1
|
Pereira AE, Suarez L, Roman T, Guzmán F, Sierra L, Rincón-Orozco B, Hidalgo W. Achatina fulica haemocyanin-derived peptides as novel antimicrobial agents. Biochimie 2025; 231:84-97. [PMID: 39681185 DOI: 10.1016/j.biochi.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Haemocyanin-derived peptides were previously found in semi-purified fractions of mucus secretion from the snail Achatina fulica, which exhibited an inhibitory effect on Staphylococcus aureus strains. Here, an in silico rational design strategy was employed to generate new antimicrobial peptides (AMPs) from A. fulica haemocyanin-derived peptides (AfH). The designed peptides were chemically synthetized using the Fmoc strategy, and their antimicrobial activity against Escherichia coli and S. aureus strains was evaluated using the broth microdilution method. In addition, the cytotoxic activity on Vero, HaCat, and human erythrocyte cells was also determined. The results demonstrated that 15-residue alpha-helical and cationic synthetic peptides exhibited the highest biological activity against Gram-positive strains, with minimum inhibitory concentrations (MIC) in the range from 7.5 to 30 μM. The positive selectivity index suggests a higher selectivity, primarily on the microorganisms evaluated, but not on eukaryotic cells. In this study, A. fulica hemocyanin was identified as an appropriate protein model for the rational design of AMPs against bacteria of public health significance. Further studies are required to evaluate the activity of the peptides on Gram-negative bacteria other than E. coli.
Collapse
Affiliation(s)
- Andrés Esteban Pereira
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio EDIC 403, Bucaramanga, Colombia.
| | - Libardo Suarez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio EDIC 403, Bucaramanga, Colombia
| | - Tanya Roman
- Laboratorio de Péptidos, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fanny Guzmán
- Laboratorio de Péptidos, Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leidy Sierra
- Grupo CODEIM, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Colombia
| | - Bladimiro Rincón-Orozco
- Grupo CODEIM, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Colombia
| | - William Hidalgo
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Química, Universidad Industrial de Santander, Edificio EDIC 403, Bucaramanga, Colombia; Grupo CODEIM, Escuela de Medicina, Departamento de Ciencias Básicas, Universidad Industrial de Santander, Colombia.
| |
Collapse
|
2
|
Rodrigues T, Guardiola FA, Almeida D, Antunes A. Aquatic Invertebrate Antimicrobial Peptides in the Fight Against Aquaculture Pathogens. Microorganisms 2025; 13:156. [PMID: 39858924 PMCID: PMC11767717 DOI: 10.3390/microorganisms13010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments. This study compiles and analyzes data from AMP databases and over 200 scientific sources, identifying approximately 350 AMPs derived from aquatic invertebrates, mostly cationic and α-helical, across 65 protein families. While in vitro assays highlight their potential, limited in vivo studies hinder practical application. These AMPs could serve as feed additives, therapeutic agents, or in genetic engineering approaches like CRISPR/Cas9-mediated transgenesis to enhance resilience of farmed species. Despite challenges such as stability, ecological impacts, and regulatory hurdles, advancements in peptidomimetics and genetic engineering hold significant promise. Future research should emphasize refining AMP enhancement techniques, expanding their diversity and bioactivity profiles, and prioritizing comprehensive in vivo evaluations. Harnessing the potential of AMPs represents a significant step forward on the path to aquaculture sustainability, reducing antibiotic dependency, and combating AMR, ultimately safeguarding public health and ecosystem resilience.
Collapse
Affiliation(s)
- Tomás Rodrigues
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Francisco Antonio Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Agostinho Antunes
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Velkova L, Dolashki A, Petrova V, Pisareva E, Kaynarov D, Kermedchiev M, Todorova M, Dolashka P. Antibacterial Properties of Peptide and Protein Fractions from Cornu aspersum Mucus. Molecules 2024; 29:2886. [PMID: 38930951 PMCID: PMC11206429 DOI: 10.3390/molecules29122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.
Collapse
Affiliation(s)
- Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Ventsislava Petrova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Emiliya Pisareva
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (V.P.); (E.P.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Momchil Kermedchiev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| | - Maria Todorova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
- Businesslab Ltd., Acad. G. Bonchev Str., bl. 4A, 1113 Sofia, Bulgaria
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.); (M.K.); (M.T.)
| |
Collapse
|
4
|
Ji R, Guan L, Hu Z, Cheng Y, Cai M, Zhao G, Zang J. A comprehensive review on hemocyanin from marine products: Structure, functions, its implications for the food industry and beyond. Int J Biol Macromol 2024; 269:132041. [PMID: 38705315 DOI: 10.1016/j.ijbiomac.2024.132041] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Hemocyanin, an oxygen-transport protein, is widely distributed in the hemolymph of marine arthropods and mollusks, playing an important role in their physiological processes. Recently, hemocyanin has been recognized as a multifunctional glycoprotein involved in the immunological responses of aquatic invertebrates. Consequently, the link between hemocyanin functions and their potential applications has garnered increased attention. This review offers an integrated overview of hemocyanin's structure, physicochemical characteristics, and bioactivities to further promote the utilization of hemocyanin derived from marine products. Specifically, we review its implication in two aspects of food and aquaculture industries: quality and health. Hemocyanin's inducible phenoloxidase activity is thought to be an inducer of melanosis in crustaceans. New anti-melanosis agents targeted to hemocyanin need to be explored. The red-color change observed in shrimp shells is related to hemocyanin, affecting consumer preferences. Hemocyanin's adaptive modification in response to the aquatic environment is available as a biomarker. Additionally, hemocyanin is endowed with bioactivities encompassing anti-microbial, antiviral, and therapeutic activities. Hemocyanin is also a novel allergen and its allergenic features remain incompletely characterized.
Collapse
Affiliation(s)
- Ruiyang Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Leying Guan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ziyan Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yishen Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Meng Cai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Thomas AM, Antony SP. Marine Antimicrobial Peptides: An Emerging Nightmare to the Life-Threatening Pathogens. Probiotics Antimicrob Proteins 2024; 16:552-578. [PMID: 37022565 DOI: 10.1007/s12602-023-10061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 04/07/2023]
Abstract
The emergence of multidrug-resistant pathogens due to improper usage of conventional antibiotics has created a global health crisis. Alternatives to antibiotics being an urgent need, the scientific community is forced to search for new antimicrobials. This exploration has led to the discovery of antimicrobial peptides, a group of small peptides occurring in different phyla such as Porifera, Cnidaria, Annelida, Arthropoda, Mollusca, Echinodermata, and Chordata, as a component of their innate immune system. The marine environment, possessing immense diversity of organisms, is undoubtedly one of the richest sources of unique potential antimicrobial peptides. The distinctiveness of marine antimicrobial peptides lies in their broad-spectrum activity, mechanism of action, less cytotoxicity, and high stability, which form the benchmark for developing a potential therapeutic. This review aims to (1) synthesise the available information on the distinctive antimicrobial peptides discovered from marine organisms, particularly over the last decade, and (2) discuss the distinctiveness of marine antimicrobial peptides and their prospects.
Collapse
Affiliation(s)
- Anne Maria Thomas
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
6
|
Li Y, Lv J, Sun D, Guo J, Liu P, Gao B. Characterization of a pseudohemocyanin gene (PtPhc1) and its immunity function in response to Vibrio parahaemolyticus infection in the swimming crab Portunus trituberculatus. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109435. [PMID: 38336144 DOI: 10.1016/j.fsi.2024.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Pseudohemocyanin is a member of the hemocyanin superfamily, but little research is available on its function in immunology. In this study, a Portunus trituberculatus pseudohemocyanin gene, named PtPhc1, was obtained by gene cloning. The PtPhc1 cDNA was 2312 bp in length, encoding 684 amino acids while exhibiting a characteristic hemocyanin structural domain. Tissue expression analysis revealed ubiquitous expression of PtPhc1 across all tissues, with the highest level of expression observed in the hepatopancreas. The expression pattern of PtPhc1 in response to Vibrio parahaemolyticus infection was clarified using RT-qPCR in swimming crabs. Notably, the expression peaked at 24 h, and increased 1435-fold compared to the control group in the hepatopancreas. While the expression level reached the maximum value at 72 h, which was 3.24 times higher than that of the control group in hemocytes. Remarkably, the reduction in PtPhc1 expression led to a noteworthy 30% increase in the mortality rate of P. trituberculatus when exposed to V. parahaemolyticus. In addition, in vitro bacterial inhibition assays exhibited a dose-dependent suppression of bacterial proliferation by recombinant PtPhc1 protein, with a notable inhibition rate of 48.33% against V. parahaemolyticus at a concentration of 0.03 mg/mL. To the best of our knowledge, the results establish the function of pseudohaemocyanin in immunity for the first time, contributing to a deeper comprehension of innate immune regulatory mechanisms in aquatic organisms and advancing strategies for disease-resistant breeding.
Collapse
Affiliation(s)
- Yukun Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jianjian Lv
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dongfang Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Junyang Guo
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ping Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Baoquan Gao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
7
|
Yang P, Zhao X, Aweya JJ, Zhang Y. The Yin Yang 1 of Penaeus vannamei regulates transcription of the small subunit hemocyanin gene during Vibrio parahaemolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105087. [PMID: 37898353 DOI: 10.1016/j.dci.2023.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Hemocyanin is a respiratory protein, it is also a multifunctional immune molecule that plays a vital role against pathogen invasion in shrimp. However, the regulation of hemocyanin gene expression in shrimp hemocytes and the mechanisms involved during pathogen infection remains unclear. Here, we used DNA pull-down followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the Yin Yang 1 transcription factor homolog in Penaeus vannamei (PvYY1) as a key factor that modulates transcription of the small subunit hemocyanin gene of P. vannamei (PvHMCs) in hemocytes during Vibrio parahaemolyticus AHPND (VPAHPND) infection. Bioinformatics analysis revealed that the core promoter region of PvHMCs contains two YY1 motifs. Mutational and oligoprecipitation analyses confirmed that PvYY1 could bind to the YY1 motifs in the PvHMCs core promoter region, while truncation of PvYY1 revealed that the N-terminal domain of PvYY1 is essential for the transactivation of PvHMCs core promoter. Besides, the REPO domain of PvYY1 could repress the activity of the PvHMCs core promoter. Overexpression of PvYY1 significantly activates the promoter activity of PvHMCs core promoter, while PvYY1 knockdown significantly decreases the expression level of PvHMCs in shrimp hemocytes and survival rate of shrimp upon infection with VPAHPND. Our present study provides new insights into the transcriptional regulation of PvHMCs by PvYY1 in shrimp hemocytes during bacteria (VPAHPND) infection.
