1
|
Jimbo M, Kuniya N, Fujimaki Y, Yoshikawa D, Kamiya N, Amano H, Yasumoto K, Yuyama I, Suzuki G, Harii S. A Lectin AtTL-2 Obtained from Acropora aff. tenuis Induced Stimualation of Phagocytosis of Symbiodiniaceae. Microorganisms 2025; 13:1095. [PMID: 40431268 PMCID: PMC12114434 DOI: 10.3390/microorganisms13051095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/21/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
The coral Acropora aff. tenuis selectively acquired various zooxanthella (Symbiodiniaceae) strains, and one of the selective factors was lectins. The A. aff. tenuis lectin AtTL-2 was identified as a factor for Symbiodiniaceae acquisition by the coral, but the mechanism is not fully known. The acquisition process involves three steps: chemotaxis, entry into the coral, and phagocytosis. In this study, we examined the function of AtTL-2 in more detail. Immunohistochemistry analysis was performed to examine the distribution of AtTL-2. The effect of AtTL-2 on the number of Symbiodiniaceae acquired was measured in A. aff. tenuis juvenile polyps with and without AtTL-2 siRNA treatment. The effect of AtTL-2 fixation was examined by monitoring the acquisition of AtTL-2-fixed beads by A. aff. tenuis. AtTL-2 was distributed in nematocysts, spirocysts, and around Symbiodiniaceae. AtTL-2 siRNA inhibited the acquisition of Symbiodiniaceae by juvenile polyps. Fixation of AtTL-2 promoted bead acquisition by juvenile polyps more than fixation of bovine serum albumin (BSA). Moreover, more AtTL-2-fixed beads were bound to the Symbiodiniaceae-enclosed cells than BSA-fixed beads. AtTL-2 is released from spirocysts and binds to Symbiodiniaceae. AtTL-2 then promotes the phagocytosis of Symbiodiniaceae by gastrodermal cells of A. aff. tenuis.
Collapse
Affiliation(s)
- Mitsuru Jimbo
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Kanagawa, Japan (H.A.); (K.Y.)
| | - Nami Kuniya
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Kanagawa, Japan (H.A.); (K.Y.)
| | - Yuna Fujimaki
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Kanagawa, Japan (H.A.); (K.Y.)
| | - Daiki Yoshikawa
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Kanagawa, Japan (H.A.); (K.Y.)
| | - Naoki Kamiya
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Kanagawa, Japan (H.A.); (K.Y.)
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Kanagawa, Japan (H.A.); (K.Y.)
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Kanagawa, Japan (H.A.); (K.Y.)
| | - Ikuko Yuyama
- Graduate School of Science and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Yamaguchi, Japan;
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 148, Fukaiohta, Ishigaki 907-0451, Okinawa, Japan;
| | - Saki Harii
- Tropical Biosphere Research Center, University of the Ryukyus, 3422, Sesoko, Motobu 905-0227, Okinawa, Japan;
| |
Collapse
|
2
|
Tortorelli G, Rosset SL, Sullivan CES, Woo S, Johnston EC, Walker NS, Hancock JR, Caruso C, Varela AC, Hughes K, Martin C, Quinn RA, Drury C. Heat-induced stress modulates cell surface glycans and membrane lipids of coral symbionts. THE ISME JOURNAL 2025; 19:wraf073. [PMID: 40247696 PMCID: PMC12077390 DOI: 10.1093/ismejo/wraf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/31/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The susceptibility of corals to environmental stress is determined by complex interactions between host genetic variation and the Symbiodiniaceae family community. We exposed genotypes of Montipora capitata hosting primarily Cladocopium or Durusdinium symbionts to ambient conditions and an 8-day heat stress. Symbionts' cell surface glycan composition differed between genera and was significantly affected by temperature and oxidative stress. The metabolic profile of coral holobionts was primarily shaped by symbionts identity, but was also strongly responsive to oxidative stress. At peak temperature stress, betaine lipids in Cladocopium were remodeled to more closely resemble the abundance and saturation state of Durusdinium symbionts, which paralleled a larger metabolic shift in Cladocopium. Exploring how Symbiodiniaceae members regulate stress and host-symbiont affinity helps identify the traits contributing to coral resilience under climate change.
Collapse
Affiliation(s)
- Giada Tortorelli
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Sabrina L Rosset
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, United States
| | - Clarisse E S Sullivan
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Sarah Woo
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Erika C Johnston
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Nia Symone Walker
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Joshua R Hancock
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Carlo Caruso
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Alyssa C Varela
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Kira Hughes
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, United States
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, United States
| | - Crawford Drury
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| |
Collapse
|
3
|
Liang H, Pan CG, Peng FJ, Hu JJ, Zhu RG, Zhou CY, Liu ZZ, Yu K. Integrative transcriptomic analysis reveals a broad range of toxic effects of triclosan on coral Porites lutea. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136033. [PMID: 39368358 DOI: 10.1016/j.jhazmat.2024.136033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Triclosan (TCS) is an antimicrobial agent commonly used in personal care products. However, little is known about its toxicity to corals. Here, we examined the acute toxic effects (96 h) of TCS at different levels to the coral Porites lutea. Results showed that the bioaccumulation factors (BAFs) of TCS in Porites lutea decreased with increasing TCS exposure levels. Exposure to TCS at the level up to 100 μg/L did not induce bleaching of Porites lutea. However, by the end of the experiment, both the density and chlorophyll a content of the symbiotic zooxanthellae were 19-52 % and 19.9-45.6 % lower in the TCS treatment groups than in the control, respectively. For the coral host, its total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT) activities were all significantly lower in the TCS treatment groups than the control. Transcriptome analysis showed that 942 and 1077 differentially expressed genes (DEGs) were identified in the coral host in the 0.5 and 100 μg/L TCS treatment groups, respectively. Meanwhile, TCS can interfere with pathways related to immune system and reproductive system in coral host. Overall, our results suggest that environmentally relevant concentrations of TCS can impact both the coral host and the symbiotic zooxanthellae.
Collapse
Affiliation(s)
- Hao Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Rong-Gui Zhu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chao-Yang Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhen-Zhu Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Bisanti L, La Corte C, Dara M, Bertini F, Parisi MG, Chemello R, Cammarata M, Parrinello D. Global warming-related response after bacterial challenge in Astroides calycularis, a Mediterranean thermophilic coral. Sci Rep 2024; 14:8495. [PMID: 38605161 PMCID: PMC11009343 DOI: 10.1038/s41598-024-58652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
A worldwide increase in the prevalence of coral diseases and mortality has been linked to ocean warming due to changes in coral-associated bacterial communities, pathogen virulence, and immune system function. In the Mediterranean basin, the worrying upward temperature trend has already caused recurrent mass mortality events in recent decades. To evaluate how elevated seawater temperatures affect the immune response of a thermophilic coral species, colonies of Astroides calycularis were exposed to environmental (23 °C) or elevated (28 °C) temperatures, and subsequently challenged with bacterial lipopolysaccharides (LPS). Using immunolabeling with specific antibodies, we detected the production of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB), molecules involved in coral immune responses, and heat shock protein 70 (HSP70) activity, involved in general responses to thermal stress. A histological approach allowed us to characterize the tissue sites of activation (epithelium and/or gastroderm) under different experimental conditions. The activity patterns of the examined markers after 6 h of LPS stimulation revealed an up-modulation at environmental temperature. Under warmer conditions plus LPS-challenge, TLR4-NF-kB activation was almost completely suppressed, while constituent elevated values were recorded under thermal stress only. An HSP70 up-regulation appeared in both treatments at elevated temperature, with a significantly higher activation in LPS-challenge colonies. Such an approach is useful for further understanding the molecular pathogen-defense mechanisms in corals in order to disentangle the complex interactive effects on the health of these ecologically relevant organisms related to global climate change.
Collapse
Affiliation(s)
- L Bisanti
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - C La Corte
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Dara
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - F Bertini
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M G Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - R Chemello
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - D Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
5
|
Morgan MB, Williams J, Breeze B, English N, Higdon N, Onthank K, Qualley DF. Synergistic and antagonistic interactions of oxybenzone and ocean acidification: new insight into vulnerable cellular processes in non-calcifying anthozoans. Front Physiol 2024; 14:1332446. [PMID: 38274044 PMCID: PMC10808722 DOI: 10.3389/fphys.2023.1332446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Cnidarians face significant threats from ocean acidification (OA) and anthropogenic pollutants such as oxybenzone (BP-3). The convergence of threats from multiple stressors is an important area to investigate because of potential significant synergistic or antagonistic interactions. Real-time quantitative PCR was performed to characterize the expression profiles of twenty-two genes of interest (GOI) in sea anemones (Exaiptasia diaphana) exposed to one of four treatments: 1) 96 h of OA conditions followed by a 4 h exposure to 20 ppb BP-3; 2) Exposure to 4 h 20 ppb BP-3 without 96 h of OA; 3) Exposure to 96 h of OA alone; or 4) laboratory conditions with no exposure to BP-3 and/or OA. These 22 GOIs represent cellular processes associated with proton-dependent transport, sodium-dependent transport, metal cation binding/transport, extracellular matrix, amino acid metabolism/transport, immunity, and/or steroidogenesis. These 22 GOIs provide new insight into vulnerable cellular processes in non-calcifying anthozoans exposed to OA and BP-3. Expression profiles were categorized as synergistic, antagonistic, or additive of BP-3 in the presence of OA. Two GOIs were synergistic. Fifteen GOIs were antagonistic and the remaining five GOIs were additive in response to BP-3 in acidified seawater. A subset of these GOIs appear to be candidate biomarkers for future in situ investigations. In human health, proton-dependent monocarboxylate transporters (MCTs) are promising pharmacological targets and recognized as potential biomarkers. By comparison, these same MCTs appear to be targets of xenobiotic chemical pollutants in cnidarian physiology. In the presence of BP-3, a network of collagen synthesis genes are upregulated and antagonistic in their expression profiles. Cytochrome b561 is a critical protein required for collagen synthesis and in silico modeling demonstrates BP-3 binds in the pocket of cytochrome b561. Understanding the underlying molecular mechanisms of "drug-like" compounds such as BP-3 may lead to a more comprehensive interpretation of transcriptional expression profiles. The collective antagonistic responses of GOIs associated with collagen synthesis strongly suggests these GOIs should be considered candidate biomarkers of effect. GOIs with synergistic and additive responses represent candidate biomarkers of exposure. Results show the effects of OA and BP-3 are interactive with respect to their impact on cnidarians. This investigation offers mechanistic data that supports the expression profiles and underpins higher order physiological responses.
