1
|
Zapata AG. The fish spleen. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109280. [PMID: 38086514 DOI: 10.1016/j.fsi.2023.109280] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/31/2023]
Abstract
In the present study, we review the structure and function of fish spleen with special emphasis on its condition in Elasmobranchs, Teleosts and Lungfish. Apart from the amount of splenic lymphoid tissue, the histological organization of the organ ensures the existence of areas involved in antigen trapping, the ellipsoids, and exhibit numerous melano-macrophages which appear isolated or forming the so-called melano-macrophage centres. An extensive discussion on the functional significance of these centres conclude that they are mere accumulations of macrophages consequence of tissue homeostasis rather than primitive germinal centres, as proposed by some authors.
Collapse
Affiliation(s)
- Agustín G Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Matz H, Dooley H. 450 million years in the making: mapping the evolutionary foundations of germinal centers. Front Immunol 2023; 14:1245704. [PMID: 37638014 PMCID: PMC10450919 DOI: 10.3389/fimmu.2023.1245704] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Germinal centers (GCs) are distinct microanatomical structures that form in the secondary lymphoid organs of endothermic vertebrates (i.e., mammals and some birds). Within GCs, B cells undergo a Darwinian selection process to identify clones which can respond to pathogen insult as well as affinity mature the B cell repertoire. The GC response ultimately generates memory B cells and bone marrow plasma cells which facilitate humoral immunological memory, the basis for successful vaccination programs. GCs have not been observed in the secondary lymphoid organs of ectothermic jawed vertebrates (i.e., fishes, reptiles, and amphibians). However, abundant research over the past decades has indicated these organisms can produce antigen specific B cell responses and some degree of affinity maturation. This review examines data demonstrating that the fundamentals of B cell selection may be more conserved across vertebrate phylogeny than previously anticipated. Further, research in both conventional mammalian model systems and comparative models raises the question of what evolutionary benefit GCs provide endotherms if they are seemingly unnecessary for generating the basic functional components of jawed vertebrate humoral adaptive immune responses.
Collapse
|
3
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunity of the intestinal mucosa in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108572. [PMID: 36717066 DOI: 10.1016/j.fsi.2023.108572] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the problem of intestinal mucosa immunity in teleost fish. The immunity of the intestinal mucosa in teleost fish depends on the elements and mechanisms with different organizational/structural and functional properties than in mammals. The organization of the elements of intestinal mucosal immunitya in these animals is associated with the presence of immune cells that fulfil the functions assigned to the induction and effector sites of mucosal immunity in mammals; they are located at various histological sites of the mucosa - in the lamina propria (LP) and in the surface epithelium. The presence of mucosa-associated lymphoid tissue (MALT) has not been demonstrated in teleost fish, and the terminology used in relation to the structure and function of the mucosa immunity components in teleost fish is inadequate. In this article, we review the knowledge of intestinal mucosal immunity in teleost fish, with great potential for knowledge and practical applications especially in the field of epidemiological safety. We discuss the organization and functional properties of the elements that determine this immunity, according to current data and taking into account the tissue definition and terminology adopted by the Society for Mucosal Immunology General Assembly (13th ICMI in Tokyo, 2007).
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
4
|
Ghorbani A, Khataeipour SJ, Solbakken MH, Huebert DNG, Khoddami M, Eslamloo K, Collins C, Hori T, Jentoft S, Rise ML, Larijani M. Ancestral reconstruction reveals catalytic inactivation of activation-induced cytidine deaminase concomitant with cold water adaption in the Gadiformes bony fish. BMC Biol 2022; 20:293. [PMID: 36575514 PMCID: PMC9795746 DOI: 10.1186/s12915-022-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - S. Javad Khataeipour
- grid.25055.370000 0000 9130 6822Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Monica H. Solbakken
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David N. G. Huebert
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Minasadat Khoddami
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Khalil Eslamloo
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Cassandra Collins
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Tiago Hori
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Sissel Jentoft
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Matthew L. Rise
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Mani Larijani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
5
|
Muthupandian A, Waly D, Magor BG. Do ectothermic vertebrates have a home in which to affinity mature their antibody responses? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104021. [PMID: 33482240 DOI: 10.1016/j.dci.2021.104021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
There has been a longstanding question of whether affinity maturation occurs in ectotherms, and if it does, where in tissues this happens. Although cold-blooded vertebrates (ectotherms) lack histologically discernible germinal centers, they have a fully functional Ig gene mutator enzyme (activation-induced cytidine deaminase: AID or Aicda). Protein and Ig cDNA transcript analyses provide evidence that ectotherms can, under certain conditions, demonstrate antibody affinity maturation, and somatic hypermutation of their Ig genes during secondary immune responses. Here, we review the evidence for antibody affinity maturation and somatic hypermutation of Ig V(D)J exons. We argue that past evidence of long-term intact antigen retention, and recent studies of in situ expression of AID transcripts, point to fish melanomacrophage clusters as sites functionally analogous to a germinal center. Recent work in zebrafish provides a way forward to test these predictions through V(D)J repertoire analyses on isolated, intact melanomacrophage clusters. This work has implications not only for vaccine use in aquaculture, but also for antibody affinity maturation processes in all ectothermic vertebrates.