Collapse
Affiliation(s)
- Peikui Yang
- School of Life Science and Food Engineering, Hanshan Normal University, Chaozhou, 521041, China; Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, 521041, China
| | - Xianliang Zhao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
8
|
Wang Q, Wang L, Huang Z, Xiao Y, Liu M, Liu H, Yu Y, Liang M, Luo N, Li K, Mishra A, Huang Z. Abalone peptide increases stress resilience and cost-free longevity via SKN-1-governed transcriptional metabolic reprogramming in C. elegans. Aging Cell 2024; 23:e14046. [PMID: 37990605 PMCID: PMC10861207 DOI: 10.1111/acel.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
A major goal of healthy aging is to prevent declining resilience and increasing frailty, which are associated with many chronic diseases and deterioration of stress response. Here, we propose a loss-or-gain survival model, represented by the ratio of cumulative stress span to life span, to quantify stress resilience at organismal level. As a proof of concept, this is demonstrated by reduced survival resilience in Caenorhabditis elegans exposed to exogenous oxidative stress induced by paraquat or with endogenous proteotoxic stress caused by polyglutamine or amyloid-β aggregation. Based on this, we reveal that a hidden peptide ("cryptide")-AbaPep#07 (SETYELRK)-derived from abalone hemocyanin not only enhances survival resilience against paraquat-induced oxidative stress but also rescues proteotoxicity-mediated behavioral deficits in C. elegans, indicating its capacity against stress and neurodegeneration. Interestingly, AbaPep#07 is also found to increase cost-free longevity and age-related physical fitness in nematodes. We then demonstrate that AbaPep#07 can promote nuclear localization of SKN-1/Nrf, but not DAF-16/FOXO, transcription factor. In contrast to its effects in wild-type nematodes, AbaPep#07 cannot increase oxidative stress survival and physical motility in loss-of-function skn-1 mutant, suggesting an SKN-1/Nrf-dependent fashion of these effects. Further investigation reveals that AbaPep#07 can induce transcriptional activation of immune defense, lipid metabolism, and metabolic detoxification pathways, including many SKN-1/Nrf target genes. Together, our findings demonstrate that AbaPep#07 is able to boost stress resilience and reduce behavioral frailty via SKN-1/Nrf-governed transcriptional reprogramming, and provide an insight into the health-promoting potential of antioxidant cryptides as geroprotectors in aging and associated conditions.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Liangyi Wang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ziliang Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yue Xiao
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Mao Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
| | - Huihui Liu
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Yi Yu
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ming Liang
- Research and Development Center, Infinitus (China) Company LtdGuangzhouChina
| | - Ning Luo
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Kunping Li
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical UniversityGuangzhouChina
| | - Ajay Mishra
- European Bioinformatics InstituteCambridgeUK
| | - Zebo Huang
- Institute for Food Nutrition and Human Health, School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
- Guangdong Province Key Laboratory for BiocosmeticsGuangzhouChina
- Center for Bioresources and Drug Discovery, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
9
|
Kirilova M, Topalova Y, Velkova L, Dolashki A, Kaynarov D, Daskalova E, Zheleva N. Antibacterial Action of Protein Fraction Isolated from Rapana venosa Hemolymph against Escherichia coli NBIMCC 8785. Pharmaceuticals (Basel) 2024; 17:68. [PMID: 38256901 PMCID: PMC10821198 DOI: 10.3390/ph17010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Natural products and especially those from marine organisms are being intensively explored as an alternative to synthetic antibiotics. However, the exact mechanisms of their action are not yet well understood. The molecular masses of components in the hemolymph fraction with MW 50-100 kDa from Rapana venosa were determined using ImageQuant™ TL v8.2.0 software based on electrophoretic analysis. Mainly, three types of compounds with antibacterial potential were identified, namely proteins with MW at 50.230 kDa, 62.100 kDa and 93.088 kDa that were homologous to peroxidase-like protein, aplicyanin A and L-amino acid oxidase and functional units with MW 50 kDa from R. venous hemocyanin. Data for their antibacterial effect on Escherichia coli NBIMCC 8785 were obtained by CTC/DAPI-based fluorescent analysis (analysis based on the use of a functional fluorescence probe). The fluorescent analyses demonstrated that a 50% concentration of the fraction with MW 50-100 kDa was able to eliminate 99% of the live bacteria. The antimicrobial effect was detectable even at a 1% concentration of the active compounds. The bacteria in this case had reduced metabolic activity and a 24% decreased size. The fraction had superior action compared with another mollusc product-snail slime-which killed 60% of the E. coli NBIMCC 8785 cells at a 50% concentration and had no effect at a 1% concentration. The obtained results demonstrate the high potential of the fraction with MW 50-100 kDa from R. venosa to eliminate and suppress the development of Escherichia coli NBIMCC 8785 bacteria and could be applied as an appropriate component of therapeutics with the potential to replace antibiotics to avoid the development of antibiotic resistance.
Collapse
Affiliation(s)
- Mihaela Kirilova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (Y.T.)
- Center of Competence “Clean Technologies for Sustainable Environment—Water, Waste, Energy for Circular Economy”, 1000 Sofia, Bulgaria;
| | - Yana Topalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (Y.T.)
- Center of Competence “Clean Technologies for Sustainable Environment—Water, Waste, Energy for Circular Economy”, 1000 Sofia, Bulgaria;
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev str., bl. 9, 1113 Sofia, Bulgaria; (A.D.); (D.K.)
| | - Elmira Daskalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov blvd., 1164 Sofia, Bulgaria; (Y.T.)
| | - Nellie Zheleva
- Center of Competence “Clean Technologies for Sustainable Environment—Water, Waste, Energy for Circular Economy”, 1000 Sofia, Bulgaria;
| |
Collapse
|
10
|
Jeyachandran S, Chellapandian H, Park K, Kwak IS. Exploring the Antimicrobial Potential and Biofilm Inhibitory Properties of Hemocyanin from Hemifusus pugilinus (Born, 1778). Int J Mol Sci 2023; 24:11494. [PMID: 37511256 PMCID: PMC10380319 DOI: 10.3390/ijms241411494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The seafood industry plays a huge role in the blue economy, exploiting the advantage of the enriched protein content of marine organisms such as shrimps and molluscs, which are cultured in aquafarms. Diseases greatly affect these aquatic organisms in culture and, hence, there is need to study, in detail, their innate immune mechanisms. Hemocyanin is a non-specific innate defense molecule present in the blood cells of several invertebrates, especially molluscs, arthropods, and annelids. It is concerned with oxygen transport, blood clotting, and immune enhancement. In the present study, this macromolecular metalloprotein was isolated from the hemolymph of the marine snail Hemifusus pugilinus (Born, 1778) using Sephadex G-100 gel filtration column chromatography. It occurred as a single band (MW 80 kDa) on SDS-PAGE. High-performance liquid chromatography (HPLC) of the purified hemocyanin showed a single peak with a retention time of 4.3 min. The secondary structure and stability of the protein were detected using circular dichroism (CD), and the spectra demonstrated negative ellipticity bands close to 208 nm and 225 nm, indicating β-sheets. Further exploration of the purified hemocyanin revealed remarkable antimicrobial and antibiofilm activities against Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa and Proteus vulgaris) at a concentration of 1-5 μg/mL. Spectrophotometric and in situ microscopic analyses (CLSM) unveiled the potential of the purified hemocyanin to inhibit biofilm formation in these bacteria with a minimal inhibitory concentration of 40 μg/mL. Furthermore, H. pugilinus hemocyanin (10 μg/mL concentration) displayed antifungal activity against Aspergillus niger. The purified hemocyanin was also assessed for cytotoxicity against human cancer cells using cell viability assays. Altogether, the present study shows that molluscan hemocyanin is a potential antimicrobial, antibiofilm, antifungal, anticancer, and immunomodulatory agent, with great scope for application in the enhancement of the immune system of molluscs, thereby facilitating their aquaculture.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Chennai 600077, Tamil Nadu, India
| | - Hethesh Chellapandian
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Chennai 600077, Tamil Nadu, India
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, 50 Daehak-ro, Yeosu 59626, Republic of Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
11
|
Song SY, Park DH, Lee SH, Lim HK, Park JW, Jeong CR, Kim SJ, Cho SS. Purification of phenoloxidase from Haliotis discus hannai and its anti-inflammatory activity in vitro. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108741. [PMID: 37088346 DOI: 10.1016/j.fsi.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Haliotis discus hannai, a food with a high protein content, is widely consumed in Asian countries. It is known to have antioxidant, anticancer, and antibacterial effects. Since the biological significance of H. discus hannai hemolymph has not been widely studied, the objective of the present study was to purify phenoloxidase (PO) and investigate its immunological effects on human colonic epithelial cells. PO was purified through ammonium sulfate precipitation and one step column chromatography. The molecular weight of the protein was about 270 kDa. When PO was mixed with Gram-negative bacteria-derived lipopolysaccharide (LPS) at various ratios (10:1-1:10, w/w), the amount of residual LPS was reduced. PO at concentrations up to 200 μg/mL was not cytotoxic to HT-29 cells. The inflammatory response induced by LPS in HT-29 cells was regulated when the concentration of PO was increased. With increasing concentration of PO, production levels of pro-inflammatory cytokines, cytokines associated with hyperimmune responses such as IL4, IL-5, and INF-γ, and prostaglandin 2 (PGE2) were regulated. It was thought that simultaneous treatment with PO and LPS anti-inflammatory effects in HT-29 cells showed by regulating the ERK1/2-mediated NF-κB pathway. Results of this study suggest that H. discus hannai hemolymph is involved in the regulation of Gram-negative bacteria-related inflammatory immune responses in human colonic epithelial cells.
