: 40136649 PMCID: PMC11941495 DOI: 10.3390/cells14060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Pulmonary homeostasis can be agitated either by external environmental insults or endogenous factors produced during respiratory/pulmonary diseases. The lungs counter these insults by initiating mechanisms of inflammation as a localized, non-specific first-line defense response. Cytokines are small signaling glycoprotein molecules that control the immune response. They are formed by numerous categories of cell types and induce the movement, growth, differentiation, and death of cells. During respiratory diseases, multiple proinflammatory cytokines play a crucial role in orchestrating chronic inflammation and structural changes in the respiratory tract by recruiting inflammatory cells and maintaining the release of growth factors to maintain inflammation. The issue aggravates when the inflammatory response is exaggerated and/or cytokine production becomes dysregulated. In such instances, unresolving and chronic inflammatory reactions and cytokine production accelerate airway remodeling and maladaptive outcomes. Pro-inflammatory cytokines generate these deleterious consequences through interactions with receptors, which in turn initiate a signal in the cell, triggering a response. The cytokine profile and inflammatory cascade seen in different pulmonary diseases vary and have become fundamental targets for advancement in new therapeutic strategies for lung diseases. There are considerable therapeutic approaches that target cytokine-mediated inflammation in pulmonary diseases; however, blocking specific cytokines may not contribute to clinical benefit. Alternatively, broad-spectrum anti-inflammatory approaches are more likely to be clinically effective. Herein, this comprehensive review of the literature identifies various cytokines (e.g., interleukins, chemokines, and growth factors) involved in pulmonary inflammation and the pathogenesis of respiratory diseases (e.g., asthma, chronic obstructive pulmonary, lung cancer, pneumonia, and pulmonary fibrosis) and investigates targeted therapeutic treatment approaches.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Institute of Pharmacy, Assam Medical College and Hospital, Dibrugarh 786002, Assam, India
| | - Nasima Ahmed
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India; (R.B.); (N.A.); (S.A.)
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam 530045, Andhra Pradesh, India;
| | - Damanbhalang Rynjah
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India; (B.B.); (D.R.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Immunology and Translational Research Group, Victoria University, Werribee, VIC 3030, Australia;
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| |
Collapse
|
3
|
Liu R, Zhang J, Chen S, Xiao Y, Hu J, Zhou Z, Xie L. Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas. Diabetes Obes Metab 2025; 27:1045-1064. [PMID: 39618164 PMCID: PMC11802406 DOI: 10.1111/dom.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/08/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D. However, the dominant intestinal immune cells and the underlying mechanisms remain incompletely elucidated. In this review, we provide an overview of the possible mechanisms of the intestinal mucosal system that underpin the pathogenesis of T1D, shedding light on the roles of both non-classical and classical immune cells in T1D. Our goal is to gain insights into how modulating these immune components may hold potential implications for T1D prevention and provide novel perspectives for immune-mediated therapy.
Collapse
Affiliation(s)
- Ruonan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
4
|
Zariņa KZ, Pilmane M, Pētersons A. Immunomodulatory Tissue Factors in the Gallbladder Walls of Pediatric Patients with Chronic Calculous Cholecystitis. CHILDREN (BASEL, SWITZERLAND) 2025; 12:205. [PMID: 40003307 PMCID: PMC11854828 DOI: 10.3390/children12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The rising rates of gallstones and cholecystectomy in pediatric populations underscore the increasing concern regarding chronic cholecystitis. However, the morphopathogenesis of pediatric calculous cholecystitis is still not well understood. This study aimed to determine the expression and distribution of immunomodulatory factors interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-1β (IL-1β), sonic hedgehog protein (SHH), nuclear factor NF-kappa-B p65 subunit (NFkBp65), and heat shock protein 60 (HSP60) in the gallbladder walls of pediatric patients with chronic calculous cholecystitis. METHODS In total, 11 gallbladder samples were collected from pediatric patients with calculous cholecystitis during cholecystectomy, while 5 healthy gallbladder samples served as controls. IL-12, IL-13, IL-1β, SHH, NFkBp65, and HSP60 were detected by immunohistochemistry. The number of positive structures in gallbladder wall epithelium, vasculature, and inflammatory infiltrate was assessed semi-quantitatively by microscopy. A Mann-Whitney U test and Spearman's rank-order correlation coefficient were calculated. RESULTS Statistically significant differences were observed between patient and control samples in the expression of IL-1β, SHH, and NFkBp65 in the epithelium, as well as in the expression of IL-12, SHH, and HSP60 in the blood vessels. The expression of IL-1β was stronger in the epithelium of controls, while other markers were more prominent in patient samples. CONCLUSIONS An increased number of NFkBp65, IL-12, and HSP60 positive cells in patient gallbladder tissue suggests a significant role of these tissue factors in driving immune modulation and sustaining the inflammation in pediatric chronic calculous cholecystitis. The noticeable expression of SHH in patient gallbladder tissue indicates its part in tissue regeneration and repair processes, as well as in modulating inflammation and vascular responses in calculous cholecystitis. The significant positive correlations between the factors studied highlight the importance of their coordinated interaction and intricate crosstalk in the morphopathogenesis of calculous cholecystitis.
Collapse
Affiliation(s)
- Kaiva Zīle Zariņa
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Aigars Pētersons
- Department of Pediatric Surgery, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia
| |
Collapse
|
5
|
Jagasia P, Taritsa I, Bagdady K, Shah S, Fracol M. Silicone breast implant-associated pathologies and T cell-mediated responses. Inflamm Res 2025; 74:33. [PMID: 39891670 DOI: 10.1007/s00011-025-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
Silicone breast implants elicit a foreign body response (FBR) defined by a complex cascade of various immune cells. Studies have shown that the capsule around silicone breast implants that forms as a result of the FBR contains large T cell populations. T cells are implicated in pathologies such as capsular contracture, which is defined by an excessively fibrotic capsule, and breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), a non-Hodgkin's lymphoma. In this article, we provide a synthesis of 17 studies reporting on T cell-mediated responses to silicone breast implants and highlight recent developments on this topic. The lymphocytes present in the breast implant capsule are predominantly Th1 and Th17 cells. Patients with advanced capsular contracture had fewer T-regulatory (Treg) cells present in the capsules that were less able to suppress T effector cells such as Th17 cells, which can promote fibrosis in autoimmune conditions. Textured silicone implants, which are associated with BIA-ALCL, created a more robust T cell response, especially CD30 + T cells in the peri-implant fluid and CD4 + T cells in the capsule. Cultivating a deeper understanding of T cell-mediated responses to silicone breast implants may allow for novel treatments of breast implant-associated complications and malignancies.
Collapse
Affiliation(s)
- Puja Jagasia
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Iulianna Taritsa
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Kazimir Bagdady
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Shivani Shah
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA
| | - Megan Fracol
- Division of Plastic & Reconstructive Surgery, Northwestern Memorial Hospital, 259 E Erie St. Suite 2060, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Wróblewska A, Gliwiński M, Rybicka M, Cheba M, Lorenc B, Trzonkowski P, Bielawski KP, Sikorska K. Residual HCV-RNA and Elevated Platelet-to-Lymphocyte Ratio Predict Poor Long-Term Outcomes in Patients with Chronic Hepatitis C After Treatment. Infect Dis Ther 2025; 14:305-315. [PMID: 39725828 PMCID: PMC11782785 DOI: 10.1007/s40121-024-01101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Despite achieving sustained viral response (SVR) after treatment with direct-acting antivirals (DAAs), the risk of liver disease progression and extrahepatic complications in chronic hepatitis C (CHC) remains. We aimed to determine the role of residual HCV-RNA in peripheral blood mononuclear cells (PBMCs), a condition known as occult hepatitis C (OCI), and systemic inflammatory markers as predictors of long-term outcomes in patients treated with DAAs. METHODS We followed 42 patients treated with DAAs with OCI status determined after therapy, for a median of 6.3 years. Plasma levels of 16 cytokines and chemokines were measured in samples collected 12-15 months after end of treatment. Samples from 10 patients with CHC and 8 healthy controls were used for comparison. RESULTS The presence of HCV-RNA in PBMCs correlated with adverse outcomes [odds ratio (OR) 17.6, confidence interval (CI) 1.8-175); p = 0.011], and an elevated platelet-to-lymphocyte ratio (PLR) was associated with mortality. Patients with residual HCV-RNA had higher levels of macrophage-derived chemokine (MDC/CCL22) (p = 0.026) and interleukin-18 (IL-18) (p = 0.009), but lower levels of fractalkine/CX3CL1 (p = 0.007), interferon gamma (IFNγ) (p = 0.016), IL-13 (p = 0.009), and lymphotoxin alpha (LTα) (p = 0.007) compared to those without OCI. The profile of immune mediators in patients with OCI differed more from healthy controls than from patients without OCI. CONCLUSIONS These findings suggest that residual HCV-RNA and elevated PLR are potential predictors of poor long-term outcomes in patients treated with DAAs, possibly linked to an altered cytokine/chemokine response.
Collapse
Affiliation(s)
- Anna Wróblewska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Mateusz Gliwiński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdansk, Debinki 7, 80-210, Gdansk, Poland
| | - Magda Rybicka
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Małgorzata Cheba
- Pomeranian Center of Infectious Diseases and Tuberculosis, Smoluchowskiego 18, 80-214, Gdansk, Poland
| | - Beata Lorenc
- Pomeranian Center of Infectious Diseases and Tuberculosis, Smoluchowskiego 18, 80-214, Gdansk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdansk, Debinki 7, 80-210, Gdansk, Poland
| | - Krzysztof P Bielawski
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Katarzyna Sikorska
- Division of Tropical Medicine and Epidemiology, Division of Tropical and Parasitic Diseases, Institute of Maritime and Tropical Medicine, Faculty of Health Sciences, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland.
| |
Collapse
|
7
|
Cobo‐Vuilleumier N, Rodríguez‐Fernandez S, López‐Noriega L, Lorenzo PI, Franco JM, Lachaud CC, Vazquez EM, Legido RA, Dorronsoro A, López‐Férnandez‐Sobrino R, Fernández‐Santos B, Serrano CE, Salas‐Lloret D, van Overbeek N, Ramos‐Rodriguez M, Mateo‐Rodríguez C, Hidalgo L, Marin‐Canas S, Nano R, Arroba AI, Caro AC, Vertegaal ACO, Martín‐Montalvo A, Martín F, Aguilar‐Diosdado M, Piemonti L, Pasquali L, Prieto RG, Sánchez MIG, Eizirik DL, Martínez‐Brocca MA, Vives‐Pi M, Gauthier BR. LRH-1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype. Clin Transl Med 2024; 14:e70134. [PMID: 39702941 PMCID: PMC11659195 DOI: 10.1002/ctm2.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH-1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T-cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001-target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co-cultures of PBMCs and iPSCs-derived islet organoids were performed to assess the impact of BL001 on beta cell viability. RESULTS LRH-1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro-inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro-inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro-inflammatory to an anti-inflammatory/tolerogenic state, resulting in the inhibition of CD4+ and CD8+ T-cell proliferation. BL001 treatment also increased CD4+/CD25+/FoxP3+ regulatory T-cells and Th2 cells within PBMCs while decreasing CD8+ T-cell proliferation. Additionally, BL001 alleviated PBMC-induced apoptosis and maintained insulin expression in human iPSC-derived islet organoids. CONCLUSION These findings demonstrate the potential of LRH-1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach. KEY POINTS LRH-1/NR5A2 activation in inflammatory cells of individuals with type 1 diabetes (T1D) reduces pro-inflammatory cell surface markers and cytokine release. LRH-1/NR5A2 promotes a mitohormesis-induced immuno-resistant phenotype to pro-inflammatory macrophages. Mature dendritic cells acquire a tolerogenic phenotype via LRH-1/NR5A2-stimulated mitochondria turnover. LRH-1/NR5A2 agonistic activation expands a CD4+/CD25+/FoxP3+ T-cell subpopulation. Pharmacological activation of LRH-1/NR5A2 improves the survival iPSC-islets-like organoids co-cultured with PBMCs from individuals with T1D.