Collapse
Affiliation(s)
- A Muthupandian
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB, T6G-2E5, Canada
| | - D Waly
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB, T6G-2E5, Canada
| | - B G Magor
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB, T6G-2E5, Canada.
| |
Collapse
|
6
|
Ghorbani A, Quinlan EM, Larijani M. Evolutionary Comparative Analyses of DNA-Editing Enzymes of the Immune System: From 5-Dimensional Description of Protein Structures to Immunological Insights and Applications to Protein Engineering. Front Immunol 2021; 12:642343. [PMID: 34135887 PMCID: PMC8201067 DOI: 10.3389/fimmu.2021.642343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
The immune system is unique among all biological sub-systems in its usage of DNA-editing enzymes to introduce targeted gene mutations and double-strand DNA breaks to diversify antigen receptor genes and combat viral infections. These processes, initiated by specific DNA-editing enzymes, often result in mistargeted induction of genome lesions that initiate and drive cancers. Like other molecules involved in human health and disease, the DNA-editing enzymes of the immune system have been intensively studied in humans and mice, with little attention paid (< 1% of published studies) to the same enzymes in evolutionarily distant species. Here, we present a systematic review of the literature on the characterization of one such DNA-editing enzyme, activation-induced cytidine deaminase (AID), from an evolutionary comparative perspective. The central thesis of this review is that although the evolutionary comparative approach represents a minuscule fraction of published works on this and other DNA-editing enzymes, this approach has made significant impacts across the fields of structural biology, immunology, and cancer research. Using AID as an example, we highlight the value of the evolutionary comparative approach in discoveries already made, and in the context of emerging directions in immunology and protein engineering. We introduce the concept of 5-dimensional (5D) description of protein structures, a more nuanced view of a structure that is made possible by evolutionary comparative studies. In this higher dimensional view of a protein's structure, the classical 3-dimensional (3D) structure is integrated in the context of real-time conformations and evolutionary time shifts (4th dimension) and the relevance of these dynamics to its biological function (5th dimension).
Collapse
Affiliation(s)
- Atefeh Ghorbani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Emma M. Quinlan
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Mitchell CD, Criscitiello MF. Comparative study of cartilaginous fish divulges insights into the early evolution of primary, secondary and mucosal lymphoid tissue architecture. FISH & SHELLFISH IMMUNOLOGY 2020; 107:435-443. [PMID: 33161090 DOI: 10.1016/j.fsi.2020.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 05/05/2023]
Abstract
Cartilaginous fish are located at a pivotal point in phylogeny where the adaptive immune system begins to resemble that of other, more-derived jawed vertebrates, including mammals. For this reason, sharks and other cartilaginous fish are ideal models for studying the natural history of immunity. Insights from such studies may include distinguishing the (evolutionarily conserved) fundamental aspects of adaptive immunity from the (more recent) accessory. Some lymphoid tissues of sharks, including the thymus and spleen, resemble those of mammals in both appearance and function. The cartilaginous skeleton of sharks has no bone marrow, which is also absent in bony fish despite calcified bone, but cartilaginous fish have other Leydig's and epigonal organs that function to provide hematopoiesis analogous to mammalian bone marrow. Conserved across all vertebrate phylogeny in some form is gut-associated lymphoid tissues, or GALT, which is seen from agnathans to mammals. Though it takes many forms, from typhlosole in lamprey to Peyer's patches in mammals, the GALT serves as a site of antigen concentration and exposure to lymphocytes in the digestive tract. Though more complex lymphoid organs are not present in agnathans, they have several primitive tissues, such as the thymoid and supraneural body, that appear to serve their variable lymphocyte receptor-based adaptive immune system. There are several similarities between the adaptive immune structures in cartilaginous and bony fish, such as the thymus and spleen, but there are mechanisms employed in bony fish that in some instances bridge their adaptive immune systems to that of tetrapods. This review summarizes what we know of lymphoid tissues in cartilaginous fishes and uses these data to compare primary and secondary tissues in jawless, cartilaginous, and bony fishes to contextualize the early natural history of vertebrate mucosal immune tissues.
Collapse
Affiliation(s)
- Christian D Mitchell
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, 77807, USA.
| |
Collapse
|
8
|
Yu Y, Wang Q, Huang Z, Ding L, Xu Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front Immunol 2020; 11:567941. [PMID: 33123139 PMCID: PMC7566178 DOI: 10.3389/fimmu.2020.567941] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Due to direct contact with aquatic environment, mucosal surfaces of teleost fish are continuously exposed to a vast number of pathogens and also inhabited by high densities of commensal microbiota. The B cells and immunoglobulins within the teleost mucosa-associated lymphoid tissues (MALTs) play key roles in local mucosal adaptive immune responses. So far, three Ig isotypes (i.e., IgM, IgD, and IgT/Z) have been identified from the genomic sequences of different teleost fish species. Moreover, teleost Igs have been reported to elicit mammalian-like mucosal immune response in six MALTs: gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), gill-associated lymphoid tissue (GIALT), nasal-associated lymphoid tissue (NALT), and the recently discovered buccal and pharyngeal MALTs. Critically, analogous to mammalian IgA, teleost IgT represents the most ancient Ab class specialized in mucosal immunity and plays indispensable roles in the clearance of mucosal pathogens and the maintenance of microbiota homeostasis. Given these, this review summarizes the current findings on teleost Igs, MALTs, and their immune responses to pathogenic infection, vaccination and commensal microbiota, with the purpose of facilitating future evaluation and rational design of fish vaccines.
Collapse
Affiliation(s)
- Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liguo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
10
|
Biochemical Regulatory Features of Activation-Induced Cytidine Deaminase Remain Conserved from Lampreys to Humans. Mol Cell Biol 2017; 37:MCB.00077-17. [PMID: 28716949 DOI: 10.1128/mcb.00077-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/10/2017] [Indexed: 01/17/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is a genome-mutating enzyme that initiates class switch recombination and somatic hypermutation of antibodies in jawed vertebrates. We previously described the biochemical properties of human AID and found that it is an unusual enzyme in that it exhibits binding affinities for its substrate DNA and catalytic rates several orders of magnitude higher and lower, respectively, than a typical enzyme. Recently, we solved the functional structure of AID and demonstrated that these properties are due to nonspecific DNA binding on its surface, along with a catalytic pocket that predominantly assumes a closed conformation. Here we investigated the biochemical properties of AID from a sea lamprey, nurse shark, tetraodon, and coelacanth: representative species chosen because their lineages diverged at the earliest critical junctures in evolution of adaptive immunity. We found that these earliest-diverged AID orthologs are active cytidine deaminases that exhibit unique substrate specificities and thermosensitivities. Significant amino acid sequence divergence among these AID orthologs is predicted to manifest as notable structural differences. However, despite major differences in sequence specificities, thermosensitivities, and structural features, all orthologs share the unusually high DNA binding affinities and low catalytic rates. This absolute conservation is evidence for biological significance of these unique biochemical properties.
