1
|
Li W, Bai J, Deng J, Xu W, Zhang QH, Wickham JD, Wu M, Zhang L. Silencing the β-glucan recognition protein enhanced the pathogenicity of Cordyceps fumosorose against Hyphantria cunea Drury larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106415. [PMID: 40350228 DOI: 10.1016/j.pestbp.2025.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025]
Abstract
The β-glucan recognition protein (βGRP) plays a crucial role in pathogen recognition by insects, thereby activating their innate immunity. However, the immune response of βGRP in Hyphantria cunea Drury (Lepidoptera: Noctuidae), an invasive pest of forests and agriculture, to pathogens remains unclear. In this study, we identified a new isolate of the entomopathogenic fungus Cordyceps fumosorosea. We found C. fumosorosea exhibits significant pathogenicity against H. cunea larvae. Based on the transcriptome, we found that the βGRP genes of H. cunea can be induced to express after infection by C. fumosorosea. βGRP1 is primarily expressed in the fat body and significantly upregulated by 11.23-fold at 12 h post-infection with C. fumosorosea. Besides, molecular docking showed a potential binding interaction between βGRP1 protein and β-1,3-glucans, which is further confirmed by protein-carbohydrate binding assays. Additionally, the knockdown of βGRP1 through RNA interference increases the mortality of H. cunea larvae following C. fumosorosea infection. Taken together, our study underscores the critical role of βGRP1 in the immune response to C. fumosorosea infection and suggests an integrated pest management strategy that combines entomopathogenic fungi with RNA interference technology as an effective approach for controlling H. cunea.
Collapse
Affiliation(s)
- Wenxuan Li
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jianyang Bai
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jundan Deng
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Weikang Xu
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, Washington 99216, United States
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Mengting Wu
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Bi J, Ma X, Jiang Y, Liu P, Gao R, Zhao T, Yuan X, Hao H, Li B, Wang Y. RNA interference-mediated silencing of GNBP2 reduces the immunity of stored pest Tribolium castaneum against bacteria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106230. [PMID: 40015839 DOI: 10.1016/j.pestbp.2024.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 03/01/2025]
Abstract
Gram-negative bacteria binding proteins (GNBPs) are involved in regulating the immune response of insects. The information on functions and mechanisms of insect GNBPs in innate immunity will contribute to biological control of pests. Tribolium castaneum is a serious, world-wide pest damaging stored food and feed products. However, the study on roles of GNBPs in T. castaneum innate immunity is relatively scarce. In this research, we identified TcGNBP2, a GNBP2 found in the cDNA library of T. castaneum. Spatiotemporal examination indicated that TcGNBP2 exhibited significant transcription in early pupae stages, and mainly distributed in two immune-related tissues, hemolymph and fatbody. After Escherichia coli or Staphylococcus aureus challenge, TcGNBP2 transcription levels increased significantly from 6 to 72 h. The binding ability of TcGNBP2 to lipopolysaccharide, peptidoglycan, and β-1,3-glucan was predicted by molecular docking analysis and confirmed by ELISA. The subsequent investigation revealed that TcGNBP2 exhibited binding affinity towards five distinct bacterial strains and demonstrated agglutination activity against four of them. Silencing of TcGNBP2 with RNA interference (RNAi) results in the inhibition of antimicrobial peptide gene expression and the prophenoloxidase cascade in beetles upon bacterial challenge, thereby attenuating the immune response of T. castaneum. The survival tests revealed that the knockdown of TcGNBP2 significantly compromised T. castaneum's resistance to bacterial infection. Our findings provide valuable insights into the regulatory mechanism of TcGNBP2 in the innate immunity of T. castaneum and offer a promising molecular target for RNAi-based management of insect pest.
Collapse
Affiliation(s)
- Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiangjun Ma
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuying Jiang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Pingxiang Liu
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Rui Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tong Zhao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xuexia Yuan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haining Hao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Yutao Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
3
|
Chen W, Li Z. miR-571 manipulating termite immune response to fungus and showing potential for green management of Copotermes formosanus (Blattodea: Isoptera). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106274. [PMID: 40015866 DOI: 10.1016/j.pestbp.2024.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025]
Abstract
Termites are not merely social insects; they are also globally important insect pests. MicroRNAs (miRNAs) are potential molecular targets for the biological control of termites. However, their role in termite resistance to pathogens, particularly their impact on termite social immune behaviour, remains unclear. In this study, we identified 50 differentially expressed miRNAs in Coptotermes formosanus, a globally economically important termite pest, in response to Metarhizium anisopliae infection. Injecting miR-571 agomir, one of significantly upregulated miRNAs, significantly increased termite mortality without or with M. anisopliae infection (compared to that with M. anisopliae infection alone). Meanwhile, termites infected with M. anisopliae exhibited a significant reduction in the avoidance, trophallaxis, and grooming behaviors. Subsequently, we identified POP5 as a target gene of miR-571 and found that miR-571-POP5 inhibits the termite immune response to M. anisopliae by inhibiting the expression of downstream genes, trypsin-like serine protease and serine protease. Finally, we confirmed that the ingestion of miR-571 agomir also increased the mortality of M. anisopliae-infected termites. Our findings enhance knowledge regarding miRNA role in insect social immunity, pathogen manipulation mechanisms, and optimizing pathogen effectiveness through insect miRNAs. This offers new molecular targets for the biological control of termites.
Collapse
Affiliation(s)
- Weiwen Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
4
|
Wang Z, Wang M, Zhou Y, Feng K, Tang F. A comprehensive analysis of the defense responses of Odontotermes formosanus (Shiraki) provides insights into the changes during Serratia marcescens infection. BMC Genomics 2024; 25:1044. [PMID: 39506655 PMCID: PMC11539531 DOI: 10.1186/s12864-024-10955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Odontotermes formosanus (Shiraki) is a highly damaging agroforestry pest. Serratia marcescens is a broad-spectrum insecticidal pathogen and is highly lethal to O. formosanus. However, little is known about the mechanism between them. To improve the biological control of pests, a more in-depth analysis of the interactions between the pests and the pathogens is essential. RESULTS We used RNA-seq, enzyme activity assays and real-time fluorescent quantitative PCR (qPCR) to explore the defense responses of O. formosanus against SM1. RNA-seq results showed that 1,160, 2,531 and 4,536 genes were differentially expressed at 3, 6 and 12 h after SM1 infection, and Kyoto Encyclopedia of Genes and Genomes (KEGG) results indicated that immune response and energy metabolism were involved in the defense of O. formosanus against SM1. Reactive oxygen species (ROS) levels and ROS synthesis genes were significantly elevated, and the antioxidant system were induced in O. formosanus after SM1 infection. In addition, the cellular immune genes were affected, and the Toll, immune deficiency (Imd), Janus kinase/signal transducer and activator of transcription (JAK/STAT), c-Jun N-terminal Kinase (JNK) and melanization pathways were activated. In vitro, Oftermicin, an antimicrobial peptide, had a significantly inhibitory effect on SM1. Furthermore, the expression levels and enzyme activities of phosphofructokinase (PFK), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and isocitrate dehydrogenase (IDH) in glycolysis and tricarboxylic acid (TCA) cycles were increased. CONCLUSIONS Our results clearly demonstrated that O. formosanus defended against SM1 by activating the antioxidant system, innate immunity and energy metabolism. This study would provide useful information for the development of biological controls of O. formosanus.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Mingyu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry and Grassland, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
5
|
Yu S, Hassan A, Mehmood N, Zhou W, Raza T, Huang Q. Study on the role of RPL23 gene in active immunity of termite Reticulitermes chinensis against Metarhizium anisopliae. J Invertebr Pathol 2024; 207:108226. [PMID: 39448023 DOI: 10.1016/j.jip.2024.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Ribosomal proteins are considered to be involved in the immunity of different animals against pathogens. The protein level of RPL23 increased after fungal infection in termites, but how it influence active immunity in termites is unknown. The role of RPL23 gene was studied to evaluate its impact on active immunity of termite Reticulitermes chinensis against entomopathogenic fungus (EPF) Metarhizium anisopliae. The RPL23 gene fragment (414 bp) was cloned and phylogenetic analysis revealed that it's very close to termite Coptotermes formosanus. Expression of RPL23 gene was significantly higher in abdomen as compared to thorax and head. Silencing RPL23 gene had no significant impact on the frequency and time of allogrooming towards fungus exposed termites from nestmates, which showed that nestmates acquired spores from infected termites through allogrooming. Expression of immune genes (GNBP1, GNBP2 and phenoloxidase) and apoptosis related genes (TNF-α, caspase 1, caspase 3 and caspase 8) decreased significantly in nestmates of fungus-treated termites after silencing of RPL23 gene as compared to control. Antifungal activity and survival of RPL23 silenced nestmates of fungus-treated termites also decreased. To sum up, this study found that silencing of RPL23 gene broke the active immunity against M. anisopliae infection, reduced the antifungal activity of termites, weakened cell apoptosis, and led to increased mortality of termites, which may help to find a potential alternative for chemical insecticides to control termites.