Collapse
|
8
|
Xue D, Qian Y, Tu X, He M, Xing F, Ren Y, Yuan C. The effect of circulating cytokines on the risk of systemic lupus erythematosus: Mendelian randomization and observational study. Immunogenetics 2024; 76:315-322. [PMID: 39183206 PMCID: PMC11496328 DOI: 10.1007/s00251-024-01351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder, the etiology of which involves the alterations in circulating cytokine levels. However, the cause-and-effect relationships and in-depth clinical relevance of them remain to be systematically investigated. We conducted a two-sample Mendelian randomization (MR) study to assess the causality of circulating cytokine levels and SLE and found that genetically determined elevated CTACK and IL-18 were associated with an increased risk of SLE, whereas a higher level of GRO-a was associated with decreased risk. Furthermore, we performed an observational study to further reveal the association between 27 cytokines and the severity measured by SLEDAI score, as well as lupus nephritis (LN), of SLE. We identified six cytokines (MCP1, MIP1β, CTACK, IP10, HGF, IL18, IL13) that were identified as associated with the clinical severity of SLE, and five cytokines, especially IL18, were related with LN and may have good diagnostic value. Moreover, we also predicted four compounds that might have good binding activities with IL18. The evidence supported a potential causal role of circulating cytokines on the risk of SLE. Targeting IL18 might be a meaningful strategy for the prevention or treatment of SLE, especially in LN patients.
Collapse
Affiliation(s)
- Dan Xue
- Dermatology Department, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Qian
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiao Tu
- Nephrology Department, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mu He
- Dermatology Department, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengling Xing
- Dermatology Department, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunqing Ren
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chengda Yuan
- Dermatology Department, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
9
|
McLouth CJ, Maglinger B, Frank JA, Hazelwood HS, Harp JP, Cranford W, Pahwa S, Sheikhi L, Dornbos D, Trout AL, Stowe AM, Fraser JF, Pennypacker KR. The differential proteomic response to ischemic stroke in appalachian subjects treated with mechanical thrombectomy. J Neuroinflammation 2024; 21:205. [PMID: 39154085 PMCID: PMC11330053 DOI: 10.1186/s12974-024-03201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
INTRODUCTION The Appalachia region of North America is known to have significant health disparities, specifically, worse risk factors and outcomes for stroke. Appalachians are more likely to have comorbidities related to stroke, such as diabetes, obesity, and tobacco use, and are often less likely to have stroke interventions, such as mechanical thrombectomy (MT), for emergent large vessel occlusion (ELVO). As our Comprehensive Stroke Center directly serves stroke subjects from both Appalachian and non-Appalachian areas, inflammatory proteomic biomarkers were identified associated with stroke outcomes specific to subjects residing in Appalachia. METHODS There were 81 subjects that met inclusion criteria for this study. These subjects underwent MT for ELVO, and carotid arterial blood samples acquired at time of intervention were sent for proteomic analysis. Samples were processed in accordance with the Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC; clinicaltrials.gov; NCT03153683). Statistical analyses were utilized to examine whether relationships between protein expression and outcomes differed by Appalachian status for functional (NIH Stroke Scale; NIHSS and Modified Rankin Score; mRS), and cognitive outcomes (Montreal Cognitive Assessment; MoCA). RESULTS No significant differences were found in demographic data or co-morbidities when comparing Appalachian to non-Appalachian subjects. However, time from stroke onset to treatment (last known normal) was significantly longer and edema volume significantly higher in patients from Appalachia. Further, when comparing Appalachian to non-Appalachian subjects, there were significant unadjusted differences in the NIHSS functional outcome. A comprehensive analysis of 184 proteins from Olink proteomic (92 Cardiometabolic and 92 Inflammation panels) showed that the association between protein expression outcomes significantly differed by Appalachian status for seven proteins for the NIHSS, two proteins for the MoCA, and three for the mRS. CONCLUSION Our study utilizes an ELVO tissue bank and registry to investigate the intracranial/intravascular proteomic environment occurring at the time of thrombectomy. We found that patients presenting from Appalachian areas have different levels of proteomic expression at the time of MT when compared to patients presenting from non-Appalachian areas. These proteins differentially relate to stroke outcome and could be used as prognostic biomarkers, or as targets for novel therapies. The identification of a disparate proteomic response in Appalachian patients provides initial insight to the biological basis for health disparity. Nevertheless, further investigations through community-based studies are imperative to elucidate the underlying causes of this differential response.
Collapse
Affiliation(s)
- Christopher J McLouth
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Benton Maglinger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jacqueline A Frank
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | | | - Jordan P Harp
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Will Cranford
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Shivani Pahwa
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Lila Sheikhi
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - David Dornbos
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Amanda L Trout
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Justin F Fraser
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
10
|
Liu W, Zhang J, Zhang D, Zhang L. Role of circulating inflammatory protein in the development of diabetic renal complications: proteome-wide Mendelian randomization and colocalization analyses. Front Endocrinol (Lausanne) 2024; 15:1406442. [PMID: 39040677 PMCID: PMC11260607 DOI: 10.3389/fendo.2024.1406442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Background Diabetes ranks among the most widespread diseases globally, with the kidneys being particularly susceptible to its vascular complications. The identification of proteins for pathogenesis and novel drug targets remains imperative. This study aims to investigate roles of circulating inflammatory proteins in diabetic renal complications. Methods Data on the proteins were derived from a genome-wide protein quantitative trait locus (pQTL) study, while data on diabetic renal complications came from the FinnGen study. In this study, proteome-wide Mendelian randomization (MR) and colocalization analyses were used to assess the relationship between circulating inflammatory proteins and diabetic renal complications. Results MR approach indicated that elevated levels of interleukin 12B (IL-12B) (OR 1.691, 95%CI 1.179-2.427, P=4.34×10-3) and LIF interleukin 6 family cytokine (LIF) (OR 1.349, 95%CI 1.010-1.801, P=4.23×10-2) increased the risk of type 1 diabetes (T1D) with renal complications, while higher levels of fibroblast growth factor 19 (FGF19) (OR 1.202, 95%CI 1.009-1.432, P=3.93×10-2), fibroblast growth factor 23 (FGF23) (OR 1.379, 95%CI 1.035-1.837, P=2.82×10-2), C-C motif chemokine ligand 7 (CCL7) (OR 1.385, 95%CI 1.111-1.725, P=3.76×10-3), and TNF superfamily member 14 (TNFSF14) (OR 1.244, 95%CI 1.066-1.451, P=5.63×10-3) indicated potential risk factors for type 2 diabetes (T2D) with renal complications. Colocalization analysis supported these findings, revealing that most identified proteins, except for DNER, likely share causal variants with diabetic renal complications. Conclusion Our study established associations between specific circulating inflammatory proteins and the risk of diabetic renal complications, suggesting these proteins as targets for further investigation into the pathogenesis and potential therapeutic interventions for T1D and T2D with renal complications.
Collapse
Affiliation(s)
- Wenli Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqi Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Duo Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Overstreet DS, Strath LJ, Sorge RE, Thomas PA, He J, Wiggins AM, Hobson J, Long DL, Meints SM, Aroke EN, Goodin BR. Race-specific associations: inflammatory mediators and chronic low back pain. Pain 2024; 165:1513-1522. [PMID: 38323608 PMCID: PMC11189762 DOI: 10.1097/j.pain.0000000000003154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
ABSTRACT Chronic low back pain (cLBP) is a global health crisis that disproportionately burdens non-Hispanic Black (NHB) individuals, compared with those who identify as non-Hispanic White (NHW). Despite the growing personal and societal impact of cLBP, its biological underpinnings remain poorly understood. To elucidate the biological factors that underlie the racial disparities in cLBP, this study sought to determine whether inflammatory mediators associated with pain interference (PI), pain at rest (PAR), and movement-evoked pain (MEP) differ as a function of racial identity. Blood samples were collected from 156 individuals with cLBP (n = 98 NHB participants, n = 58 NHW participants). Enzyme-linked immunosorbent assay and multiplex assays were used to quantify concentrations of proinflammatory (fibrinogen, C-reactive protein [CRP], serum amyloid A, tumor necrosis factor α [TNF-α], and interleukin [IL]-1α, IL-1β, and IL-6) and anti-inflammatory markers (IL-4 and IL-13). Spearman rho correlations were used to assess associations among markers of inflammation and PI, PAR, and MEP using the Brief Pain Inventory-Short Form. Analyses revealed that for NHW patients, CRP, serum amyloid A, and IL-6 were positively associated with cLBP outcomes and IL-4 was inversely associated with PAR and MEP. However, for NHB patients, only IL-1α was positively associated with PAR. Our findings suggest that, while there are associations between inflammation and cLBP outcomes, the biomarkers that underlie the inflammation could very well differ as a function of racialized minority group. However, more research with racially inclusive samples is needed to elucidate the mechanisms that may contribute to racial disparities in cLBP.
Collapse
Affiliation(s)
- Demario S. Overstreet
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Woman’s Hospital, Boston, MA., United States
- Harvard Medical School, Boston, MA., United States
- Department of General Surgery, Division of Gastrointestinal Surgery, University of Alabama at Birmingham, Birmingham AL., USA
| | - Larissa J. Strath
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL., United States
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL., United States
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville FL
| | - Robert E. Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham Al., United States
| | - Pavithra A. Thomas
- Department of Psychology, University of Alabama at Birmingham, Birmingham Al., United States
| | - Jingui He
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Woman’s Hospital, Boston, MA., United States
- Harvard Medical School, Boston, MA., United States
| | - Asia M. Wiggins
- Department of Psychology, University of Alabama at Birmingham, Birmingham Al., United States
| | - Joanna Hobson
- Department of Psychology, University of Alabama at Birmingham, Birmingham Al., United States
| | - D. Leann Long
- School of Public Health, University of Alabama at Birmingham, Birmingham Al., United States
| | - Samantha M. Meints
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Woman’s Hospital, Boston, MA., United States
- Harvard Medical School, Boston, MA., United States
| | - Edwin N. Aroke
- School of Nursing, Nurse Anesthesia Program, Department of Acute, Chronic, & Continuing Care, University of Alabama at Birmingham, Birmingham Al., United States
| | - Burel R. Goodin
- Department of Psychology, University of Alabama at Birmingham, Birmingham Al., United States
- Department of Anesthesiology, Washington University Pain Center, Washington University in St. Louis, St. Louis Missouri
| |
Collapse
|
12
|
Kalinin RE, Konopleva MG, Suchkov IA, Korotkova NV, Mzhavanadze ND. Interleukin-13: association with inflammation and cysteine proteolysis in varicose transformation of the vascular wall. KAZAN MEDICAL JOURNAL 2023; 104:896-906. [DOI: 10.17816/kmj430382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The present review considers current data on the structure, functions and role of interleukin-13 in the pathogenesis of vascular wall varicose transformation in terms of proteolysis and inflammatory response. It is known that interleukin-13 is able to interact with transforming growth factor-1 in diseases associated with fibrosis. The latter activates fibroblasts and excessive formation of the extracellular matrix, thereby inducing fibrosis of the vascular wall, which is one of the links in the pathogenesis of varicose veins. Also, to date, there is evidence of the interleukin-13 participation in the induction of certain proteolytic enzymes synthesis, such as matrix metalloproteinases. For the latter, participation in the transformation of the venous wall has been proven to date. The remodeling of the venous wall itself can lead to an increase in the expression of proteinases, providing a proteolytic mechanism for changing the structural organization of the venous wall in varicose veins of the lower extremities. At the same time, the involvement of lysosomal cysteine proteinases remains poorly understood. The expression and production of individual cathepsins are regulated by biologically active molecules: interleukin-1, interleukin-6, tumor necrosis factor , which are directly involved in inflammatory reactions in the wall of varicose veins. In particular, venous pathology develops in a vicious circle of inflammation with the formation of abnormal venous blood flow, chronic venous hypertension and dilation, and the recruitment of leukocytes. This leads to a further, deeper, remodeling of the walls and valves of the veins, an increase in blood pressure and the release of pro-inflammatory mediators chemokines and cytokines. In connection with the above, in order to understand the mechanisms of proteolysis in the vascular wall in varicose veins of the lower extremities, it is important to have an idea about the possible interactions of interleukin-13 with transforming growth factor-1, inflammatory cytokines, and cathepsins.