Collapse
Affiliation(s)
- Seung-Yub Song
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 58554 Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju-si, Jeonnam, 58245, Republic of Korea
| | - Sung-Ho Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 58554 Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Han-Kyu Lim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea; Department of Marine and Fisheries Resources, Mokpo National University, Muan, 58554, Republic of Korea
| | - Jin-Woo Park
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 58554 Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Chae-Rim Jeong
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea; Research Center for Biological Cybernetics, Chonnam National University.
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 58554 Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
12
|
Kongsompong S, E-kobon T, Taengphan W, Sangkhawasi M, Khongkow M, Chumnanpuen P. Computer-Aided Virtual Screening and In Vitro Validation of Biomimetic Tyrosinase Inhibitory Peptides from Abalone Peptidome. Int J Mol Sci 2023; 24:ijms24043154. [PMID: 36834568 PMCID: PMC9965614 DOI: 10.3390/ijms24043154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperpigmentation is a medical and cosmetic problem caused by an excess accumulation of melanin or the overexpression of the enzyme tyrosinase, leading to several skin disorders, i.e., freckles, melasma, and skin cancer. Tyrosinase is a key enzyme in melanogenesis and thus a target for reducing melanin production. Although abalone is a good source of bioactive peptides that have been used for several properties including depigmentation, the available information on the anti-tyrosinase property of abalone peptides remains insufficient. This study investigated the anti-tyrosinase properties of Haliotis diversicolor tyrosinase inhibitory peptides (hdTIPs) based on mushroom tyrosinase, cellular tyrosinase, and melanin content assays. The binding conformation between peptides and tyrosinase was also examined by molecular docking and dynamics study. KNN1 showed a high potent inhibitory effect on mushroom tyrosinase with an IC50 of 70.83 μM. Moreover, our selected hdTIPs could inhibit melanin production through the reductions in tyrosinase activity and reactive oxygen species (ROS) levels by enhancing the antioxidative enzymes. RF1 showed the highest activity on both cellular tyrosinase inhibition and ROS reduction. leading to the lower melanin content in B16F10 murine melanoma cells. Accordingly, it can be assumed that our selected peptides exhibited high potential in medical cosmetology applications.
Collapse
Affiliation(s)
- Sasikarn Kongsompong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Teerasak E-kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Weerasak Taengphan
- Expert Centre of Innovative Herbal Products (InnoHerb), Thailand Institute of Scientific and Technological Research, Techno Polis, Khlong Luang District, Pathum Thani 12120, Thailand
| | - Mattanun Sangkhawasi
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
13
|
Yuan C, Zheng X, Liu K, Yuan W, Zhang Y, Mao F, Bao Y. Functional Characterization, Antimicrobial Effects, and Potential Antibacterial Mechanisms of NpHM4, a Derived Peptide of Nautilus pompilius Hemocyanin. Mar Drugs 2022; 20:md20070459. [PMID: 35877752 PMCID: PMC9317327 DOI: 10.3390/md20070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Hemocyanins present in the hemolymph of invertebrates are multifunctional proteins that are responsible for oxygen transport and play crucial roles in the immune system. They have also been identified as a source of antimicrobial peptides during infection in mollusks. Hemocyanin has also been identified in the cephalopod ancestor Nautilus, but antimicrobial peptides derived from the hemocyanin of Nautilus pompilius have not been reported. Here, the bactericidal activity of six predicted peptides from N. pompilius hemocyanin and seven mutant peptides was analyzed. Among those peptides, a mutant peptide with 15 amino acids (1RVFAGFLRHGIKRSR15), NpHM4, showed relatively high antibacterial activity. NpHM4 was determined to have typical antimicrobial peptide characteristics, including a positive charge (+5.25) and a high hydrophobic residue ratio (40%), and it was predicted to form an alpha-helical structure. In addition, NpHM4 exhibited significant antibacterial activity against Gram-negative bacteria (MBC = 30 μM for Vibrio alginolyticus), with no cytotoxicity to mammalian cells even at a high concentration of 180 µM. Upon contact with V. alginolyticus cells, we confirmed that the bactericidal activity of NpHM4 was coupled with membrane permeabilization, which was further confirmed via ultrastructural images using a scanning electron microscope. Therefore, our study provides a rationalization for the development and optimization of antimicrobial peptide from the cephalopod ancestor Nautilus, paving the way for future novel AMP development with broad applications.
Collapse
Affiliation(s)
- Chun Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
| | - Xiaoying Zheng
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Kunna Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (K.L.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Wenbin Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (K.L.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; (K.L.); (Y.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510301, China
- Correspondence: (F.M.); (Y.B.); Tel.: +86-20-8910-2507 (F.M.)
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; (C.Y.); (X.Z.); (W.Y.)
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China
- Correspondence: (F.M.); (Y.B.); Tel.: +86-20-8910-2507 (F.M.)
| |
Collapse
|
14
|
Zheng X, Yuan C, Zhang Y, Zha S, Mao F, Bao Y. Prediction and characterization of a novel hemoglobin-derived mutant peptide (mTgHbP7) from Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2022; 125:84-89. [PMID: 35537672 DOI: 10.1016/j.fsi.2022.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
The hemoglobin (Hb) is identified in Tegillarca granosa and its derived peptides have been proved to possess antibacterial activity against gram-positive and gram-negative bacteria. In this study, we identified a series of novel antimicrobial peptides (AMPs) and artificially mutated AMPs derived from subunits of T. granosa Hbs, among which, a mutant T. granosa hemoglobin peptide (mTgHbP) mTgHbP7, was proved to possess predominant antibacterial activity against three bacteria strains (Vibrio alginolyticus, V. parahaemolyticus and Escherichia coli). Besides, mTgHbP7 was predicted to form α-helical structure, which was known to be an important feature of bactericidal AMPs. Furthermore, upon contact with HEK293 cell line, we confirmed that mTgHbP7 had no cytotoxicity to mammalian cell even at a high concentration of 160 μM. Therefore, the findings reported here provide a rationalization for antimicrobial peptide prediction and optimization from mollusk hemoglobin, which will be useful for future development of antimicrobial agents.
Collapse
Affiliation(s)
- Xiaoying Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Chun Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Shanjie Zha
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.
| |
Collapse
|
15
|
Topalova Y, Belouhova M, Velkova L, Dolashki A, Zheleva N, Daskalova E, Kaynarov D, Voelter W, Dolashka P. Effect and Mechanisms of Antibacterial Peptide Fraction from Mucus of C. aspersum against Escherichia coli NBIMCC 8785. Biomedicines 2022; 10:biomedicines10030672. [PMID: 35327474 PMCID: PMC8945727 DOI: 10.3390/biomedicines10030672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
Peptides isolated from the mucus of Cornu aspersum could be prototypes for antibiotics against pathogenic bacteria. Information regarding the mechanisms, effective concentration, and methods of application is an important tool for therapeutic, financial, and ecological regulation and a holistic approach to medical treatment. A peptide fraction with MW < 10 kDa was analyzed by MALDI-TOF-TOF using Autoflex™ III. The strain Escherichia coli NBIMCC 8785 (18 h and 48 h culture) was used. The changes in bacterial structure and metabolic activity were investigated by SEM, fluorescent, and digital image analysis. This peptide fraction had high inhibitory effects in surface and deep inoculations of E. coli of 1990.00 and 136.13 mm2/mgPr/µMol, respectively, in the samples. Thus, it would be effective in the treatment of infections involving bacterial biofilms and homogenous cells. Various deformations of the bacteria and inhibition of its metabolism were discovered and illustrated. The data on the mechanisms of impact of the peptides permitted the formulation of an algorithm for the treatment of infections depending on the phase of their development. The decrease in the therapeutic concentrations will be more sparing to the environment and will lead to a decrease in the cost of the treatment.
Collapse
Affiliation(s)
- Yana Topalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.B.); (E.D.)
- Correspondence: or (Y.T.); or (P.D.); Tel.: +359-887193423 (P.D.)
| | - Mihaela Belouhova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.B.); (E.D.)
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
| | - Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
| | - Nellie Zheleva
- Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Elmira Daskalova
- Faculty of Biology, Sofia University, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (M.B.); (E.D.)
| | - Dimitar Kaynarov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
| | - Wolfgang Voelter
- Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, D-72076 Tübingen, Germany;
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria; (L.V.); (A.D.); (D.K.)
- Correspondence: or (Y.T.); or (P.D.); Tel.: +359-887193423 (P.D.)
| |
Collapse
|
16
|
Watson A, Agius J, Ackerly D, Beddoe T, Helbig K. The Role of Anti-Viral Effector Molecules in Mollusc Hemolymph. Biomolecules 2022; 12:345. [PMID: 35327536 PMCID: PMC8945852 DOI: 10.3390/biom12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Molluscs are major contributors to the international and Australian aquaculture industries, however, their immune systems remain poorly understood due to limited access to draft genomes and evidence of divergences from model organisms. As invertebrates, molluscs lack adaptive immune systems or 'memory', and rely solely on innate immunity for antimicrobial defence. Hemolymph, the circulatory fluid of invertebrates, contains hemocytes which secrete effector molecules with immune regulatory functions. Interactions between mollusc effector molecules and bacterial and fungal pathogens have been well documented, however, there is limited knowledge of their roles against viruses, which cause high mortality and significant production losses in these species. Of the major effector molecules, only the direct acting protein dicer-2 and the antimicrobial peptides (AMPs) hemocyanin and myticin-C have shown antiviral activity. A better understanding of these effector molecules may allow for the manipulation of mollusc proteomes to enhance antiviral and overall antimicrobial defence to prevent future outbreaks and minimize economic outbreaks. Moreover, effector molecule research may yield the description and production of novel antimicrobial treatments for a broad host range of animal species.