Collapse
Affiliation(s)
- Michael B. Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Barrett Breeze
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Nicholas English
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Nathaniel Higdon
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Kirt Onthank
- Department of Biology, Walla Walla University, College Place, WA, United States
| | - Dominic F. Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| |
Collapse
|
6
|
Jacobovitz MR, Hambleton EA, Guse A. Unlocking the Complex Cell Biology of Coral-Dinoflagellate Symbiosis: A Model Systems Approach. Annu Rev Genet 2023; 57:411-434. [PMID: 37722685 DOI: 10.1146/annurev-genet-072320-125436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Symbiotic interactions occur in all domains of life, providing organisms with resources to adapt to new habitats. A prime example is the endosymbiosis between corals and photosynthetic dinoflagellates. Eukaryotic dinoflagellate symbionts reside inside coral cells and transfer essential nutrients to their hosts, driving the productivity of the most biodiverse marine ecosystem. Recent advances in molecular and genomic characterization have revealed symbiosis-specific genes and mechanisms shared among symbiotic cnidarians. In this review, we focus on the cellular and molecular processes that underpin the interaction between symbiont and host. We discuss symbiont acquisition via phagocytosis, modulation of host innate immunity, symbiont integration into host cell metabolism, and nutrient exchange as a fundamental aspect of stable symbiotic associations. We emphasize the importance of using model systems to dissect the cellular complexity of endosymbiosis, which ultimately serves as the basis for understanding its ecology and capacity to adapt in the face of climate change.
Collapse
Affiliation(s)
- Marie R Jacobovitz
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Elizabeth A Hambleton
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria;
| | - Annika Guse
- Faculty of Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany;
| |
Collapse
|
7
|
Stenvers VI, Hauss H, Bayer T, Havermans C, Hentschel U, Schmittmann L, Sweetman AK, Hoving HJT. Experimental mining plumes and ocean warming trigger stress in a deep pelagic jellyfish. Nat Commun 2023; 14:7352. [PMID: 37990021 PMCID: PMC10663454 DOI: 10.1038/s41467-023-43023-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
The deep pelagic ocean is increasingly subjected to human-induced environmental change. While pelagic animals provide important ecosystem functions including climate regulation, species-specific responses to stressors remain poorly documented. Here, we investigate the effects of simulated ocean warming and sediment plumes on the cosmopolitan deep-sea jellyfish Periphylla periphylla, combining insights gained from physiology, gene expression and changes in associated microbiota. Metabolic demand was elevated following a 4 °C rise in temperature, promoting genes related to innate immunity but suppressing aerobic respiration. Suspended sediment plumes provoked the most acute and energetically costly response through the production of excess mucus (at ≥17 mg L-1), while inducing genes related to aerobic respiration and wound repair (at ≥167 mg L-1). Microbial symbionts appeared to be unaffected by both stressors, with mucus production maintaining microbial community composition. If these responses are representative for other gelatinous fauna, an abundant component of pelagic ecosystems, the effects of planned exploitation of seafloor resources may impair deep pelagic biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Vanessa I Stenvers
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany.
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, P.O. Box 37012, USA.
| | - Helena Hauss
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
- Norwegian Research Centre AS (NORCE), Stavanger, Norway
| | - Till Bayer
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Charlotte Havermans
- HYIG ARJEL, Functional Ecology, Alfred Wegner Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Ute Hentschel
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Lara Schmittmann
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Andrew K Sweetman
- Seafloor Ecology and Biogeochemistry Research Group, Scottish Association for Marine Science (SAMS), Oban, Scotland, UK
| | - Henk-Jan T Hoving
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
| |
Collapse
|
8
|
Leiva C, Pérez-Portela R, Lemer S. Genomic signatures suggesting adaptation to ocean acidification in a coral holobiont from volcanic CO 2 seeps. Commun Biol 2023; 6:769. [PMID: 37481685 PMCID: PMC10363134 DOI: 10.1038/s42003-023-05103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023] Open
Abstract
Ocean acidification, caused by anthropogenic CO2 emissions, is predicted to have major consequences for reef-building corals, jeopardizing the scaffolding of the most biodiverse marine habitats. However, whether corals can adapt to ocean acidification and how remains unclear. We addressed these questions by re-examining transcriptome and genome data of Acropora millepora coral holobionts from volcanic CO2 seeps with end-of-century pH levels. We show that adaptation to ocean acidification is a wholistic process involving the three main compartments of the coral holobiont. We identified 441 coral host candidate adaptive genes involved in calcification, response to acidification, and symbiosis; population genetic differentiation in dinoflagellate photosymbionts; and consistent transcriptional microbiome activity despite microbial community shifts. Coral holobionts from natural analogues to future ocean conditions harbor beneficial genetic variants with far-reaching rapid adaptation potential. In the face of climate change, these populations require immediate conservation strategies as they could become key to coral reef survival.
Collapse
Affiliation(s)
- Carlos Leiva
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA.
| | - Rocío Pérez-Portela
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sarah Lemer
- University of Guam Marine Laboratory, 303 University Drive, 96923, Mangilao, Guam, USA
| |
Collapse
|
9
|
Noel B, Denoeud F, Rouan A, Buitrago-López C, Capasso L, Poulain J, Boissin E, Pousse M, Da Silva C, Couloux A, Armstrong E, Carradec Q, Cruaud C, Labadie K, Lê-Hoang J, Tambutté S, Barbe V, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores JM, Forcioli D, Furla P, Galand PE, Lombard F, Pesant S, Reynaud S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Allemand D, Planes S, Gilson E, Zoccola D, Wincker P, Voolstra CR, Aury JM. Pervasive tandem duplications and convergent evolution shape coral genomes. Genome Biol 2023; 24:123. [PMID: 37264421 DOI: 10.1186/s13059-023-02960-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species. RESULTS In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf. effusa, with vastly improved contiguity that allows us to study the functional organization of these genomes. We annotate their gene catalog and report a relatively higher gene number than that found in other public coral genome sequences, 43,000 and 32,000 genes, respectively. This finding is explained by a high number of tandemly duplicated genes, accounting for almost a third of the predicted genes. We show that these duplicated genes originate from multiple and distinct duplication events throughout the coral lineage. They contribute to the amplification of gene families, mostly related to the immune system and disease resistance, which we suggest to be functionally linked to coral host resilience. CONCLUSIONS At large, we show the importance of duplicated genes to inform the biology of reef-building corals and provide novel avenues to understand and screen for differences in stress resilience.
Collapse
Affiliation(s)
- Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Alice Rouan
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | | | - Laura Capasso
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
- Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Emilie Boissin
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Mélanie Pousse
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Eric Armstrong
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Corinne Cruaud
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Julie Lê-Hoang
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Sylvie Tambutté
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Fondation Tara Océan, Base Tara, 8 Rue de Prague, 75 012, Paris, France
| | | | - Guillaume Iwankow
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Sarah Romac
- AD2M, UMR 7144, Sorbonne Université, CNRS, Station Biologique de Roscoff, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- AD2M, UMR 7144, Sorbonne Université, CNRS, Station Biologique de Roscoff, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire Des Sciences du Climat Et de L'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-Sur-Yvette, 91191, France
| | - J Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Pierre E Galand
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Institut de La Mer de Villefranche Sur Mer, Sorbonne Université, Laboratoire d'Océanographie de Villefranche, Villefranche-Sur-Mer, 06230, France
- Institut Universitaire de France, Paris, 75231, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Fondation Tara Océan, Base Tara, 8 Rue de Prague, 75 012, Paris, France
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, 97331, USA
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Department of Human Genetics, CHU Nice, Nice, France
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | | | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France.
| |
Collapse
|
10
|
Ashley IA, Kitchen SA, Gorman LM, Grossman AR, Oakley CA, Suggett DJ, Weis VM, Rosset SL, Davy SK. Genomic conservation and putative downstream functionality of the phosphatidylinositol signalling pathway in the cnidarian-dinoflagellate symbiosis. Front Microbiol 2023; 13:1094255. [PMID: 36777026 PMCID: PMC9909359 DOI: 10.3389/fmicb.2022.1094255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.
Collapse
Affiliation(s)
- Immy A. Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sheila A. Kitchen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Lucy M. Gorman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA, United States
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David J. Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Sabrina L. Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Simon K. Davy,
| |
Collapse
|
11
|
Changsut I, Womack HR, Shickle A, Sharp KH, Fuess LE. Variation in symbiont density is linked to changes in constitutive immunity in the facultatively symbiotic coral, Astrangia poculata. Biol Lett 2022; 18:20220273. [PMID: 36382375 PMCID: PMC9667134 DOI: 10.1098/rsbl.2022.0273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Scleractinian corals are essential ecosystem engineers, forming the basis of coral reef ecosystems. However, these organisms are in decline globally, in part due to rising disease prevalence. Most corals are dependent on symbiotic interactions with single-celled algae from the family Symbiodiniaceae to meet their nutritional needs, however, suppression of host immunity may be essential to this relationship. To explore immunological consequences of algal symbioses in scleractinian corals, we investigated constitutive immune activity in the facultatively symbiotic coral, Astrangia poculata. We compared immune metrics (melanin synthesis, antioxidant production and antibacterial activity) between coral colonies of varying symbiont density. Symbiont density was positively correlated to both antioxidant activity and melanin concentration, likely as a result of the dual roles of these pathways in immunity and symbiosis regulation. Our results confirm the complex nature of relationships between algal symbiosis and host immunity and highlight the need for nuanced approaches when considering these relationships.