Collapse
Affiliation(s)
- Shuxin Yu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Nasir Mehmood
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Taqi Raza
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Termite Control of Ministry of Water Resources, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Nowell RW, Rodriguez F, Hecox-Lea BJ, Mark Welch DB, Arkhipova IR, Barraclough TG, Wilson CG. Bdelloid rotifers deploy horizontally acquired biosynthetic genes against a fungal pathogen. Nat Commun 2024; 15:5787. [PMID: 39025839 PMCID: PMC11258130 DOI: 10.1038/s41467-024-49919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Coevolutionary antagonism generates relentless selection that can favour genetic exchange, including transfer of antibiotic synthesis and resistance genes among bacteria, and sexual recombination of disease resistance alleles in eukaryotes. We report an unusual link between biological conflict and DNA transfer in bdelloid rotifers, microscopic animals whose genomes show elevated levels of horizontal gene transfer from non-metazoan taxa. When rotifers were challenged with a fungal pathogen, horizontally acquired genes were over twice as likely to be upregulated as other genes - a stronger enrichment than observed for abiotic stressors. Among hundreds of upregulated genes, the most markedly overrepresented were clusters resembling bacterial polyketide and nonribosomal peptide synthetases that produce antibiotics. Upregulation of these clusters in a pathogen-resistant rotifer species was nearly ten times stronger than in a susceptible species. By acquiring, domesticating, and expressing non-metazoan biosynthetic pathways, bdelloids may have evolved to resist natural enemies using antimicrobial mechanisms absent from other animals.
Collapse
Affiliation(s)
- Reuben W Nowell
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
- Institute of Ecology and Evolution, University of Edinburgh; Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Bette J Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Timothy G Barraclough
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- Department of Life Sciences, Imperial College London; Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.
| |
Collapse
|
7
|
Zhou W, Zhao X, Hassan A, Jia B, Liu L, Huang Q. Uncovering the function of insulin receptor substrate in termites' immunity through active immunization. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:1. [PMID: 38958928 PMCID: PMC11221318 DOI: 10.1093/jisesa/ieae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Insulin receptor substrate (IRS) proteins are key mediators in insulin signaling pathway. In social insect lives, IRS proteins played important roles in caste differentiation and foraging, but there function in disease defenses such as active immunization has not been reported yet. To investigate the issue, we successfully suppressed the IRS gene 3 days after dsRNA injection. Suppressing IRS gene increased the contents of glucose, trehalose, glycogen, and triglyceride and decreased the content of pyruvate in termites, and led to the metabolic disorder of glucose and lipids. IRS suppressing significantly enhanced grooming behaviors of nestmates of fungus-contaminated termites and hence increased the conidial load in the guts of the nestmates. Additionally, IRS suppressing led to significant downregulation of the immune genes Gram-negative bacteria-binding protein2 (GNBP2) and termicin and upregulation of the apoptotic gene caspase8, and hence diminished antifungal activity of nestmates of fungus-contaminated termites. The above abnormal behavioral and physiological responses significantly decreased the survival rate of dsIRS-injected nestmates of the fungus-contaminated termites. These findings suggest that IRS is involved in regulation of active immunization in termites, providing a better understanding of the link between insulin signaling and the social immunity of termites.
Collapse
Affiliation(s)
- Wei Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingying Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ali Hassan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao Jia
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Nanning Institute of Termite Control, Nanning 530023, China
| | - Long Liu
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Li X, Wang M, Feng K, Sun H, Tang F. The Function of Termicin from Odontotermes formosanus (Shiraki) in the Defense against Bacillus thuringiensis (Bt) and Beauveria bassiana (Bb) Infection. INSECTS 2024; 15:360. [PMID: 38786916 PMCID: PMC11122213 DOI: 10.3390/insects15050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Odontotermes formosanus (Shiraki) is a subterranean termite species known for causing severe damage to trees and structures such as dams. During the synergistic evolution of O. formosanus with pathogenic bacteria, the termite has developed a robust innate immunity. Termicin is a crucial antimicrobial peptide in termites, significantly contributing to the defense against external infections. Building upon the successful construction and expression of the dsRNA-HT115 engineering strains of dsOftermicin1 and dsOftermicin2 in our laboratory, this work employs the ultrasonic breaking method to establish an inactivated dsOftermicins-HT115 technological system capable of producing a substantial quantity of dsRNA. This approach also addresses the limitation of transgenic strains which cannot be directly applied. Treatment of O. formosanus with dsOftermicins produced by this method could enhance the virulence of both Bt and Bb to the termites. This study laid the theoretical groundwork for the development of novel termite immunosuppressants and for the advancement and application of termite biological control strategies.
Collapse
Affiliation(s)
- Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.L.); (M.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.L.); (M.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.L.); (M.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Sun
- Jiangsu Province Rural Water Conservancy Science and Technology Development Center, Nanjing 210029, China;
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.L.); (M.W.); (K.F.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Bi J, Liu P, Gao R, Jiang Y, Zhang C, Zhao T, Gao L, Wang Y. Silencing gram-negative bacteria binding protein 1 decreases the immunity of Tribolium castaneum against bacteria. Int J Biol Macromol 2024; 264:130631. [PMID: 38453114 DOI: 10.1016/j.ijbiomac.2024.130631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Gram-negative bacteria binding proteins (GNBPs) have the ability to recognize molecular patterns associated with microbial pathogens (PAMPs), leading to the activation of immune responses downstream. In the genome of Tribolium castaneum, three GNBP genes have been identified; however, their immunological roles remain unexplored. In our study, a GNBP1, designated as TcGNBP1, were identified from the cDNA library of T. castaneum. The coding sequence of TcGNBP1 consisted of 1137 bps and resulted in the synthesis of a protein comprising 378 amino acids. This protein encompasses a signal peptide, a low-complexity region, and a glycoside hydrolase 16 domain. TcGNBP1 was strongly expressed in early adult stages, and mainly distributed in hemolymph and gut. Upon being challenged with Escherichia coli or Staphylococcus aureus, the transcript levels of TcGNBP1 were significantly changed at different time points. Through molecular docking and ELISA analysis, it was observed that TcGNBP1 has the ability to interact with lipopolysaccharides, peptidoglycan, and β-1, 3-glucan. Based on these findings, it was further discovered that recombinant TcGNBP1 can directly bind to five different bacteria in a Ca2+-dependent manner. After knockdown of TcGNBP1 with RNA interference, expression of antimicrobial peptide genes and prophenoloxidase (proPO) activity were suppressed, the susceptibility of T. castaneum to E. coli or S. aureus infection was enhanced, leading to low survival rate. These results suggest a regulatory mechanism of TcGNBP1 in innate immunity of T. castaneum and provide a potential molecular target for dsRNA-based insect pest management.
Collapse
Affiliation(s)
- Jingxiu Bi
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Pingxiang Liu
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Rui Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuying Jiang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tong Zhao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lei Gao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yutao Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; Cooperative of Vegetable and Grain Cultivation, Liaocheng Yifeng Bloc, Liaocheng, Shandong, China.
| |
Collapse
|
10
|
Zhang W, Chen X, Eleftherianos I, Mohamed A, Bastin A, Keyhani NO. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev 2024; 48:fuae003. [PMID: 38341280 PMCID: PMC10883697 DOI: 10.1093/femsre/fuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Xuanyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District 550025, China
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Research fellow, King Saud University Museum of Arthropods, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia
| | - Ashley Bastin
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, United States
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
11
|
Luitel B, Johnson AJ, Bulmer MS. Subterranean termites raise the alarm when their anti-fungal weapon falters. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 111:1. [PMID: 38150102 DOI: 10.1007/s00114-023-01887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Termicin is an anti-fungal defensin that is disseminated from termite salivary glands. The peptide appears to be critical for the elimination with mutual grooming (allogrooming) of pathogenic spores (conidia) that have attached to the insect cuticle. There has been a recent selective sweep for an advantageous variant of this peptide in the subterranean termite Reticulitermes flavipes. We tested the anti-mycotic activity of a recombinant termicin corresponding with this variant against the conidia of different Metarhizium fungal isolates from soil close to foraging R. flavipes workers. Termicin was most effective against isolates that had previously been shown to elicit a relatively weak alarm response, as indicated by brief bouts of rapid longitudinal oscillatory movement (LOM). These isolates that elicited weak alarm were also the deadliest apparently because the survival of termites exposed to the fungus depends on a strong social immune response (LOMs and allogrooming). The selective pressure for a single termicin variant may have been driven by the most dangerous isolates that elicit a weak behavioral response. The correlation between termicin anti-fungal activity and LOM suggests that pathogen-associated molecular patterns that affect termite recognition of conidial contamination and the onset of elevated allogrooming also affect the vulnerability of conidia to the disruption of their cell membranes by termicin.