Collapse
Affiliation(s)
- Angus Watson
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Jacinta Agius
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Danielle Ackerly
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Karla Helbig
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| |
Collapse
|
17
|
Antibacterial, Antibiofilm and Anti-Virulence Activity of Biactive Fractions from Mucus Secretion of Giant African Snail Achatina fulica against Staphylococcus aureus Strains. Antibiotics (Basel) 2021; 10:antibiotics10121548. [PMID: 34943760 PMCID: PMC8698528 DOI: 10.3390/antibiotics10121548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is an important etiological agent that causes skin infections, and has the propensity to form biofilms, leading to significant mortality and morbidity in patients with wounds. Mucus secretion from the Giant African snail Achatina fulica is a potential source of biologically active substances that might be an important source for new drugs to treat resistant and biofilm-forming bacteria such as S. aureus. This study evaluated the effect of semi-purified fractions from the mucus secretion of A. fulica on the growth, biofilm formation and virulence factors of S. aureus. Two fractions: FMA30 (Mw >30 kDa) and FME30 (Mw 30−10 kDa) exhibited antimicrobial activity against S. aureus with a MIC50 of 25 and 125 µg/mL, respectively. An inhibition of biofilm formation higher than 80% was observed at 9 µg/mL with FMA30 and 120 µg/mL with FME30. Furthermore, inhibition of hemolytic and protease activity was determined using a concentration of MIC20, and FME30 showed a strong inhibitory effect in the formation of clots. We report for the first time the effect of semi-purified fractions of mucus secretion of A. fulica on biofilm formation and activity of virulence factors such as α-hemolysin, coagulase and proteases produced by S. aureus strains.
Collapse
|
18
|
Schistocins: Novel antimicrobial peptides encrypted in the Schistosoma mansoni Kunitz Inhibitor SmKI-1. Biochim Biophys Acta Gen Subj 2021; 1865:129989. [PMID: 34389467 DOI: 10.1016/j.bbagen.2021.129989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Here we describe a new class of cryptides (peptides encrypted within a larger protein) with antimicrobial properties, named schistocins, derived from SmKI-1, a key protein in Shistosoma mansoni survival. This is a multi-functional protein with biotechnological potential usage as a therapeutic molecule in inflammatory diseases and to control schistosomiasis. METHODS We used our algorithm enCrypted, to perform an in silico proteolysis of SmKI-1 and a screening for potential antimicrobial activity. The selected peptides were chemically synthesized, tested in vitro and evaluated by both structural (CD, NMR) and biophysical (ITC) studies to access their structure-function relationship. RESULTS EnCrypted was capable of predicting AMPs in SmKI-1. Our biophysical analyses described a membrane-induced conformational change from random coil-to-α-helix and a peptide-membrane equilibrium for all schistocins. Our structural data allowed us to suggest a well-known mode of peptide-membrane interaction in which electrostatic attraction between the cationic peptides and anionic membranes results in the bilayer disordering. Moreover, the NMR exchange H/D data with the higher entropic contribution observed for the peptide-membrane interaction showed that shistocins have different orientations upon the membrane. CONCLUSIONS This work demonstrate the robustness for using the physicochemical features of predicted peptides in the identification of new bioactive cryptides besides the relevance of combining these analyses with biophysical methods to understand the peptide-membrane affinity and improve further algorithms. GENERAL SIGNIFICANCE Bioprospecting cryptides can be conducted through data mining of protein databases demonstrating the success of our strategy. The peptides-based agents derived from SmKI-1 might have high impact for system-biology and biotechnology.
Collapse
|
19
|
Sri Harti A, Sutanto Y, Putriningrum R, Umarianti T, Windyastuti E, Irdianty MS. The Effectiveness of Chitosan and Snail Seromucous as Anti Tuberculosis Drugs. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Tuberculosis (TB) disease is an infection caused by Mycobacterium tuberculosis (MTB) and is transmitted through sputum droplets of sufferers or suspect TB in the air. Chitosan has been widely used in the biomedical and pharmaceutical fields because it is a biocompatible, biodegradable, non-toxic, antimicrobial, and hydrating agent with positive effects on wound healing. Seromucous of snail has anti-tumor bioactivity and is non-toxic to lymphocyte cells, and can even stimulate lymphocyte proliferation. Seromucous of snail as glycoprotein containing carbohydrates; α-1 globulin-oromucoid fraction; glycans, peptides, glycopeptides, and chondroitin sulfate.
AIM: This study was to determine the effectiveness of snail seromucous and chitosan as anti TB drugs (ATD) in vitro.
METHODS: The research method is based on an experimental laboratory. MTB isolates in this research from sputum samples of patients suspected of TB in Surakarta Regional General Hospital. The stages of the study were performed MTB culture and identification, management sampling, and drug susceptibility testing.
RESULTS: The research results showed chitosan 5%; a combination of chitosan 9% and snail seromucous 50% (ratio 1:1) is a microbicide against MTB TB patient isolates. Snail seromucous was ineffective as a microbicide against MTB TB patients.
CONCLUSION: The effectiveness as a bactericide against MTB, chitosan, and its combination with snail seromucous has the potential to be an ATD alternative.
Collapse
|
20
|
Gianazza E, Eberini I, Palazzolo L, Miller I. Hemolymph proteins: An overview across marine arthropods and molluscs. J Proteomics 2021; 245:104294. [PMID: 34091091 DOI: 10.1016/j.jprot.2021.104294] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/30/2021] [Indexed: 12/18/2022]
Abstract
In this compilation we collect information about the main protein components in hemolymph and stress the continued interest in their study. The reasons for such an attention span several areas of biological, veterinarian and medical applications: from the notions for better dealing with the species - belonging to phylum Arthropoda, subphylum Crustacea, and to phylum Mollusca - of economic interest, to the development of 'marine drugs' from the peptides that, in invertebrates, act as antimicrobial, antifungal, antiprotozoal, and/or antiviral agents. Overall, the topic most often on focus is that of innate immunity operated by classes of pattern-recognition proteins. SIGNIFICANCE: The immune response in invertebrates relies on innate rather than on adaptive/acquired effectors. At a difference from the soluble and membrane-bound immunoglobulins and receptors in vertebrates, the antimicrobial, antifungal, antiprotozoal and/or antiviral agents in invertebrates interact with non-self material by targeting some common (rather than some highly specific) structural motifs. Developing this paradigm into (semi) synthetic pharmaceuticals, possibly optimized through the modeling opportunities offered by computational biochemistry, is one of the lessons today's science may learn from the study of marine invertebrates, and specifically of the proteins and peptides in their hemolymph.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| |
Collapse
|
21
|
Ballard KR, Klein AH, Hayes RA, Wang T, Cummins SF. The protein and volatile components of trail mucus in the Common Garden Snail, Cornu aspersum. PLoS One 2021; 16:e0251565. [PMID: 34043643 PMCID: PMC8158898 DOI: 10.1371/journal.pone.0251565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
The Common or Brown Garden Snail, Cornu aspersum, is an invasive land snail that has successfully colonized a diverse range of global environments. Like other invasive land snails, it is a significant pest of a variety of agricultural crops, including citrus, grapes and canola. Cornu aspersum secretes a mucus trail when mobile that facilitates locomotion. The involvement of the trail in conspecific chemical communication has also been postulated. Our study found that anterior tentacle contact with conspecific mucus elicited a significant increase in heart rate from 46.9 to 51 beats per minute. In order to gain a better understanding of the constituents of the trail mucus and the role it may play in snail communication, the protein and volatile components of mucus trails were investigated. Using two different protein extraction methods, mass spectrometry analysis yielded 175 different proteins, 29 of which had no significant similarity to any entries in the non-redundant protein sequence database. Of the mucus proteins, 22 contain features consistent with secreted proteins, including a perlucin-like protein. The eight most abundant volatiles detected using gas chromatography were recorded (including propanoic acid and limonene) and their potential role as putative pheromones are discussed. In summary, this study has provided an avenue for further research pertaining to the role of trail mucus in snail communication and provides a useful repository for land snail trail mucus components. This may be utilized for further research regarding snail attraction and dispersal, which may be applied in the fields of agriculture, ecology and human health.
Collapse
Affiliation(s)
- Kaylene R. Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Anne H. Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Richard A. Hayes
- Forest Industries Research Centre, Forest Research Institute, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Scott F. Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
22
|
Abstract
Snails can provide a considerable variety of bioactive compounds for cosmetic and pharmaceutical industries, useful for the development of new formulations with less toxicity and post effects compared to regular compounds used for the purpose. Compounds from crude extract, mucus, slime consist of glycans, polypeptides, proteins, etc., and can be used for curing diseases like viral lesions, warts, and different dermal problems. Some particular uses of snails involve treating post-traumatic stress. Micro RNA of Lymnaea stagnalis, was known to be responsible for the development of long-term memory and treatment of Alzheimer's and Dementia like diseases. This review explores the application of various bioactive compounds from snails with its potential as new translational medicinal and cosmetic applications. Snail bioactive compounds like ω-MVIIA, μ-SIIIA, μO-MrVIB, Xen2174, δ-EVIA, α-Vc1.1, σ-GVIIA, Conantokin-G, and Contulakin-G, conopeptides can be used for the development of anti-cancer drugs. These compounds target the innate immunity and improve the defense system of humans and provide protection against these life-threatening health concerns.AbbreviationsFDA: Food and Drug Administration; UTI: urinal tract infection; nAChRs: nicotinic acetylcholine receptors; NMDA: N-methyl-D-aspartate; CNS: central nervous system; CAR T: chimeric antigen receptors therapy; Micro RNA: micro ribonucleic acid.