Collapse
|
13
|
Murakami E, Uzawa A, Ozawa Y, Yasuda M, Onishi Y, Ozawa Y, Akamine H, Kawamoto M, Shiko Y, Kawasaki Y, Kuwabara S. Effects of BL 23 (Shenshu) acupuncture on serum cytokine levels in healthy adults: A randomized double-blind sham-controlled phase 1 study. J Neuroimmunol 2023; 382:578165. [PMID: 37542799 DOI: 10.1016/j.jneuroim.2023.578165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
The purpose of this study was to evaluate the safety and efficacy of BL 23 (Shenshu) acupuncture on serum cytokine levels. Sixteen healthy adults were randomized into the BL 23 acupuncture group or pseudo-acupuncture group and changes of serum cytokines were analyzed. The changes in IL-13, TNF-α, and GM-CSF levels were different between the BL 23 acupuncture group and pseudo-acupuncture group (P < 0.05). No adverse events associated with acupuncture were observed. In conclusion, BL 23 acupuncture can suppress immune responses via decreases in TNF-α and suppression of increases in IL-13 and GM-CSF. This study elucidated some of the mechanisms of the acupuncture effect.
Collapse
Affiliation(s)
- Eiko Murakami
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yoshihito Ozawa
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Manato Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Onishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukiko Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroyuki Akamine
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mariko Kawamoto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuki Shiko
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Yohei Kawasaki
- Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
14
|
Agger AE, Reseland JE, Hjelkrem E, Lian AM, Hals EKB, Zandi H, Sunde PT. Are comorbidities associated with the cytokine/chemokine profile of persistent apical periodontitis? Clin Oral Investig 2023; 27:5203-5215. [PMID: 37434075 PMCID: PMC10492720 DOI: 10.1007/s00784-023-05139-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 07/02/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES This study aimed to identify disease-related markers in persistent apical periodontitis (PAP) biopsies and examine whether these were associated with comorbidities like rheumatoid arthritis (RA) and cardiovascular diseases (CVD). MATERIALS AND METHOD The levels of the cytokines/chemokines GM-CSF, IFN-γ, IL-2, IL-6, IL-9, IL-10, IL-13, IL-15, IL-17E/IL-25, IL-21, IL-23, IL-27, IL-28A/IFN -λ2, IL-33, MIP-3α/CCL20, and TNF-α were determined in lesions from patients with PAP (n = 20) and compared to healthy bone samples (n = 20). RESULTS We identified eleven cytokines to be differently expressed, and among them, IL-2, IL-6, IL-17E, IL-21, and IL-27 appeared to drive the discrepancy between the disease and healthy groups. The levels of T follicular helper (Tfh) cell promoting cytokines (IL-21, IL-6, IL-27) were enhanced while T helper (Th) 1 cell promoting cytokine (IL-2), Th2 cell promoting cytokine (IL-13), and Th17 cell promoting cytokine (IL-17E) were reduced in the PAP group. The data also indicate that Tfh cell differentiation (IL-21), along with Th1 (GM-CSF, IFNγ), Th2 (IL-13), and Th17 (GM-CSF) cell differentiation, might be increased in the subpopulation of patients suffering from RA, whereas no differences were found in patients with CVD. CONCLUSIONS Levels of cytokines/chemokines in PAP were identified, and cluster analyzes indicated that these markers may be associated with the differentiation of different T cell populations. Patients with PAP and RA comorbidities showed elevated levels of markers reinforcing this association. CLINICAL RELEVANCE Molecular analyses of PAP may result in identification of prognostic markers.
Collapse
Affiliation(s)
- Anne Eriksson Agger
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Erik Hjelkrem
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Aina-Mari Lian
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Else K Breivik Hals
- TAKO-Centre, National Resource Centre for Oral Health in Rare Medical Conditions, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Homan Zandi
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Pia Titterud Sunde
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.
- Department of Endodontics, Institute of Clinical Dentistry, University of Oslo, Postboks 1109 Blindern, N-0317, Oslo, Norway.
| |
Collapse
|
15
|
Rivera KR, Bliton RJ, Burclaff J, Czerwinski MJ, Liu J, Trueblood JM, Hinesley CM, Breau KA, Deal HE, Joshi S, Pozdin VA, Yao M, Ziegler AL, Blikslager AT, Daniele MA, Magness ST. Hypoxia Primes Human ISCs for Interleukin-Dependent Rescue of Stem Cell Activity. Cell Mol Gastroenterol Hepatol 2023; 16:823-846. [PMID: 37562653 PMCID: PMC10520368 DOI: 10.1016/j.jcmgh.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND AIMS Hypoxia in the intestinal epithelium can be caused by acute ischemic events or chronic inflammation in which immune cell infiltration produces inflammatory hypoxia starving the mucosa of oxygen. The epithelium has the capacity to regenerate after some ischemic and inflammatory conditions suggesting that intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of hypoxia on human ISC (hISC) function has not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs from healthy donors and test the hypothesis that prolonged hypoxia modulates how hISCs respond to inflammation-associated interleukins (ILs). METHODS hISCs were exposed to <1.0% oxygen in the MPS for 6, 24, 48, and 72 hours. Viability, hypoxia-inducible factor 1a (HIF1a) response, transcriptomics, cell cycle dynamics, and response to cytokines were evaluated in hISCs under hypoxia. HIF stabilizers and inhibitors were screened to evaluate HIF-dependent responses. RESULTS The MPS enables precise, real-time control and monitoring of oxygen levels at the cell surface. Under hypoxia, hISCs maintain viability until 72 hours and exhibit peak HIF1a at 24 hours. hISC activity was reduced at 24 hours but recovered at 48 hours. Hypoxia induced increases in the proportion of hISCs in G1 and expression changes in 16 IL receptors. Prolyl hydroxylase inhibition failed to reproduce hypoxia-dependent IL-receptor expression patterns. hISC activity increased when treated IL1β, IL2, IL4, IL6, IL10, IL13, and IL25 and rescued hISC activity caused by 24 hours of hypoxia. CONCLUSIONS Hypoxia pushes hISCs into a dormant but reversible proliferative state and primes hISCs to respond to a subset of ILs that preserves hISC activity. These findings have important implications for understanding intestinal epithelial regeneration mechanisms caused by inflammatory hypoxia.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - Michael J Czerwinski
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jintong Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jessica M Trueblood
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caroline M Hinesley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Halston E Deal
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina
| | - Shlok Joshi
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vladimir A Pozdin
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina
| | - Ming Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina
| | - Amanda L Ziegler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Anthony T Blikslager
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina
| | - Scott T Magness
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
16
|
Mashraqi MM, Alzamami A, Alturki NA, Alshamrani S, Alshahrani MM, Almasoudi HH, Basharat Z. Molecular Mimicry Mapping in Streptococcus pneumoniae: Cues for Autoimmune Disorders and Implications for Immune Defense Activation. Pathogens 2023; 12:857. [PMID: 37513704 PMCID: PMC10383125 DOI: 10.3390/pathogens12070857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus pneumoniae contributes to a range of infections, including meningitis, pneumonia, otitis media, and sepsis. Infections by this bacterium have been associated with the phenomenon of molecular mimicry, which, in turn, may contribute to the induction of autoimmunity. In this study, we utilized a bioinformatics approach to investigate the potential for S. pneumoniae to incite autoimmunity via molecular mimicry. We identified 13 S. pneumoniae proteins that have significant sequence similarity to human proteins, with 11 of them linked to autoimmune disorders such as psoriasis, rheumatoid arthritis, and diabetes. Using in silico tools, we predicted the sequence as well as the structural homology among these proteins. Database mining was conducted to establish links between these proteins and autoimmune disorders. The antigenic, non-allergenic, and immunogenic sequence mimics were employed to design and validate an immune response via vaccine construct design. Mimic-based vaccine construct can prove effective for immunization against the S. pneumoniae infections. Immune response simulation and binding affinity was assessed through the docking of construct C8 to human leukocyte antigen (HLA) molecules and TLR4 receptor, with promising results. Additionally, these mimics were mapped as conserved regions on their respective proteins, suggesting their functional importance in S. pneumoniae pathogenesis. This study highlights the potential for S. pneumoniae to trigger autoimmunity via molecular mimicry and the possibility of vaccine design using these mimics for triggering defense response.
Collapse
Affiliation(s)
- Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mousa M Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | | |
Collapse
|
17
|
Mehrab R, Sedighian H, Sotoodehnejadnematalahi F, Halabian R, Fooladi AAI. A comparative study of the arazyme-based fusion proteins with various ligands for more effective targeting cancer therapy: an in-silico analysis. Res Pharm Sci 2023; 18:159-176. [PMID: 36873271 PMCID: PMC9976060 DOI: 10.4103/1735-5362.367795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 01/20/2023] Open
Abstract
Background and purpose Recently, the use of immunotoxins for targeted cancer therapy has been proposed, to find new anticancer drugs with high efficacy on tumor cells with minimal side effects on normal cells. we designed and compared several arazyme (AraA)-based fusion proteins with different ligands to choose the best-targeted therapy for interleukin 13 receptor alpha 2 (IL13Rα2)-overexpressed cancer cells. For this purpose, IL13Rα2 was selected as a receptor and IL13 and IL13.E13K were evaluated as native and mutant ligands, respectively. In addition, Pep-1 and A2b11 were chosen as the peptide ligands for targeted cancer therapy. Experimental approach Several bioinformatics servers were used for designing constructs and optimization. The structures of the chimeric proteins were predicted and verified by I-TASSER, Q-Mean, ProSA, Ramachandran plot, and Verify3D program. Physicochemical properties, toxicity, and antigenicity were predicted by ProtParam, ToxinPred, and VaxiJen. HawkDock, LigPlot+, and GROMACS software were used for docking and molecular dynamics simulation of the ligand-receptor interaction. Findings/Results The in silico results showed AraA-A2b11 has higher values of confidence score and Q-mean score was obtained for high-resolution crystal structures. All chimeric proteins were stable, non-toxic, and non-antigenic. AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 retained its natural structure and based on ligand-receptor docking and molecular dynamic analysis, the binding ability of AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 to IL13Rα2 was sufficiently strong. Conclusion and implications Based on the bioinformatics result AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 was a stable fusion protein with two separate domains and high affinity with the IL13Rα2 receptor. Therefore, AraA-(A(EAAAK)4ALEA(EAAAK)4A)2-IL13 fusion protein could be a new potent candidate for target cancer therapy.