Collapse
|
11
|
Abstract
Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 1 or APOBEC1 was discovered in 1993 as the zinc-dependent cytidine deaminase responsible for the production of an in frame stop codon in apoB mRNA through modification of cytidine at nucleotide position 6666 to uridine. At the time of this discovery there was much speculation concerning the mechanism of base modification RNA editing which has been rekindled by the discovery of multiple C to U RNA editing events in the 3′ UTRs of mRNAs and the finding that other members of the APOBEC family while able to bind RNA, have the biological function of being DNA mutating enzymes. Current research is addressing the mechanism for these nucleotide modification events that appear not to adhere to the mooring sequence-dependent model for APOBEC1 involving the assembly of a multi protein containing editosome. This review will summarize our current understanding of the structure and function of APOBEC proteins and examine how RNA binding to them may be a regulatory mechanism.
Collapse
Affiliation(s)
- Harold C Smith
- a University of Rochester, School of Medicine and Dentistry , Department of Biochemistry and Biophysics , Rochester , NY , USA
| |
Collapse
|
12
|
Antibody Affinity Maturation in Fishes-Our Current Understanding. BIOLOGY 2015; 4:512-24. [PMID: 26264036 PMCID: PMC4588147 DOI: 10.3390/biology4030512] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022]
Abstract
It has long been believed that fish lack antibody affinity maturation, in part because they were thought to lack germinal centers. Recent research done on sharks and bony fishes indicates that these early vertebrates are able to affinity mature their antibodies. This article reviews the functionality of the fish homologue of the immunoglobulin (Ig) mutator enzyme activation-induced cytidine deaminase (AID). We also consider the protein and molecular evidence for Ig somatic hypermutation and antibody affinity maturation. In the context of recent evidence for a putative proto-germinal center in fishes we propose some possible reasons that observed affinity maturation in fishes often seems lacking and propose future work that might shed further light on this process in fishes.
Collapse
|
13
|
Pettinello R, Dooley H. The immunoglobulins of cold-blooded vertebrates. Biomolecules 2014; 4:1045-69. [PMID: 25427250 PMCID: PMC4279169 DOI: 10.3390/biom4041045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022] Open
Abstract
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
14
|
Extensive diversification of IgH subclass-encoding genes and IgM subclass switching in crocodilians. Nat Commun 2013; 4:1337. [PMID: 23299887 DOI: 10.1038/ncomms2317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 11/22/2012] [Indexed: 01/01/2023] Open
Abstract
Crocodilians are a group of reptiles that are closely related to birds and are thought to possess a strong immune system. Here we report that the IgH locus in the Siamese crocodile and the Chinese alligator contains multiple μ genes, in contrast to other tetrapods. Both the μ2 and μ3 genes are expressed through class-switch recombination involving the switch region and germline transcription. Both IgM1 and IgM2 are present in the serum as polymers, which implies that IgM class switching may have significant roles in humoural immunity. The crocodilian α genes are the first IgA-encoding genes identified in reptiles, and these genes show an inverted transcriptional orientation similar to that of birds. The identification of both α and δ genes in crocodilians suggests that the IgH loci of modern living mammals, reptiles and birds share a common ancestral organization.
Collapse
|
15
|
Dancyger AM, King JJ, Quinlan MJ, Fifield H, Tucker S, Saunders HL, Berru M, Magor BG, Martin A, Larijani M. Differences in the enzymatic efficiency of human and bony fish AID are mediated by a single residue in the C terminus modulating single‐stranded DNA binding. FASEB J 2011; 26:1517-25. [DOI: 10.1096/fj.11-198135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alex M. Dancyger
- Program in Immunology and Infectious DiseasesDivision of Biomedical SciencesFaculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Justin J. King
- Program in Immunology and Infectious DiseasesDivision of Biomedical SciencesFaculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Matthew J. Quinlan
- Program in Immunology and Infectious DiseasesDivision of Biomedical SciencesFaculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Heather Fifield
- Program in Immunology and Infectious DiseasesDivision of Biomedical SciencesFaculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Stephanie Tucker
- Program in Immunology and Infectious DiseasesDivision of Biomedical SciencesFaculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Holly L. Saunders
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Maribel Berru
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
| | - Bradley G. Magor
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Alberto Martin
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
| | - Mani Larijani
- Program in Immunology and Infectious DiseasesDivision of Biomedical SciencesFaculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
16
|
Barreto VM, Magor BG. Activation-induced cytidine deaminase structure and functions: a species comparative view. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:991-1007. [PMID: 21349283 DOI: 10.1016/j.dci.2011.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/09/2011] [Accepted: 02/16/2011] [Indexed: 05/30/2023]
Abstract
In the ten years since the discovery of activation-induced cytidine deaminase (AID) there has been considerable effort to understand the mechanisms behind this enzyme's ability to target and modify immunoglobulin genes leading to somatic hypermutation and class switch recombination. While the majority of research has focused on mouse and human models of AID function, work on other species, from lamprey to rabbit and sheep, has taught us much about the scope of functions of the AID mutator. This review takes a species-comparative approach to what has been learned about the AID mutator enzyme and its role in humoral immunity.