Collapse
Affiliation(s)
- Bhawana Luitel
- Department of Biological Sciences, Towson University, 4101 Science Complex, 8000 York Rd, Towson, MD, 21252, USA
| | - Ajijola J Johnson
- Department of Biological Sciences, Towson University, 4101 Science Complex, 8000 York Rd, Towson, MD, 21252, USA
| | - Mark S Bulmer
- Department of Biological Sciences, Towson University, 4101 Science Complex, 8000 York Rd, Towson, MD, 21252, USA.
| |
Collapse
|
12
|
Esparza-Mora MA, Mazumdar T, Jiang S, Radek R, Thiem JN, Feng L, Petrašiūnaitė V, Banasiak R, Golian M, Gleske M, Lucas C, Springer A, Buellesbach J, McMahon DP. Defensive behavior is linked to altered surface chemistry following infection in a termite society. Sci Rep 2023; 13:20606. [PMID: 37996442 PMCID: PMC10667546 DOI: 10.1038/s41598-023-42947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/16/2023] [Indexed: 11/25/2023] Open
Abstract
The care-kill response determines whether a sick individual will be treated or eliminated from an insect society, but little is known about the physiological underpinnings of this process. We exploited the stepwise infection dynamics of an entomopathogenic fungus in a termite to explore how care-kill transitions occur, and identify the chemical cues behind these shifts. We found collective responses towards pathogen-injected individuals to vary according to severity and timing of pathogen challenge, with elimination, via cannibalism, occurring sooner in response to a severe active infection. However, injection with inactivated fungal blastospores also resulted in increased albeit delayed cannibalism, even though it did not universally cause host death. This indicates that the decision to eliminate an individual is triggered before pathogen viability or terminal disease status has been established. We then compared the surface chemistry of differently challenged individuals, finding increased amounts of long-chained methyl-branched alkanes with similar branching patterns in individuals injected with both dead and viable fungal blastospores, with the latter showing the largest increase. This coincided with the highest amounts of observed cannibalism as well as signs of severe moribundity. Our study provides new mechanistic insight into the emergent collective behaviors involved in the disease defense of a termite society.
Collapse
Affiliation(s)
- M Alejandra Esparza-Mora
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Tilottama Mazumdar
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Renate Radek
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Julian N Thiem
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Linshan Feng
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Vesta Petrašiūnaitė
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Ronald Banasiak
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Marek Golian
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Melanie Gleske
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS-University of Tours, Tours, France
| | - Andreas Springer
- Core Facility BioSupraMol, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany.
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.
| |
Collapse
|
13
|
Zeng W, Chen T, Chen Y, Yan X, Wu W, Zhang S, Li Z. α-Terpineol affects social immunity, increasing the pathogenicity of entomopathogenic nematodes to subterranean termites (Isoptera). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105621. [PMID: 37945257 DOI: 10.1016/j.pestbp.2023.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/12/2023]
Abstract
Biocontrol of subterranean termites is largely impeded by their social immune responses. Studies on biocontrol agents combined with natural insecticides and their possible effects on the immune defense mechanisms of termites are limited. In this study, we investigated the effects of a combined biocontrol strategy using a plant-derived insect ATPase inhibitor, α-terpineol, with the entomopathogenic nematodes (EPNs) Steinernema carpocapsae against the subterranean termite Coptotermes formosanus Shiraki. Survival assays showed that even a low lethal concentration of α-terpineol significantly increased the EPNs-induced virulence in C. formosanus. α-terpineol treatment majorly inhibited the activity of Na+- K+- ATPase, which disturbed the EPNs-induced enhancement of locomotor activity and grooming behavior in termites treated with the combined strategy. Furthermore, the combination treatment had a synergistic inhibitory effect on innate immune responses in C. formosanus, which were measured as changes in the expression of immune-related genes and activities of immune system enzymes. In conclusion, α-terpineol can weaken the immune defense of termites against EPNs at low lethal concentrations, and is a suitable non-synthetic insecticide to prove the biocontrol efficiency of EPNs on C. formosanus. This study provides a theoretical basis and technical reference for a novel biocontrol strategy that promises to overcome the problems of host immune defense in termites.
Collapse
Affiliation(s)
- Wenhui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, No. 105, Xingang Xi Road, Guangzhou 510260, PR China
| | - Tong Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, No. 105, Xingang Xi Road, Guangzhou 510260, PR China
| | - Yong Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, No. 105, Xingang Xi Road, Guangzhou 510260, PR China
| | - Xun Yan
- Innovative Institute for Plant Health, College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjing Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, No. 105, Xingang Xi Road, Guangzhou 510260, PR China
| | - Shijun Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, No. 105, Xingang Xi Road, Guangzhou 510260, PR China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, No. 105, Xingang Xi Road, Guangzhou 510260, PR China.
| |
Collapse
|
14
|
Kim YH, Kim BY, Choi YS, Lee KS, Jin BR. Ingestion of heat-killed pathogens confers transgenerational immunity to the pathogens via the vitellogenin-hypopharyngeal gland axis in honeybees. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104709. [PMID: 37031709 DOI: 10.1016/j.dci.2023.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/20/2023]
Abstract
Honeybee diseases are a serious threat to beekeeping and pollination. Transgenerational immune priming (TGIP) has been attracting increasing attention as a promising strategy to protect honeybee colonies from infections. This study investigated whether feeding honeybees (Apis mellifera) with a heat-killed pathogen cocktail can provide them with transgenerational immunity to these pathogens. We found that vitellogenin (Vg) and defensin-1 were highly upregulated in nurse bees upon feeding them with a cocktail of heat-killed Ascosphaera apis and Paenibacillus larvae (A + P cocktail). Pathogen-pattern-recognition receptor genes in the Toll signaling pathway were upregulated in nurse bees upon ingestion of the A + P cocktail. In the nurse bees of the hives supplied with the A + P cocktail, Vg was upregulated in the fat body, and the defensin-1 expression and Vg uptake in the hypopharyngeal glands were induced. Consequently, the major proteins in royal jelly were upregulated. In addition, defensin-1 was upregulated in the queen larvae and young worker larvae in these hives. In correlation, the young worker larvae showed high pathogen resistance to P. larvae infection. Thus, our findings imply that introduction of a heat-killed pathogen cocktail into hives is an efficient strategy for conferring honeybees with social immunity through TGIP.
Collapse
Affiliation(s)
- Yun Hui Kim
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Bo Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Yong Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, 55365, Republic of Korea
| | - Kwang Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea.
| | - Byung Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
15
|
Chen WW, Zhang H, Chen Y, Zeng WH, Li ZQ. Combined use of lipopolysaccharide-binding protein dsRNA and Gram-negative bacteria for pest management of Coptotermes formosanus. PEST MANAGEMENT SCIENCE 2023; 79:2299-2310. [PMID: 36775842 DOI: 10.1002/ps.7405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND RNA interference (RNAi) technology is an environmentally friendly strategy for controlling insect pests. Lipopolysaccharide-binding protein (LBP) recognizes lipopolysaccharides, which are a major outer membrane constituent of Gram-negative bacteria. We propose that the LBP gene is a potential target for termite management; however, to date, no studies have examined this gene in termites. RESULTS In this study, we cloned the LBP gene of Coptotermes formosanus (Cf) and found that the mortality rate of termite workers significantly increased, and the repellence of these workers to Gram-negative bacteria was suppressed after knockdown of CfLBP using double-stranded RNA (dsRNA) injection and feeding. Moreover, the mortality rate of termite workers fed with CfLBP dsRNA and three Gram-negative bacteria (provided separately) was over 50%, which was much higher than that of termites treated with either CfLBP dsRNA or Gram-negative bacteria. Finally, we found that CfLBP impacts the IMD pathway to regulate the immune response of C. formosanus to Gram-negative bacteria. CONCLUSION CfLBP plays a important role in the immune defense of termites against Gram-negative bacteria. It can be used as an immunosuppressant for RNAi-based termite management and is an ideal target for termite control based on the combined use of RNAi and pathogenic bacteria. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wen-Hui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhi-Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Dong Y, Peng X, Hussain R, Niu T, Zhang H, Wang H, Xing LX, Wang R. Elevated expression of immune and DNA repair genes in mated queens and kings of the Reticulitermes chinensis termites. Exp Gerontol 2023; 178:112228. [PMID: 37271408 DOI: 10.1016/j.exger.2023.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Studies have identified that mating induces a series of physiological changes in animals. In this period, males tending to invest more energy, immune peptides, and other substances to reduce the cost of living for females. This results in lower survival rates in later life than females. Meanwhile, both males and females shorten lifespans due to reproduction. However, the reasons why termites' queens and kings are both extremely long-lived and highly fecund are unclear. Therefore, this study aimed to examine the effects of mating on the expression of immune and DNA repair genes for lifespan extension in termite queens and kings. Here, we reported that mated queens show relatively higher expression of immune genes (phenoloxidase, denfensin, termicin, transferrin), antioxidant genes (CAT, SOD), detoxification genes (GST, CYP450) than virgin queens in the Reticulitermes chinensis. In addition, mated kings also highly expressed these genes, except for termicin, transferrin, GST, and CYP450. After mating, both queens and kings significantly upregulated the expression of DNA repair genes (MLH1, BRCA1, XRCC3, RAD54-like). Mismatch repair genes (MMR) MSH2, MSH4, MSH6 were considerably increased in mated queens, while MSH4, MSH5, MSH6 were upregulated in mated kings. Our results suggest that mating increases the expression of immune and DNA repair genes in the termite queens and kings, and thus possibly improving their survival during reproductive span due to the omnipresent pathogens.