Collapse
|
12
|
Kitchen SA, Jiang D, Harii S, Satoh N, Weis VM, Shinzato C. Coral larvae suppress heat stress response during the onset of symbiosis decreasing their odds of survival. Mol Ecol 2022; 31:5813-5830. [PMID: 36168983 DOI: 10.1111/mec.16708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023]
Abstract
The endosymbiosis between most corals and their photosynthetic dinoflagellate partners begins early in the host life history, when corals are larvae or juvenile polyps. The capacity of coral larvae to buffer climate-induced stress while in the process of symbiont acquisition could come with physiological trade-offs that alter behaviour, development, settlement and survivorship. Here we examined the joint effects of thermal stress and symbiosis onset on colonization dynamics, survival, metamorphosis and host gene expression of Acropora digitifera larvae. We found that thermal stress decreased symbiont colonization of hosts by 50% and symbiont density by 98.5% over 2 weeks. Temperature and colonization also influenced larval survival and metamorphosis in an additive manner, where colonized larvae fared worse or prematurely metamorphosed more often than noncolonized larvae under thermal stress. Transcriptomic responses to colonization and thermal stress treatments were largely independent, while the interaction of these treatments revealed contrasting expression profiles of genes that function in the stress response, immunity, inflammation and cell cycle regulation. The combined treatment either cancelled or lowered the magnitude of expression of heat-stress responsive genes in the presence of symbionts, revealing a physiological cost to acquiring symbionts at the larval stage with elevated temperatures. In addition, host immune suppression, a hallmark of symbiosis onset under ambient temperature, turned to immune activation under heat stress. Thus, by integrating the physical environment and biotic pressures that mediate presettlement event in corals, our results suggest that colonization may hinder larval survival and recruitment under projected climate scenarios.
Collapse
Affiliation(s)
- Sheila A Kitchen
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Duo Jiang
- Statistics Department, Oregon State University, Corvallis, Oregon, USA
| | - Saki Harii
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
13
|
Harman TE, Barshis DJ, Hauff Salas B, Hamsher SE, Strychar KB. Indications of symbiotic state influencing melanin-synthesis immune response in the facultative coral Astrangia poculata. DISEASES OF AQUATIC ORGANISMS 2022; 151:63-74. [PMID: 36173117 DOI: 10.3354/dao03695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increased ocean warming is causing detrimental impacts to tropical corals worldwide. Compounding the effects of heat stress, incidences of tropical coral disease have risen concurrently. While tropical coral responses to these impacts are well studied, temperate coral responses remain largely unknown. The present study focused on the immune response of the temperate coral Astrangia poculata to increased temperature and disease. Symbiotic and aposymbiotic A. poculata were collected from Narragansett Bay, Rhode Island (USA) in summer and winter seasons and exposed to control (18°C) versus elevated temperatures (26°C) in the presence of an immune stimulant (i.e. lipopolysaccharide) for a 12 h period. Prophenoloxidase (PPO) and melanin concentrations from the melanin-synthesis pathway were assessed via spectrophotometry to examine immune responses. While PPO measurements were higher on average in symbiotic corals compared with aposymbiotic corals, temperature and season did not significantly affect this metric. Melanin was significantly higher in symbiotic compared to aposymbiotic corals, implying that symbiotic state may be important for melanin-synthesis response. Conversely, melanin as an immune response may be of less importance in aposymbiotic A. poculata due to the potential capacity of other immune responses in this species. In addition, differences in resource allocation to immune investment as a result of symbiosis is plausible given melanin production observed within the present study. However, thermal stressors may reduce the overall influence of symbiosis on melanin production. Future studies should build upon these results to further understand the entirety of innate immunity responses in temperate coral species.
Collapse
Affiliation(s)
- Tyler E Harman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | | | | | | | | |
Collapse
|
14
|
Dimos B, Emery M, Beavers K, MacKnight N, Brandt M, Demuth J, Mydlarz L. Adaptive Variation in Homolog Number Within Transcript Families Promotes Expression Divergence in Reef-Building Coral. Mol Ecol 2022; 31:2594-2610. [PMID: 35229964 DOI: 10.1111/mec.16414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
Gene expression, especially in multi-species experiments, is used to gain insight into the genetic basis of how organisms adapt and respond to changing environments. However, evolutionary processes which can influence gene expression patterns between species such as the presence of paralogs which arise from gene duplication events are rarely accounted for. Paralogous transcripts can alter the transcriptional output of a gene and thus exclusion of these transcripts can obscure important biological differences between species. To address this issue, we investigated how differences in transcript family size is associated with divergent gene expression patterns in five species of Caribbean reef-building corals. We demonstrate that transcript families that are rapidly evolving in terms of size have increased levels of expression divergence. Additionally, these rapidly evolving transcript families are enriched for multiple biological processes, with genes involved in the coral innate immune system demonstrating pronounced variation in homolog number between species. Overall, this investigation demonstrates the importance of incorporating paralogous transcripts when comparing gene expression across species by influencing both transcriptional output and the number of transcripts within biological processes. As this investigation was based on transcriptome assemblies, additional insights into the relationship between gene duplications and expression patterns will likely emergence once more genome assemblies are available for study.
Collapse
Affiliation(s)
- Bradford Dimos
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Madison Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Kelsey Beavers
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Nicholas MacKnight
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Marilyn Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, US Virgin Islands, 00802, USA
| | - Jeffery Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Laura Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
15
|
Levy S, Mass T. The Skeleton and Biomineralization Mechanism as Part of the Innate Immune System of Stony Corals. Front Immunol 2022; 13:850338. [PMID: 35281045 PMCID: PMC8913943 DOI: 10.3389/fimmu.2022.850338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Stony corals are among the most important calcifiers in the marine ecosystem as they form the coral reefs. Coral reefs have huge ecological importance as they constitute the most diverse marine ecosystem, providing a home to roughly a quarter of all marine species. In recent years, many studies have shed light on the mechanisms underlying the biomineralization processes in corals, as characterizing the calicoblast cell layer and genes involved in the formation of the calcium carbonate skeleton. In addition, considerable advancements have been made in the research field of coral immunity as characterizing genes involved in the immune response to pathogens and stressors, and the revealing of specialized immune cells, including their gene expression profile and phagocytosis capabilities. Yet, these two fields of corals research have never been integrated. Here, we discuss how the coral skeleton plays a role as the first line of defense. We integrate the knowledge from both fields and highlight genes and proteins that are related to biomineralization and might be involved in the innate immune response and help the coral deal with pathogens that penetrate its skeleton. In many organisms, the immune system has been tied to calcification. In humans, immune factors enhance ectopic calcification which causes severe diseases. Further investigation of coral immune genes which are involved in skeleton defense as well as in biomineralization might shed light on our understanding of the correlation and the interaction of both processes as well as reveal novel comprehension of how immune factors enhance calcification.
Collapse
Affiliation(s)
- Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| |
Collapse
|
16
|
Larval transcriptomic responses of a stony coral, Acropora tenuis, during initial contact with the native symbiont, Symbiodinium microadriaticum. Sci Rep 2022; 12:2854. [PMID: 35190599 PMCID: PMC8861010 DOI: 10.1038/s41598-022-06822-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Although numerous dinoflagellate species (Family Symbiodiniaceae) are present in coral reef environments, Acropora corals tend to select a single species, Symbiodinium microadriaticum, in early life stages, even though this species is rarely found in mature colonies. In order to identify molecular mechanisms involved in initial contact with native symbionts, we analyzed transcriptomic responses of Acropora tenuis larvae at 1, 3, 6, 12, and 24 h after their first contact with S. microadriaticum, as well as with non-native symbionts, including the non-symbiotic S. natans and the occasional symbiont, S. tridacnidorum. Some gene expression changes were detected in larvae inoculated with non-native symbionts at 1 h post-inoculation, but those returned to baseline levels afterward. In contrast, when larvae were exposed to native symbionts, we found that the number of differentially expressed genes gradually increased in relation to inoculation time. As a specific response to native symbionts, upregulation of pattern recognition receptor-like and transporter genes, and suppression of cellular function genes related to immunity and apoptosis, were exclusively observed. These findings indicate that coral larvae recognize differences between symbionts, and when the appropriate symbionts infect, they coordinate gene expression to establish stable mutualism.
Collapse
|
17
|
Morgan MB, Ross J, Ellwanger J, Phrommala RM, Youngblood H, Qualley D, Williams J. Sea Anemones Responding to Sex Hormones, Oxybenzone, and Benzyl Butyl Phthalate: Transcriptional Profiling and in Silico Modelling Provide Clues to Decipher Endocrine Disruption in Cnidarians. Front Genet 2022; 12:793306. [PMID: 35087572 PMCID: PMC8787064 DOI: 10.3389/fgene.2021.793306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 01/09/2023] Open
Abstract
Endocrine disruption is suspected in cnidarians, but questions remain how occurs. Steroid sex hormones are detected in corals and sea anemones even though these animals do not have estrogen receptors and their repertoire of steroidogenic enzymes appears to be incomplete. Pathways associated with sex hormone biosynthesis and sterol signaling are an understudied area in cnidarian biology. The objective of this study was to identify a suite of genes that can be linked to exposure of endocrine disruptors. Exaiptasia diaphana were exposed to nominal 20ppb concentrations of estradiol (E2), testosterone (T), cholesterol, oxybenzone (BP-3), or benzyl butyl phthalate (BBP) for 4 h. Eleven genes of interest (GOIs) were chosen from a previously generated EST library. The GOIs are 17β-hydroxysteroid dehydrogenases type 14 (17β HSD14) and type 12 (17β HSD12), Niemann-Pick C type 2 (NPC2), Equistatin (EI), Complement component C3 (C3), Cathepsin L (CTSL), Patched domain-containing protein 3 (PTCH3), Smoothened (SMO), Desert Hedgehog (DHH), Zinc finger protein GLI2 (GLI2), and Vitellogenin (VTG). These GOIs were selected because of functional associations with steroid hormone biosynthesis; cholesterol binding/transport; immunity; phagocytosis; or Hedgehog signaling. Quantitative Real-Time PCR quantified expression of GOIs. In silico modelling utilized protein structures from Protein Data Bank as well as creating protein structures with SWISS-MODEL. Results show transcription of steroidogenic enzymes, and cholesterol binding/transport proteins have similar transcription profiles for E2, T, and cholesterol treatments, but different profiles when BP-3 or BBP is present. C3 expression can differentiate between exposures to BP-3 versus BBP as well as exposure to cholesterol versus sex hormones. In silico modelling revealed all ligands (E2, T, cholesterol, BBP, and BP-3) have favorable binding affinities with 17β HSD14, 17β HSD12, NPC2, SMO, and PTCH proteins. VTG expression was down-regulated in the sterol treatments but up-regulated in BP-3 and BBP treatments. In summary, these eleven GOIs collectively generate unique transcriptional profiles capable of discriminating between the five chemical exposures used in this investigation. This suite of GOIs are candidate biomarkers for detecting transcriptional changes in steroidogenesis, gametogenesis, sterol transport, and Hedgehog signaling. Detection of disruptions in these pathways offers new insight into endocrine disruption in cnidarians.