Collapse
Affiliation(s)
- Varun Dhiman
- Department of Environmental Sciences, Central University of Himachal Pradesh, DharamshalaDharamshala, India
| | - Deepak Pant
- School of Chemical Sciences, Central University of Haryana, Mahendragarh, Haryana, India
| |
Collapse
|
23
|
Purification, characterization and biological functions of metalloprotein isolated from haemolymph of mud crab Scylla serrata (Forskal, 1775). Int J Biol Macromol 2020; 164:3901-3908. [PMID: 32889000 DOI: 10.1016/j.ijbiomac.2020.08.228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/22/2022]
Abstract
In recent years, an enormous number of naturally occurring biological macromolecules has been reported worldwide due to its antibacterial and anticancerous potential. Among them, in this study, the copper containing respiratory protein namely haemocyanin (HC) was isolated from the haemolymph of mud crab Scylla serrata. The isolated metalloprotein HC was purified using Sepharose column by gel filtration chromatography. The purified HC was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and molecular weight of the protein was identified as 95 kDa. Fourier transform infrared spectrophotometer (FT-IR) and nuclear magnetic resonance (1H NMR) spectral data revealed the presence of amino acid constituents. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis based mass ion search exposed that the purified protein was HC. HC exhibited an in vitro bacteriostatic effects against the bacterial pathogens and also elevated ROS levels in the treated samples. The half maximal (50%) inhibitory concentration (IC50) of HC was found to be 80 μg/mL against lung cancer cells (A549). Our study collectively addressed the potential antibacterial and anti-cancerous activity of HC. The results obtained from this study suggest that HC can be used for therapeutical application in the near future.
Collapse
|
24
|
Dolashki A, Velkova L, Daskalova E, Zheleva N, Topalova Y, Atanasov V, Voelter W, Dolashka P. Antimicrobial Activities of Different Fractions from Mucus of the Garden Snail Cornu aspersum. Biomedicines 2020; 8:E315. [PMID: 32872361 PMCID: PMC7554965 DOI: 10.3390/biomedicines8090315] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Natural products have long played a major role in medicine and science. The garden snail Cornu aspersum is a rich source of biologically active natural substances that might be an important source for new drugs to treat human disease. Based on our previous studies, nine fractions containing compounds with Mw <3 kDa; <10 kDa; <20 kDa; >20 kDa; >30 kDa>50 kDa and between 3 and 5 kDa; 5 and 10 kDa; and 10 and 30 kDa were purified from the mucus of C. aspersum and analyzed by tandem mass spectrometry (MALDI-TOF/TOF). Seventeen novel peptides with potential antibacterial activity were identified by de novo MS/MS sequencing using tandem mass spectrometry. The different fractions were tested for antibacterial activity against Gram─ (Pseudomonas aureofaciens and Escherichia coli) and Gram+ (Brevibacillus laterosporus) bacterial strains as well the anaerobic bacterium Clostridium perfringens. These results revealed that the peptide fractions exhibit a predominant antibacterial activity against B. laterosporus; the fraction with Mw 10-30 kDa against E. coli; another peptide fraction <20 kDa against P. aureofaciens; and the protein fraction >20 kDa against the bacterial strain C. perfringens. The discovery of new antimicrobial peptides (AMPs) from natural sources is of great importance for public health due to the AMPs' effective antimicrobial activities and low resistance rates.
Collapse
Affiliation(s)
- Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria; (A.D.); (V.A.)
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria; (A.D.); (V.A.)
| | - Elmira Daskalova
- Sofia University, St. Kliment Ohridski, Faculty of Biology, Department of General and Applied Hydrobiology, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (E.D.); (N.Z.); (Y.T.)
| | - N. Zheleva
- Sofia University, St. Kliment Ohridski, Faculty of Biology, Department of General and Applied Hydrobiology, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (E.D.); (N.Z.); (Y.T.)
| | - Yana Topalova
- Sofia University, St. Kliment Ohridski, Faculty of Biology, Department of General and Applied Hydrobiology, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (E.D.); (N.Z.); (Y.T.)
| | - Ventseslav Atanasov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria; (A.D.); (V.A.)
| | - Wolfgang Voelter
- Interfacultary Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Straße 4, D-72076 Tübingen, Germany;
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl.9, 1113 Sofia, Bulgaria; (A.D.); (V.A.)
| |
Collapse
|
25
|
Beltran CGG, Coyne VE. iTRAQ-based quantitative proteomic profiling of the immune response of the South African abalone, Haliotis midae. FISH & SHELLFISH IMMUNOLOGY 2020; 99:130-143. [PMID: 32045637 DOI: 10.1016/j.fsi.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The South African abalone Haliotis midae is a commercially important species farmed at high densities in land-based aquaculture systems. Disease outbreaks have had a severe financial impact on the abalone industry yet the molecular mechanisms underlying the immune response of H. midae remain obscure. In this study, a comparative shotgun proteomics approach using iTRAQ coupled with LC-MS/MS was employed to investigate H. midae proteome changes in response to Vibrio anguillarum challenge. A total of 118 non-redundant, unique haemocyte proteins were identified and quantified, with 16 proteins significantly regulated. Hierarchical clustering and pathway analysis uncovered a coordinated response dominated by calcium and cAMP signalling via activation of MAPK cascades. Early up-regulated biological processes involve phagocytosis, nitric oxide production and ATP-synthesis, whilst down-regulated responses were predominantly involved in the regulation of apoptosis. The late up-regulated response involved protein kinase activity and detoxification processes. Expression of selected proteins was validated by Western blot. A putative allograft inflammatory factor-1 protein was further selected to establish its functional molecular role in haemocytes. Confocal imaging revealed that allograft inflammatory factor-1 regulates phagocytosis via a functional interaction with filamentous actin. This is the first time a high-throughput proteomics approach has been used to investigate the immune response of H. midae.
Collapse
Affiliation(s)
- Caroline G G Beltran
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - Vernon E Coyne
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa.
| |
Collapse
|
26
|
Mendoza-Porras O, Kamath S, Harris JO, Colgrave ML, Huerlimann R, Lopata AL, Wade NM. Resolving hemocyanin isoform complexity in haemolymph of black tiger shrimp Penaeus monodon - implications in aquaculture, medicine and food safety. J Proteomics 2020; 218:103689. [PMID: 32088355 DOI: 10.1016/j.jprot.2020.103689] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023]
Abstract
Hemocyanin (Hc) is a multifunctional macromolecule involved in oxygen transport and non-specific immunity in shrimp. Hc is crucial in physiology and nutrition linked with optimal performance in aquaculture production systems. In medicine, Hc has been approved for clinical use in humans as adjuvant and anticancer therapeutic. In contrast, Hc has also been identified as one of the proteins causing anaphylaxis following shrimp consumption. The role of individual Hc isoforms remains unknown due to a lack of resolved Hc isoforms. We successfully identified eleven different Penaeus monodon hemocyanin (PmoHc) γ isoforms including two truncated isoforms (50 and 20 kDa) and one PmoHc β isoform in haemolymph using proteomics informed by transcriptomics. Amino acid sequence homology ranged from 24 to 97% between putative PmoHc gene isoforms. Hc isoforms showed specific patterns of transcript expression in shrimp larval stages and adult hepatopancreas. These findings enable isoform level investigations aiming to define molecular mechanisms underpinning Hc functionality in shrimp physiology and immunity, as well as their individual immunogenic role in human allergy. Our research demonstrates the power of proteomics informed by transcriptomics to resolve isoform complexity in non-model organisms and lay the foundations for improved performance within the aquaculture industry and advance allergenic applications in medicine. SIGNIFICANCE: The roles of hemocyanin (Hc) in shrimp homeostasis and immunity as well as in human allergy are not well understood because the complexity of Hc isoforms has remained unresolved. Our results have confirmed the existence of at least 12 individual Hc isoforms in shrimp haemolymph and validated putative Hc gene assemblies from transcriptomics. Our findings will enable monitoring the expression of specific Hc isoforms in shrimp haemolymph during different environmental, nutritional and pathogenic conditions, thus providing insights into isoform specific functional roles. In medicine, the potential allergenicity of each Hc isoform could be determined and advance allergenic applications. Lastly, since Hc comprises up to 95% of the total protein in haemolymph, these isoforms become ideal targets for prawn provenance, traceability and food contamination studies.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia.
| | - Sandip Kamath
- James Cook University, Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook Drive, Townsville, QLD 4811, Australia; James Cook University, Australian Institute of Tropical Health and Medicine, James Cook Drive, Townsville, QLD 4811, Australia
| | - James O Harris
- Flinders University, College of Science and Engineering, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Michelle L Colgrave
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia
| | - Roger Huerlimann
- James Cook University, College of Science and Engineering, James Cook Drive, Townsville, QLD 4811, Australia; Australian Research Council Industrial Transformation Research Hub for Advanced Shrimp Breeding, Australia
| | - Andreas L Lopata
- James Cook University, Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook Drive, Townsville, QLD 4811, Australia; James Cook University, Australian Institute of Tropical Health and Medicine, James Cook Drive, Townsville, QLD 4811, Australia
| | - Nicholas M Wade
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia; James Cook University, College of Science and Engineering, James Cook Drive, Townsville, QLD 4811, Australia; Australian Research Council Industrial Transformation Research Hub for Advanced Shrimp Breeding, Australia
| |
Collapse
|
27
|
Abstract
The copper-containing hemocyanins are proteins responsible for the binding, transportation and storage of dioxygen within the blood (hemolymph) of many invertebrates. Several additional functions have been attributed to both arthropod and molluscan hemocyanins, including (but not limited to) enzymatic activity (namely phenoloxidase), hormone transport, homeostasis (ecdysis) and hemostasis (clot formation). An important secondary function of hemocyanin involves aspects of innate immunity-such as acting as a precursor of broad-spectrum antimicrobial peptides and microbial/viral agglutination. In this chapter, we present the reader with an up-to-date synthesis of the known functions of hemocyanins and the structural features that facilitate such activities.