Collapse
Affiliation(s)
- Yanan Dong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xin Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Riaz Hussain
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Tong Niu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - He Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Huan Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lian-Xi Xing
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Ruiwu Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
17
|
Chen WW, Zeng WH, Shen DN, Feng SY, Li ZQ. Genome-wide identification of Coptotermes formosanus immune genes and their potential roles in termite control. Gene 2023; 877:147569. [PMID: 37330022 DOI: 10.1016/j.gene.2023.147569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the use of microbes to control termites has attracted increasing attention. It was found that pathogenic bacteria, nematodes, and fungi effectively control termites under laboratory conditions. However, their effects have not been replicated in the field, and one reason for this is the complex immune defense mechanisms of termites, which are mainly regulated by immune genes. Therefore, altering the expression of immune genes may have a positive influence on the biocontrol efficacy of termites. Coptotermes formosanus Shiraki is one of the most economically important termite pests worldwide. Currently, the large-scale identification of immune genes in C. formosanus is primarily based on cDNA library or transcriptome data rather than at the genomic level. In this study, we identified the immune genes of C. formosanus according to genome-wide analysis. In addition, our transcriptome analysis showed that immune genes were significantly downregulated when C. formosanus was exposed to the fungus Metarhizium anisopliae or nematodes.. Finally, we found that injecting dsRNA to inhibit three immune genes (CfPGRP-SC1, CfSCRB3, and CfHemocytin), which recognize infectious microbes, significantly increased the lethal effect of M. anisopliae on termites. These immune genes show great potential for C. formosanus management based on RNAi. These results also increase the number of known immune genes in C. formosanus which will provide a more comprehensive insight into the molecular basis of immunity in termites.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wen-Hui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dan-Ni Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yi Feng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
18
|
Qian C, Ma T, Qiu H, Lyu H, Liang S, Shao Y, Yuan P, Shen L, Wen X, Wang C. Lethal, transmission, behavioral, and physiological effects of Metarhizium anisopliae against gregarious larvae of Heortia vitessoides and synergistic effects between Metarhizium anisopliae and insecticides. PEST MANAGEMENT SCIENCE 2023; 79:2191-2205. [PMID: 36746852 DOI: 10.1002/ps.7398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Heortia vitessoides Moore is a severe pest of Aquilaria sinensis (Lour.) Gilg, an important source of agarwood. In recent years, large amounts of chemical insecticides have been applied in A. sinensis plantations to deal with the outbreak of H. vitessoides, causing residue problems that reduce the quality and price of agarwood. Herein, we hypothesize that the widely applied biocontrol agent, Metarhizium anisopliae (Metschn.) Sorokin, can effectively kill the gregarious larvae of H. vitessoides through direct contact and horizontal transmission. RESULTS At the concentration of 1 × 109 conidia/mL, the three M. anisopliae strains caused 100% mortality of H. vitessoides larvae. In addition, mixing donor larvae (previously treated with M. anisopliae conidia) with receptor larvae (which did not directly contact M. anisopliae conidia) caused significantly higher mortality of receptor larvae than the control receptors. This is due to the horizontal transmission of M. anisopliae conidia among live larvae, which was proven by pictures taken by scanning electron microscopy and induced activities of immunity-related enzymes of donor and receptor larvae. Behavioral bioassays showed that M. anisopliae conidia had little effect on the aggregation tendency of H. vitessoides larvae but may trigger feeding-avoidance behavior depending on M. anisopliae strains and concentrations. Interestingly, joint use of sublethal concentrations of M. anisopliae and chemical insecticides significantly increased larval mortality than each agent alone, indicating synergistic effects between M. anisopliae and insecticide against H. vitessoides. CONCLUSION This study may provide a new strategy to suppress H. vitessoides population and reduce the use of chemical insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyu Qian
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tao Ma
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hualong Qiu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, China
| | - Hailong Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shiping Liang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuhe Shao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Pengyu Yuan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Liming Shen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiujun Wen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cai Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Liu L, Wang DH, Zhao CC, Yan FM, Lei CL, Su LJ, Zhang YC, Huang QY, Tang QB. Transcriptomics Reveals the Killing Mechanism by Which Entomopathogenic Fungi Manipulate the RNA Expression Profiles of Termites and Provides Inspiration for Green Pest Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7152-7162. [PMID: 37104842 DOI: 10.1021/acs.jafc.3c00743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As chemical pesticides have caused serious environmental pollution, fungus-based biological control has become a developing alternative to chemical control. Here, we aimed to determine the molecular mechanism underlying how Metarhizium anisopliae facilitated invasive infection. We found that the fungus increased its virulence by downregulating glutathione S-transferase (GST) and superoxide dismutase (SOD) throughout termite bodies. Among 13 fungus-induced microRNAs throughout termite bodies, miR-7885-5p and miR-252b upregulation significantly downregulated several mRNAs in response to toxic substances to increase the fungal virulence [e.g., phosphoenolpyruvate carboxykinase (GTP) and heat shock protein homologue SSE1]. In addition, nanodelivered small interfering RNA of GST and SOD and miR-7885-5p and miR-252b mimics increased the virulence of the fungus. These findings provide new insights into the killing mechanism of entomopathogens and their utilization of the host miRNA machinery to reduce host defenses, laying the groundwork to enhance virulence of biocontrol agents for green pest management.
Collapse
Affiliation(s)
- Long Liu
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Dong-Huai Wang
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen-Chen Zhao
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng-Ming Yan
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Juan Su
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuan-Chen Zhang
- Taihang Mountain Forest Pests Observation and Research Station of Henan Province, Anyang 456582, China
| | - Qiu-Ying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Bo Tang
- Henan International Laboratory for Green Pest Control; Henan Engineering Laboratory of Pest Biological Control; College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
20
|
Chen Y, Zhao C, Zeng W, Wu W, Zhang S, Zhang D, Li Z. The effect of ergosterol on the allogrooming behavior of termites in response to the entomopathogenic fungus Metarhizium anisopliae. INSECT SCIENCE 2023; 30:185-196. [PMID: 35567495 PMCID: PMC10084151 DOI: 10.1111/1744-7917.13055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 06/05/2023]
Abstract
Termites have physiological and behavioral immunities that make them highly resistant to pathogen infections, which complicates biocontrol efforts. However, the stimuli that trigger the pathogen-avoidance behaviors of termites are still unclear. Our study shows that workers of Coptotermes formosanus exposed to the conidia of Metarhizium anisopliae exhibited a significantly higher frequency and longer duration of allogrooming behaviors compared with untreated termites. Volatile compounds in the cuticle of control termites and termites previously exposed to a suspension of M. anisopliae conidia were analyzed and compared using a gas chromatography-mass spectrometer (GC-MS). Our results showed that the amount of ergosterol differed between the fungus-exposed and control termites. Choice tests showed that termites significantly preferred to stay on filter paper treated with ergosterol (0.05, 0.1, or 1.0 mg/mL) compared with control filter paper. In addition, termites exposed to ergosterol followed by M. anisopliae conidia were allogroomed at a significantly higher frequency and for a longer duration than termites exposed to alcohol (the solvent used with the ergosterol in the ergosterol trials) alone followed by M. anisopliae conidia. These results showed that ergosterol may enhance the allogrooming behavior of termites in the presence of entomopathogenic fungi.
Collapse
Affiliation(s)
- Yong Chen
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationInstitute of ZoologyGuangdong Academy of SciencesGuangzhouChina
| | - Chongwen Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationInstitute of ZoologyGuangdong Academy of SciencesGuangzhouChina
- School of EcologySun Yat‐sen UniversityGuangzhouChina
| | - Wenhui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationInstitute of ZoologyGuangdong Academy of SciencesGuangzhouChina
| | - Wenjing Wu
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationInstitute of ZoologyGuangdong Academy of SciencesGuangzhouChina
| | - Shijun Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationInstitute of ZoologyGuangdong Academy of SciencesGuangzhouChina
| | - Dandan Zhang
- School of EcologySun Yat‐sen UniversityGuangzhouChina
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource UtilizationGuangdong Public Laboratory of Wild Animal Conservation and UtilizationInstitute of ZoologyGuangdong Academy of SciencesGuangzhouChina
| |
Collapse
|
21
|
Jiang D, Lu X, Zhang L, Tang F. Enhancement of Pathogen Toxicity by Feeding Reticulitermes chinensis Snyder Sonicated Bacteria Expressing Double-Stranded RNA That Interferes with Olfaction. INSECTS 2023; 14:140. [PMID: 36835709 PMCID: PMC9965219 DOI: 10.3390/insects14020140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Reticulitermes chinensis Snyder is a serious pest in China, and the odorant receptor co-receptor gene RcOrco plays a crucial role in olfaction. However, the function of RcOrco in the resistance of termites to entomopathogens has not been reported. We constructed dsRcOrco-HT115 engineered bacteria based on the RcOrco sequence from the full-length transcriptome data of R. chinensis. The engineered bacteria expressed dsRNA of RcOrco. Sonication was used to inactivate the dsRNA-HT115 strain and obtain a large amount of dsRcOrco. The dsRcOrco produced using this method overcame the problem that genetically engineered bacteria could not be applied directly and improved its effectiveness against termites. Bioassays using the dsRcOrco generated using this method showed that dsRcOrco significantly increased the toxicity of the bacterial and fungal pathogens to R. chinensis. The present study showed, for the first time, the function of Orco in termite resistance to pathogens, and the results provide a theoretical basis for the development and application of termite RNA biopesticides.
Collapse
Affiliation(s)
- Dabao Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
22
|
Bulmer MS, Franco BA, Biswas A, Greenbaum SF. Overcoming Immune Deficiency with Allogrooming. INSECTS 2023; 14:insects14020128. [PMID: 36835697 PMCID: PMC9965724 DOI: 10.3390/insects14020128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
Allogrooming appears to be essential in many social animals for protection from routine exposure to parasites. In social insects, it appears to be critical for the removal of pathogenic propagules from the cuticle before they can start an infectious cycle. For subterranean termites, this includes fungal spores commonly encountered in the soil, such as Metarhizium conidia, that can quickly germinate and penetrate the cuticle. We investigated whether there is a difference in reliance on social and innate immunity in two closely related subterranean termites for protection from fatal infections by two locally encountered Metarhizium species. Our results indicate that relatively weak innate immunity in one termite species is compensated by more sustained allogrooming. This includes enhanced allogrooming in response to concentrations of conidia that reflect more routine contamination of the cuticle as well as to heavy cuticular contamination that elicits a networked emergency response.