Collapse
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - James Ross
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph Ellwanger
- Department of Biology, Berry College, Mount Berry, GA, United States
| | | | - Hannah Youngblood
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| |
Collapse
|
18
|
Decreased Photosynthetic Efficiency in Response to Site Translocation and Elevated Temperature Is Mitigated with LPS Exposure in Porites astreoides Symbionts. WATER 2022. [DOI: 10.3390/w14030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Coral reefs have been detrimentally impacted causing health issues due to elevated ocean temperatures as a result of increased greenhouse gases. Extreme temperatures have also exacerbated coral diseases in tropical reef environments. Numerous studies have outlined the impacts of thermal stress and disease on coral organisms, as well as understanding the influence of site-based characteristics on coral physiology. However, few have discussed the interaction of all three. Laboratory out-planting restoration projects have been of importance throughout impacted areas such as the Caribbean and southern Florida in order to increase coral cover in these areas. This study analyzes photosynthetic efficiency of Porites astreoides from the lower Florida Keys after a two-year reciprocal transplant study at inshore (Birthday reef) and offshore (Acer24 reef) sites to understand acclimation capacity of this species. Laboratory experiments subjected these colonies to one of three treatments: control conditions, increases in temperature, and increases in temperature plus exposure to an immune stimulant (lipopolysaccharide (LPS)) to determine their influence on photosynthetic efficiency and how stress events impact these measurements. In addition, this study is a continuation of previous studies from this group. Here, we aim to understand if these results are static or if an acclimation capacity could be found. Overall, we observed site-specific influences from the Acer24 reef site, which had significant decreases in photosynthetic efficiencies in 32 °C treatments compared to Birthday reef colonies. We suggest that high irradiance and lack of an annual recovery period from the Acer24 site exposes these colonies to significant photoinhibition. In addition, we observed significant increases in photosynthetic efficiencies from LPS exposure. We suggest host-derived antioxidants can mitigate the negative impacts of increased thermal stress. Further research is required to understand the full complexity of host immunity and symbiont photosynthetic interactions.
Collapse
|
19
|
Traylor-Knowles N, Emery M. Analysis of Spatial Gene Expression at the Cellular Level in Stony Corals. Methods Mol Biol 2022; 2450:359-371. [PMID: 35359318 PMCID: PMC9761507 DOI: 10.1007/978-1-0716-2172-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scleractinians, or stony corals, are colonial animals that possess a high regenerative capacity and a highly diverse innate immune system. As such they present the opportunity to investigate the interconnection between regeneration and immunity in a colonial animal. Understanding the relationship between regeneration and immunity in stony corals is of further interest as it has major implications for coral reef health. One method for understanding the role of innate immunity in scleractinian regeneration is in situ hybridization using RNA probes. Here we describe a protocol for in situ hybridization in adult stony corals using a digoxigenin (DIG)-labeled RNA antisense probe which can be utilized to investigate the spatial expression of immune factors during regeneration.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| | - Madison Emery
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
20
|
Caetano-Anollés K, Hernandez N, Mughal F, Tomaszewski T, Caetano-Anollés G. The seasonal behaviour of COVID-19 and its galectin-like culprit of the viral spike. METHODS IN MICROBIOLOGY 2021; 50:27-81. [PMID: 38620818 PMCID: PMC8590929 DOI: 10.1016/bs.mim.2021.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seasonal behaviour is an attribute of many viral diseases. Like other 'winter' RNA viruses, infections caused by the causative agent of COVID-19, SARS-CoV-2, appear to exhibit significant seasonal changes. Here we discuss the seasonal behaviour of COVID-19, emerging viral phenotypes, viral evolution, and how the mutational landscape of the virus affects the seasonal attributes of the disease. We propose that the multiple seasonal drivers behind infectious disease spread (and the spread of COVID-19 specifically) are in 'trade-off' relationships and can be better described within a framework of a 'triangle of viral persistence' modulated by the environment, physiology, and behaviour. This 'trade-off' exists as one trait cannot increase without a decrease in another. We also propose that molecular components of the virus can act as sensors of environment and physiology, and could represent molecular culprits of seasonality. We searched for flexible protein structures capable of being modulated by the environment and identified a galectin-like fold within the N-terminal domain of the spike protein of SARS-CoV-2 as a potential candidate. Tracking the prevalence of mutations in this structure resulted in the identification of a hemisphere-dependent seasonal pattern driven by mutational bursts. We propose that the galectin-like structure is a frequent target of mutations because it helps the virus evade or modulate the physiological responses of the host to further its spread and survival. The flexible regions of the N-terminal domain should now become a focus for mitigation through vaccines and therapeutics and for prediction and informed public health decision making.
Collapse
Affiliation(s)
| | - Nicolas Hernandez
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Tre Tomaszewski
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
21
|
Bollati E, Rosenberg Y, Simon-Blecher N, Tamir R, Levy O, Huang D. Untangling the molecular basis of coral response to sedimentation. Mol Ecol 2021; 31:884-901. [PMID: 34738686 DOI: 10.1111/mec.16263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022]
Abstract
Urbanized coral reefs are often chronically affected by sedimentation and reduced light levels, yet many species of corals appear to be able to thrive under these highly disturbed conditions. Recently, these marginal ecosystems have gained attention as potential climate change refugia due to the shading effect of suspended sediment, as well as potential reservoirs for stress-tolerant species. However, little research exists on the impact of sedimentation on coral physiology, particularly at the molecular level. Here, we investigated the transcriptomic response to sediment stress in corals of the family Merulinidae from a chronically turbid reef (one genet each of Goniastrea pectinata and Mycedium elephantotus from Singapore) and a clear-water reef (multiple genets of G. pectinata from the Gulf of Aqaba/Eilat). In two ex-situ experiments, we exposed corals to either natural sediment or artificial sediment enriched with organic matter and used whole-transcriptome sequencing (RNA sequencing) to quantify gene expression. Analysis revealed a shared basis for the coral transcriptomic response to sediment stress, which involves the expression of genes broadly related to energy metabolism and immune response. In particular, sediment exposure induced upregulation of anaerobic glycolysis and glyoxylate bypass enzymes, as well as genes involved in hydrogen sulphide metabolism and in pathogen pattern recognition. Our results point towards hypoxia as a probable driver of this transcriptomic response, providing a molecular basis to previous work that identified hypoxia as a primary cause of tissue necrosis in sediment-stressed corals. Potential metabolic and immunity trade-offs of corals living under chronic sedimentation should be considered in future studies on the ecology and conservation of turbid reefs.
Collapse
Affiliation(s)
- Elena Bollati
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Simon-Blecher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Raz Tamir
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore.,Centre for Nature-based Climate Solutions, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Chuang PS, Mitarai S. Genetic changes involving the coral gastrovascular system support the transition between colonies and bailed-out polyps: evidence from a Pocillopora acuta transcriptome. BMC Genomics 2021; 22:694. [PMID: 34563133 PMCID: PMC8466926 DOI: 10.1186/s12864-021-08026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background A coral colony is composed of physiologically integrated polyps. In stony corals, coloniality adopts a wide diversity of forms and involves complex ontogenetic dynamics. However, molecular mechanisms underlying coloniality have been little studied. To understand the genetic basis of coloniality and its contribution to coral ecology, we induced polyp bail-out in a colonial coral, Pocillopora acuta, and compared transcription profiles of bailed-out polyps and polyps in normal colonies, and their responses to heat shock and hyposalinity. Results Consistent with morphological formation of a gastrovascular system and its neural transmission and molecular transport functions, we found genetic activation of neurogenesis and development of tube-like structures in normal colonies that is absent in bailed-out polyps. Moreover, relative to bailed-out polyps, colonies showed significant overexpression of genes for angiotensin-converting enzymes and endothelin-converting enzymes. In response to hyperthermal and hyposaline treatments, a high proportion of genetic regulation proved specific to either bailed-out polyps or colonies. Elevated temperatures even activated NF-κB signaling in colonies. On the other hand, colonies showed no discernible advantage over bailed-out polyps in regard to hyposalinity. Conclusions The present study provides a first look at the genetic basis of coloniality and documents different responses to environmental stimuli in P. acuta colonies versus those in bailed-out polyps. Overexpression of angiotensin-converting enzymes and endothelin-converting enzymes in colonies suggests possible involvement of these genes in development of the gastrovascular system in P. acuta. Functional characterization of these coral genes and further investigation of other forms of the transition to coloniality in stony corals should be fruitful areas for future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08026-x.
Collapse
Affiliation(s)
- Po-Shun Chuang
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun , 904-0495, Okinawa, Japan.
| | - Satoshi Mitarai
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun , 904-0495, Okinawa, Japan
| |
Collapse
|
23
|
Emery MA, Dimos BA, Mydlarz LD. Cnidarian Pattern Recognition Receptor Repertoires Reflect Both Phylogeny and Life History Traits. Front Immunol 2021; 12:689463. [PMID: 34248980 PMCID: PMC8260672 DOI: 10.3389/fimmu.2021.689463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Pattern recognition receptors (PRRs) are evolutionarily ancient and crucial components of innate immunity, recognizing danger-associated molecular patterns (DAMPs) and activating host defenses. Basal non-bilaterian animals such as cnidarians must rely solely on innate immunity to defend themselves from pathogens. By investigating cnidarian PRR repertoires we can gain insight into the evolution of innate immunity in these basal animals. Here we utilize the increasing amount of available genomic resources within Cnidaria to survey the PRR repertoires and downstream immune pathway completeness within 15 cnidarian species spanning two major cnidarian clades, Anthozoa and Medusozoa. Overall, we find that anthozoans possess prototypical PRRs, while medusozoans appear to lack these immune proteins. Additionally, anthozoans consistently had higher numbers of PRRs across all four classes relative to medusozoans, a trend largely driven by expansions in NOD-like receptors and C-type lectins. Symbiotic, sessile, and colonial cnidarians also have expanded PRR repertoires relative to their non-symbiotic, mobile, and solitary counterparts. Interestingly, cnidarians seem to lack key components of mammalian innate immune pathways, though similar to PRR numbers, anthozoans possess more complete immune pathways than medusozoans. Together, our data indicate that anthozoans have greater immune specificity than medusozoans, which we hypothesize to be due to life history traits common within Anthozoa. Overall, this investigation reveals important insights into the evolution of innate immune proteins within these basal animals.