Collapse
Affiliation(s)
- Rezvan Mehrab
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
| | | | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
18
|
Xu L, Yang MG, Hu L, Gao H, Ji S. Anti-signal recognition particle positive necrotizing myopathy-sjogren’s syndrome overlap syndrome: a descriptive study on clinical and myopathology features. BMC Musculoskelet Disord 2023; 24:219. [PMID: 36959614 PMCID: PMC10035234 DOI: 10.1186/s12891-023-06354-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/21/2023] [Indexed: 03/25/2023] Open
Abstract
Background and objective The aim of this study was to elucidate the clinical and myopathological characteristics of patients with anti-signal recognition particle (SRP) positive immune-mediated necrotizing myopathy (IMNM) overlap Sjogren’s syndrome (SS). Materials and methods We retrospectively analyzed the data of anti-SRP positive IMNM patients admitted in the Neurology Department of Tongji Hospital between January 2011 to December 2020. Patients were divided into two groups: anti-SRP IMNM overlap SS group and anti-SRP IMNM control group. The clinical features, laboratory results, histological features, treatment, and prognosis were compared between the two groups. Results A total of 30 patients with anti-SRP IMNM were included, including six anti-SRP IMNM overlap SS patients (two males, four females), with a median age of 39 years, and 24 anti-SRP IMNM patients (ten males, fourteen females), with a median age of 46 years. The anti-SRP IMNM overlap SS group had a lower prevalence of muscle atrophy (0 vs 50%, p = 0.019), and a higher prevalence of extramuscular manifestations, including cardiac abnormalities and ILD (Interstitial lung disease). CD4 + and CD68 + inflammatory infiltrations were significantly increased in anti-SRP IMNM overlap SS patients, with an increased presence of CD4 + cells in both necrotic(p = 0.023) and endomysial areas (p = 0.013), and more CD68 + cells (p = 0.016) infiltrated the endomysial area. Deposition of membrane attack complex (MAC) on sarcolemma (p = 0.013) was more commonly seen in the anti-SRP IMNM overlap SS group. Conclusion Our data revealed that anti-SRP IMNM-SS overlap patients may present with milder muscular manifestation, but worse extramuscular manifestations compared to anti-SRP IMNM patients without SS. CD4 + and CD68 + inflammatory infiltrations and MAC deposition were remarkably increased in anti-SRP IMNM-SS overlap patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-023-06354-5.
Collapse
Affiliation(s)
- Li Xu
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, 430000 China
| | - Meng-ge Yang
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, 430000 China
| | - Liya Hu
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Huajie Gao
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, 430000 China
| | - Suqiong Ji
- grid.412793.a0000 0004 1799 5032Department of Neurology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Street 1095#, Wuhan, 430000 China
| |
Collapse
|
19
|
Rivera KR, Bliton RJ, Burclaff J, Czerwinski MJ, Liu J, Trueblood JM, Hinesley CM, Breau KA, Joshi S, Pozdin VA, Yao M, Ziegler AL, Blikslager AT, Daniele MA, Magness ST. A new microphysiological system shows hypoxia primes human ISCs for interleukin-dependent rescue of stem cell activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.524747. [PMID: 36778265 PMCID: PMC9915581 DOI: 10.1101/2023.01.31.524747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background & Aims Hypoxia in the intestinal epithelium can be caused by acute ischemic events or conditions like Inflammatory Bowel Disease (IBD) where immune cell infiltration produces 'inflammatory hypoxia', a chronic condition that starves the mucosa of oxygen. Epithelial regeneration after ischemia and IBD suggests intestinal stem cells (ISCs) are highly tolerant to acute and chronic hypoxia; however, the impact of acute and chronic hypoxia on human ISC (hISC) properties have not been reported. Here we present a new microphysiological system (MPS) to investigate how hypoxia affects hISCs isolated from healthy human tissues. We then test the hypothesis that some inflammation-associated interleukins protect hISCs during prolonged hypoxia. Methods hISCs were exposed to <1.0% oxygen in the MPS for 6-, 24-, 48- & 72hrs. Viability, HIF1α response, transcriptomics, cell cycle dynamics, and hISC response to cytokines were evaluated. Results The novel MPS enables precise, real-time control and monitoring of oxygen levels at the cell surface. Under hypoxia, hISCs remain viable until 72hrs and exhibit peak HIF1α at 24hrs. hISCs lose stem cell activity at 24hrs that recovers at 48hrs of hypoxia. Hypoxia increases the proportion of hISCs in G1 and regulates hISC capacity to respond to multiple inflammatory signals. Hypoxia induces hISCs to upregulate many interleukin receptors and hISCs demonstrate hypoxia-dependent cell cycle regulation and increased organoid forming efficiency when treated with specific interleukins. Conclusions Hypoxia primes hISCs to respond differently to interleukins than hISCs in normoxia through a transcriptional response. hISCs slow cell cycle progression and increase hISC activity when treated with hypoxia and specific interleukins. These findings have important implications for epithelial regeneration in the gut during inflammatory events.
Collapse
Affiliation(s)
- Kristina R. Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
| | - R. Jarrett Bliton
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
| | - Michael J. Czerwinski
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Jintong Liu
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Jessica M. Trueblood
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Caroline M. Hinesley
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Keith A Breau
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Shlok Joshi
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| | - Vladimir A. Pozdin
- Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC, 27695 (USA)
| | - Ming Yao
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 (USA)
| | - Amanda L. Ziegler
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Anthony T. Blikslager
- Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
- Department of Electrical & Computer Engineering, North Carolina State University, Raleigh, NC, 27695 (USA)
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill 911 Oval Dr., Raleigh, NC, 27695 (USA)
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 (USA)
| |
Collapse
|
20
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
21
|
Sengoku Y, Higashi M, Nagayabu K, Takayama S, Fumino S, Aoi S, Furukawa T, Tajiri T. IL13 and periostin in active fibrogenic areas of the extrahepatic bile ducts in biliary atresia patients. Pediatr Surg Int 2022; 38:1847-1853. [PMID: 36149445 DOI: 10.1007/s00383-022-05238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The leading pathology of biliary atresia (BA) is inflammatory and fibrous obstruction of extrahepatic bile duct, but the pathogenesis remains unclear. IL13 is a cytokine associated with allergies and inflammatory fibrosis, and periostin induces fibrogenesis by stimulation with IL13. We analyzed the involvement of IL13 and periostin in inflammatory fibrosis in the extrahepatic bile duct of BA patients. MATERIALS AND METHODS Surgically resected tissues from the hepatic hilar area of BA patients were immunostained with CD45, α-SMA, IL13 and periostin and statistically analyzed. Fibroblasts from the resected tissue were cultured with recombinant IL13, and periostin production was analyzed by quantitative polymerase chain reaction and Western blotting. RESULTS IL13 was stained in 93% of large and micro bile ducts, and 92.1% matched with the CD45 location (p = 0.006) around the large bile ducts. Periostin staining correlated with the localization of IL13 and αSMA (p < 0.001) around the large bile ducts. Periostin mRNA and protein were upregulated by IL13 stimulation in cultured fibroblasts. CONCLUSION IL13 was associated with induced periostin expression by fibroblasts, playing a vital role in the pathogenesis of fibrogenesis around the extrahepatic bile duct in BA.
Collapse
Affiliation(s)
- Yuki Sengoku
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Kazuya Nagayabu
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shohei Takayama
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeyoshi Aoi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taizo Furukawa
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi Hirokoji Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
22
|
Sebastian A, Madej M, Gajdanowicz P, Sebastian M, Łuczak A, Zemelka-Wiącek M, Jutel M, Wiland P. Interferon Gamma Targeted Therapy: Is It Justified in Primary Sjögren's Syndrome? J Clin Med 2022; 11:jcm11185405. [PMID: 36143051 PMCID: PMC9504735 DOI: 10.3390/jcm11185405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background: The pathomechanism of primary Sjögren syndrome (pSS) is multifactorial. Many cytokines take part in this process, including interferon. The study aimed to quantify certain cytokines involved in the pathomechanism of primary Sjögren syndrome (IL2, IL5, IL6, IL10, IL13, TNFα, IFNγ) and determine their common clinical correlation. On this basis, we discuss the potential use of anti-cytokine drugs in pSS therapy. Methods: The study group consisted of adult patients with a confirmed diagnosis of pSS. Results: The most frequently detected cytokines were IFNγ (82% of patients), TNFα (70%), IL6 (50%), and IL2 (42.5%). In all patients, except for one patient, IFNγ was found in the presence of other specific cytokines. There was no difference in clinical symptoms, age, and laboratory test results between the group of patients with IL-6 + TNFα + IFNγ positive cytokine, and the group of patients in whom they were not detected. There was no correlation between the presence of IL5, IL13, IL2, IL6, IL10, TNFα and musculoskeletal symptoms, skin lesions, glandular domains, pulmonary neurological, lymphadenopathy, biological and hematological domains in ESSDAI (p > 0.05). Conclusions: IFNγ most likely plays a central role in the pathomechanism of the disease. We have not noticed a clinical correlation between the three most common cytokines (IL6, IFNγ and TNFα), preliminary research results open up the possibility of searching for new treatments for pSS. The lower percentage of patients with detectable levels of TNFα and IL6 may explain the ineffectiveness of drugs targeting cytokines in clinical trials to date.