Collapse
|
17
|
Okuyama S, Marusawa H, Matsumoto T, Ueda Y, Matsumoto Y, Endo Y, Takai A, Chiba T. Excessive activity of apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) contributes to liver and lung tumorigenesis. Int J Cancer 2011; 130:1294-301. [PMID: 21469143 DOI: 10.1002/ijc.26114] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 03/25/2011] [Indexed: 11/06/2022]
Abstract
Apolipoprotein B mRNA editing enzyme catalytic polypeptide 2 (APOBEC2) was originally identified as a member of the cytidine deaminase family with putative nucleotide editing activity. To clarify the physiologic and pathologic roles, and the target nucleotide of APOBEC2, we established an APOBEC2 transgenic mouse model and investigated whether APOBEC2 expression causes nucleotide alterations in host DNA or RNA sequences. Sequence analyses revealed that constitutive expression of APOBEC2 in the liver resulted in significantly high frequencies of nucleotide alterations in the transcripts of eukaryotic translation initiation factor 4 gamma 2 (Eif4g2) and phosphatase and tensin homolog (PTEN) genes. Hepatocellular carcinoma developed in 2 of 20 APOBEC2 transgenic mice at 72 weeks of age. In addition, constitutive APOBEC2 expression caused lung tumors in 7 of 20 transgenic mice analyzed. Together with the fact that the proinflammatory cytokine tumor necrosis factor-α induces ectopic expression of APOBEC2 in hepatocytes, our findings indicate that aberrant APOBEC2 expression causes nucleotide alterations in the transcripts of the specific target gene and could be involved in the development of human hepatocellular carcinoma through hepatic inflammation.
Collapse
Affiliation(s)
- Shunsuke Okuyama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Shogoin, Sakyo-Ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Das S, Hirano M, McCallister C, Tako R, Nikolaidis N. Comparative genomics and evolution of immunoglobulin-encoding loci in tetrapods. Adv Immunol 2011; 111:143-78. [PMID: 21970954 DOI: 10.1016/b978-0-12-385991-4.00004-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immunoglobulins (Igs or antibodies) as an integral part of the tetrapod adaptive immune response system have evolved toward producing highly diversified molecules that recognize a remarkably large number of different antigens. Antibodies and their respective encoding loci have been shaped by different and often contrasting evolutionary forces, some of which aim to conserve an established pattern or mechanism and others to generate alternative and diversified structural and functional configurations. The genomic organization, gene content, ratio between functional genes and pseudogenes, number and position of recombining genetic elements, and the different levels of divergence present at the germline of the Ig-encoding loci have been evolutionarily shaped and optimized in a lineage- and, in some cases, species-specific mode aiming to increase organismal fitness. Further, evolution favored the development of multiple mechanisms of primary and secondary antibody diversification, such as V(D)J recombination, class switch recombination, isotype exclusion, somatic hypermutation, and gene conversion. Diverse tetrapod species, based on their specific germline configurations, use these mechanisms in several different combinations to effectively generate a vast array of distinct antibody types and structures. This chapter summarizes our current knowledge on the Ig-encoding loci in tetrapods and discusses the different evolutionary mechanisms that shaped their diversification.
Collapse
Affiliation(s)
- Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
19
|
Verma S, Goldammer T, Aitken R. Cloning and expression of activation induced cytidine deaminase from Bos taurus. Vet Immunol Immunopathol 2009; 134:151-9. [PMID: 19766322 DOI: 10.1016/j.vetimm.2009.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/21/2009] [Accepted: 08/24/2009] [Indexed: 12/13/2022]
Abstract
Activation induced cytidine deaminase is an enzyme crucial to somatic hypermutation and gene conversion, processes that are essential for the diversification of Ig V genes. The bovine Ig repertoire appears to be diversified by mechanisms that are significantly different to those that operate in humans and mice. This study set out to test the hypothesis that differences in the organization, coding sequence, expression or genomic location of the bovine AICDA gene enables the encoded enzyme to catalyse the unusual Ig diversification mechanism seen in cattle as well as conventional antigen-driven mutation. Characterization of bovine AICDA excluded the first two possibilities. AICDA expression was detected in lymphoid tissues from neonatal and older cattle, but AICDA cDNA could not be detected in muscle tissue. The pattern of gene expression did not therefore differ from that in other vertebrates. The AICDA cDNA was cloned and expressed successfully in Escherichia coli generating a phenotype consistent with the mutating action of this deaminase. Using a whole genome radiation hybrid panel, bovine AICDA was mapped to a region of bovine chromosome 5 syntenic with the location of human AICDA on chromosome 12. We conclude that the unusual nature of Ig diversification in cattle is unlikely to be attributable to the structure, sequence, activity or genomic location of bovine AICDA.
Collapse
Affiliation(s)
- Subhash Verma
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
20
|
G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter. Mol Cell Biol 2009; 29:3124-33. [PMID: 19307304 DOI: 10.1128/mcb.00139-09] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
R-loops form cotranscriptionally in vitro and in vivo at transcribed duplex DNA regions when the nascent RNA is G-rich, particularly with G clusters. This is the case for phage polymerases, as used here (T7 RNA polymerase), as well as RNA polymerases in bacteria, Saccharomyces cerevisiae, avians, mice, and humans. The nontemplate strand is left in a single-stranded configuration within the R-loop region. These structures are known to form at mammalian immunoglobulin class switch regions, thus exposing regions of single-stranded DNA for the action of AID, a single-strand-specific cytidine deaminase. R-loops form by thread-back of the RNA onto the template DNA strand, and here we report that G clusters are extremely important for the initiation phase of R-loop formation. Even very short regions with one GGGG sequence can initiate R-loops much more efficiently than random sequences. The high efficiencies observed with G clusters cannot be achieved by having a very high G density alone. Annealing of the transcript, which is otherwise disadvantaged relative to the nontemplate DNA strand because of unfavorable proximity while exiting the RNA polymerase, can offer greater stability if it occurs at the G clusters, thereby initiating an R-loop. R-loop elongation beyond the initiation zone occurs in a manner that is not as reliant on G clusters as it is on a high G density. These results lead to a model in which G clusters are important to nucleate the thread-back of RNA for R-loop initiation and, once initiated, the elongation of R-loops is primarily determined by the density of G on the nontemplate DNA strand. Without both a favorable R-loop initiation zone and elongation zone, R-loop formation is inefficient.