Collapse
Affiliation(s)
- Madison A Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Bradford A Dimos
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Laura D Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
24
|
N-Acetyl-d-Glucosamine-Binding Lectin in Acropora tenuis Attracts Specific Symbiodiniaceae Cell Culture Strains. Mar Drugs 2021; 19:md19030146. [PMID: 33799701 PMCID: PMC8002028 DOI: 10.3390/md19030146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Many corals establish symbiosis with Symbiodiniaceae cells from surrounding environments, but very few Symbiodiniaceae cells exist in the water column. Given that the N-acetyl-d-glucosamine-binding lectin ActL attracts Symbiodiniaceae cells, we hypothesized that corals must attract Symbiodiniaceae cells using ActL to acquire them. Anti-ActL antibody inhibited acquisition of Symbiodiniaceae cells, and rearing seawater for juvenile Acropora tenuis contained ActL, suggesting that juvenile A. tenuis discharge ActL to attract these cells. Among eight Symbiodiniaceae cultured strains, ActL attracted NBRC102920 (Symbiodinium tridacnidorum) most strongly followed by CS-161 (Symbiodinium tridacnidorum), CCMP2556 (Durusdinium trenchii), and CCMP1633 (Breviolum sp.); however, it did not attract GTP-A6-Sy (Symbiodinium natans), CCMP421 (Effrenium voratum), FKM0207 (Fugacium sp.), and CS-156 (Fugacium sp.). Juvenile polyps of A. tenuis acquired limited Symbiodiniaceae cell strains, and the number of acquired Symbiodiniaceae cells in a polyp also differed from each other. The number of Symbiodiniaceae cells acquired by juvenile polyps of A. tenuis was correlated with the ActL chemotactic activity. Thus, ActL could be used to attract select Symbiodiniaceae cells and help Symbiodiniaceae cell acquisition in juvenile polyps of A. tenuis, facilitating establishment of symbiosis between A. tenuis and Symbiodiniaceae cells.
Collapse
|
25
|
Tracy AM, Weil E, Burge CA. Ecological Factors Mediate Immunity and Parasitic Co-Infection in Sea Fan Octocorals. Front Immunol 2021; 11:608066. [PMID: 33505396 PMCID: PMC7829190 DOI: 10.3389/fimmu.2020.608066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The interplay among environment, demography, and host-parasite interactions is a challenging frontier. In the ocean, fundamental changes are occurring due to anthropogenic pressures, including increased disease outbreaks on coral reefs. These outbreaks include multiple parasites, calling into question how host immunity functions in this complex milieu. Our work investigates the interplay of factors influencing co-infection in the Caribbean sea fan octocoral, Gorgonia ventalina, using metrics of the innate immune response: cellular immunity and expression of candidate immune genes. We used existing copepod infections and live pathogen inoculation with the Aspergillus sydowii fungus, detecting increased expression of the immune recognition gene Tachylectin 5A (T5A) in response to both parasites. Cellular immunity increased by 8.16% in copepod infections compared to controls and single Aspergillus infections. We also detected activation of cellular immunity in reef populations, with a 13.6% increase during copepod infections. Cellular immunity was similar in the field and in the lab, increasing with copepod infections and not the fungus. Amoebocyte density and the expression of T5A and a matrix metalloproteinase (MMP) gene were also positively correlated across all treatments and colonies, irrespective of parasitic infection. We then assessed the scaling of immune metrics to population-level disease patterns and found random co-occurrence of copepods and fungus across 15 reefs in Puerto Rico. The results suggest immune activation by parasites may not alter parasite co-occurrence if factors other than immunity prevail in structuring parasite infection. We assessed non-immune factors in the field and found that sea fan colony size predicted infection by the copepod parasite. Moreover, the effect of infection on immunity was small relative to that of site differences and live coral cover, and similar to the effect of reproductive status. While additional immune data would shed light on the extent of this pattern, ecological factors may play a larger role than immunity in controlling parasite patterns in the wild. Parsing the effects of immunity and ecological factors in octocoral co-infection shows how disease depends on more than one host and one parasite and explores the application of co-infection research to a colonial marine organism.
Collapse
Affiliation(s)
- Allison M. Tracy
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, PR, United States
| | - Colleen A. Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
26
|
Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific. Sci Rep 2020; 10:19990. [PMID: 33203914 PMCID: PMC7672225 DOI: 10.1038/s41598-020-76792-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Corals are dependent upon lipids as energy reserves to mount a metabolic response to biotic and abiotic challenges. This study profiled lipids, fatty acids, and microbial communities of healthy and white syndrome (WS) diseased colonies of Acropora hyacinthus sampled from reefs in Western Australia, the Great Barrier Reef, and Palmyra Atoll. Total lipid levels varied significantly among locations, though a consistent stepwise decrease from healthy tissues from healthy colonies (HH) to healthy tissue on WS-diseased colonies (HD; i.e. preceding the lesion boundary) to diseased tissue on diseased colonies (DD; i.e. lesion front) was observed, demonstrating a reduction in energy reserves. Lipids in HH tissues were comprised of high energy lipid classes, while HD and DD tissues contained greater proportions of structural lipids. Bacterial profiling through 16S rRNA gene sequencing and histology showed no bacterial taxa linked to WS causation. However, the relative abundance of Rhodobacteraceae-affiliated sequences increased in DD tissues, suggesting opportunistic proliferation of these taxa. While the cause of WS remains inconclusive, this study demonstrates that the lipid profiles of HD tissues was more similar to DD tissues than to HH tissues, reflecting a colony-wide systemic effect and provides insight into the metabolic immune response of WS-infected Indo-Pacific corals.
Collapse
|
27
|
Yoshioka Y, Yamashita H, Suzuki G, Zayasu Y, Tada I, Kanda M, Satoh N, Shoguchi E, Shinzato C. Whole-Genome Transcriptome Analyses of Native Symbionts Reveal Host Coral Genomic Novelties for Establishing Coral-Algae Symbioses. Genome Biol Evol 2020; 13:5981117. [PMID: 33185681 PMCID: PMC7850063 DOI: 10.1093/gbe/evaa240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 01/14/2023] Open
Abstract
Reef-building corals and photosynthetic, endosymbiotic algae of the family Symbiodiniaceae establish mutualistic relationships that are fundamental to coral biology, enabling coral reefs to support a vast diversity of marine species. Although numerous types of Symbiodiniaceae occur in coral reef environments, Acropora corals select specific types in early life stages. In order to study molecular mechanisms of coral–algal symbioses occurring in nature, we performed whole-genome transcriptomic analyses of Acropora tenuis larvae inoculated with Symbiodinium microadriaticum strains isolated from an Acropora recruit. In order to identify genes specifically involved in symbioses with native symbionts in early life stages, we also investigated transcriptomic responses of Acropora larvae exposed to closely related, nonsymbiotic, and occasionally symbiotic Symbiodinium strains. We found that the number of differentially expressed genes was largest when larvae acquired native symbionts. Repertoires of differentially expressed genes indicated that corals reduced amino acid, sugar, and lipid metabolism, such that metabolic enzymes performing these functions were derived primarily from S. microadriaticum rather than from A. tenuis. Upregulated gene expression of transporters for those metabolites occurred only when coral larvae acquired their natural symbionts, suggesting active utilization of native symbionts by host corals. We also discovered that in Acropora, genes for sugar and amino acid transporters, prosaposin-like, and Notch ligand-like, were upregulated only in response to native symbionts, and included tandemly duplicated genes. Gene duplications in coral genomes may have been essential to establish genomic novelties for coral–algae symbiosis.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ipputa Tada
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Miyuki Kanda
- DNA Sequencing Section (SQC), Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
28
|
Seneca F, Davtian D, Boyer L, Czerucka D. Gene expression kinetics of Exaiptasia pallida innate immune response to Vibrio parahaemolyticus infection. BMC Genomics 2020; 21:768. [PMID: 33167855 PMCID: PMC7654579 DOI: 10.1186/s12864-020-07140-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent sequencing projects on early-diverging metazoans such as cnidarians, have unveiled a rich innate immunity gene repertoire; however, little is known about immunity gene regulation in the host's early response against marine bacterial pathogens over time. Here, we used RNA-seq on the sea anemone Exaiptasia pallida (Ep) strain CC7 as a model to depict the innate immune response during the onset of infection with the marine pathogenic bacteria Vibrio parahaemolyticus (Vp) clinical strain O3:K6, and lipopolysaccharides (LPS) exposure. Pairwise and time series analyses identified the genes responsive to infection as well as the kinetics of innate immune genes over time. Comparisons between the responses to live Vp and purified LPS was then performed. RESULTS Gene expression and functional analyses detected hundreds to thousands of genes responsive to the Vp infection after 1, 3, 6 and 12 h, including a few shared with the response to LPS. Our results bring to light the first indications that non-canonical cytoplasmic pattern recognition receptors (PRRs) such as NOD-like and RIG-I-like receptor homologs take part in the immune response of Ep. Over-expression of several members of the lectin-complement pathways in parallel with novel transmembrane and Ig containing ficolins (CniFLs) suggest an active defense against the pathogen. Although lacking typical Toll-like receptors (TLRs), Ep activates a TLR-like pathway including the up-regulation of MyD88, TRAF6, NF-κB and AP-1 genes, which are not induced under LPS treatment and therefore suggest an alternative ligand-to-PRR trigger. Two cytokine-dependent pathways involving Tumor necrosis factor receptors (TNFRs) and several other potential downstream signaling genes likely lead to inflammation and/or apoptosis. Finally, both the extrinsic and intrinsic apoptotic pathways were strongly supported by over-expression of effector and executioner genes. CONCLUSIONS To our knowledge, this pioneering study is first to follow the kinetics of the innate immune response in a cnidarian during the onset of infection with a bacterial pathogen. Overall, our findings reveal the involvement of both novel immune gene candidates such as NLRs, RLRs and CniFLs, and previously identified TLR-like and apoptotic pathways in anthozoan innate immunity with a large amount of transcript-level evidence.