Collapse
Affiliation(s)
- Agata Sebastian
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence:
| | - Marta Madej
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Paweł Gajdanowicz
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maciej Sebastian
- Department of General, Minimally Invasive and Endocrine Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Łuczak
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
23
|
Zhang X, Liu C, Yang J, Ren H, Zhang J, Chen S, Ren J, Zhou L. Potential biomarkers for diagnosis and assessment of disease activity in systemic lupus erythematosus. Int Immunopharmacol 2022; 111:109155. [PMID: 36029665 DOI: 10.1016/j.intimp.2022.109155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic autoimmune disease involving multiple system functions. Our study aimed to screen out more effective new indicators that can assist clinical diagnosis and judge disease activity. METHODS We first screened serum levels of 45 cytokines of SLE patients (n = 3) and healthy controls (n = 3). Subsequently, we selected five elevated cytokines for verification with an expanded sample size. Then, the relationship between cytokines and laboratory parameters was also investigated. Finally, we used receiver operating characteristic (ROC) curves to assess the clinical value of these cytokines. RESULTS Through screening of 45 cytokines, 15 were found to be elevated in SLE patients. We chose five cytokines (IL-6, IL-10, IL-1RA, IP-10 and LIF) for further research and found elevated expression of all five cytokines in SLE patients. Serum levels of IL-10, IL-1RA and LIF were positively correlated with SLEDAI-2K score. Besides, the level of IL-10 was significantly positively correlated with serum IgG and erythrocyte sedimentation rate (ESR); IL-1RA was significantly negatively correlated with C3 and C4; and LIF was significantly positively correlated with serum IgG, C-reactive protein (CRP), and ESR. Furthermore, IL-1RA and LIF were strongly positively correlated with 24-hour urine protein levels. The ROC analysis showed that IL-1RA has good diagnostic value, and IL-10 and LIF levels can be utilized to discriminate between active and inactive SLE. CONCLUSION IL-1RA can be used as a biomarker for diagnosing SLE, while IL-10 and LIF can be indicators to discriminate between active and inactive SLE.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Chang Liu
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Jieli Yang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Hefei Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Jiafeng Zhang
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Sai Chen
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Jigang Ren
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Lin Zhou
- Department of Laboratory Medicine, Shanghai Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
24
|
IL-38, a potential therapeutic agent for lupus, inhibits lupus progression. Inflamm Res 2022; 71:963-975. [PMID: 35776155 DOI: 10.1007/s00011-022-01581-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Previous studies reported that IL-38 was abnormally expressed in patients with systemic lupus erythematosus (SLE). However, the involvement of IL-38 in the pathophysiology of SLE remains unknown. METHODS The therapeutic potential of IL-38 was tested in pristane-treated wild-type (WT) and IL-38-/- mice. Thus, SLE was induced via pristane in WT and IL-38-/- mice. Afterwards, the liver, spleen, and kidney of each mouse were obtained. The flow cytometric analysis of the immune cells, serologic expression of inflammatory cytokines and autoantibodies, renal histopathology, and inflammatory signaling were evaluated. RESULTS WT mice with pristane-induced lupus exhibited hepatomegaly, splenomegaly, severe kidney damages, increased lymphoproliferation, enhanced lymphoproliferation, and upregulated inflammatory cytokines, such as IL-6, IL-13, IL-17A, MIP-3α, IL-12p70, and IFNγ, and elevated levels of autoantibodies, such as ANA IgG, anti-dsDNA IgG, and total IgG. IL-38-/- mice whose lupus progressed, had elevated cells of CD14+, CD19+, CD3+, and Th1, upregulated inflammatory cytokines and autoantibodies, and severe pathological changes in kidney. Administration of recombinant murine IL-38 to pristane-treated IL-38-/- mice improved their renal histopathology, which depended on ERK1/2, JNK1/2, p38, NF-κB p65, and STAT5 signaling pathways. CONCLUSION IL-38 regulates SLE pathogenesis. Furthermore, targeting IL-38 is critical in the treatment of SLE.
Collapse
|
25
|
Interleukin-13 promotes cellular senescence through inducing mitochondrial dysfunction in IgG4-related sialadenitis. Int J Oral Sci 2022; 14:29. [PMID: 35718799 PMCID: PMC9207030 DOI: 10.1038/s41368-022-00180-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Immunoglobulin G4-related sialadenitis (IgG4-RS) is an immune-mediated fibro-inflammatory disease and the pathogenesis is still not fully understood. The aim of this study was to explore the role and mechanism of interleukin-13 (IL-13) in the cellular senescence during the progress of IgG4-RS. We found that the expression of IL-13 and IL-13 receptor α1 (IL-13Rα1) as well as the number of senescent cells were significantly higher in the submandibular glands (SMGs) of IgG4-RS patients. IL-13 directly induced senescence as shown by the elevated activity of senescence-associated β-galactosidase (SA-β-gal), the decreased cell proliferation, and the upregulation of senescence markers (p53 and p16) and senescence-associated secretory phenotype (SASP) factors (IL-1β and IL-6) in SMG-C6 cells. Mechanistically, IL-13 increased the level of phosphorylated signal transducer and activator of transcription 6 (p-STAT6) and mitochondrial-reactive oxygen species (mtROS), while decreased the mitochondrial membrane potential, ATP level, and the expression and activity of superoxide dismutase 2 (SOD2). Notably, the IL-13-induced cellular senescence and mitochondrial dysfunction could be inhibited by pretreatment with either STAT6 inhibitor AS1517499 or mitochondria-targeted ROS scavenger MitoTEMPO. Moreover, IL-13 increased the interaction between p-STAT6 and cAMP-response element binding protein (CREB)-binding protein (CBP) and decreased the transcriptional activity of CREB on SOD2. Taken together, our findings revealed a critical role of IL-13 in the induction of salivary gland epithelial cell senescence through the elevated mitochondrial oxidative stress in a STAT6–CREB–SOD2-dependent pathway in IgG4-RS.
Collapse
|
26
|
Inflammatory Arthritis and Bone Metabolism Regulated by Type 2 Innate and Adaptive Immunity. Int J Mol Sci 2022; 23:ijms23031104. [PMID: 35163028 PMCID: PMC8834748 DOI: 10.3390/ijms23031104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
While type 2 immunity has traditionally been associated with the control of parasitic infections and allergic reactions, increasing evidence suggests that type 2 immunity exerts regulatory functions on inflammatory diseases such as arthritis, and also on bone homeostasis. This review summarizes the current evidence of the regulatory role of type 2 immunity in arthritis and bone. Key type 2 cytokines, like interleukin (IL)-4 and IL-13, but also others such as IL-5, IL-9, IL-25, and IL-33, exert regulatory properties on arthritis, dampening inflammation and inducing resolution of joint swelling. Furthermore, these cytokines share anti-osteoclastogenic properties and thereby reduce bone resorption and protect bone. Cellular effectors of this action are both T cells (i.e., Th2 and Th9 cells), but also non-T cells, like type 2 innate lymphoid cells (ILC2). Key regulatory actions mediated by type 2 cytokines and immune cells on both inflammation as well as bone homeostasis are discussed.
Collapse
|
27
|
Yu H, Zeng W, Zhao G, Hong J, Feng Y. Response of tear cytokines following intense pulsed light combined with meibomian gland expression for treating meibomian gland dysfunction-related dry eye. Front Endocrinol (Lausanne) 2022; 13:973962. [PMID: 36187125 PMCID: PMC9520485 DOI: 10.3389/fendo.2022.973962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This study compared the changes in tear inflammatory cytokine levels after intense pulsed light (IPL) combined with meibomian gland expression (MGX) (IPL group) and instant warm compresses combined with MGX (physiotherapy group) as treatments for meibomian gland dysfunction (MGD)-related dry eye disease (DED) to explore their similarities and differences in therapeutic mechanisms. METHODS This study was a post-hoc analysis of a randomized controlled trial. Thirteen patients with MGD-related DED were enrolled in each group and received three treatments correspondingly with 3-week intervals. The levels of 20 tear cytokines, namely, TNF-α, IL-6, MMP-9, CXCL8/IL-8, CXCL10/IP-10, IL-10, EGF, IL-6R, IL-1β, IFN-γ, lactoferrin, Fas ligand, IL-17A, LT-α, S100A9, LCN2/NGAL, IL-13, IL-12/IL-23p40, Fas, and CCL11/Eotaxin, were measured at baseline, before the second and third treatments, and 3 weeks after the third treatment. The primary outcome was the difference in cytokine levels between baseline and the last measurement, and the trends were analyzed at each measurement point. RESULTS At the last measurement, a significant decrease was observed in all tear cytokines for both IPL and physiotherapy groups compared with baseline. The IPL group showed greater reductions in IL-6, IL-6R, IL-1β, IL-13, and CCL11/Eotaxin than the physiotherapy group. TNF-α, CXCL8/IL-8, CXCL10/IP-10, IL-10, EGF, IL-1β, IFN-γ, and Lipocalin-2/NGAL levels continued to decrease with treatment time. Important interactions were found in the changes of IL-6 and IL-13 levels, where the levels first decreased and then slightly increased in the physiotherapy group after treatment, while they continued to decrease in the IPL group. CONCLUSIONS The mechanisms of IPL and physiotherapy in treating MGD-related DED were both associated with reducing inflammation, and the superiority of IPL could be attributed to its better inhibitory effect on inflammatory cytokines like IL-6. In addition, several cytokines were on a downward trend during treatment, suggesting that the vicious cycle of DED was suppressed.
Collapse
Affiliation(s)
| | | | | | - Jing Hong
- *Correspondence: Jing Hong, ; Yun Feng,
| | - Yun Feng
- *Correspondence: Jing Hong, ; Yun Feng,
| |
Collapse
|
28
|
Bjarnadóttir U, Einarsdóttir HK, Stefánsdóttir E, Helgason EA, Jónasdóttir D, Gudmundsson S, Gudbjornsson B, Ludviksson BR. Resolution of Th/Tc17‐driven inflammation during anti‐TNFα treatment of rheumatoid arthritis reveals a unique immune biomarker profiling pattern. Scand J Immunol 2021; 95:e13116. [DOI: 10.1111/sji.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Una Bjarnadóttir
- Department of Immunology Landspitali University Hospital Reykjavík Iceland
| | | | | | | | | | | | - Bjorn Gudbjornsson
- Centre for Rheumatology Research Landspitali University Hospital Reykjavik Iceland
- Faculty of Medicine University of Iceland Reykjavík Iceland
| | - Björn R. Ludviksson
- Department of Immunology Landspitali University Hospital Reykjavík Iceland
- Faculty of Medicine University of Iceland Reykjavík Iceland
| |
Collapse
|
29
|
Gillinder L, McCombe P, Powell T, Hartel G, Gillis D, Rojas IL, Radford K. Cytokines as a marker of central nervous system autoantibody associated epilepsy. Epilepsy Res 2021; 176:106708. [PMID: 34271300 DOI: 10.1016/j.eplepsyres.2021.106708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 07/03/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Autoantibodies to central nervous system (CNS) antigens are increasingly identified in patients with epilepsy. Alterations in cytokines and chemokines have also been demonstrated in epilepsy, but this has not been explored in subjects with autoantibodies. If antibody positive and antibody negative subjects show a difference in immune activation, as measured by cytokine levels, this could improve diagnostic and therapeutic approaches, and provide insights into the underlying pathophysiology. We aimed to evaluate serum and CSF cytokines and chemokines in patients with and without autoantibody positivity to identify any differences between the two groups. METHODS We studied participants who had undergone serum and CSF testing for CNS autoantibodies, as part of their clinical evaluation. Cases were classified as antibody positive or antibody negative for comparison. Stored CSF and sera were analysed for cytokine and chemokine concentrations. RESULTS 25 participants underwent testing. 8 were antibody positive, 17 were antibody negative. Significant elevations in the mean concentration of IL-13 and RANTES in CSF were found in the antibody positive cases and significant elevation of CSF VEGF was found in the antibody negative cases. Significant elevations in the mean concentrations of serum TNFβ, INFγ, bNGF, IL-8, and IL-12 were seen in the antibody negative group, and there was poor correlation between the majority of serum and CSF concentrations. SIGNIFICANCE Measurement of cytokines and chemokines such as IL-13 and RANTES could be useful in diagnosis of autoimmune associated epilepsy. Such markers might also guide targeted immunotherapy to improve seizure control and provide insights into the underlying pathophysiology of epilepsy associated with CNS autoantibodies.