Collapse
|
23
|
Feng K, Li W, Tang X, Luo J, Tang F. Termicin silencing enhances the toxicity of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105120. [PMID: 35772836 DOI: 10.1016/j.pestbp.2022.105120] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/06/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Termites are often exposed to a variety of pathogens during their life cycle, which has led to the development of an innate immune system to resist these pathogens. Antimicrobial peptides (AMPs) play a crucial role in the innate immune system in insects. However, clear information on AMPs in termites has not been obtained. Therefore, exploring the function of AMPs in the subterranean termite Odontotermes formosanus (Shiraki) can lead to the development of novel termite control strategies that integrate RNA interference (RNAi) and pathogens. Here we first obtained two Oftermicins from O. formosanus and observed that the expression of these Oftermicin genes was significantly upregulated at the mRNA level after treatment with lipopolysaccharide (LPS) or Serratia marcescens Bizio (SM1). Interestingly, the expression of these Oftermicins increased not only in the donor termites but also in the recipient termites through transmission experiments. Bioassay experiments showed that the mortality of O. formosanus treated with SM1 after RNAi was significantly higher than that of other groups. In summary, dsOftermicins are important immunosuppressants for termite control and Oftermicins are optimal targets for termite control based on the combined use of RNAi and pathogens.
Collapse
Affiliation(s)
- Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingmi Road 266, Jingzhou 434025, Hubei Province, People's Republic of China
| | - Xinyi Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
24
|
Zeng W, Shen D, Chen Y, Zhang S, Wu W, Li Z. A High Soldier Proportion Encouraged the Greater Antifungal Immunity in a Subterranean Termite. Front Physiol 2022; 13:906235. [PMID: 35733990 PMCID: PMC9207448 DOI: 10.3389/fphys.2022.906235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Termites possess a mighty social immune system, serving as one of the key obstacles to controlling them biologically. However, the dynamic mechanism coordinating the social immunologic defense and caste distribution of the termites remains elusive. This study used the Coptotermes formosanus Shiraki and an entomopathogenic fungus as a host–pathogen system and experimentally manipulated a series of groups with different caste compositions of workers and soldiers. Then, the impact of demography on the behavior and innate immunity of termites was explored by analyzing the fungus susceptibility of the respective caste, efficiencies, and caste preferences of sanitary care, as well as the expression of the immune genes and phenoloxidase activity. Overall, to ensure the general health and survival of a group, the infected workers were found to sacrifice their survivorship for maintaining the soldier proportion of the group. If soldier proportion was limited within a threshold, both the survivorship of the workers and soldiers were not significantly affected by the infection. Correspondingly, the infected group with a higher proportion of soldiers stimulated the higher efficiency of a non-caste-biased sanitary care of the workers to the nestmate workers and soldiers. Moreover, the innate immunities of the infected workers were found to be more intensely upregulated in the group with higher soldier proportions. This suggested that the adjustable non-caste-biased sanitary care and innate immunity of the workers would contribute to the flexibility of the worker–soldier caste ratio in C. formosanus. This study, therefore, enhanced our understanding of the functional adaptation mechanism between pathogen-driven social immunity and the demography of the termites.
Collapse
|
25
|
Schmidt S, Kildgaard S, Guo H, Beemelmanns C, Poulsen M. The chemical ecology of the fungus-farming termite symbiosis. Nat Prod Rep 2022; 39:231-248. [PMID: 34879123 PMCID: PMC8865390 DOI: 10.1039/d1np00022e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/19/2023]
Abstract
Covering: September 1972 to December 2020Explorations of complex symbioses have often elucidated a plethora of previously undescribed chemical compounds that may serve ecological functions in signalling, communication or defence. A case in point is the subfamily of termites that cultivate a fungus as their primary food source and maintain complex bacterial communities, from which a series of novel compound discoveries have been made. Here, we summarise the origins and types of 375 compounds that have been discovered from the symbiosis over the past four decades and discuss the potential for synergistic actions between compounds within the complex chemical mixtures in which they exist. We go on to highlight how vastly underexplored the diversity and geographic distribution of the symbiosis is, which leaves ample potential for natural product discovery of compounds of both ecological and medical importance.
Collapse
Affiliation(s)
- Suzanne Schmidt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | - Sara Kildgaard
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | - Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Bulmer MS, Stefano AM. Termite eusociality and contrasting selective pressure on social and innate immunity. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03090-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Eleftherianos I, Zhang W, Heryanto C, Mohamed A, Contreras G, Tettamanti G, Wink M, Bassal T. Diversity of insect antimicrobial peptides and proteins - A functional perspective: A review. Int J Biol Macromol 2021; 191:277-287. [PMID: 34543628 DOI: 10.1016/j.ijbiomac.2021.09.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The innate immune response of insects provides a robust line of defense against pathogenic microbes and eukaryotic parasites. It consists of two types of overlapping immune responses, named humoral and cellular, which share protective molecules and regulatory mechanisms that closely coordinate to prevent the spread and replication of pathogens within the compromised insect hemocoel. The major feature of the humoral part of the insect immune system involves the production and secretion of antimicrobial peptides from the fat body, which is considered analogous to adipose tissue and liver in vertebrates. Previous research has identified and characterized the nature of antimicrobial peptides that are directed against various targets during the different stages of infection. Here we review this information focusing mostly on the diversity and mode of action of these host defense components, and their critical contribution to maintaining host homeostasis. Extending this knowledge is paramount for understanding the evolution of innate immune function and the physiological balance required to provide sufficient protection to the host against external enemies while avoiding overactivation signaling events that would severely undermine physiological stability.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Christa Heryanto
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, 3, Varese 21100, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Napoli Federico II, Via Università, 100, Portici 80055, Italy
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Taha Bassal
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
28
|
Ji J, Zhou L, Xu Z, Ma L, Lu Z. Two atypical gram-negative bacteria-binding proteins are involved in the antibacterial response in the pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2021; 30:427-435. [PMID: 33928689 DOI: 10.1111/imb.12708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The activation of immune pathways is triggered by the recognition of pathogens by pattern recognition receptors (PRRs). Gram-negative bacteria-binding proteins (GNBPs)/β-1,3-glucan recognition proteins (βGRPs) are a conserved family of PRRs in insects. Two GNBPs are predicted in the genome database of pea aphids; however, little is known about their functions in the aphid immune system. Here, we show that pea aphid GNBPs possess domain architectures and sequence features distinct from those of typical GNBPs/βGRPs and that their expression is induced by bacterial infection. Knockdown of their expression by dsRNA resulted in lower phenoloxidase activity, higher bacterial loads and higher mortality in aphids after infection. Our data suggest that these two atypical GNBPs are involved in the antibacterial response in the pea aphid, likely acting as PRRs in the prophenoloxidase pathway.
Collapse
Affiliation(s)
- J Ji
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Xu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Costa-Leonardo AM, da Silva IB, Janei V, Poiani SB, Dos Santos-Pinto JRA, Esteves FG, Palma MS. Salivary glands in workers of Ruptitermes spp. (Blattaria, Isoptera, Termitidae, Apicotermitinae): a morphological and preoteomic approach. Cell Tissue Res 2021; 385:603-621. [PMID: 33961129 DOI: 10.1007/s00441-021-03469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Salivary glands are omnipresent in termites and occur in all developmental stages and castes. They function to produce, store, and secrete compounds, ranging from a feeding function to defensive mechanisms. Here, we provide a complete morphological overview of the salivary glands in the soldierless species Ruptitermes reconditus and R. xanthochiton, and the first proteomic profile of the salivary glands in a Neotropical Apicotermitinae representative, R. reconditus. Salivary glands from both species were composed of several acini, roughly spherical structures composed of two types of central cells (type I and II) and peripheral parietal cells, as well as transporting ducts and two salivary reservoirs. Central cells were richly supplied with electron-lucent secretory vesicles and rough endoplasmic reticulum, a feature of protein-secreting cells. Parietal cells of Ruptitermes spp. had conspicuous characteristics such as electron-lucent secretory vesicles surrounded by mitochondria and well-developed microvilli. Moreover, different individuals showed variation in the secretory cycle of salivary acini, which may be related to polyethism. Ultrastructural analysis evidenced a high synthesis of secretion and also the occurrence of lysosomes and autophagic structures in central cells. Proteomic analysis of the salivary glands revealed 483 proteins divided into functional groups, highlighting toxins/defensins and compounds related to alarm communication and colony asepsis. Soldierless termites are quite successful, especially due to morphological adaptations of the workers, including unknown modifications of exocrine glands. Thus, according to our morphological and proteomic findings, we discuss the potential roles of the salivary gland secretion in different social aspects of the sampled species.