Collapse
Affiliation(s)
- François Seneca
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco. .,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco.
| | - David Davtian
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco.,Present Address: Division of Population Health & Genetics, Ninewells Hospital and Medical School, Dundee, DD19SY, UK
| | - Laurent Boyer
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco.,Université Côte d'Azur, C3M Inserm, U1065, 06204, Nice Cedex 3, France
| | - Dorota Czerucka
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Monaco.,LIA ROPSE, Laboratoire International Associé Université Côte d'Azur - Centre Scientifique de Monaco, Monaco, Monaco
| |
Collapse
|
29
|
Bailey GF, Coelho JC, Poole AZ. Differential expression of Exaiptasia pallida GIMAP genes upon induction of apoptosis and autophagy suggests a potential role in cnidarian symbiosis and disease. J Exp Biol 2020; 223:jeb229906. [PMID: 32978315 DOI: 10.1242/jeb.229906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of immunity associated proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. As apoptosis, autophagy and immunity have previously been shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates that Ep_GIMAPs may be involved in the regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.
Collapse
Affiliation(s)
- Grace F Bailey
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| |
Collapse
|
30
|
Melo Clavijo J, Frankenbach S, Fidalgo C, Serôdio J, Donath A, Preisfeld A, Christa G. Identification of scavenger receptors and thrombospondin-type-1 repeat proteins potentially relevant for plastid recognition in Sacoglossa. Ecol Evol 2020; 10:12348-12363. [PMID: 33209293 PMCID: PMC7663992 DOI: 10.1002/ece3.6865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022] Open
Abstract
Functional kleptoplasty is a photosymbiotic relationship, in which photosynthetically active chloroplasts serve as an intracellular symbiont for a heterotrophic host. Among Metazoa, functional kleptoplasty is only found in marine sea slugs belonging to the Sacoglossa and recently described in Rhabdocoela worms. Although functional kleptoplasty has been intensively studied in Sacoglossa, the fundamentals of the specific recognition of the chloroplasts and their subsequent incorporation are unknown. The key to ensure the initiation of any symbiosis is the ability to specifically recognize the symbiont and to differentiate a symbiont from a pathogen. For instance, in photosymbiotic cnidarians, several studies have shown that the host innate immune system, in particular scavenger receptors (SRs) and thrombospondin-type-1 repeat (TSR) protein superfamily, is playing a major role in the process of recognizing and differentiating symbionts from pathogens. In the present study, SRs and TSRs of three Sacoglossa sea slugs, Elysia cornigera, Elysia timida, and Elysia chlorotica, were identified by translating available transcriptomes into potential proteins and searching for receptor specific protein and/or transmembrane domains. Both receptors classes are highly diverse in the slugs, and many new domain arrangements for each receptor class were found. The analyses of the gene expression of these three species provided a set of species-specific candidate genes, that is, SR-Bs, SR-Es, C-type lectins, and TSRs, that are potentially relevant for the recognition of kleptoplasts. The results set the base for future experimental studies to understand if and how these candidate receptors are indeed involved in chloroplast recognition.
Collapse
Affiliation(s)
- Jenny Melo Clavijo
- Fakultät für Mathematik und Naturwissenschaften, Zoologie und BiologiedidaktikBergische Universität WuppertalWuppertalGermany
| | - Silja Frankenbach
- Department of Biology and CESAM – Center for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal
| | - Cátia Fidalgo
- Department of Biology and CESAM – Center for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal
| | - João Serôdio
- Department of Biology and CESAM – Center for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal
| | - Alexander Donath
- Center for Molecular Biodiversity ResearchZoological Research Museum Alexander KoenigBonnGermany
| | - Angelika Preisfeld
- Fakultät für Mathematik und Naturwissenschaften, Zoologie und BiologiedidaktikBergische Universität WuppertalWuppertalGermany
| | - Gregor Christa
- Fakultät für Mathematik und Naturwissenschaften, Zoologie und BiologiedidaktikBergische Universität WuppertalWuppertalGermany
| |
Collapse
|
31
|
Parisi MG, Parrinello D, Stabili L, Cammarata M. Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans. BIOLOGY 2020; 9:E283. [PMID: 32932829 PMCID: PMC7563517 DOI: 10.3390/biology9090283] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal's health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process. The cells play a fundamental role in immunity, as they display phagocytic activities and secrete mucus, which acts as a physicochemical barrier preventing or slowing down the proliferation of potential invaders. Finally, we describe the current state of knowledge of some immune effectors in Anthozoan species, including the potential role of toxins and the inflammatory response in the Mediterranean Anthozoan Anemonia viridis following injection of various foreign particles differing in type and dimensions, including pathogenetic bacteria.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Daniela Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
32
|
Connelly MT, McRae CJ, Liu PJ, Traylor-Knowles N. Lipopolysaccharide treatment stimulates Pocillopora coral genotype-specific immune responses but does not alter coral-associated bacteria communities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103717. [PMID: 32348787 DOI: 10.1016/j.dci.2020.103717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Corals are comprised of a coral host and associated microbes whose interactions are mediated by the coral innate immune system. The diversity of immune factors identified in the Pocillopora damicornis genome suggests that immunity is linked to maintaining microbial symbioses while also being able to detect pathogens. However, it is unclear which immune factors respond to specific microbe-associated molecular patterns and how these immune reactions simultaneously affect coral-associated bacteria. To investigate this, fragments of P. damicornis and P. acuta colonies from Taiwan were subjected to lipopolysaccharide (LPS) treatment to stimulate immune responses and measure bacteria community shifts. RNA-seq revealed genotype-specific immune responses to LPS involving the upregulation of immune receptors, transcription factors, and pore-forming toxins. Bacteria 16S sequencing revealed significantly different bacteria communities between coral genotypes but no differences in bacteria communities were caused by LPS. Our findings confirm that Pocillopora corals activate conserved immune factors in response to LPS and identify transcription factors coordinating Pocillopora corals' immune responses. Additionally, the strong effect of coral genotype on gene expression and bacteria communities highlights the importance of coral genotype in the investigation of coral host-microbe interactions.
Collapse
Affiliation(s)
- Michael T Connelly
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33145, USA
| | - Crystal J McRae
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, 974, Taiwan
| | - Pi-Jen Liu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33145, USA.
| |
Collapse
|
33
|
Tivey TR, Parkinson JE, Mandelare PE, Adpressa DA, Peng W, Dong X, Mechref Y, Weis VM, Loesgen S. N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis. MICROBIAL ECOLOGY 2020; 80:223-236. [PMID: 31982929 DOI: 10.1007/s00248-020-01487-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.
Collapse
Affiliation(s)
- Trevor R Tivey
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.
- Department of Entomology, Cornell University, Ithaca, NY, USA.
| | - John Everett Parkinson
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Paige E Mandelare
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Whitney Laboratory for Marine Bioscience and Department of Chemistry, University of Florida, St. Augustine, FL, USA
| | - Donovon A Adpressa
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
- Analytical Research & Development, Merck & Co. Inc., Boston, MA, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR, USA.
- Whitney Laboratory for Marine Bioscience and Department of Chemistry, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
34
|
A Bioassay for Determining Symbiotic Zooxanthellae Shape Control Using Lectin SLL-2 from the Octocoral Sinularia lochmodes. Methods Mol Biol 2020. [PMID: 32306344 DOI: 10.1007/978-1-0716-0430-4_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Symbiosis with zooxanthellae is essential for survival of corals. Using a bioassay, we report the H-type lectin SLL-2 purified from the octocoral Sinularia lochmodes to restrict zooxanthellae form to spherical cells. However, the factor for initiating or maintaining a symbiotic relationship between a host and zooxanthellae has not been found in many corals. This bioassay is useful for evaluating the role of a lectin as a symbiosis-related factor.
Collapse
|
35
|
Li T, Lin X, Yu L, Lin S, Rodriguez IB, Ho TY. RNA-seq profiling of Fugacium kawagutii reveals strong responses in metabolic processes and symbiosis potential to deficiencies of iron and other trace metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135767. [PMID: 31972930 DOI: 10.1016/j.scitotenv.2019.135767] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
A healthy symbiotic relationship between corals and Symbiodiniaceae relies on suitable temperature and adequate nutrients including trace metals. Besides global warming, trace metal deficiency has been shown to cause coral bleaching, a phenomenon responsible for extensive coral reef degradation around the world. How trace metal deficiency impacts Symbiodiniaceae and coral symbiosis is poorly understood, however. In this study, we applied RNA-seq to investigate how Fugacium kawagutii responds to the deficiency of five trace metals (Fe2+, Zn2+, Cu2+, Mn2+, Ni2+). We identified 685 to 2805 differentially expressed genes (DEGs) from these trace metal deficiency conditions, among which 372 were commonly regulated by all the five trace metals and were significantly enriched in energy metabolism (e.g. fatty acid synthesis). Furthermore, genes associated with extracellular matrix (ECM), cell surface structure and cell adhesion were impacted, suggesting that the ability of recognition and adhesion of F. kawagutii may be altered by trace metal deficiencies. In addition, among the five metals, Fe2+ deficiency exhibited the strongest influence, with Fe-rich redox elements and many antioxidant synthesis genes being markedly down-regulated, indicative of adaptive reduction of Fe demand but a compromised ability to combat oxidative stress. Overall, deficiency of trace metals (especially Fe) seems to repress growth and ability of ROS scavenging, elevate energy metabolism and innate immunity, and alter cell adhesion capability, with implications in symbiosis disruption and coral bleaching.
Collapse
Affiliation(s)
- Tangcheng Li
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| | - Irene B Rodriguez
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Tung-Yuan Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Maor‐Landaw K, van Oppen MJH, McFadden GI. Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol Evol 2020; 10:451-466. [PMID: 31993121 PMCID: PMC6972872 DOI: 10.1002/ece3.5910] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 01/13/2023] Open
Abstract
Coral-dinoflagellate symbiosis underpins the evolutionary success of corals reefs. Successful exchange of molecules between the cnidarian host and the Symbiodiniaceae algae enables the mutualistic partnership. The algae translocate photosynthate to their host in exchange for nutrients and shelter. The photosynthate must traverse multiple membranes, most likely facilitated by transporters. Here, we compared gene expression profiles of cultured, free-living Breviolum minutum with those of the homologous symbionts freshly isolated from the sea anemone Exaiptasia diaphana, a widely used model for coral hosts. Additionally, we assessed expression levels of a list of candidate host transporters of interest in anemones with and without symbionts. Our transcriptome analyses highlight the distinctive nature of the two algal life stages, with many gene expression level changes correlating to the different morphologies, cell cycles, and metabolisms adopted in hospite versus free-living. Morphogenesis-related genes that likely underpin the metamorphosis process observed when symbionts enter a host cell were up-regulated. Conversely, many down-regulated genes appear to be indicative of the protective and confined nature of the symbiosome. Our results emphasize the significance of transmembrane transport to the symbiosis, and in particular of ammonium and sugar transport. Further, we pinpoint and characterize candidate transporters-predicted to be localized variously to the algal plasma membrane, the host plasma membrane, and the symbiosome membrane-that likely serve pivotal roles in the interchange of material during symbiosis. Our study provides new insights that expand our understanding of the molecular exchanges that underpin the cnidarian-algal symbiotic relationship.