Collapse
Affiliation(s)
- Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK.
| | - Elisa M Costa-Paiva
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Pan L, Zhang X, Yang L, Pan S. Effects of Vibro harveyi and Staphyloccocus aureus infection on hemocyanin synthesis and innate immune responses in white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 93:659-668. [PMID: 31419533 DOI: 10.1016/j.fsi.2019.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Hemocyanin, a multifunctional oxygen-carrying protein, has critical effects on immune defense in crustaceans. To explore the role of hemocyanin in anti-pathogen mechanism, effects of Vibrio harveyi (V. harvey) and Staphyloccocus aureus (S. aureus) on hemocyanin synthesis and innate immune responses were investigated in Litopenaeus vannamei (L. vannamei) during infection in vivo. Results showed that 105 and 106 cells mL-1V. harveyi and 106 cells mL-1S. aureus significantly affected plasma hemocyanin concentration, hepatopancreas hemocyanin mRNA and subunits expressions, plasma phenol oxidase (PO), hemocyanin-derived PO (Hd-PO), antibacterial, and bacteriolytic activities during the experiment under bacterial stress, while these parameters did not change remarkably in control group. The concentration of hemocyanin in plasma fluctuated, with a minimum at 12 h and a maximum at 24 h. Moreover, the expression of hemocyanin mRNA peaked at 12 h, while the level of hemocyanin p75 and p77 subunits reached maximum at 24 h. Besides, plasma PO and Hd-PO activities peaked at 24 h, and antimicrobial and bacteriolytic activities peaked at 12 h and 24 h, respectively. In addition, 105 cells mL-1S. aureus had no significant effect on the synthesis of hemocyanin and prophenoloxidase activating (pro-PO) system, but significantly increased antimicrobial activity at 12 h and bacteriolytic activity at 24 h. Therefore, these results suggest that the hemocyanin synthesis was initiated after invasion of pathogen, and the newly synthesized hemocyanin, acted as an immune molecule, can exerts PO activity to regulate the immune defense in L. vannamei in vivo.
Collapse
Affiliation(s)
- Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Liubing Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Shanshan Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
29
|
Neave MJ, Corbeil S, McColl KA, Crane MSJ. Investigating the natural resistance of blackfoot p-a%%KERN_ERR%%ua Haliotis iris to abalone viral ganglioneuritis using whole transcriptome analysis. DISEASES OF AQUATIC ORGANISMS 2019; 135:107-119. [PMID: 31342912 DOI: 10.3354/dao03390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The natural resistance of New Zealand blackfoot p-a%%%%%%%%%%%%%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%ua Haliotis iris to infection by haliotid herpesvirus-1 (HaHV-1) and to the disease abalone viral ganglioneuritis was investigated in experimentally challenged p-aua using high throughput RNA-sequencing. HaHV-1-challenged p-aua up-regulated broad classes of genes that contained chitin-binding peritrophin-A domains, which seem to play diverse roles in the p-aua immune response. The p-aua also up-regulated vascular adhesion protein-1 (VAP-1), an important adhesion molecule for lymphocytes, and chitotriosidase-1 (CHIT-1), an immunologically important gene in mammalian immune systems. Moreover, several blood coagulation pathways were dysregulated in the p-aua, possibly indicating viral modulation. We also saw several indications that neurological tissues were specifically affected by HaHV-1, including the dysregulation of beta-1,4-N-acetylgalactosaminyltransferase (B4GALNT), GM2 ganglioside, neuroligin-4 and the Notch signalling pathway. This research may support the development of molecular therapeutics useful to control and/or manage viral outbreaks in abalone culture.
Collapse
Affiliation(s)
- Matthew J Neave
- Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220, Australia
| | | | | | | |
Collapse
|
30
|
Romero S, Laino A, Arrighetti F, García CF, Cunningham M. Vitellogenesis in spiders: first analysis of protein changes in different reproductive stages of Polybetes pythagoricus. J Comp Physiol B 2019; 189:335-350. [PMID: 30953127 DOI: 10.1007/s00360-019-01217-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Vitellogenesis represents one of the most vital processes of oviparous species during which various proteins, carbohydrates, and lipids are synthesized and stored inside the developing oocytes. Through analyzing protein changes in the midgut diverticula, hemolymph, and ovaries of females throughout the different vitellogenic stages of the spider Polybetes pythagoricus, we determined the origin of the different proteins involved in the formation of lipovitellins (LVs) along with the existence of a linkage between the hemocyanin and this vital process. An increase in the total protein content of the midgut diverticula, hemolymph, and ovary occurred throughout vitellogenesis followed by a decrease in those levels after laying. The presence of hemocyanin in egg and in LV2, as well as its accumulation in the ovary throughout the vitellogenesis process, was determined. Considering that all biologic processes depend on the correct structure and function of proteins, this study establishes, for the first time for the Order Araneae, the coexistence of three different origins of vitellogenesis-related proteins: one predominantly ovarian involving peptides of 120, 75, 46, and 30 kDa; another extraovarian one originated from the midgut diverticula and represented by a 170 kDa peptide, and a third hemolymphatic one, represented by the 67 kDa peptide.
Collapse
Affiliation(s)
- S Romero
- Instituto de Investigaciones Bioquímicas de la Plata Prof. Dr. Rodolfo R. Brenner (INIBIOLP), Fac. Cs. Médicas, CCT-La Plata CONICET-UNLP, Calle 60 y 120, 1900, La Plata, Argentina
| | - A Laino
- Instituto de Investigaciones Bioquímicas de la Plata Prof. Dr. Rodolfo R. Brenner (INIBIOLP), Fac. Cs. Médicas, CCT-La Plata CONICET-UNLP, Calle 60 y 120, 1900, La Plata, Argentina
| | - F Arrighetti
- CONICET-Museo Argentino de Ciencias Naturales, Av. Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
| | - C F García
- Instituto de Investigaciones Bioquímicas de la Plata Prof. Dr. Rodolfo R. Brenner (INIBIOLP), Fac. Cs. Médicas, CCT-La Plata CONICET-UNLP, Calle 60 y 120, 1900, La Plata, Argentina.
| | - M Cunningham
- Instituto de Investigaciones Bioquímicas de la Plata Prof. Dr. Rodolfo R. Brenner (INIBIOLP), Fac. Cs. Médicas, CCT-La Plata CONICET-UNLP, Calle 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
31
|
Dolashki A, Velkova L, Voelter W, Dolashka P. Structural and conformational stability of hemocyanin from the garden snail Cornu aspersum. ACTA ACUST UNITED AC 2019; 74:113-123. [DOI: 10.1515/znc-2018-0084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 02/02/2019] [Indexed: 11/15/2022]
Abstract
Abstract
Various aspects of biomedical applications of molluscan hemocyanins, associated with their immunogenic properties and antitumor activity, promoted us to perform structural studies on these glycoproteins. The stability and reassociation behavior of native Cornu aspersum hemocyanin (CaH) are studied in the presence of different concentrations of Ca2+ and Mg2+ ions and pH values using electron microscopy. Higher concentrations of those ions led to a more rapid reassociation of CaH, resulting in stable multidecamers with different lengths. The conformational changes of native CaH are investigated within a wide pH-temperature range by UV circular dichroism. The relatively small changes of initial [θ]λ indicated that many secondary structural elements are preserved, even at high temperatures above 80°C, especially at neutral pH. The mechanism of thermal unfolding of CaH has a complicated character, and the process is irreversible. The conformational stability of the native didecameric aggregates of CaH toward various denaturants indicates that hydrophilic and polar forces stabilize the quaternary structure. For the first time, the unfolding of native CaH in water solutions in the presence of four different denaturants is investigated. The free energy of stabilization in water, ∆GD
H2O, was calculated in the range of 15.48–16.95 kJ mol−1. The presented results will facilitate the further investigation of the properties and potential applications of CaH.
Collapse
Affiliation(s)
- Aleksandar Dolashki
- Institute of Organic Chemistry with Centre of Phytochemistry , Bulgarian Academy of Sciences , Acad. G. Bonchev str., bl.9 , Sofia 1113 , Bulgaria
| | - Lyudmila Velkova
- Institute of Organic Chemistry with Centre of Phytochemistry , Bulgarian Academy of Sciences , Acad. G. Bonchev str., bl.9 , Sofia 1113 , Bulgaria
| | - Wolfgang Voelter
- Interfacultary Institute of Biochemistry , University of Tübingen , Hoppe-Seyler-Straße 4 , D-72076 Tübingen , Germany
| | - Pavlina Dolashka
- Institute of Organic Chemistry with Centre of Phytochemistry , Bulgarian Academy of Sciences , Acad. G. Bonchev str., bl.9 , Sofia 1113 , Bulgaria
| |
Collapse
|
32
|
Yao T, Zhao MM, He J, Han T, Peng W, Zhang H, Wang JY, Jiang JZ. Gene expression and phenoloxidase activities of hemocyanin isoforms in response to pathogen infections in abalone Haliotis diversicolor. Int J Biol Macromol 2019; 129:538-551. [PMID: 30731165 DOI: 10.1016/j.ijbiomac.2019.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/02/2019] [Accepted: 02/02/2019] [Indexed: 12/13/2022]
Abstract
Hemocyanins (Hc), the main protein components of hemolymph in invertebrates, are not only involved in oxygen transport but also linked to non-specific immune responses. In this study, we used abalone (Haliotis diversicolor) Hc to study the basis of its diversified functions through gene, protein, peptides, and phenoloxidase (PO) activity levels. Three complete hemocyanin gene (HdH) sequences were cloned for the first time. By comparing the copies and location of HdH between abalone and other mollusks, we propose that Hc gene duplication and linkage is likely to be common during the evolution of mollusk respiratory proteins. We further demonstrate that all three genes could be expressed in abalone, with expression varying based on the developmental stages, tissue types, and different pathogen infections. However, HdH1 and HdH2 appear to be synthesized by the same cells by fluorescence in situ hybridization. Furthermore, the PO activity of HdH can be induced by trypsin, urea, and SDS in vitro. Viral infection can stimulate its PO activity in vivo by cleaving the protein into fragments. Consequently, we present a comprehensive study of abalone hemocyanin, providing important evidence for an in-depth understanding of the physiological and immune functions of Hc in mollusks.