Collapse
|
21
|
Phelps HA, Neely MN. Evolution of the zebrafish model: from development to immunity and infectious disease. Zebrafish 2008; 2:87-103. [PMID: 18248169 DOI: 10.1089/zeb.2005.2.87] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The successful zebrafish developmental model has now expanded to being used as a model for the analysis of host-pathogen interactions during infectious disease. Numerous pathogens have been demonstrated to infect zebrafish and new mechanisms of virulence, as well as host defense have been uncovered using this new model. In this review we summarize the literature on how the zebrafish infectious disease model is being used to decipher virulence mechanisms used by various pathogens and the host defense mechanisms initiated to combat infection.
Collapse
Affiliation(s)
- Hilary A Phelps
- Immunology and Microbiology Department, Wayne State School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
22
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 1:369-75. [PMID: 18248216 DOI: 10.1089/zeb.2005.1.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 1:305-11. [PMID: 18248239 DOI: 10.1089/zeb.2004.1.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Chatterji M, Unniraman S, McBride KM, Schatz DG. Role of activation-induced deaminase protein kinase A phosphorylation sites in Ig gene conversion and somatic hypermutation. THE JOURNAL OF IMMUNOLOGY 2007; 179:5274-80. [PMID: 17911613 DOI: 10.4049/jimmunol.179.8.5274] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation-induced deaminase (AID) is thought to initiate somatic hypermutation (SHM), gene conversion (GCV), and class switch recombination (CSR) by the transcription-coupled deamination of cytosine residues in Ig genes. Phosphorylation of AID by protein kinase A (PKA) and subsequent interaction of AID with replication protein A (RPA) have been proposed to play important roles in allowing AID to deaminate DNA during transcription. Serine 38 (S38) of mouse AID is phosphorylated in vivo and lies in a consensus target site for PKA, and mutation of this residue interferes with CSR and SHM. In this study, we demonstrate that S38 in mouse and chicken AID is phosphorylated in chicken DT40 cells and is required for efficient GCV and SHM in these cells. Paradoxically, zebra fish AID, which lacks a serine at the position corresponding to S38, has previously been shown to be active for CSR and we demonstrate that it is active for GCV/SHM. Aspartate 44 (D44) of zebra fish AID has been proposed to compensate for the absence of the S38 phosphorylation site but we demonstrate that mutation of D44 has no effect on GCV/SHM. Some features of zebra fish AID other than D44 might compensate for the absence of S38. Alternatively, the zebra fish protein might function in a manner that is independent of PKA and RPA in DT40 cells, raising the possibility that, under some circumstances, AID mediates efficient Ig gene diversification without the assistance of RPA.
Collapse
Affiliation(s)
- Monalisa Chatterji
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
25
|
Marr S, Morales H, Bottaro A, Cooper M, Flajnik M, Robert J. Localization and Differential Expression of Activation-Induced Cytidine Deaminase in the Amphibian Xenopus upon Antigen Stimulation and during Early Development. THE JOURNAL OF IMMUNOLOGY 2007; 179:6783-9. [DOI: 10.4049/jimmunol.179.10.6783] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Pan-Hammarström Q, Zhao Y, Hammarström L. Class switch recombination: a comparison between mouse and human. Adv Immunol 2007; 93:1-61. [PMID: 17383538 DOI: 10.1016/s0065-2776(06)93001-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Humans and mice separated more than 60 million years ago. Since then, evolution has led to a multitude of changes in their genomic sequences. The divergence of genes has resulted in differences both in the innate and adaptive immune systems. In this chapter, we focus on species difference with regard to immunoglobulin class switch recombination (CSR). We have compared the immunoglobulin constant region gene loci from human and mouse, with an emphasis on the switch regions, germ line transcription promoters, and 3' enhancers. We have also compared pathways/factors that are involved in CSR. Although there are remarkable similarities in the cellular machinery involved in CSR, there are also a number of unique features in each species.
Collapse
Affiliation(s)
- Qiang Pan-Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Ramiro A, Reina San-Martin B, McBride K, Jankovic M, Barreto V, Nussenzweig A, Nussenzweig MC. The Role of Activation‐Induced Deaminase in Antibody Diversification and Chromosome Translocations. Adv Immunol 2007; 94:75-107. [PMID: 17560272 DOI: 10.1016/s0065-2776(06)94003-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although B and T lymphocytes are similar in many respects including diversification of their antigen receptor genes by V(D)J recombination, 95% of all lymphomas diagnosed in the western world are of B-cell origin. Many of these are derived from mature B cells [Kuppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251-262] and display hallmark chromosome translocations involving immunoglobulin genes and a proto-oncogene partner whose expression becomes deregulated as a result of the translocation reaction [Kuppers, R. (2005). Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251-262; Kuppers, R., and Dalla-Favera, R. (2001). Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580-5594]. These translocations are essential to the etiology of B-cell neoplasms. Here we will review how the B-cell specific molecular events required for immunoglobulin class switch recombination are initiated and how they contribute to chromosome translocations in vivo.