Collapse
Affiliation(s)
- Keren Maor‐Landaw
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
| | - Madeleine J. H. van Oppen
- School of BioSciencesThe University of MelbourneMelbourneVic.Australia
- Australian Institute of Marine ScienceTownsvilleQldAustralia
| | | |
Collapse
|
37
|
Wu Y, Zhou Z, Wang J, Luo J, Wang L, Zhang Y. Temperature regulates the recognition activities of a galectin to pathogen and symbiont in the scleractinian coral Pocillopora damicornis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:103-110. [PMID: 30857983 DOI: 10.1016/j.dci.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Lectins serve as essential pattern recognition receptors, and play important roles in the recognition of non-self and mediation of innate immune response in metazoans. Scleractinian corals are vulnerable to pathogen infection and endosymbiosis disruption under heat stress that can finally lead to coral bleaching. In this study, a cDNA sequence encoding one galectin was cloned in scleractinian coral Pocillopora damicornis (PdGLT-1). The deduced PdGLT-1 protein shared highest amino acid sequence similarity (99%) with galectin from Stylophora pistillata (XP_022806650.1), and was composed of one signal peptide, one Collagen domain and one Gal-Lectin domain. PdGLT-1 recombinant protein (rPdGLT-1) was expressed and purified in vitro. Binding activities of rPdGLT-1 to bacteria and symbiont were determined using western blotting method. Results showed that rPdGLT-1 was able to bind to gram-positive bacterium Streptococcus mutans, gram-negative bacteria Vibrio coralliilyticus and Escherichia coli, with the highest activity for V. coralliilyticus, and further agglutinated them. The bound rPdGLT-1 to Symbiodinium (10-104 cells mL-1) was detectable, and its binding ability was concentration-dependent. Furthermore, dual binding activities were determined under different temperatures (20, 25, 30 and 35 °C), and the optimal temperatures were found to be 25 and 30 °C for V. coralliilyticus and Symbiodinium, respectively. Results suggested that PdGLT-1 could recognize pathogenic bacteria and symbiotic dinoflagellates Symbiodinium. However, their recognition activities were repressed under high temperature (>30 °C). This study provided insights into the underlying mechanism of lectin modulation to heat bleaching through its pathogen and Symbiodinium recognition in the scleractinian coral P. damicornis.
Collapse
Affiliation(s)
- Yibo Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Jun Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Jian Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Lingui Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Yidan Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| |
Collapse
|
38
|
Zhou Z, Zhao S, Tang J, Liu Z, Wu Y, Wang Y, Lin S. Altered Immune Landscape and Disrupted Coral- Symbiodinium Symbiosis in the Scleractinian Coral Pocillopora damicornis by Vibrio coralliilyticus Challenge. Front Physiol 2019; 10:366. [PMID: 31001143 PMCID: PMC6454040 DOI: 10.3389/fphys.2019.00366] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/15/2019] [Indexed: 01/07/2023] Open
Abstract
Vibrio coralliilyticus is known to cause coral diseases, especially under environmental perturbation, but its impact on coral physiology and underpinning mechanism is poorly understood. In the present study, we investigated cytological, immunological, and metatranscriptomic responses of the scleractinian coral Pocillopora damicornis to V. coralliilyticus infection. The density and chlorophyll content of symbiotic zooxanthellae decreased significantly at 12 and 24 h after Vibrio challenge. The activities of antioxidant enzymes such as superoxide dismutase and catalase, nitric oxide synthase, phenoloxidase (PO), and the activation level of caspase3 all rose significantly in P. damicornis after Vibrio challenge. In the metatranscriptomic analysis, we found 10 significantly upregulated genes in the symbionts at 24 h after the challenge, which were mostly involved in the metabolism of nucleic acid and polysaccharide, and 133 significantly down-regulated symbiont genes, which were mainly related to amino acid catabolism and transport. Meanwhile, 1432 significantly upregulated coral genes were revealed, highly overrepresented in GO terms that are mostly related to the regulation of immune response, the regulation of cytokine production, and innate immune response. Furthermore, at 24 h after Vibrio challenge, 890 coral genes were significantly downregulated, highly overrepresented in four GO terms implicated in defense response. These results in concert suggest that V. coralliilyticus infection triggered the innate immune response including the redox, PO, and apoptosis systems, but repressed the response of the complement system in the scleractinian coral P. damicornis, accompanied by symbiont density decrease and symbiosis collapse through disordering the metabolism of the symbionts. These findings shed light on the molecular regulatory processes underlying bleaching and degradation of P. damicornis resulting from the infection of V. coralliilyticus.
Collapse
Affiliation(s)
- Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Shuimiao Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Jia Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Yibo Wu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Yan Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| |
Collapse
|
39
|
Abstract
Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai’i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent example of foreign gene acquisition via a bacterial gene transfer agent and illustrate the major pathways of stress response that can be used to predict regulatory components of the transcriptional networks in M. capitata. These genomic resources provide insights into the adaptive potential of these sessile, long-lived species in both natural and human influenced environments and facilitate functional and population genomic studies aimed at Hawaiian reef restoration and conservation.
Collapse
|
40
|
Mansfield KM, Gilmore TD. Innate immunity and cnidarian-Symbiodiniaceae mutualism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:199-209. [PMID: 30268783 DOI: 10.1016/j.dci.2018.09.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The phylum Cnidaria (sea anemones, corals, hydra, jellyfish) is one the most distantly related animal phyla to humans, and yet cnidarians harbor many of the same cellular pathways involved in innate immunity in mammals. In addition to its role in pathogen recognition, the innate immune system has a role in managing beneficial microbes and supporting mutualistic microbial symbioses. Some corals and sea anemones undergo mutualistic symbioses with photosynthetic algae in the family Symbiodiniaceae. These symbioses can be disrupted by anthropogenic disturbances of ocean environments, which can have devastating consequences for the health of coral reef ecosystems. Several studies of cnidarian-Symbiodiniaceae symbiosis have implicated proteins in the host immune system as playing a role in both symbiont tolerance and loss of symbiosis (i.e., bleaching). In this review, we critically evaluate current knowledge about the role of host immunity in the regulation of symbiosis in cnidarians.
Collapse
Affiliation(s)
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
41
|
van de Water JAJM, Chaib De Mares M, Dixon GB, Raina JB, Willis BL, Bourne DG, van Oppen MJH. Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol Ecol 2018; 27:1065-1080. [PMID: 29334418 DOI: 10.1111/mec.14489] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Global increases in coral disease prevalence have been linked to ocean warming through changes in coral-associated bacterial communities, pathogen virulence and immune system function. However, the interactive effects of temperature and pathogens on the coral holobiont are poorly understood. Here, we assessed three compartments of the holobiont (host, Symbiodinium and bacterial community) of the coral Montipora aequituberculata challenged with the pathogen Vibrio coralliilyticus and the commensal bacterium Oceanospirillales sp. under ambient (27°C) and elevated (29.5 and 32°C) seawater temperatures. Few visual signs of bleaching and disease development were apparent in any of the treatments, but responses were detected in the holobiont compartments. V. coralliilyticus acted synergistically and negatively impacted the photochemical efficiency of Symbiodinium at 32°C, while Oceanospirillales had no significant effect on photosynthetic efficiency. The coral, however, exhibited a minor response to the bacterial challenges, with the response towards V. coralliilyticus being significantly more pronounced, and involving the prophenoloxidase-activating system and multiple immune system-related genes. Elevated seawater temperatures did not induce shifts in the coral-associated bacterial community, but caused significant gene expression modulation in both Symbiodinium and the coral host. While Symbiodinium exhibited an antiviral response and upregulated stress response genes, M. aequituberculata showed regulation of genes involved in stress and innate immune response processes, including immune and cytokine receptor signalling, the complement system, immune cell activation and phagocytosis, as well as molecular chaperones. These observations show that M. aequituberculata is capable of maintaining a stable bacterial community under elevated seawater temperatures and thereby contributes to preventing disease development.
Collapse
Affiliation(s)
- Jeroen A J M van de Water
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,Département de Biologie Marine, Centre Scientifique de Monaco, Monaco, Principauté de Monaco
| | - Maryam Chaib De Mares
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Groves B Dixon
- Section of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jean-Baptiste Raina
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia
| | - Bette L Willis
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Madeleine J H van Oppen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,AIMS@JCU, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
42
|
Deciphering the nature of the coral-Chromera association. ISME JOURNAL 2018; 12:776-790. [PMID: 29321691 PMCID: PMC5864212 DOI: 10.1038/s41396-017-0005-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/22/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of Chromera velia as a novel coral-associated microalga, this organism has attracted interest because of its unique evolutionary position between the photosynthetic dinoflagellates and the parasitic apicomplexans. The nature of the relationship between Chromera and its coral host is controversial. Is it a mutualism, from which both participants benefit, a parasitic relationship, or a chance association? To better understand the interaction, larvae of the common Indo-Pacific reef-building coral Acropora digitifera were experimentally infected with Chromera, and the impact on the host transcriptome was assessed at 4, 12, and 48 h post-infection using Illumina RNA-Seq technology. The transcriptomic response of the coral to Chromera was complex and implies that host immunity is strongly suppressed, and both phagosome maturation and the apoptotic machinery is modified. These responses differ markedly from those described for infection with a competent strain of the coral mutualist Symbiodinium, instead resembling those of vertebrate hosts to parasites and/or pathogens such as Mycobacterium tuberculosis. Consistent with ecological studies suggesting that the association may be accidental, the transcriptional response of A. digitifera larvae leads us to conclude that Chromera could be a coral parasite, commensal, or accidental bystander, but certainly not a beneficial mutualist.