Collapse
Affiliation(s)
- Ana Maria Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil. .,Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil.
| | - Iago Bueno da Silva
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Vanelize Janei
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Silvana Beani Poiani
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - José Roberto Aparecido Dos Santos-Pinto
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Franciele Grego Esteves
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| | - Mario Sérgio Palma
- Centro de Estudos de Insetos Sociais-CEIS, Instituto de Biociências, Univ Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
30
|
Shahriari M, Zibaee A, Khodaparast SA, Fazeli-Dinan M, Hoda H, Armand A. Immunological interactions of Chilo suppressalis Walker (Lepidoptera: Crambidae) with the native entomopathogenic fungi. Microb Pathog 2021; 154:104858. [PMID: 33771627 DOI: 10.1016/j.micpath.2021.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Entomopathogenic fungi can attack many insect hosts and have been applied as the eco-friendly alternatives to synthetic chemicals for the control of pests. Insects have developed different defense systems encountering entomopathogens including humoral and cellular immune responses. In the present study, injection of some native entomopathogenic fungi to the Chilo suppressalis Walker larvae resulted in an enhancement of the cellular and antimicrobial defenses. The numbers of total and differential hemocytes increased rapidly in the first 3 and 6 h but those gradually reduced 12 and 24 h post-injections. The nodule formation and phenoloxidase activity increased at the time intervals after fungal infection. A similar trend was found in the transcription of antimicrobial peptides including attacin1 and 2, cecropin1 and 2, gallerimycin, defensin, lysozyme, and prophenoloxidase-activating proteinase-3 during infection fungi. In all cases, the target gene transcription was upper in the larvae injected by the fungi than that of control larvae. These results may elucidate better knowledge on the interaction of the fungi present in agroecosystems with the target insect pest.
Collapse
Affiliation(s)
- Morteza Shahriari
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Arash Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Seyyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mahmoud Fazeli-Dinan
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Centre, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hassan Hoda
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension, Amol, Iran
| | - Alireza Armand
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
31
|
Ahmad F, Fouad H, Liang S, Hu Y, Mo J. Termites and Chinese agricultural system: applications and advances in integrated termite management and chemical control. INSECT SCIENCE 2021; 28:2-20. [PMID: 31529680 PMCID: PMC7818233 DOI: 10.1111/1744-7917.12726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 06/02/2023]
Abstract
Termites are eusocial arthropod decomposers, and improve soil fertility, crop yield, and also are used by humans for their benefits across the world. However, some species of termites are becoming a threat to the farming community as they are directly and indirectly causing major losses to the agricultural system. It is estimated that termites cost the global economy more than 40 billion USD annually, and considerable research has been done on their management. In this review, we present the available information related to sustainable and integrated termite management practices (ITM). Furthermore, we insist that the better management of this menace can be possible through: (i) improving traditional methods to keep termites away from crops; (ii) improving agricultural practices to maintain plants with more vigor and less susceptible to termite attack; and (iii) integration of available techniques to reduce termite infestation in crops and surroundings. The application of an effective combination of traditional practices with recently developed approaches is the best option for agricultural growers. Moreover, keeping in mind the beneficial nature of this pest, more innovative efforts for its management, particularly using rapidly emerging technology (e.g., RNA interference), are needed.
Collapse
Affiliation(s)
- Farhan Ahmad
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and BiotechnologyZhejiang UniversityHangzhouChina
- Entomology SectionCentral Cotton Research Institute, SakrandShaheed BenazirabadSindhPakistan
| | - Hatem Fouad
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and BiotechnologyZhejiang UniversityHangzhouChina
- Department of Field Crop Pests, Plant Protection Research InstituteAgricultural Research CentreCairoEgypt
| | - Shi‐You Liang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yin Hu
- National Termite Control CenterHangzhouChina
| | - Jian‐Chu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
32
|
Zhao X, Liu L, Zhou W, Cai Q, Huang Q. Roles of selenoprotein T and transglutaminase in active immunization against entomopathogenic fungi in the termite Reticulitermes chinensis. JOURNAL OF INSECT PHYSIOLOGY 2020; 125:104085. [PMID: 32634432 DOI: 10.1016/j.jinsphys.2020.104085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Active immunization can protect individuals from infectious diseases in social insects. It is well established that trace elements are essential to the host immune system, but the related gene functions in insect social immunity are unknown. Here, we found that the levels of three free elements (Se, Ca and Cr) and selenoprotein T (SELT) expression were significantly decreased in the termite Reticulitermes chinensis Snyder during active immunization against the entomopathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin. Thus, we further explored the role of the SELT gene in the active immunization of termites. After SELT was significantly silenced by RNAi, the nestmates of fungus-contaminated termites exhibited reduced antifungal activity and increased mortality, along with increased expression of the immune genes transglutaminase (TG) and transferrin (Tsf), indicating that the active immunization of termites was disrupted by SELT silencing. Moreover, the TG-knockdown nestmates of fungus-contaminated termites significantly decreased grooming behavior, antifungal activity and survival, despite the upregulation of SELT expression, also suggesting that the active immunization of termites was disrupted by the silencing of TG. These findings demonstrated that both SELT gene and TG gene play important roles in driving active immunization against the entomopathogenic fungus M. anisopliae in R. chinensis.
Collapse
Affiliation(s)
- Xingying Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Long Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wei Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qing Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
33
|
Sun Y, Wang P, Abouzaid M, Zhou H, Liu H, Yang P, Lin Y, Hull JJ, Ma W. Nanomaterial-wrapped dsCYP15C1, a potential RNAi-based strategy for pest control against Chilo suppressalis. PEST MANAGEMENT SCIENCE 2020; 76:2483-2489. [PMID: 32061016 DOI: 10.1002/ps.5789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/26/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although the utility of double-stranded RNA (dsRNA)-mediated knockdown as an environmentally friendly pest management strategy has gained traction in recent years, its overall efficacy has been limited by poor stability and limited cellular uptake. Encapsulation of dsRNAs with various nanomaterials, however, has shown promise in overcoming these limitations. This study sought to investigate the biological efficacy of an oral dsRNA nanomaterial mixture targeting the CYP15C1 gene product in the economically important rice pest, Chilo suppressalis. RESULTS A putative CYP15C1 ortholog was cloned from C. suppressalis midguts. The transcript is downregulated in fifth-instar larvae and is most highly expressed in heads. RNA interference (RNAi)-mediated knockdown of CsCYP15C1 was associated with significantly increased mortality. More importantly, feeding a dsRNA-nanomaterial mixture significantly increased larval mortality compared with feeding dsRNA alone. CONCLUSION A critical role for CsCYP15C1 function in molting is supported by sequence similarity with known juvenile hormone epoxidases, its expression profile, and abnormal molting phenotypes associated with RNA-mediated knockdown. CsCYP15C1 is thus a prime target for controlling C. suppressalis. Furthermore, RNAi-mediated characterization of candidate gene function can be enhanced by incorporating an enveloping nanomaterial. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Sun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peipei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mostafa Abouzaid
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, U.S. Agricultural Research Service, Department of Agriculture, Maricopa, AZ, USA
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Esparza-Mora MA, Davis HE, Meconcelli S, Plarre R, McMahon DP. Inhibition of a Secreted Immune Molecule Interferes With Termite Social Immunity. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Aguero CM, Eyer PA, Vargo EL. Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci Rep 2020; 10:4212. [PMID: 32144325 PMCID: PMC7060273 DOI: 10.1038/s41598-020-61278-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
In some species of social insects the increased genetic diversity from having multiple breeders in a colony has been shown to improve pathogen resistance. Termite species typically found colonies from single mated pairs and therefore may lack the flexibility to buffer pathogen pressure with increased genetic diversity by varying the initial number of reproductives. However, they can later increase group diversity through colony merging, resulting in a genetically diverse, yet cohesive, workforce. In this study, we investigate whether the increased group diversity from colony fusion benefits social immunity in the subterranean termite Reticulitermes flavipes. We confirm previous findings that colonies of R. flavipes will readily merge and we show that workers will equally groom nestmates and non-nestmates after merging. Despite this, the survival of these merged colonies was not improved after exposure to a fungal pathogen, but instead leveled to that of the more susceptible or the more resistant colony. Our study brings little support to the hypothesis that colony fusion may improve immunity through an increase of genetic diversity in R. flavipes. Instead, we find that following exposure to a lethal pathogen, one colony is heavily influential to the entire group's survival after merging.
Collapse
Affiliation(s)
- Carlos M Aguero
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Texas, 77843-2143, USA.
| | - Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Texas, 77843-2143, USA
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Texas, 77843-2143, USA
| |
Collapse
|
36
|
Subterranean Termite Social Alarm and Hygienic Responses to Fungal Pathogens. INSECTS 2019; 10:insects10080240. [PMID: 31387197 PMCID: PMC6723859 DOI: 10.3390/insects10080240] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/17/2022]
Abstract
In social insects, alerting nestmates to the presence of a pathogen should be critical for limiting its spread and initiating social mechanisms of defense. Here we show that subterranean termites use elevated vibratory alarm behavior to help prevent fatal fungal infections. The elevated alarm leads to elevated social hygiene. This requires that termites coalesce so that they can groom each other’s cuticular surfaces of contaminating conidial spores. Groups of 12 Reticulitermes flavipes workers varied in their response when immersed in conidia solutions of nine different strains of Metarhizium. Pathogen alarm displays of short 2–7-second bursts of rapid longitudinal oscillatory movement (LOM), observed over 12 min following a fungal challenge, were positively correlated with the time that workers spent aggregated together grooming each other. The frequency of these LOMs was inversely correlated with fatal fungal infections. The variation in fatalities appeared to be largely attributable to a differential response to Metarhizium brunneum and Metarhizium robertsii in the time spent in aggregations and the frequency of allogrooming. Isolated workers challenged with conidia did not display LOMs, which suggests that the alarm is a conditional social response. LOMs appear to help signal the presence of fungal pathogens whose virulence depends on the level of this emergency alert.