Collapse
Affiliation(s)
- Lisa Gillinder
- Mater Advanced Epilepsy Unit, Mater Centre of Neurosciences, Brisbane, Australia; Mater Research Institute, The University of Queensland, Brisbane, Australia.
| | - Pamela McCombe
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Tamara Powell
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Gunter Hartel
- QIMR Berghofer Department of Statistics, Brisbane, Australia
| | | | - Ingrid Leal Rojas
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Kristen Radford
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
30
|
Paredes JL, Fernandez-Ruiz R, Niewold TB. T Cells in Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:379-393. [PMID: 34215369 DOI: 10.1016/j.rdc.2021.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
T-cell dysregulation has been implicated in the loss of tolerance and overactivation of B cells in systemic lupus erythematosus (SLE). Recent studies have identified T-cell subsets and genetic, epigenetic, and environmental factors that contribute to pathogenic T-cell differentiation, as well as disease pathogenesis and clinical phenotypes in SLE. Many therapeutics targeting T-cell pathways are under development, and although many have not progressed in clinical trials, the recent approval of the calcineurin inhibitor voclosporin is encouraging. Further study of T-cell subsets and biomarkers of T-cell action may pave the way for specific targeting of pathogenic T-cell populations in SLE.
Collapse
Affiliation(s)
- Jacqueline L Paredes
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Ruth Fernandez-Ruiz
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA; Division of Rheumatology, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
31
|
Wegeberg AM, Meldgaard T, Baek A, Drewes AM, Vyberg M, Jessen N, Brock B, Brock C. Subcutaneous adipose tissue composition and function are unaffected by liraglutide-induced weight loss in adults with type 1 diabetes. Basic Clin Pharmacol Toxicol 2021; 128:773-782. [PMID: 33624417 PMCID: PMC8251841 DOI: 10.1111/bcpt.13575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Adipose tissue is the primary energy reservoir of the human body, which also possesses endocrine functions. The glucagon‐like peptide agonist liraglutide produces weight loss, although the specific effects on adipose tissue are unknown. We aimed to characterize the white adipose tissue composition and pericellular fibrosis of subcutaneous adipose tissue in response to liraglutide treatment. Furthermore, we explored the level of circulating free fatty acids, cluster of differentiation 163 (CD163) macrophage marker, leptin and adiponectin. Thirty‐nine adults with type 1 diabetes and polyneuropathy were randomly assigned to 26 weeks of liraglutide or placebo treatment. Biopsies of subcutaneous tissue were formalin‐fixed stained with picrosirius red to visualize collagen or immunohistochemically stained for CD163. Serum concentrations of free fatty acids, CD163, leptin and adiponectin were assessed with immunoassays or multiplex panels. In comparison with placebo, liraglutide induced weight loss (3.38 kg, 95% CI −5.29; −1.48, P < 0.001), but did not cause any differences in cell size, distribution of CD163‐positive cells, pericellular fibrosis and serum levels of free fatty acids, CD163, leptin or adiponectin (all P < 0.1). Additionally, no associations between weight loss, cell size and serum markers were found (all P > 0.08). In conclusion, despite liraglutide's effect on weight loss, sustained alterations in subcutaneous adipose tissue did not seem to appear.
Collapse
Affiliation(s)
- Anne-Marie Wegeberg
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Theresa Meldgaard
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Amanda Baek
- The Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Clinical Institute, Aalborg University, Aalborg, Denmark.,Steno Diabetes Center North Denmark, Aalborg University Hospital and Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Mogens Vyberg
- Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Niels Jessen
- The Research Laboratory for Biochemical Pathology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christina Brock
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Clinical Institute, Aalborg University, Aalborg, Denmark.,Steno Diabetes Center North Denmark, Aalborg University Hospital and Clinical Institute, Aalborg University, Aalborg, Denmark
| |
Collapse
|
32
|
Zhang J, Chen Y, Chen T, Miao B, Tang Z, Hu X, Luo Y, Zheng T, Na N. Single-cell transcriptomics provides new insights into the role of fibroblasts during peritoneal fibrosis. Clin Transl Med 2021; 11:e321. [PMID: 33784014 PMCID: PMC7908046 DOI: 10.1002/ctm2.321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The contributions of various types of cell populations in dialysis-related peritoneal fibrosis are poorly understood. Single-cell RNA sequencing brings single-cell level resolution to the analysis of cellular transcriptomics, which provides a new way to further characterize the distinct roles and functional states of each cell population during peritoneal fibrosis. METHODS Single-cell transcriptomics from normal peritoneal tissues of six patients, from effluent of patients with short-term peritoneal dialysis (less than 2 weeks, n = 6), and from long-term peritoneal dialysis patients (more than 6 years, n = 4) were analyzed. RESULTS We identified a distinct cell component between samples among different groups. Functional analysis of the differentially expressed genes identified cell type specific biological processes relevant to different fibrosis stages. Well-known key molecular mechanisms participating in the pathophysiology of peritoneal fibrosis were vitrified, and some of them were found to be restricted to specific cell types. Gradually growing enrichment of PI3K/AKT/mTOR pathway and impairment of oxidative phosphorylation in mesothelial cells and fibroblasts were found from healthy control, short-term dialysis, to long-term dialysis, respectively. The fibroblasts' population obtained from the patients, who received peritoneal dialysis, showed a functional characteristic of immune-chemotaxis and immune response, which was characterized by broadly significant increase in the expression of interleukins, chemokines, cytokines, and human leukocyte antigens. Furthermore, we described the intercellular crosstalk networks based on receptor-ligand interactions, and highlighted a central role of fibroblasts in regulating the key mechanisms of peritoneal fibrosis through crosstalk with other cells. CONCLUSIONS In summary, despite describing information for fibrogenic molecular mechanisms in the resolution level of individual cell populations, this work identifies the significant functional evolution of fibroblasts during peritoneal fibrosis. This study also reveals the intercellular receptor-ligand interactions in which the fibroblasts serve as a major node, eventually providing new insights into the role of fibroblasts during disease pathogenesis.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Kidney TransplantationThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yuxian Chen
- Department of Joint SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Tufeng Chen
- Department of Gastrointestinal SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Bin Miao
- Department of Kidney TransplantationThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zuofu Tang
- Department of Kidney TransplantationThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Xiao Hu
- Department of Kidney TransplantationThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - You Luo
- Department of Kidney TransplantationThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Tong Zheng
- Department of Kidney TransplantationThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Ning Na
- Department of Kidney TransplantationThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
33
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. T Cells Subsets in the Immunopathology and Treatment of Sjogren's Syndrome. Biomolecules 2020; 10:E1539. [PMID: 33187265 PMCID: PMC7698113 DOI: 10.3390/biom10111539] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Sjogren´s syndrome (SS) is an autoimmune disease whose pathogenesis is characterized by an exacerbated T cell infiltration in exocrine glands, markedly associated to the inflammatory and detrimental features as well as the disease progression. Several helper T cell subsets sequentially converge at different stages of the ailment, becoming involved in specific pathologic roles. Initially, their activated phenotype endows them with high migratory properties and increased pro-inflammatory cytokine secretion in target tissues. Later, the accumulation of immunomodulatory T cells-derived factors, such as IL-17, IFN-γ, or IL-21, preserve the inflammatory environment. These effects favor strong B cell activation, instigating an extrafollicular antibody response in ectopic lymphoid structures mediated by T follicular helper cells (Tfh) and leading to disease progression. Additionally, the memory effector phenotype of CD8+ T cells present in SS patients suggests that the presence of auto-antigen restricted CD8+ T cells might trigger time-dependent and specific immune responses. Regarding the protective roles of traditional regulatory T cells (Treg), uncertain evidence shows decrease or invariable numbers of circulating and infiltrating cells. Nevertheless, an emerging Treg subset named follicular regulatory T cells (Tfr) seems to play a critical protective role owing to their deficiency that enhances SS development. In this review, the authors summarize the current knowledge of T cells subsets contribution to the SS immunopathology, focusing on the cellular and biomolecular properties allowing them to infiltrate and to harm target tissues, and that simultaneously make them key therapeutic targets for SS treatment.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Clinical Immunology Research of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico;
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Honorio Torres-Aguilar
- Department of Clinical Immunology Research of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico;
| |
Collapse
|
34
|
Okdahl T, Brock C, Fløyel T, Wegeberg AML, Jakobsen PE, Ejskjaer N, Pociot F, Brock B, Størling J. Increased levels of inflammatory factors are associated with severity of polyneuropathy in type 1 diabetes. Clin Endocrinol (Oxf) 2020; 93:419-428. [PMID: 32497255 DOI: 10.1111/cen.14261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/01/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Distal symmetrical polyneuropathy (DSPN) is a severe common long-term complication of type 1 diabetes caused by impaired sensory-motor nerve function. As chronic low-grade inflammation may be involved in the pathogenesis of DSPN, we investigated the circulating levels of inflammatory markers in individuals with type 1 diabetes with and without DSPN. Furthermore, we determined to what extent these factors correlated with different peripheral sensory nerve functions. DESIGN Cross-sectional study. PATIENTS The study included 103 individuals with type 1 diabetes with (n = 50) and without DSPN (n = 53) as well as a cohort of healthy controls (n = 21). MEASUREMENTS Circulating levels of various inflammatory markers (cytokines, chemokines and soluble adhesion molecules) were determined in serum samples by Luminex multiplexing technology. Peripheral sensory nerve testing, for example vibration, tactile and thermal perception, was assessed by standardized procedures. RESULTS The cytokines IL-1α, IL-4, IL-12p70, IL-13, IL-17A and TNF-α; the chemokine MCP-1; and the adhesion molecule E-selectin were significantly increased in individuals with type 1 diabetes with DSPN compared to those without DSPN (P < .001). These observations were independent of age, sex, BMI, disease duration and blood pressure. Additionally, higher serum concentrations of cytokines and chemokines were associated with higher vibration and tactile perception thresholds, but not with heat tolerance threshold. CONCLUSIONS Individuals with type 1 diabetes and concomitant DSPN display higher serum levels of several inflammatory markers. These findings support that systemic low-grade inflammation may play a role in the pathogenesis of DSPN.