Collapse
|
43
|
Silveira CB, Cavalcanti GS, Walter JM, Silva-Lima AW, Dinsdale EA, Bourne DG, Thompson CC, Thompson FL. Microbial processes driving coral reef organic carbon flow. FEMS Microbiol Rev 2017; 41:575-595. [PMID: 28486655 DOI: 10.1093/femsre/fux018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 04/10/2017] [Indexed: 01/13/2023] Open
Abstract
Coral reefs are one of the most productive ecosystems on the planet, with primary production rates compared to that of rain forests. Benthic organisms release 10-50% of their gross organic production as mucus that stimulates heterotrophic microbial metabolism in the water column. As a result, coral reef microbes grow up to 50 times faster than open ocean communities. Anthropogenic disturbances cause once coral-dominated reefs to become dominated by fleshy organisms, with several outcomes for trophic relationships. Here we review microbial processes implicated in organic carbon flux in coral reefs displaying species phase shifts. The first section presents microbial players and interactions within the coral holobiont that contribute to reef carbon flow. In the second section, we identify four ecosystem-level microbial features that directly respond to benthic species phase shifts: community composition, biomass, metabolism and viral predation. The third section discusses the significance of microbial consumption of benthic organic matter to reef trophic relationships. In the fourth section, we propose that the 'microbial phase shifts' discussed here are conducive to lower resilience, facilitating the transition to new degradation states in coral reefs.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil.,Biology Department, San Diego State University, 5500 Campanille Dr, San Diego, CA 92182, USA
| | - Giselle S Cavalcanti
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil.,Biology Department, San Diego State University, 5500 Campanille Dr, San Diego, CA 92182, USA
| | - Juline M Walter
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| | - Arthur W Silva-Lima
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| | - Elizabeth A Dinsdale
- Biology Department, San Diego State University, 5500 Campanille Dr, San Diego, CA 92182, USA
| | - David G Bourne
- College of Science and Engineering, James Cook University and Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Cristiane C Thompson
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| | - Fabiano L Thompson
- Institute of Biology and COPPE/SAGE, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, 373, Cidade Universitária, RJ 21941-599, Brazil
| |
Collapse
|
44
|
Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals. Sci Rep 2017; 7:6442. [PMID: 28743941 PMCID: PMC5526985 DOI: 10.1038/s41598-017-05572-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.
Collapse
|
45
|
Dani V, Priouzeau F, Mertz M, Mondin M, Pagnotta S, Lacas-Gervais S, Davy SK, Sabourault C. Expression patterns of sterol transporters NPC1 and NPC2 in the cnidarian-dinoflagellate symbiosis. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Vincent Dani
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
- UMR7138, Equipe Symbiose Marine; Université Côte d'Azur; Nice France
| | - Fabrice Priouzeau
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
- UMR7138, Equipe Symbiose Marine; Université Côte d'Azur; Nice France
| | - Marjolijn Mertz
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
| | - Magali Mondin
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée; Université Côte d'Azur; Nice France
| | | | - Simon K. Davy
- School of Biological Sciences; Victoria University of Wellington; Wellington New Zealand
| | - Cécile Sabourault
- Institut de Biologie Valrose (iBV); Université Côte d'Azur; Nice France
- UMR7138, Equipe Symbiose Marine; Université Côte d'Azur; Nice France
| |
Collapse
|
46
|
Neubauer EF, Poole AZ, Neubauer P, Detournay O, Tan K, Davy SK, Weis VM. A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis. eLife 2017; 6. [PMID: 28481198 PMCID: PMC5446238 DOI: 10.7554/elife.24494] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/29/2017] [Indexed: 12/24/2022] Open
Abstract
The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum. Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a ‘super colonization’. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis. DOI:http://dx.doi.org/10.7554/eLife.24494.001 Cnidarians, such as corals and sea anemones, often form a close relationship with microscopic algae that live inside their cells – a partnership, on which the entire coral reef ecosystem depends. These microalgae produce sugars and other compounds that the cnidarians need to survive, while the cnidarians protect the microalgae from the environment and provide the raw materials they need to harness energy from sunlight. However, very little is known about how the two partners are able to communicate with each other to form this close relationship, which is referred to as a symbiosis. Symbiotic relationships between a host and a microbe require a number of adaptations on both sides, and involve numerous signalling molecules. A host species is under constant pressure to develop mechanisms to recognize and tolerate the beneficial microbes without leaving itself vulnerable to attack by microbes that might cause disease. Similarly, the beneficial microbes need to be able to invade and survive inside their host. Previous research has shown that TSR proteins in hosts play a role in recognizing and controlling disease-causing microbes. Until now, however, it was unknown whether TSR proteins are involved in establishing a symbiosis between cnidarians and their algal partners. Neubauer et al. analysed six species of symbiotic cnidarians and discovered a diverse repertoire of TSR proteins. These proteins were found in the host genomes, rather than in the symbiotic algae, strongly suggesting that they originated from the host. Neubauer et al. next incubated a sea anemone species in a solution of TSR proteins and saw that it became ‘super-colonized’ with algae, meaning that over time, millions of the microalgae entered and stayed in the anemone’s tentacles. In contrast, when the TSR proteins were blocked, colonization was almost entirely stopped. This suggests that host TSR proteins play an important role for the microalgae when they colonialize corals and other cnidarians. The signals that enable microalgae to successfully colonialize cnidarians are unquestionably complex and there is still much to learn. These findings add another piece to the puzzle of how symbiotic algae bypass the cnidarian’s immune system to persist and flourish in their host. An important next step will be to test how blocking the genes that encode the TSR proteins will affect the symbiotic relationship between these species. DOI:http://dx.doi.org/10.7554/eLife.24494.002
Collapse
Affiliation(s)
- Emilie-Fleur Neubauer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Angela Z Poole
- Department of Biology, Western Oregon University, Monmouth, United States.,Department of Integrative Biology, Oregon State University, Corvallis, United States
| | | | | | - Kenneth Tan
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| |
Collapse
|
47
|
Louis YD, Bhagooli R, Kenkel CD, Baker AC, Dyall SD. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:63-77. [PMID: 27585119 DOI: 10.1016/j.cbpc.2016.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Abstract
Gene expression biomarkers (GEBs) are emerging as powerful diagnostic tools for identifying and characterizing coral stress. Their capacity to detect sublethal stress prior to the onset of signs at the organismal level that might already indicate significant damage makes them more precise and proactive compared to traditional monitoring techniques. A high number of candidate GEBs, including certain heat shock protein genes, metabolic genes, oxidative stress genes, immune response genes, ion transport genes, and structural genes have been investigated, and some genes, including hsp16, Cacna1, MnSOD, SLC26, and Nf-kB, are already showing excellent potential as reliable indicators of thermal stress in corals. In this mini-review, we synthesize the current state of knowledge of scleractinian coral GEBs and highlight gaps in our understanding that identify directions for future work. We also address the underlying sources of variation that have sometimes led to contrasting results between studies, such as differences in experimental set-up and approach, intrinsic variation in the expression profiles of different experimental organisms (such as between different colonies or their algal symbionts), diel cycles, varying thermal history, and different expression thresholds. Despite advances in our understanding there is still no universally accepted biomarker of thermal stress, the molecular response of corals to heat stress is still unclear, and biomarker research in Symbiodinium still lags behind that of the host. These gaps should be addressed in future work.
Collapse
Affiliation(s)
- Yohan D Louis
- Department of Biosciences, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Ranjeet Bhagooli
- Department of Marine & Ocean Science, Fisheries & Mariculture, Faculty of Ocean Studies, University of Mauritius, Réduit 80837, Mauritius.
| | - Carly D Kenkel
- Australian Institute of Marine Science, PMB No. 3, Townsville MC, QLD 4810, Australia
| | - Andrew C Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy., Miami, FL, USA
| | - Sabrina D Dyall
- Department of Biosciences, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
48
|
Neubauer EF, Poole AZ, Weis VM, Davy SK. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis. PeerJ 2016; 4:e2692. [PMID: 27896028 PMCID: PMC5119243 DOI: 10.7717/peerj.2692] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/15/2016] [Indexed: 01/01/2023] Open
Abstract
Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR), the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemone Aiptasia pallida that engages in a symbiosis with Symbiodinium minutum (clade B1). Experimental blocking of the SR ligand binding site with the inhibitor fucoidan reduced the ability of S. minutum to colonize A. pallida suggesting that host SRs play a role in host-symbiont recognition. In addition, incubation of symbiotic anemones with fucoidan elicited an immune response, indicating that host SRs function in immune modulation that results in host tolerance of the symbionts.
Collapse
Affiliation(s)
- Emilie F. Neubauer
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Angela Z. Poole
- Department of Biology, Western Oregon University, Monmouth, OR, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
49
|
Fuess LE, Pinzόn C JH, Weil E, Mydlarz LD. Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:17-28. [PMID: 27109903 DOI: 10.1016/j.dci.2016.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Disease outbreaks in marine ecosystems have driven worldwide declines of numerous taxa, including corals. Some corals, such as Orbicella faveolata, are particularly susceptible to disease. To explore the mechanisms contributing to susceptibility, colonies of O. faveolata were exposed to immune challenge with lipopolysaccharides. RNA sequencing and protein activity assays were used to characterize the response of corals to immune challenge. Differential expression analyses identified 17 immune-related transcripts that varied in expression post-immune challenge. Network analyses revealed several groups of transcripts correlated to immune protein activity. Several transcripts, which were annotated as positive regulators of immunity were included in these groups, and some were downregulated following immune challenge. Correlations between expression of these transcripts and protein activity results further supported the role of these transcripts in positive regulation of immunity. The observed pattern of gene expression and protein activity may elucidate the processes contributing to the disease susceptibility of species like O. faveolata.
Collapse
Affiliation(s)
- Lauren E Fuess
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Jorge H Pinzόn C
- Department of Biology, University of Texas Arlington, Arlington, TX, USA
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico, Mayagüez, PR, USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas Arlington, Arlington, TX, USA.
| |
Collapse
|
50
|
Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, Hatta M, Guse A. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep 2016; 6:32366. [PMID: 27582179 PMCID: PMC5007887 DOI: 10.1038/srep32366] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.
Collapse
Affiliation(s)
- Iliona Wolfowicz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto 4200-465, Portugal
| | - Sebastian Baumgarten
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Philipp A. Voss
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| | | | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masayuki Hatta
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan
| | - Annika Guse
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg 69120, Germany
| |
Collapse
|