Collapse
Affiliation(s)
- Tuo Yao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Man-Man Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; Novoprotein Scientific Inc., Wujiang, Jiangsu 215200, PR China
| | - Jian He
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Tao Han
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Wen Peng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Han Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Jiang-Yong Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China
| | - Jing-Zhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China.
| |
Collapse
|
33
|
Zhan S, Aweya JJ, Wang F, Yao D, Zhong M, Chen J, Li S, Zhang Y. Litopenaeus vannamei attenuates white spot syndrome virus replication by specific antiviral peptides generated from hemocyanin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:50-61. [PMID: 30339874 DOI: 10.1016/j.dci.2018.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 05/06/2023]
Abstract
Recent studies have shown that hemocyanin plays immune-related functions apart from its canonical respiratory function. While shrimp hemocyanin is found to generate antimicrobial peptides, antiviral related peptides have not been reported. In the present study, the serum of white spot syndrome virus (WSSV) infected Litopenaeus vannamei analyzed by two-dimensional gel electrophoresis, revealed 45 consistently down-regulated protein spots and 10 up-regulated protein spots. Five of the significantly up-regulated spots were identified as hemocyanin derived peptides. One of the five peptides, designated LvHcL48, was further characterized by analyzing its primary sequence via Edman N-terminal sequencing, C-terminal sequencing and amino acid sequence alignment. LvHcL48 was found to be a 79 amino acid fragment (aa584-662) from the C-terminal domain of L. vannamei hemocyanin protein (ADZ15149). Both in vivo and in vitro functional studies revealed that LvHcL48 has immunological activities, as recombinant LvHcL48 protein (rLvHcL48) significantly inhibited the transcription of the WSSV genes wsv069 and wsv421 coupled with a significant reduction in WSSV copy numbers. Further analysis showed that LvHcL48 could interact with the WSSV envelope protein 28 (VP28). Our present data therefore reveals the generation of an antiviral hemocyanin derived peptide LvHcL48 from WSSV infected shrimp, which binds to the envelope protein VP28 of WSSV.
Collapse
Affiliation(s)
- Shixiong Zhan
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Mingqi Zhong
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jiehui Chen
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
34
|
SRI HARTI AGNES, PUSPAWATI NONY, PUTRININGRUM RAHAJENG. Antimicrobial Bioactive Compounds of Snail Seromucoid as Biological Response Modifier Immunostimulator. MICROBIOLOGY INDONESIA 2019. [DOI: 10.5454/mi.13.2.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Costa-Paiva EM, Schrago CG, Coates CJ, Halanych KM. Discovery of Novel Hemocyanin-Like Genes in Metazoans. THE BIOLOGICAL BULLETIN 2018; 235:134-151. [PMID: 30624121 DOI: 10.1086/700181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Among animals, two major groups of oxygen-binding proteins are found: proteins that use iron to bind oxygen (hemoglobins and hemerythrins) and two non-homologous hemocyanins that use copper. Although arthropod and mollusc hemocyanins bind oxygen in the same manner, they are distinct in their molecular structures. In order to better understand the range of natural variation in hemocyanins, we searched for them in a diverse array of metazoan transcriptomes by using bioinformatics tools to examine hemocyanin evolutionary history and to consequently revive the discussion about whether all metazoan hemocyanins shared a common origin with frequent losses or whether they originated separately after the divergence of Lophotrochozoa and Ecdysozoa. We confirm that the distribution of hemocyanin-like genes is more widespread than previously reported, including five putative novel mollusc hemocyanin genes in two annelid species from Chaetopteridae. For arthropod hemocyanins, 16 putative novel genes were retained, and the presence of arthropod hemocyanins in 11 annelid species represents a novel observation. Interestingly, Annelida is the lineage that presents the greatest repertoire of oxygen transport proteins reported to date, possessing all the main superfamily proteins, which could be explained partially by the immense variability of lifestyles and habitats. Work presented here contradicts the canonical view that hemocyanins are restricted to molluscs and arthropods, suggesting that the occurrence of copper-based blood pigments in metazoans has been underestimated. Our results also support the idea of the presence of oxygen carrier hemocyanins being widespread across metazoans with an evolutionary history characterized by frequent losses.
Collapse
Key Words
- GO, Gene Ontology
- Hbs, hemoglobins
- Hc, hemocyanin
- HcA, arthropod hemocyanin
- HcM, mollusc hemocyanin
- Hrs, hemerythrins
- PCR, polymerase chain reaction
- PE, paired end
- p.p., posterior probability
- tyr, tyrosinase domain
Collapse
|
36
|
|
37
|
Design of antimicrobial peptides from a cuttlefish database. Amino Acids 2018; 50:1573-1582. [PMID: 30121851 DOI: 10.1007/s00726-018-2633-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 01/15/2023]
Abstract
No antimicrobial peptide has been identified in cephalopods to date. Annotation of transcriptomes or genomes using basic local alignment Search Tool failed to yield any from sequence identities. Therefore, we searched for antimicrobial sequences in the cuttlefish (Sepia officinalis) database by in silico analysis of a transcriptomic database. Using an original approach based on the analysis of cysteine-free antimicrobial peptides selected from our Antimicrobial Peptide Database (APD3), the online prediction tool of the Collection of Anti-Microbial Peptides (CAMPR3), and a homemade software program, we identified potential antibacterial sequences. Nine peptides less than 25 amino acids long were synthesized. The hydrophobic content of all nine of them ranged from 30 to 70%, and they could form alpha-helices. Three peptides possessed similarities with piscidins, one with BMAP-27, and five were totally new. Their antibacterial activity was evaluated on eight bacteria including the aquatic pathogens Vibrio alginolyticus, Aeromonas salmonicida, or human pathogens such as Salmonella typhimurium, Listeria monocytogenes, or Staphylococcus aureus. Despite the prediction of an antimicrobial potential for eight of the peptides, only two-GR21 and KT19-inhibited more than one bacterial strain with minimal inhibitory concentrations below 25 µM. Some sequences like VA20 and FK19 were hemolytic, while GR21 induced less than 10% of hemolysis on human blood cells at a concentration of 200 µM. GR21 was the only peptide derived from a precursor with a signal peptide, suggesting a real role in cuttlefish immune defense.
Collapse
|
38
|
Bux K, Ali SA, Moin ST. Hydration facilitates oxygenation of hemocyanin: perspectives from molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:925-938. [PMID: 29974187 DOI: 10.1007/s00249-018-1316-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations were applied to deoxy- and oxy-hemocyanins using newly developed force field parameters for the dicopper site to evaluate their structural and dynamical properties. Data obtained from the simulations provided information of the oxygenation effect on the active site and overall topology of the protein that was analyzed by root-mean-square deviations, b-factors, and dicopper coordination geometries. Domain I of the protein was found to demonstrate higher flexibility with respect to domain II because of the interfacial rotation between domain I and II that was further endorsed by computing correlative domain movements for both forms of the protein. The oxygenation effect on the overall structure of the protein or polypeptide subunit was further explored via gyration radii evaluated for the metal-binding domain and for the whole subunit. The evaluation of hydration dynamics was carried out to understand the water mediated role of amino acid residues of the solvent tunnel facilitating the entry of oxygen molecule to the dicopper site of hemocyanin.
Collapse
Affiliation(s)
- Khair Bux
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Tarique Moin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
39
|
Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino Acids 2018; 50:995-1005. [PMID: 29728914 PMCID: PMC6060862 DOI: 10.1007/s00726-018-2575-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Hemocyanin, the multifunctional glycoprotein in the hemolymph of invertebrates, can generate various antimicrobial peptides (AMPs). Given the rising interest in the use of natural therapeutic agents such as AMPs, alternative and more efficient methods for their generation are being explored. In this work, free online software was first applied to predict the generation of antimicrobial peptides from the large subunit of Litopenaeus vannamei hemocyanin. Twenty potential antimicrobial peptides ranging from 1.5 to 1.9 kDa were predicted, five of which had α-helical structures and were selected for antibacterial activity testing. The results indicated that these five peptides had antibacterial activity against seven different bacteria. Of the five peptides, one peptide, designated L1, had the strongest antibacterial activity against both Gram-negative and Gram-positive bacteria. Moreover, CD and NMR data showed that L1 had both α-helical and β-turns structural composition, and that these structures were essential for L1’s antibacterial activity. Furthermore, SEM analysis revealed that peptide L1 had broad-spectrum activity against both Gram-positive and Gram-negative bacteria, as it could destroy the bacterial cell walls and kill the bacteria. Thus, L1 is a very potent antimicrobial peptide that can be exploited and used in antibacterial therapeutics.
Collapse
|
40
|
Qin Z, Babu VS, Wan Q, Muhammad A, Li J, Lan J, Lin L. Antibacterial activity of hemocyanin from red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2018; 75:391-399. [PMID: 29427719 DOI: 10.1016/j.fsi.2018.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Hemocyanins (HMC): the copper-containing respiratory proteins present in invertebrate hemolymph, which plays many essential roles in the immune system. Currently, little is known about the HMC domains of Procambarus clarkii (P. clarkii) and their function in antimicrobial immune response. In this present study, we comparatively studied the expression pattern of native PcHMC with the three recombinant proteins of variable domains of crayfish hemocyanin (PcHMC-N, N-terminal domain of hemocyanin; PcHMC-T, tyrosinase domain of hemocyanin; PcHMC-C, C-terminal domain of hemocyanin). The results showed that three purified recombinant proteins had a strong binding to various bacteria and lipopolysaccharides that further highly agglutinated. The HMCs recombinant proteins showed strong antibacterial activity against V. parahaemolyticus and S. aureus by bacterial growth inhibition, phenoloxidase (PO) and phagocytosis assays. Specifically, rPcHMC1-T and rPcHMC1-C inhibited both the bacteria efficiently, rPcHMC1-T was highly upregulated the PO activity than the other recombinant proteins. Whereas, recombinant proteins pretreated crayfish hemocytes participated in phagocytosis activity, rPcHMC1-N and rPcHMC1-C proteins had a profound effect than the rPcHMC1-T on S. aureus and V. parahaemolyticus phagocytosis. The crayfish hemocyanin domains clearly exhibited antibacterial and phagocytic activities against both the bacteria, suggesting that its variable domains of hemocyanin have the different function on specific pathogen during the assault of pathogens.
Collapse
Affiliation(s)
- Zhendong Qin
- College of Fisheries, Huazhong Agricultural University Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - V Sarath Babu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Quanyuan Wan
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Asim Muhammad
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA
| | - Jiangfeng Lan
- College of Fisheries, Huazhong Agricultural University Wuhan, Hubei 430070, China.
| | - Li Lin
- College of Fisheries, Huazhong Agricultural University Wuhan, Hubei 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
41
|
Semreen MH, El-Gamal MI, Abdin S, Alkhazraji H, Kamal L, Hammad S, El-Awady F, Waleed D, Kourbaj L. Recent updates of marine antimicrobial peptides. Saudi Pharm J 2018; 26:396-409. [PMID: 29556131 PMCID: PMC5856950 DOI: 10.1016/j.jsps.2018.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 01/29/2023] Open
Abstract
Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.