Collapse
Affiliation(s)
- Almudena Ramiro
- DNA Hypermutation and Cancer Group, Spanish National Cancer Center (CNIO), Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Conticello SG, Langlois MA, Yang Z, Neuberger MS. DNA deamination in immunity: AID in the context of its APOBEC relatives. Adv Immunol 2007; 94:37-73. [PMID: 17560271 DOI: 10.1016/s0065-2776(06)94002-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation-induced cytidine deaminase (AID)/apolipoprotein B RNA-editing catalytic component (APOBEC) family is a vertebrate-restricted subgrouping of a superfamily of zinc (Zn)-dependent deaminases that has members distributed throughout the biological world. AID and APOBEC2 are the oldest family members with APOBEC1 and the APOBEC3s being later arrivals restricted to placental mammals. Many AID/APOBEC family members exhibit cytidine deaminase activity on polynucleotides, although in different physiological contexts. Here, we examine the AID/APOBEC proteins in the context of the entire Zn-dependent deaminase superfamily. On the basis of secondary structure predictions, we propose that the cytosine and tRNA deaminases are likely to provide better structural paradigms for the AID/APOBEC family than do the cytidine deaminases, to which they have conventionally been compared. These comparisons yield predictions concerning likely polynucleotide-interacting residues in AID/APOBEC3s, predictions that are supported by mutagenesis studies. We also focus on a specific comparison between AID and the APOBEC3s. Both are DNA deaminases that function in immunity and are responsible for the hypermutation of their target substrates. AID functions in the adaptive immune system to diversify antibodies with targeted DNA deamination being central to this function. APOBEC3s function as part of an innate pathway of immunity to retroviruses with targeted DNA deamination being central to their activity in retroviral hypermutation. However, the mechanism by which the APOBEC3s fulfill their function of retroviral restriction remains unresolved.
Collapse
Affiliation(s)
- Silvestro G Conticello
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
29
|
Ichikawa HT, Sowden MP, Torelli AT, Bachl J, Huang P, Dance GSC, Marr SH, Robert J, Wedekind JE, Smith HC, Bottaro A. Structural Phylogenetic Analysis of Activation-Induced Deaminase Function. THE JOURNAL OF IMMUNOLOGY 2006; 177:355-61. [PMID: 16785531 DOI: 10.4049/jimmunol.177.1.355] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In mammals, activation-induced deaminase (AID) initiates somatic hypermutation (SHM) and class switch recombination (CSR) of Ig genes. SHM and CSR activities require separate regions within AID. A chromosome region maintenance 1 (CRM1)-dependent nuclear export signal (NES) at the AID C terminus is necessary for CSR, and has been suggested to associate with CSR-specific cofactors. CSR appeared late in AID evolution, during the emergence of land vertebrates from bony fish, which only display SHM. Here, we show that AID from African clawed frog (Xenopus laevis), but not pufferfish (Takifugu rubripes), can induce CSR in AID-deficient mouse B cells, although both are catalytically active in bacteria and mammalian cell systems, albeit at decreased level. Like mammalian AID, Takifugu AID is actively exported from the cell nucleus by CRM1, and the Takifugu NES can substitute for the equivalent region in human AID, indicating that all the CSR-essential NES motif functions evolutionarily predated CSR activity. We also show that fusion of the Takifugu AID catalytic domain to the entire human noncatalytic domain restores activity in mammalian cells, suggesting that AID features mapping within the noncatalytic domain, but outside the NES, influence its function.
Collapse
Affiliation(s)
- H Travis Ichikawa
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Enzymes that deaminate cytidine to uridine play an important role in a variety of pathways from bacteria to man. Ancestral members of this family were able to deaminate cytidine only in a mononucleotide or nucleoside context. Recently, a family of enzymes has been discovered with the ability to deaminate cytidines on RNA or DNA. The first member of this new family is APOBEC1, which deaminates apolipoprotein B messenger RNA to generate a premature stop codon. APOBEC1 has the conserved active site motif found in Escherichia coli cytidine deaminase. In addition, APOBEC1 has a unique motif containing 2 phenylalanine residues and an insert of 4 amino acid residues across the active site motif. This motif is present in APOBEC family members including activation-induced cytidine deaminase (AID), APOBEC2, and APOBEC3A through APOBEC3G. AID is essential for initiating class-switch recombination, somatic hypermutation, and gene conversion. The APOBEC3 family is unique to primates. APOBEC3G is able to protect cells from human immunodeficiency virus and other viral infections. This function is not unique to APOBEC3G; other APOBEC3 family members also have this ability. Overexpression of enzymes in this family can cause cancer, suggesting that the genes for the APOBEC family of proteins are proto-oncogenes. Recent advances in the understanding of the mechanism of action of this family are summarized in this review.
Collapse
Affiliation(s)
- Naveenan Navaratnam
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London, United Kingdom.
| | | |
Collapse
|
31
|
Yang F, Waldbieser GC, Lobb CJ. The nucleotide targets of somatic mutation and the role of selection in immunoglobulin heavy chains of a teleost fish. THE JOURNAL OF IMMUNOLOGY 2006; 176:1655-67. [PMID: 16424195 DOI: 10.4049/jimmunol.176.3.1655] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sequence analysis of H chain cDNA derived from the spleen of an individual catfish has shown that somatic mutation occurs within both the VH- and JH-encoded regions. Somatic mutation preferentially targets G and C nucleotides with approximately balanced frequencies, resulting in the predominant accumulation of G-to-A and C-to-T substitutions that parallel the activation-induced cytidine deaminase nucleotide exchanges known in mammals. The overall mutation rate of A nucleotides is not significantly different from that expected by sequence-insensitive mutations, and a significant bias exists against mutations occurring in T. Targeting of mutations is dependent upon the sequence of neighboring nucleotides, allowing statistically significant hotspot motifs to be identified. Dinucleotide, trinucleotide, and RGYW analyses showed that mutational targets in catfish are restricted when compared with the spectrum of targets known in mammals. The preferential targets for G and C mutation are the central GC positions in both AGCT and AGCA. The WA motif, recognized as a mammalian hotspot for A mutations, was not a significant target for catfish mutations. The only significant target for A mutations was the terminal position in AGCA. Lastly, comparisons of mutations located in framework region and CDR codons coupled with multinomial distribution studies found no substantial evidence in either independent or clonally related VDJ rearrangements to indicate that somatic mutation coevolved with mechanisms that select B cells based upon nonsynonymous mutations within CDR-encoded regions. These results suggest that the principal role of somatic mutation early in phylogeny was to diversify the repertoire by targeting hotspot motifs preferentially located within CDR-encoded regions.