Collapse
|
37
|
Bodawatta KH, Poulsen M, Bos N. Foraging Macrotermes natalensis Fungus-Growing Termites Avoid a Mycopathogen but Not an Entomopathogen. INSECTS 2019; 10:E185. [PMID: 31247889 PMCID: PMC6681374 DOI: 10.3390/insects10070185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
Abstract
Fungus-growing termites have to defend both themselves and their monoculture fungal cultivars from antagonistic microbes. One of the ways that pathogens can enter the termite colony is on the plant substrate that is collected by termite foragers. In order to understand whether foragers avoid substrate infected with antagonists, we offered sub-colonies of Macrotermes natalensis a choice between food exposed to either a mycopathogenic or an entomopathogenic fungus, and control food. Workers did not show any preference between entomopathogen-exposed and control substrate, but significantly avoided the mycopathogen-exposed substrate. This suggests that the behaviour of foraging workers is more strongly influenced by pathogens affecting their crop than those posing risks to the termite workers themselves.
Collapse
Affiliation(s)
- Kasun H Bodawatta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark
- Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen East, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark.
| | - Nick Bos
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark
| |
Collapse
|
38
|
Liu L, Zhao XY, Tang QB, Lei CL, Huang QY. The Mechanisms of Social Immunity Against Fungal Infections in Eusocial Insects. Toxins (Basel) 2019; 11:E244. [PMID: 31035652 PMCID: PMC6563085 DOI: 10.3390/toxins11050244] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/21/2019] [Accepted: 04/27/2019] [Indexed: 12/28/2022] Open
Abstract
Entomopathogenic fungus as well as their toxins is a natural threat surrounding social insect colonies. To defend against them, social insects have evolved a series of unique disease defenses at the colony level, which consists of behavioral and physiological adaptations. These colony-level defenses can reduce the infection and poisoning risk and improve the survival of societal members, and is known as social immunity. In this review, we discuss how social immunity enables the insect colony to avoid, resist and tolerate fungal pathogens. To understand the molecular basis of social immunity, we highlight several genetic elements and biochemical factors that drive the colony-level defense, which needs further verification. We discuss the chemosensory genes in regulating social behaviors, the antifungal secretions such as some insect venoms in external defense and the immune priming in internal defense. To conclude, we show the possible driving force of the fungal toxins for the evolution of social immunity. Throughout the review, we propose several questions involved in social immunity extended from some phenomena that have been reported. We hope our review about social 'host-fungal pathogen' interactions will help us further understand the mechanism of social immunity in eusocial insects.
Collapse
Affiliation(s)
- Long Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
- Plant Protection College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xing-Ying Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qing-Bo Tang
- Plant Protection College, Henan Agricultural University, Zhengzhou 450002, China.
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiu-Ying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
39
|
Monroy Kuhn JM, Meusemann K, Korb J. Long live the queen, the king and the commoner? Transcript expression differences between old and young in the termite Cryptotermes secundus. PLoS One 2019; 14:e0210371. [PMID: 30759161 PMCID: PMC6373952 DOI: 10.1371/journal.pone.0210371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023] Open
Abstract
Social insects provide promising new avenues for aging research. Within a colony, individuals that share the same genetic background can differ in lifespan by up to two orders of magnitude. Reproducing queens (and in termites also kings) can live for more than 20 years, extraordinary lifespans for insects. We studied aging in a termite species, Cryptotermes secundus, which lives in less socially complex societies with a few hundred colony members. Reproductives develop from workers which are totipotent immatures. Comparing transcriptomes of young and old individuals, we found evidence for aging in reproductives that was especially associated with DNA and protein damage and the activity of transposable elements. By contrast, workers seemed to be better protected against aging. Thus our results differed from those obtained for social insects that live in more complex societies. Yet, they are in agreement with lifespan estimates for the study species. Our data are also in line with expectations from evolutionary theory. For individuals that are able to reproduce, it predicts that aging should only start after reaching maturity. As C. secundus workers are immatures with full reproductive options we expect them to invest into anti-aging processes. Our study illustrates that the degree of aging can differ between social insects and that it may be associated with caste-specific opportunities for reproduction.
Collapse
Affiliation(s)
- José Manuel Monroy Kuhn
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
- * E-mail: (JMMK); (JK)
| | - Karen Meusemann
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Judith Korb
- Evolutionary Biology and Ecology, Albert-Ludwigs-Universität Freiburg, Freiburg, Baden-Württemberg, Germany
- * E-mail: (JMMK); (JK)
| |
Collapse
|
40
|
Liu L, Wang W, Liu Y, Sun P, Lei C, Huang Q. The Influence of Allogrooming Behavior on Individual Innate Immunity in the Subterranean Termite Reticulitermes chinensis (Isoptera: Rhinotermitidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5289805. [PMID: 30649425 PMCID: PMC6334631 DOI: 10.1093/jisesa/iey119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 05/13/2023]
Abstract
Insect societies have evolved a series of disease defenses against pathogens, including social sanitary behavior and individual innate immunity. However, whether sanitary behavior can affect individual innate immunity remains unknown. Here, we exposed the termite Reticulitermes chinensis Snyder to the entomopathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin(Ascomycota: Hypocreales), and then measured their allogrooming behavior, conidia load, infection mortality, antifungal activity and immune gene expressions . Our results showed that most of the fungal conidia were fast removed from the cuticles of the grouped termites by intensive allogrooming behavior, resulting in low mortality. The antifungal activity and immune gene expressions (termicin and transferrin) in grouped exposed termites were significantly lower than those in single exposed termite but not significantly different from those in unexposed treatments. These results suggest that allogrooming behavior can fast remove fungal conidia from termite cuticles and then decrease their physiological investment in individual innate immunity.
Collapse
Affiliation(s)
- Long Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yiliang Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Pengdong Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- Corresponding author, e-mail:
| |
Collapse
|
41
|
Martin JS, Bulmer MS. A Lab-Based Study of Temperate Forest Termite Impacts on Two Common Wood-Rot Fungi. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1388-1393. [PMID: 30192929 DOI: 10.1093/ee/nvy122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Termites and fungi are the primary decomposers of dead wood. Interactions between wood-feeding termites and wood-rot fungi are inevitable given their shared food source. Termites have developed multiple defense strategies against infectious fungi, such as Metarhizium spp., that include antifungal proteins in their saliva and fungal inhibition properties in their gut. The antifungal properties of termite salivary secretions depend on β-1,3-glucanases that are likely to be effective against a broad spectrum of filamentous fungi. Given the overlap in niches, there is opportunity for interference competition between termites and wood-rot fungi to occur. Here we demonstrate that β-1,3-glucanases in the saliva and the antifungal properties of the gut of the eastern subterranean termite Reticulitermes flavipes (Kollar) (Blattodea: Rhinotermitidae) affects the growth of two common wood-rot fungi, Gloeophyllum trabeum Persoon (Murrill) (Gloeophyllales: Gloeophyllaceae) and Phanerochaete chrysosporium (Burdsall) (Polyporales: Phanerochaetaceae).
Collapse
Affiliation(s)
- Jason S Martin
- Department of Biological Sciences, Towson University, Towson, MD
| | - Mark S Bulmer
- Department of Biological Sciences, Towson University, Towson, MD
| |
Collapse
|
42
|
Myer A, Forschler BT. Evidence for the Role of Subterranean Termites (Reticulitermes spp.) in Temperate Forest Soil Nutrient Cycling. Ecosystems 2018. [DOI: 10.1007/s10021-018-0291-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Maistrou S, Paris V, Jensen AB, Rolff J, Meyling NV, Zanchi C. A constitutively expressed antifungal peptide protects Tenebrio molitor during a natural infection by the entomopathogenic fungus Beauveria bassiana. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:26-33. [PMID: 29698631 DOI: 10.1016/j.dci.2018.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides have been well studied in the context of bacterial infections. Antifungal peptides have received comparatively less attention. Fungal pathogens of insects and their hosts represent a unique opportunity to study host-pathogen interactions due to the million of years of co-evolution they share. In this study, we investigated role of a constitutively expressed thaumatin-like peptide with antifungal activity expressed by the mealworm beetle Tenebrio molitor, named Tenecin 3, during a natural infection with the entomopathogenic fungus Beauveria bassiana. We monitored the effect of the expression of Tenecin 3 on the survival of infected hosts as well as on the progression of the fungal infection inside the host. Finally, we tested the activity of Tenecin 3 against B. bassiana. These findings could help improving biocontrol strategies and help understanding the evolution of antifungal peptides as a defense mechanism.