Collapse
Affiliation(s)
- Mohammad H Semreen
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Shifaa Abdin
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hajar Alkhazraji
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leena Kamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Saba Hammad
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Faten El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dima Waleed
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Layal Kourbaj
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
42
|
Antibacterial Activity of AI-Hemocidin 2, a Novel N-Terminal Peptide of Hemoglobin Purified from Arca inflata. Mar Drugs 2017; 15:md15070205. [PMID: 28661457 PMCID: PMC5532647 DOI: 10.3390/md15070205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023] Open
Abstract
The continued emergence of antibiotic resistant bacteria in recent years is of great concern. The search for new classes of antibacterial agents has expanded to non-traditional sources such as shellfish. An antibacterial subunit of hemoglobin (Hb-I) was purified from the mantle of Arca inflata by phosphate extraction and ion exchange chromatography. A novel antibacterial peptide, AI-hemocidin 2, derived from Hb-I, was discovered using bioinformatics analysis. It displayed antibacterial activity across a broad spectrum of microorganisms, including several Gram-positive and Gram-negative bacteria, with minimal inhibitory concentration (MIC) values ranging from 37.5 to 300 μg/mL, and it exhibited minimal hemolytic or cytotoxic activities. The antibacterial activity of AI-hemocidin 2 was thermostable (25–100 °C) and pH resistant (pH 3–10). The cellular integrity was determined by flow cytometry. AI-hemocidin 2 was capable of permeating the cellular membrane. Changes in the cell morphology were observed with a scanning electron microscope. Circular dichroism spectra suggested that AI-hemocidin 2 formed an α-helix structure in the membrane mimetic environment. The results indicated that the anti-bacterial mechanism for AI-hemocidin 2 occurred through disrupting the cell membrane. AI-hemocidin 2 might be a potential candidate for tackling antibiotic resistant bacteria.
Collapse
|
43
|
Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci 2016; 74:293-317. [PMID: 27518203 PMCID: PMC5219038 DOI: 10.1007/s00018-016-2326-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/17/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023]
Abstract
It is now well documented that peptides with enhanced or alternative functionality (termed cryptides) can be liberated from larger, and sometimes inactive, proteins. A primary example of this phenomenon is the oxygen-transport protein hemoglobin. Aside from respiration, hemoglobin and hemoglobin-derived peptides have been associated with immune modulation, hematopoiesis, signal transduction and microbicidal activities in metazoans. Likewise, the functional equivalents to hemoglobin in invertebrates, namely hemocyanin and hemerythrin, act as potent immune effectors under certain physiological conditions. The purpose of this review is to evaluate the true extent of oxygen-transport protein dynamics in innate immunity, and to impress upon the reader the multi-functionality of these ancient proteins on the basis of their structures. In this context, erythrocyte-pathogen antibiosis and the immune competences of various erythroid cells are compared across diverse taxa.
Collapse
|
44
|
Zhuang J, Coates CJ, Mao Q, Wu Z, Xie L. The antagonistic effect of Banana bunchy top virus multifunctional protein B4 against Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2016; 17:669-679. [PMID: 26369403 PMCID: PMC6638366 DOI: 10.1111/mpp.12319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The viral-induced banana bunchy top disease and the fungal-induced banana blight are two major causes of concern for industrial scale production of bananas. Banana blight is particularly troublesome, affecting ∼80% of crops worldwide. Strict guidelines and protocols are in place in order to ameliorate the effects of this devastating disease, yet little success has been achieved. From the data presented here, we have found that Banana bunchy top virus (BBTV)-infected bananas are more resistant to Fusarium oxysporum f. sp. cubense (Foc). BBTV appears to be antagonistic towards Foc, thus improving the survivability of plants against blight. The BBTV suppressor of RNA silencing, namely protein B4, displays fungicidal properties in vitro. Furthermore, transgenic tomatoes expressing green fluorescent protein (GFP)-tagged protein B4 demonstrate enhanced resistance to F. oxysporum f. sp. lycopersici (Fol). Differential gene expression analysis indicates that increased numbers of photogenesis-related gene transcripts are present in dark-green leaves of B4-GFP-modified tomato plants relative to those found in WT plants. Conversely, the transcript abundance of immunity-related genes is substantially lower in transgenic tomatoes compared with WT plants, suggesting that plant defences may be influenced by protein B4. This viral-fungal interaction provides new insights into microbial community dynamics within a single host and has potential commercial value for the breeding of transgenic resistance to Fusarium-related blight/wilt.
Collapse
Affiliation(s)
- Jun Zhuang
- Fujian Provincial Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou, 350002, China
| | - Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Qianzhuo Mao
- Fujian Provincial Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou, 350002, China
| | - Zujian Wu
- Fujian Provincial Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou, 350002, China
| | - Lianhui Xie
- Fujian Provincial Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou, 350002, China
| |
Collapse
|
45
|
Seo JK, Go HJ, Kim CH, Nam BH, Park NG. Antimicrobial peptide, hdMolluscidin, purified from the gill of the abalone, Haliotis discus. FISH & SHELLFISH IMMUNOLOGY 2016; 52:289-297. [PMID: 27033467 DOI: 10.1016/j.fsi.2016.03.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
A 4.7 kDa antimicrobial peptide was purified from the acidified gill extract of the Abalone, Haliotis discus, by cation-exchange and C18 reversed-phase high performance liquid chromatography (HPLC). Comparison of the amino acid sequences and molecular weight of this peptide with those of other known antimicrobial peptides revealed that this antimicrobial peptide have high sequence homology with that of cgMolluscidin and was designated hdMolluscidin. hdMolluscidin is composed of 46 amino acid residues containing several dibasic residue repeats like KK or K-R. hdMolluscidin showed potent antimicrobial activity against both Gram-positive bacteria including Bacillus subtilis and Staphylococcus aureus (minimal effective concentrations [MECs]; 0.8-19.0 μg/mL) and Gram-negative bacteria including Aeromonas hydrophila, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Shigella flexneri, and Vibrio parahemolyticus ([MECs]; 1.0-4.0 μg/mL) without hemolytic activity. However, hdMolluscidin did not show any significant activity against Candida albicans. The secondary structural prediction suggested that hdMolluscidin might not form an ordered or an amphipathic structure. hdMolluscidin did not show membrane permeabilization or leakage ability. The full-length hdMolluscidin cDNA contained 566-bp, including a 5'-untranslated region (UTR) of 63-bp, a 3'-UTR of 359-bp, and an open reading frame of 144-bp encoding 47 amino acids (containing Met). cDNA study of hdMolluscidin suggests that it is expressed as a mature peptide. Our results indicate that hdMolluscidin could relate to the innate immune defenses in abalone and it may not act directly on bacterial membrane.
Collapse
Affiliation(s)
- Jung-Kil Seo
- Department of Food Science and Biotechnology, Kunsan National University, Kunsan 54150, South Korea.
| | - Hye-Jin Go
- Department of Biotechnology, Pukyong National University, Busan 48513, South Korea
| | - Chan-Hee Kim
- Department of Biotechnology, Pukyong National University, Busan 48513, South Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, Aquaculture Industry Department, National Fisheries Research and Development Institute, Busan 46083, South Korea
| | - Nam Gyu Park
- Department of Biotechnology, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
46
|
Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. ADVANCES IN GENETICS 2016; 94:307-64. [PMID: 27131329 DOI: 10.1016/bs.adgen.2016.01.006] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs.
Collapse
Affiliation(s)
- T M Butt
- Swansea University, Swansea, Wales, United Kingdom
| | - C J Coates
- Swansea University, Swansea, Wales, United Kingdom
| | | | - N A Ratcliffe
- Swansea University, Swansea, Wales, United Kingdom; Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Laino A, Lavarías S, Suárez G, Lino A, Cunningham M. Characterization of phenoloxidase activity from spider Polybetes pythagoricus hemocyanin. ACTA ACUST UNITED AC 2015; 323:547-55. [PMID: 26173645 DOI: 10.1002/jez.1947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 11/06/2022]
Abstract
Hemocyanin of the spider Polybetes pythagoricus, in addition to its typical role as an oxygen transporter, also exhibits a phenoloxidase activity induced by micellar concentrations of SDS. In the present work, we found the kinetic parameters Km and Vmax of Polybetes pythagoricus hemocyanin (PpHc) PO activity to be 0.407 mM and 0.081 µmolmin(-1) mg protein(-1) , respectively. Dopamine was used as the substrate with SDS at a final concentration of 10 mM and a 30-min incubation at 25°C. Conformational changes in Hc associated with the SDS treatment were analyzed using far-UV circular dichroism, intrinsic fluorescence and absorption spectroscopy. The secondary and tertiary structural changes of PpHc induced by SDS led to increases in α-helical content and tryptophan fluorescence intensity. A reduction in the absorption spectrum at 340 nm in the presence of SDS was also observed. These results suggest that the SDS-induced PO activity of PpHc can be ascribed to conformational changes in the local environment of the typer-3 copper active site.
Collapse
Affiliation(s)
- Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata CONICET- Universidad Nacional de La Plata (UNLP), 60 y 120 (1900) La Plata, Argentina
| | - Sabrina Lavarías
- Instituto de Limnología de La Plata (ILPLA) CONICET CCT La Plata-UNLP, La Plata, Argentina
| | - Gustavo Suárez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata CONICET- Universidad Nacional de La Plata (UNLP), 60 y 120 (1900) La Plata, Argentina
| | - Agustina Lino
- Laboratorio de Investigación de Osteopatías y Metabolismo Mineral (LIOMM), Universidad Nacional de La Plata (UNLP), Argentina
| | - Monica Cunningham
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata CONICET- Universidad Nacional de La Plata (UNLP), 60 y 120 (1900) La Plata, Argentina
| |
Collapse
|