Collapse
Affiliation(s)
- Feixue Yang
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | |
Collapse
|
32
|
Ohtani M, Miyadai T, Hiroishi S. Identification of genes encoding critical factors regulating B-cell terminal differentiation in torafugu (Takifugu rubripes). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:109-14. [DOI: 10.1016/j.cbd.2005.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 10/08/2005] [Accepted: 10/09/2005] [Indexed: 11/25/2022]
|
33
|
Yadav A, Olaru A, Saltis M, Setren A, Cerny J, Livák F. Identification of a ubiquitously active promoter of the murine activation-induced cytidine deaminase (AICDA) gene. Mol Immunol 2006; 43:529-41. [PMID: 16005067 DOI: 10.1016/j.molimm.2005.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Indexed: 11/16/2022]
Abstract
Somatic hypermutation and class switch recombination of immunoglobulin genes are dependent on the presence of the activation-induced cytidine deaminase (AICDA) enzyme. AICDA expression is restricted to activated B-lymphocytes in the germinal centers. It has been suggested that inappropriate expression of AICDA may lead to genome instability and aberrant affinity maturation of putative autoreactive antibodies. To better understand the molecular control of its tightly regulated expression we have identified the transcription initiation site and an upstream, conserved promoter region of the murine AICDA gene. The promoter lacks a consensus TATA box but contains an initiator (Inr) element and is active in several murine and human cell lines irrespective of endogenous AICDA expression. Mutagenesis analysis identified a functionally important Sp-binding site which binds both Sp1 and Sp3 in vitro in all cell types. Contrary to a recent report, no evidence was found for direct Pax5-binding at this DNA site. We discuss the role of ubiquitous and lymphoid-specific factors in the control of AICDA gene transcription.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, 655 West Baltimore St, BRB 13-017, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
34
|
Wakae K, Magor BG, Saunders H, Nagaoka H, Kawamura A, Kinoshita K, Honjo T, Muramatsu M. Evolution of class switch recombination function in fish activation-induced cytidine deaminase, AID. Int Immunol 2005; 18:41-7. [PMID: 16291656 DOI: 10.1093/intimm/dxh347] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following activation of mammalian B cells, class switch recombination (CSR) and somatic hypermutation (SHM) of the Ig heavy chain (IgH) gene can improve the functions of the expressed antibodies. Activation-induced cytidine deaminase (AID) is the only known B cell-specific protein required for inducing CSR and SHM in mammals. Lower vertebrates have an AID homologue, and there is some evidence of SHM in vivo. However there is no evidence of CSR in the cartilaginous or bony fishes, and this may be due in part to a lack of cis-elements in the IgH gene that are the normal targets of AID-mediated recombination. We have tested whether bony fish (zebrafish and catfish) AID can mediate CSR and SHM in mammalian cells. As expected, ectopic expression of fish AID in mouse fibroblasts resulted in mutations in an introduced SHM reporter gene, indicating that fish AID can mediate SHM. Unexpectedly, expression of fish AID in mouse AID-/- B cells induced surface IgG expression as well as switched transcripts from Ig gene loci, clearly indicating that the fish AID protein can mediate CSR, at least in mouse cells. These results suggest that the AID protein acquired the ability to mediate CSR before the IgH locus evolved the additional exon clusters and switch regions that are the targets of recombination. We discuss how pleiotropic functions of specific domains within the AID protein may have facilitated the early evolution of CSR in lower vertebrates.
Collapse
Affiliation(s)
- Koshou Wakae
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Barreto VM, Pan-Hammarstrom Q, Zhao Y, Hammarstrom L, Misulovin Z, Nussenzweig MC. AID from bony fish catalyzes class switch recombination. ACTA ACUST UNITED AC 2005; 202:733-8. [PMID: 16157688 PMCID: PMC2212934 DOI: 10.1084/jem.20051378] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Class switch recombination was the last of the lymphocyte-specific DNA modification reactions to appear in the evolution of the adaptive immune system. It is absent in cartilaginous and bony fish, and it is common to all tetrapods. Class switching is initiated by activation-induced cytidine deaminase (AID), an enzyme expressed in cartilaginous and bony fish that is also required for somatic hypermutation. Fish AID differs from orthologs found in tetrapods in several respects, including its catalytic domain and carboxy-terminal region, both of which are essential for the switching reaction. To determine whether evolution of class switch recombination required alterations in AID, we assayed AID from Japanese puffer and zebra fish for class-switching activity in mouse B cells. We find that fish AID catalyzes class switch recombination in mammalian B cells. Thus, AID had the potential to catalyze this reaction before the teleost and tetrapod lineages diverged, suggesting that the later appearance of a class-switching reaction was dependent on the evolution of switch regions and multiple constant regions in the IgH locus.