Collapse
Affiliation(s)
- Sevasti Maistrou
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | - Véronique Paris
- Freie Universität Berlin, Evolutionary Biology, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
| | - Annette B Jensen
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark
| | - Jens Rolff
- Freie Universität Berlin, Evolutionary Biology, Königin-Luise-Straße 1-3, 14195 Berlin, Germany
| | - Nicolai V Meyling
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Copenhagen, Denmark.
| | - Caroline Zanchi
- Freie Universität Berlin, Evolutionary Biology, Königin-Luise-Straße 1-3, 14195 Berlin, Germany.
| |
Collapse
|
44
|
Rao XJ, Zhan MY, Pan YM, Liu S, Yang PJ, Yang LL, Yu XQ. Immune functions of insect βGRPs and their potential application. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:80-88. [PMID: 29229443 DOI: 10.1016/j.dci.2017.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yue-Min Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
45
|
Wu T, Zhao Y, Wang Z, Song Q, Wang Z, Xu Q, Wang Y, Wang L, Zhang Y, Feng C. β-1,3-Glucan recognition protein 3 activates the prophenoloxidase system in response to bacterial infection in Ostrinia furnacalis Guenée. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:31-43. [PMID: 29032241 DOI: 10.1016/j.dci.2017.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Pattern recognition receptors (PRRs) are biosensor proteins that bind to non-self pathogen associated molecular patterns (PAMPs). β-1,3-glucan recognition proteins (βGRPs) play an essential role in immune recognition and signaling pathway of insect innate immunity. Here, we report the cloning and characterization of cDNA of OfβGRP3 from Ostrinia furnacalis larvae. The OfβGRP3 contains 1455 bp open reading frame, encoding a predicted 484 amino acid residue protein. In hemocytes, the expression levels of OfβGRP3 in Escherichia coli-challenged group were higher than those of Bacillus subtilis-challenged group at 2, 4, 8, 10 and 12 h post injection (HPI). In fat body, OfβGRP3 expression in both B. subtilis and E. coli-challenged group was significantly higher than that in untreated group from 4 to 10 HPI, and then the expression continuously dropped from 12 to 36 HPI. The OfβGRP3 expression in laminarin-injected group was higher than that in lipopolysaccharides (LPS)-injected group in various test tissues from 4 to 24 HPI. The LT50 of E. coli-infected OfβGRP3-RNAi larvae (1.0 days) was significantly lower compared with that of E. coli infected wild-type larvae (3.0 days) (p < 0.01). Only 10.2% Sephadex G50 beads (degree 3) were completely melanized in the larvae inoculated with OfβGRP3 dsRNA, as compared to 48.8% in control larvae (p < 0.01). A notable reduction in the PO activity and IEARase activity in hemolymph was also detected in the OfβGRP3 knockdown larvae. Our study demonstrates that OfβGRP3 is one of PRR members involved the PPO-activating system in O. furnacalis larvae.
Collapse
Affiliation(s)
- Taoyan Wu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ya Zhao
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Zengxia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuwen Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yingjuan Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yiqiang Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
46
|
Mitaka Y, Kobayashi K, Matsuura K. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus. PLoS One 2017; 12:e0175417. [PMID: 28410430 PMCID: PMC5391962 DOI: 10.1371/journal.pone.0175417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/24/2017] [Indexed: 12/02/2022] Open
Abstract
Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and a strategy of trade-offs between reproduction and immunity has been suggested. Although termite immune-inducible genes have been identified, few studies have investigated the differential expression of these genes between reproductive and neuter castes, and between sexes in each caste. In this study, we compared the expression levels of immune-related genes among castes, sexes, and ages in a Japanese subterranean termite, Reticulitermes speratus. Using RNA-seq, we found 197 immune-related genes, including 40 pattern recognition proteins, 97 signalling proteins, 60 effectors. Among these genes, 174 showed differential expression among castes. Comparing expression levels between males and females in each caste, we found sexually dimorphic expression of immune-related genes not only in reproductive castes, but also in neuter castes. Moreover, we identified age-related differential expression of 162 genes in male and/or female reproductives. In addition, although R. speratus is known to use the antibacterial peptide C-type lysozyme as an egg recognition pheromone, we determined that R. speratus has not only C-type, but also P-type and I-type lysozymes, as well as other termite species. Our transcriptomic analyses revealed immune response plasticity among all castes, and sex-biased expression of immune genes even in neuter castes, suggesting a sexual division of labor in the immune system of R. speratus. This study heightens the understanding of the evolution of antimicrobial strategies in eusocial insects, and of sexual roles in insect societies as a whole.
Collapse
Affiliation(s)
- Yuki Mitaka
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuya Kobayashi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Velenovsky JF, Kalisch J, Bulmer MS. Selective sweeps in Cryptocercus woodroach antifungal proteins. Genetica 2016; 144:547-552. [DOI: 10.1007/s10709-016-9923-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
|
48
|
Zeng Y, Hu XP, Suh SJ. Characterization of Antibacterial Activities of Eastern Subterranean Termite, Reticulitermes flavipes, against Human Pathogens. PLoS One 2016; 11:e0162249. [PMID: 27611223 PMCID: PMC5017719 DOI: 10.1371/journal.pone.0162249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/21/2016] [Indexed: 11/18/2022] Open
Abstract
The emergence and dissemination of multidrug resistant bacterial pathogens necessitate research to find new antimicrobials against these organisms. We investigated antimicrobial production by eastern subterranean termites, Reticulitermes flavipes, against a panel of bacteria including three multidrug resistant (MDR) and four non-MDR human pathogens. We determined that the crude extract of naïve termites had a broad-spectrum activity against the non-MDR bacteria but it was ineffective against the three MDR pathogens Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), and Acinetobacter baumannii. Heat or trypsin treatment resulted in a complete loss of activity suggesting that antibacterial activity was proteinaceous in nature. The antimicrobial activity changed dramatically when the termites were fed with either heat-killed P. aeruginosa or MRSA. Heat-killed P. aeruginosa induced activity against P. aeruginosa and MRSA while maintaining or slightly increasing activity against non-MDR bacteria. Heat-killed MRSA induced activity specifically against MRSA, altered the activity against two other Gram-positive bacteria, and inhibited activity against three Gram-negative bacteria. Neither the naïve termites nor the termites challenged with heat-killed pathogens produced antibacterial activity against A. baumannii. Further investigation demonstrated that hemolymph, not the hindgut, was the primary source of antibiotic activity. This suggests that the termite produces these antibacterial activities and not the hindgut microbiota. Two-dimensional gel electrophoretic analyses of 493 hemolymph protein spots indicated that a total of 38 and 65 proteins were differentially expressed at least 2.5-fold upon being fed with P. aeruginosa and MRSA, respectively. Our results provide the first evidence of constitutive and inducible activities produced by R. flavipes against human bacterial pathogens.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| | - Xing Ping Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
- * E-mail: (SS); (XPH)
| | - Sang-Jin Suh
- Department of Biological Sciences, Auburn University, Auburn University, Auburn, AL, United States of America
- * E-mail: (SS); (XPH)
| |
Collapse
|
49
|
Caruana NJ, Cooke IR, Faou P, Finn J, Hall NE, Norman M, Pineda SS, Strugnell JM. A combined proteomic and transcriptomic analysis of slime secreted by the southern bottletail squid, Sepiadarium austrinum (Cephalopoda). J Proteomics 2016; 148:170-82. [PMID: 27476034 DOI: 10.1016/j.jprot.2016.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/20/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Sepiadarium austrinum, the southern bottletail squid, is a small squid that inhabits soft sediments along Australia's south-east coast. When provoked, it rapidly secretes large volumes of slime, presumably as a form of chemical defense. We analyzed the proteomic composition of this slime using tandem mass spectrometry and transcriptomics and found that it was remarkably complex with 1735 identified protein groups (FDR:0.01). To investigate the chemical defense hypothesis we performed an Artemia toxicity assay and used sequence analysis to search for toxin-like molecules. Although the slime did not appear to be toxic to Artemia we found 13 proteins in slime with the hallmarks of toxins, namely cysteine richness, short length, a signal peptide and/or homology to known toxins. These included three short (80-130AA) cysteine rich secreted proteins with no homology to proteins on the NCBI or UniProt databases. Other protein families found included, CAP, phospholipase-B, ShKT-like peptides, peptidase S10, Kunitz BPTI and DNase II. Quantitative analysis using intensity based absolute quantification (iBAQ via MaxQuant) revealed 20 highly abundant proteins, accounting for 67% of iBAQ signal, and three of these were toxin-like. No mucin homologues were found suggesting that the structure of the slime gel may be formed by an unknown mechanism. BIOLOGICAL SIGNIFICANCE This study is the first known instance of a slime secretion from a cephalopod to be analyzed by proteomics methods and is the first investigation of a member of the family Sepiadariidae using proteomic methods. 1735 proteins were identified with 13 of these fitting criteria established for the identification of putative toxins. The slime is dominated by 20 highly abundant proteins with secreted, cysteine rich proteins. The study highlights the importance of 'omics approaches in understanding novel organisms.
Collapse
Affiliation(s)
- Nikeisha J Caruana
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne, Vic 3086, Australia.
| | - Ira R Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, Qld 4811, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Vic 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Vic 3086, Australia
| | - Julian Finn
- Sciences, Museum Victoria, Carlton, Vic 3053, Australia
| | - Nathan E Hall
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Vic 3053, Australia
| | - Mark Norman
- Sciences, Museum Victoria, Carlton, Vic 3053, Australia
| | - Sandy S Pineda
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072, Australia
| | - Jan M Strugnell
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne, Vic 3086, Australia
| |
Collapse
|
50
|
Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. ADVANCES IN GENETICS 2016; 94:307-64. [PMID: 27131329 DOI: 10.1016/bs.adgen.2016.01.006] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs.
Collapse
Affiliation(s)
- T M Butt
- Swansea University, Swansea, Wales, United Kingdom
| | - C J Coates
- Swansea University, Swansea, Wales, United Kingdom
| | | | - N A Ratcliffe
- Swansea University, Swansea, Wales, United Kingdom; Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|