Collapse
Affiliation(s)
- Tina Okdahl
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Tina Fløyel
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Anne-Marie L Wegeberg
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Poul Erik Jakobsen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Flemming Pociot
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Joachim Størling
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Levchenko A, Vyalova NM, Nurgaliev T, Pozhidaev IV, Simutkin GG, Bokhan NA, Ivanova SA. NRG1, PIP4K2A, and HTR2C as Potential Candidate Biomarker Genes for Several Clinical Subphenotypes of Depression and Bipolar Disorder. Front Genet 2020; 11:936. [PMID: 33193575 PMCID: PMC7478333 DOI: 10.3389/fgene.2020.00936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
GSK3B, BDNF, NGF, NRG1, HTR2C, and PIP4K2A play important roles in molecular mechanisms of psychiatric disorders. GSK3B occupies a central position in these molecular mechanisms and is also modulated by psychotropic drugs. BDNF regulates a number of key aspects in neurodevelopment and synaptic plasticity. NGF exerts a trophic action and is implicated in cerebral alterations associated with psychiatric disorders. NRG1 is active in neural development, synaptic plasticity, and neurotransmission. HTR2C is another important psychopharmacological target. PIP4K2A catalyzes the phosphorylation of PI5P to form PIP2, the latter being implicated in various aspects of neuronal signal transduction. In the present study, the six genes were sequenced in a cohort of 19 patients with bipolar affective disorder, 41 patients with recurrent depressive disorder, and 55 patients with depressive episode. The study revealed a number of genetic variants associated with antidepressant treatment response, time to recurrence of episodes, and depression severity. Namely, alleles of rs35641374 and rs10508649 (NRG1 and PIP4K2A) may be prognostic biomarkers of time to recurrence of depressive and manic/mixed episodes among patients with bipolar affective disorder. Alleles of NC_000008.11:g.32614509_32614510del, rs61731109, and rs10508649 (also NRG1 and PIP4K2A) seem to be predictive biomarkers of response to pharmacological antidepressant treatment on the 28th day assessed by the HDRS-17 or CGI-I scale. In particular, the allele G of rs10508649 (PIP4K2A) may increase resistance to antidepressant treatment and be at the same time protective against recurrent manic/mixed episodes. These results support previous data indicating a biological link between resistance to antidepressant treatment and mania. Bioinformatic functional annotation of associated variants revealed possible impact for transcriptional regulation of PIP4K2A. In addition, the allele A of rs2248440 (HTR2C) may be a prognostic biomarker of depression severity. This allele decreases expression of the neighboring immune system gene IL13RA2 in the putamen according to the GTEx portal. The variant rs2248440 is near rs6318 (previously associated with depression and effects of psychotropic drugs) that is an eQTL for the same gene and tissue. Finally, the study points to several protein interactions relevant in the pathogenesis of mood disorders. Functional studies using cellular or animal models are warranted to support these results.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia M Vyalova
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ivan V Pozhidaev
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - German G Simutkin
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A Bokhan
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia.,National Research Tomsk State University, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | - Svetlana A Ivanova
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia.,National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
36
|
Yang X, Guo Q, Feng T, Lu Q, Ge L, Pan J, Bi K, Qiao L, Tian L, Xie T, Yao C, Song G, Wang L. IL13Rα1 protects against rheumatoid arthritis by combating the apoptotic resistance of fibroblast-like synoviocytes. Arthritis Res Ther 2020; 22:184. [PMID: 32771038 PMCID: PMC7414989 DOI: 10.1186/s13075-020-02270-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/13/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is closely related with the pathological progression of rheumatoid arthritis (RA), and fibroblast-like synoviocytes (FLSs) are known as its resistance against ER stress-induced apoptosis. Studies on overcoming such resistance would provide a novel treatment strategy for RA in a clinical setting. METHODS IL13Rα1 expression was assessed in the synovial tissue by RT-qPCR, immunohistology, and Western blot. Gain or loss of functional analysis was applied to evaluate the biological roles of IL13Rα1 in RA FLSs. Cell viability and apoptosis were assessed by MTS, Western blot, and flow cytometry. The therapeutic effects of IL13Rα1 on the severity of type II collagen-induced arthritis (CIA) in DBA-/1 mouse model were evaluated by scoring synovitis, hyperplasia, cartilage degradation, and bone destruction. RESULTS IL13Rα1 expression was selectively downregulated when RA FLSs were stimulated by ER stress inducers. Functionally, IL13Rα1 overexpression could inhibit the viability, but induce the apoptosis of RA FLSs in the presence of ER stress inducers. Mechanistically, IL13Rα1 promotes cell apoptosis via transcriptionally activating trail expression. Besides, IL13Rα1 could interact and stabilize DR5 protein, thus forming a positive loop involving trail and DR5 to render RA FLSs more susceptible to apoptosis. Additionally, intraarticular injection of IL13Rα1 conferred therapeutic effects in CIA models and showed a limited degree of synovial proliferation and joint destruction. CONCLUSIONS Together, our data establishes a regulatory role for IL13Rα1 to combat the apoptotic resistance of RA FLSs against ER stress. The inhibitory effects of IL13Rα1 on arthritis progression suggest the therapeutic potential in RA.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Hematology, Qilu Children's Hospital of Shandong University, Jinan, China
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Qingwei Guo
- Department of Hematology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Tingting Feng
- Department of Pathology, Shandong University Medical School, Jinan, China
| | - Qiqi Lu
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Jinan, 250062, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Luna Ge
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Jinan, 250062, China
| | - Jihong Pan
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Jinan, 250062, China
| | - Kehong Bi
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Li Qiao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Tian
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Tianhua Xie
- Department of Rheumatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengfang Yao
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Lin Wang
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University, Key Lab for Biotech-Drugs of National Health Commission, Key Lab for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Jinan, 250062, China.
| |
Collapse
|
37
|
Fukayama M, Yoshizaki A, Fukasawa T, Ebata S, Kuzumi A, Yoshizaki-Ogawa A, Asano Y, Oba K, Sato S. Interleukin (IL)-17F and IL-17E are related to fibrosis and vasculopathy in systemic sclerosis. J Dermatol 2020; 47:1287-1292. [PMID: 32686186 DOI: 10.1111/1346-8138.15508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that causes fibrosis and vasculopathy of the skin and internal organs against a background of autoimmune abnormalities. In recent years, the importance of the interleukin (IL)-17 family for inflammatory diseases has received much attention, but autoimmune diseases have not yet been fully explored. As for SSc, there is also no unified perspective on the involvement of the IL-17 family in its development, and few studies have been conducted linking IL-17F and IL-17E particularly to the disease severity. In the present study, we examined the correlation between serum IL-17F and IL-17E levels and disease severity in SSc patients. Moreover, the expression of the receptors for these cytokines, IL-17RB and IL-17RC, in skin tissues obtained by skin biopsy was examined by immunohistochemistry. Both cytokines were significantly elevated in the sera of patients with diffuse cutaneous SSc patients compared with healthy controls. Serum IL-17F levels correlated with modified Rodnan total skin thickness score, a semiquantitative measure of skin sclerosis, percent predicted forced vital capacity, percent predicted carbon monoxide lung diffusion capacity and serum levels of Krebs von den Lungen-6 and surfactant protein-D, serological markers of interstitial lung disease. Serum IL-17E levels were significantly correlated with percent predicted forced vital capacity and serum Krebs von den Lungen-6 levels. Serum levels of IL-17F and IL-17E also correlated with the prevalence of digital ulcers, and serum IL-17F levels were associated with elevated right ventricle systolic pressure values. In addition, IL-17RC and IL-17RB expression was increased in the skin tissues of diffuse cutaneous SSc patients. These results suggested that IL-17F and IL-17E could be involved in fibrosis and vasculopathy in SSc through their respective receptors in the affected organ tissues.
Collapse
Affiliation(s)
- Maiko Fukayama
- Departments of, Department of Dermatology, School of Public Health, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Departments of, Department of Dermatology, School of Public Health, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Departments of, Department of Dermatology, School of Public Health, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Ebata
- Departments of, Department of Dermatology, School of Public Health, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Departments of, Department of Dermatology, School of Public Health, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Departments of, Department of Dermatology, School of Public Health, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Departments of, Department of Dermatology, School of Public Health, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Koji Oba
- Department of Biostatistics, School of Public Health, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Departments of, Department of Dermatology, School of Public Health, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Marquardt RM, Lee K, Kim TH, Lee B, DeMayo FJ, Jeong JW. Interleukin-13 receptor subunit alpha-2 is a target of progesterone receptor and steroid receptor coactivator-1 in the mouse uterus†. Biol Reprod 2020; 103:760-768. [PMID: 32558878 DOI: 10.1093/biolre/ioaa110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endometrium, composed of epithelial and stromal cell compartments, is tightly regulated by the ovarian steroid hormones estrogen (E2) and progesterone (P4) during early pregnancy. Through the progesterone receptor (PGR), steroid receptor coactivators, and other transcriptional coregulators, progesterone inhibits E2-induced cell proliferation and induces the differentiation of stromal cells in a process called decidualization to promote endometrial receptivity. Although interleukin-13 receptor subunit alpha-2 (Il13ra2) is expressed in the human and mouse endometrium, its potential role in the steroid hormone regulation of the endometrium has not been thoroughly examined. In this study, we employed PGR knockout mice and steroid receptor coactivator-1 knockout mice (SRC-1-/-) to profile the expression of Il13ra2 in the murine endometrium and determine the role of these transcriptional regulators in the hormone-responsiveness of Il13ra2 expression. Furthermore, we utilized a well-established decidualization-inducing steroidogenic cocktail and a siRNA-based knockdown of IL13RA2 to determine the importance of IL13RA2 in the decidualization of primary human endometrial stromal cells. Our findings demonstrate that Il13ra2 is expressed in the subepithelial stroma of the murine endometrium in response to ovarian steroid hormones and during early pregnancy in a PGR- and SRC-1-dependent manner. Furthermore, we show that knockdown of IL13RA2 before in vitro decidualization of primary human endometrial stromal cells partially compromises the full decidualization response. We conclude that Il13ra2 is a downstream target of progesterone through PGR and SRC-1 and plays a role in mediating the stromal action of ovarian steroid hormones.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Kevin Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Brandon Lee
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Program of Neuroscience, Bowdoin College, Brunswick, ME, USA
| | - Francesco J DeMayo
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
39
|
Chirathaworn C, Chansaenroj J, Poovorawan Y. Cytokines and Chemokines in Chikungunya Virus Infection: Protection or Induction of Pathology. Pathogens 2020; 9:415. [PMID: 32471152 PMCID: PMC7350363 DOI: 10.3390/pathogens9060415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV) infection has been commonly detected in tropical countries. The clinical manifestations of CHIKV infection are similar to those of rheumatoid arthritis. Outbreaks of CHIKV infection in Thailand have been reported, and the inductions of various cytokines and chemokines in CHIKV patients during those outbreaks have been shown. Although immune responses in CHIKV infection have been increasingly reported, the mechanisms associated with pathology induction are still not clearly understood. This review focuses on cytokine and chemokine production in CHIKV infection, in association with the severity of joint inflammation. Several cytokines and chemokines involved in the induction or regulation of inflammatory responses were shown to associate with the severe and persistent symptoms in CHIKV infection. Further studies on the difference in immune responses observed in an autoimmune disease, rheumatoid arthritis, infectious disease, and CHIKV infection, would provide additional insights useful for proper CHIKV therapy, especially in patients with severe joint pains.
Collapse
Affiliation(s)
- Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
40
|
γδT cells contribute to type 2 inflammatory profiles in eosinophilic chronic rhinosinusitis with nasal polyps. Clin Sci (Lond) 2020; 133:2301-2315. [PMID: 31722010 DOI: 10.1042/cs20190481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Eosinophilic chronic rhinosinusitis with nasal polyps (ECRS) is a condition linked with type 2 inflammation, poor treatment outcomes, and high recurrence tendency. Although γδT cells have been reported to induce type 2 immune responses and eosinophilic infiltration in several diseases, their role in ECRS has not been fully explored. We aimed to evaluate the association of γδT cells with the type 2 inflammatory profiles in ECRS. Nasal tissue samples obtained from patients with chronic rhinosinusitis with nasal polyps (CRSwNP) (51 eosinophilic and 48 non-eosinophilic), 50 patients with chronic rhinosinusitis without nasal polyps (CRSsNP), and 58 control subjects were examined for γδT cells, inflammatory markers and eosinophils using HE, RT-qPCR, ELISA, immunofluorescence, and flow cytometry. In parallel, studies were also conducted in an ECRS murine model induced by anti-γδT cells neutralizing antibody administration. γδT cells expression was significantly increased in tissues from patients with ECRS compared with non-ECRS, CRSsNP and control subjects. Moreover, inflammatory markers including type 2 proinflammatory cytokines (IL-4, IL-5, IL-13), GATA3, eosinophil cationic protein (ECP), and eotaxin levels were also increased in nasal tissues of patients with ECRS, and Vγ1+ γδT cells mRNA expression was positively correlated with type 2 cytokines, GATA3, and ECP. In the ECRS murine model, anti-Vγ1+ γδT antibody treatment reduced the infiltration of eosinophils and expression of type 2 cytokines, GATA3, and ECP in nasal mucosae. In conclusion, the results of the present study suggest that γδT cells play a crucial role in the type 2 inflammatory profiles and nasal tissue eosinophilic infiltration in patients with ECRS.