Collapse
Affiliation(s)
- Vasco M Barreto
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
36
|
Mikl MC, Watt IN, Lu M, Reik W, Davies SL, Neuberger MS, Rada C. Mice deficient in APOBEC2 and APOBEC3. Mol Cell Biol 2005; 25:7270-7. [PMID: 16055735 PMCID: PMC1190257 DOI: 10.1128/mcb.25.16.7270-7277.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/12/2005] [Indexed: 01/02/2023] Open
Abstract
The activation-induced deaminase/apolipoprotein B-editing catalytic subunit 1 (AID/APOBEC) family comprises four groups of proteins. Both AID, a lymphoid-specific DNA deaminase that triggers antibody diversification, and APOBEC2 (function unknown) are found in all vertebrates examined. In contrast, APOBEC1, an RNA-editing enzyme in gastrointestinal cells, and APOBEC3 are restricted to mammals. The function of most APOBEC3s, of which there are seven in human but one in mouse, is unknown, although several human APOBEC3s act as host restriction factors that deaminate human immunodeficiency virus type 1 replication intermediates. A more primitive function of APOBEC3s in protecting against the transposition of endogenous retroelements has, however, been proposed. Here, we focus on mouse APOBEC2 (a muscle-specific protein for which we find no evidence of a deaminating activity on cytidine whether as a free nucleotide or in DNA) and mouse APOBEC3 (a DNA deaminase which we find widely expressed but most abundant in lymphoid tissue). Gene-targeting experiments reveal that both APOBEC2 (despite being an ancestral member of the family with no obvious redundancy in muscle) and APOBEC3 (despite its proposed role in restricting endogenous retrotransposition) are inessential for mouse development, survival, or fertility.
Collapse
Affiliation(s)
- Marie C Mikl
- Medical Research Council Laboratory of Molecular Biology, Division of PNAC, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
T-cell and thymic development are processes that have been highly conserved throughout vertebrate evolution. Mammals, birds, reptiles and fish share common molecular signalling pathways that regulate the development of the adaptive immune system. This Review article focuses on defining the similarities and differences between zebrafish and mammalian T-cell immunobiology, and it highlights the advantages of using the zebrafish as a genetic model to uncover mutations that affect T-cell and thymic development. Finally, we summarize the use of the zebrafish as a new model for assessing stem-cell function and for drug discovery.
Collapse
Affiliation(s)
- David M Langenau
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, 1 Blackfan Circle, Karp Building, Seventh floor, Boston, Massachusetts 02115-5713, USA
| | | |
Collapse
|
38
|
Abstract
This review discusses evolution of the process of Ig heavy chain class switching, relating it to the first appearance of somatic hypermutation (SHM) of variable region genes. First, we discuss recent findings on the mechanism of class switch recombination (CSR) in mice and humans, and then review the mechanisms of expression of Ig heavy chain isotypes from fishes to mammals. Importantly, activation-induced cytidine deaminase (AID), which is essential for CSR and somatic hypermutation, is found in fishes. Although at least some fishes are likely to undergo SHM, CSR is highly unlikely to occur in this group. We discuss the first appearance of CSR in amphibians and how it differs in birds and mammals.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA 01655-0122, USA.
| | | |
Collapse
|
39
|
Danilova N, Bussmann J, Jekosch K, Steiner LA. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat Immunol 2005; 6:295-302. [PMID: 15685175 DOI: 10.1038/ni1166] [Citation(s) in RCA: 311] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/06/2005] [Indexed: 12/28/2022]
Abstract
The only immunoglobulin heavy-chain classes known so far in teleosts have been mu and delta. We identify here a previously unknown class, immunoglobulin zeta, expressed in zebrafish and other teleosts. In the zebrafish heavy-chain locus, variable (V) gene segments lie upstream of two tandem diversity, joining and constant (DJC) clusters, resembling the mouse T cell receptor alpha (Tcra) and delta (Tcrd) locus. V genes rearrange to (DJC)(zeta) or to (DJC)(mu) without evidence of switch rearrangement. The zebrafish immunoglobulin zeta gene (ighz) and mouse Tcrd, which are proximal to the V gene array, are expressed earlier in development. In adults, ighz was expressed only in kidney and thymus, which are primary lymphoid organs in teleosts. This additional class adds complexity to the immunoglobulin repertoire and raises questions concerning the evolution of immunoglobulins and the regulation of the differential expression of ighz and ighm.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | | | | | | |
Collapse
|
40
|
Conticello SG, Thomas CJF, Petersen-Mahrt SK, Neuberger MS. Evolution of the AID/APOBEC Family of Polynucleotide (Deoxy)cytidine Deaminases. Mol Biol Evol 2004; 22:367-77. [PMID: 15496550 DOI: 10.1093/molbev/msi026] [Citation(s) in RCA: 371] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The AID/APOBEC family (comprising AID, APOBEC1, APOBEC2, and APOBEC3 subgroups) contains members that can deaminate cytidine in RNA and/or DNA and exhibit diverse physiological functions (AID and APOBEC3 deaminating DNA to trigger pathways in adaptive and innate immunity; APOBEC1 mediating apolipoprotein B RNA editing). The founder member APOBEC1, which has been used as a paradigm, is an RNA-editing enzyme with proposed antecedents in yeast. Here, we have undertaken phylogenetic analysis to glean insight into the primary physiological function of the AID/APOBEC family. We find that although the family forms part of a larger superfamily of deaminases distributed throughout the biological world, the AID/APOBEC family itself is restricted to vertebrates with homologs of AID (a DNA deaminase that triggers antibody gene diversification) and of APOBEC2 (unknown function) identifiable in sequence databases from bony fish, birds, amphibians, and mammals. The cloning of an AID homolog from dogfish reveals that AID extends at least as far back as cartilaginous fish. Like mammalian AID, the pufferfish AID homolog can trigger deoxycytidine deamination in DNA but, consistent with its cold-blooded origin, is thermolabile. The fine specificity of its mutator activity and the biased codon usage in pufferfish IgV genes appear broadly similar to that of their mammalian counterparts, consistent with a coevolution of the antibody mutator and its substrate for the optimal targeting of somatic mutation during antibody maturation. By contrast, APOBEC1 and APOBEC3 are later evolutionary arrivals with orthologs not found in pufferfish (although synteny with mammals is maintained in respect of the flanking loci). We conclude that AID and APOBEC2 are likely to be the ancestral members of the AID/APOBEC family (going back to the beginning of vertebrate speciation) with both APOBEC1 and APOBEC3 being mammal-specific derivatives of AID and a complex set of domain shuffling underpinning the expansion and evolution of the primate APOBEC3s.
Collapse
|