Collapse
|
41
|
McCombe PA, Lee JD, Woodruff TM, Henderson RD. The Peripheral Immune System and Amyotrophic Lateral Sclerosis. Front Neurol 2020; 11:279. [PMID: 32373052 PMCID: PMC7186478 DOI: 10.3389/fneur.2020.00279] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that is defined by loss of upper and lower motor neurons, associated with accumulation of protein aggregates in cells. There is also pathology in extra-motor areas of the brain, Possible causes of cell death include failure to deal with the aggregated proteins, glutamate toxicity and mitochondrial failure. ALS also involves abnormalities of metabolism and the immune system, including neuroinflammation in the brain and spinal cord. Strikingly, there are also abnormalities of the peripheral immune system, with alterations of T lymphocytes, monocytes, complement and cytokines in the peripheral blood of patients with ALS. The precise contribution of the peripheral immune system in ALS pathogenesis is an active area of research. Although some trials of immunomodulatory agents have been negative, there is strong preclinical evidence of benefit from immune modulation and further trials are currently underway. Here, we review the emerging evidence implicating peripheral immune alterations contributing to ALS, and their potential as future therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
- Pamela A. McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Wesley Medical Research, The Wesley Hospital, Brisbane, QLD, Australia
| | - John D. Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Trent M. Woodruff
- Wesley Medical Research, The Wesley Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
42
|
Butera A, Di Paola M, Vitali F, De Nitto D, Covotta F, Borrini F, Pica R, De Filippo C, Cavalieri D, Giuliani A, Pronio A, Boirivant M. IL-13 mRNA Tissue Content Identifies Two Subsets of Adult Ulcerative Colitis Patients With Different Clinical and Mucosa-Associated Microbiota Profiles. J Crohns Colitis 2020; 14:369-380. [PMID: 31501882 DOI: 10.1093/ecco-jcc/jjz154] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS A personalized approach to therapy hold great promise to improve disease outcomes. To this end, the identification of different subsets of patients according to the prevalent pathogenic process might guide the choice of therapeutic strategy. We hypothesize that ulcerative colitis [UC] patients might be stratified according to distinctive cytokine profiles and/or to a specific mucosa-associated microbiota. METHODS In a cohort of clinically and endoscopic active UC patients and controls, we used quantitative PCR to analyse the mucosal cytokine mRNA content and 16S rRNA gene sequencing to assess the mucosa-associated microbiota composition. RESULTS We demonstrate, by means of data-driven approach, the existence of a specific UC patient subgroup characterized by elevated IL-13 mRNA tissue content separate from patients with low IL-13 mRNA tissue content. The two subsets differ in clinical-pathological characteristics. High IL-13 mRNA patients are younger at diagnosis and have a higher prevalence of extensive colitis than low IL-13 mRNA patients. They also show more frequent use of steroid/immunosuppressant/anti-tumour necrosis factor α therapy during 1 year of follow-up. The two subgroups show differential enrichment of mucosa-associated microbiota genera with a prevalence of Prevotella in patients with high IL-13 mRNA tissue content and Sutterella and Acidaminococcus in patients with low IL-13 mRNA tissue content. CONCLUSION Assessment of mucosal IL-13 mRNA might help in the identification of a patient subgroup that might benefit from a therapeutic approach modulating IL-13. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.
Collapse
Affiliation(s)
- Alessia Butera
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Monica Di Paola
- Department of Biology, University of Florence, Firenze, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | - Francesco Covotta
- University "Sapienza", Dept General Surgery, "P. Stefanini", Rome, Italy
| | | | - Roberta Pica
- Sandro Pertini Hospital, IBD, GE Unit, Rome, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | | | - Annamaria Pronio
- University "Sapienza", Dept General Surgery, "P. Stefanini", Rome, Italy
| | - Monica Boirivant
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| |
Collapse
|
43
|
Ramakrishnan P, Nagarajan D. Neuromyelitis optica spectrum disorder: an overview. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Muhammad Yusoff F, Wong KK, Mohd Redzwan N. Th1, Th2, and Th17 cytokines in systemic lupus erythematosus. Autoimmunity 2019; 53:8-20. [PMID: 31771364 DOI: 10.1080/08916934.2019.1693545] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the breakdown of immune tolerance leading to excessive inflammation and tissue damage. Imbalance in the levels of cytokines represents one of the multifactorial causes of SLE pathogenesis and it contributes to disease severity. Deregulated levels of T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cytokines have been associated with autoimmune inflammation. Growing evidence has shown deregulated levels of Th1, Th2, and Th17 cytokines in SLE patients compared to healthy controls associated with disease activity and severity. In this review, we describe and discuss the levels of Th1, Th2, and Th17 cytokines in SLE patients, and clinical trials involving Th1, Th2, and Th17 cytokines in SLE patients. In particular, with the exception of IL-2, IL-4, and TGF-β1, the levels of Th1, Th2, and Th17 cytokines are increased in SLE patients associated with disease severity. Current phase II or III studies involve therapeutic antibodies targeting IFN-α and type I IFN receptor, while low-dose IL-2 therapy is assessed in phase II clinical trials.
Collapse
Affiliation(s)
- Farhana Muhammad Yusoff
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| |
Collapse
|
45
|
Koivisto AE, Olsen T, Paur I, Paulsen G, Bastani NE, Garthe I, Raastad T, Matthews J, Blomhoff R, Bøhn SK. Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: A randomized controlled trial. PLoS One 2019; 14:e0217895. [PMID: 31194785 PMCID: PMC6563980 DOI: 10.1371/journal.pone.0217895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
Abstract
Background Various altitude training regimes, systematically used to improve oxygen carrying capacity and sports performance, have been associated with increased oxidative stress and inflammation. We investigated whether increased intake of common antioxidant-rich foods attenuates these processes. Methods In a randomized controlled trial, 31 elite endurance athletes (23 ± 5 years), ingested antioxidant-rich foods (n = 16), (> doubling their usual intake), or eucaloric control foods (n = 15) during a 3-week altitude training camp (2320 m). Fasting blood and urine samples were collected 7 days pre-altitude, after 5 and 18 days at altitude, and 7 days post-altitude. Change over time was compared between the groups using mixed models for antioxidant capacity [uric acid-free (ferric reducing ability of plasma (FRAP)], oxidative stress (8-epi-PGF2α) and inflammatory biomarkers (IFNγ, IL1α, IL1RA, IL1β, IL2, IL5, IL6, IL7, IL10, IL12p70, IL13, IL17, TNFα, MCP-1 and micro-CRP). The cytokine response to a stress-test (VO2max ramp test or 100 m swimming) was assessed at pre- and post-altitude. Results FRAP increased more in the antioxidant compared to the control group (p = 0.034). IL13 decreased in the antioxidant group, while increasing in the controls (p = 0.006). A similar trend was seen for IL6 (p = 0.062). A larger decrease in micro-CRP was detected in the antioxidant group compared to controls (β: -0.62, p = 0.02). We found no group differences for the remaining cytokines. 8-epi-PGF2α increased significantly in the whole population (p = 0.033), regardless group allocation. The stress response was significantly larger post-altitude compared with pre-altitude for IL1β, IL6, IL7, IL13, IL12p70 and TNFα, but we found no group differences. Conclusions Increased intake of antioxidant-rich foods elevated the antioxidant capacity and attenuated some of the altitude-induced systemic inflammatory biomarkers in elite athletes. The antioxidant intervention had no impact on the altitude-induced oxidative stress or changes in acute cytokine responses to exercise stress-tests.
Collapse
Affiliation(s)
- Anu Elisa Koivisto
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvild Paur
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Gøran Paulsen
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | - Ina Garthe
- Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Division of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Siv Kjølsrud Bøhn
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| |
Collapse
|
46
|
Limandjaja GC, Waaijman T, Roffel S, Niessen FB, Gibbs S. Monocytes co-cultured with reconstructed keloid and normal skin models skew towards M2 macrophage phenotype. Arch Dermatol Res 2019; 311:615-627. [PMID: 31187196 PMCID: PMC6736899 DOI: 10.1007/s00403-019-01942-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/28/2019] [Accepted: 06/04/2019] [Indexed: 01/15/2023]
Abstract
Several abnormalities have been reported in the peripheral blood mononuclear cells of keloid-forming patients and particularly in the monocyte cell fraction. The goal of this in vitro study was to determine whether monocytes from keloid-prone patients contribute to the keloid phenotype in early developing keloids, and whether monocyte differentiation is affected by the keloid microenvironment. Therefore, keloid-derived keratinocytes and fibroblasts were used to reconstruct a full thickness, human, in vitro keloid scar model. The reconstructed keloid was co-cultured with monocytes from keloid-forming patients and compared to reconstructed normal skin co-cultured with monocytes from non-keloid-formers. The reconstructed keloid showed increased contraction, dermal thickness (trend) and α-SMA+ staining, but co-culture with monocytes did not further enhance the keloid phenotype. After 2-week culture, all monocytes switched from a CD11chigh/CD14high/CD68low to a CD11chigh/CD14low/CD68high phenotype. However, only monocytes co-cultured with either reconstructed keloid scar or normal skin models skewed towards the more fibrotic M2-macrophage phenotype. There was negligible fibroblast and fibrocyte differentiation in mono- and co-cultured monocytes. These results indicate that monocytes differentiate into M2 macrophages when in the vicinity of early regenerating and repairing tissue, independent of whether the individual is prone to normal or keloid scar formation.
Collapse
Affiliation(s)
- Grace C Limandjaja
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands
| | - Sanne Roffel
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands
| | - Frank B Niessen
- Department of Plastic Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands.
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Abstract
OBJECTIVE This study aimed to assess IL-24 levels and their association with clinical manifestations in patients with systemic lupus erythematosus (SLE). METHODS There were 75 patients with SLE and 58 healthy controls recruited in this study. Serum levels of IL-24 were measured by enzyme-linked immunosorbent assays, and mRNA levels of IL-24 were tested by quantitative real-time polymerase chain reaction . The area under the curve of the receiver operating characteristic (ROC) curve was used for diagnostic ability of the inflammatory cytokine. RESULTS Serum IL-24 levels were significantly higher in SLE patients than that in healthy controls. SLE patients with nephritis had higher IL-24 levels than those without nephritis. Active SLE patients showed higher expression of IL-24 as compared to less active disease patients. The mRNA levels of IL-24 were much higher in SLE patients. Correlation analysis showed significant correlation between serum IL-24 levels and SLE disease activity index. In addition, ROC analysis may suggest good ability of serum IL-24 in differentiating SLE. CONCLUSION The inflammatory cytokine correlated with SLE disease activity, and may be involved in this disease pathogenesis.
Collapse
Affiliation(s)
- R C Li
- 1 Health Management Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - J Guo
- 2 Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - L C Su
- 3 Department of Rheumatology and Immunology, Affiliated Minda Hospital of Hubei Institute for Nationalities, Enshi, People's Republic of China
| | - A F Huang
- 4 Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|