1
|
Zhang P, Liu J, Yin XM, Zhou JY, Lukeš J, Lun ZR, Lai DH. Towards disentangling the classification of freshwater fish trypanosomes. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:551-563. [PMID: 38045545 PMCID: PMC10689643 DOI: 10.1007/s42995-023-00191-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 07/15/2023] [Indexed: 12/05/2023]
Abstract
Currently, new species of freshwater fish trypanosomes, which are economically important parasites, are being described based on subjectively selected features, i.e., their cell morphology and the host species. We have performed detailed phylogenetic and haplotype diversity analyses of all 18S rRNA genes available for freshwater fish trypanosomes, including the newly obtained sequences of Trypanosoma carassii and Trypanosoma danilewskyi. Based on a sequence similarity of 99.5%, we divide these trypanosomes into 15 operational taxonomic units, and propose three nominal scenarios for distinguishing T. carassii and other aquatic trypanosomes. We find evidences for the existence of a low number of freshwater fish trypanosomes, with T. carassii having the widest geographic and host ranges. Our analyses support the existence of an umbrella complex composed of T. carassii and two sister species. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00191-0.
Collapse
Affiliation(s)
- Peng Zhang
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jie Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Xiao-Ming Yin
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jun-Yu Zhou
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), 37005 Czech Republic
| | - Zhao-Rong Lun
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT UK
| | - De-Hua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
2
|
Nile tilapia (Oreochromis niloticus) can be experimentally infected with both marine and freshwater fish trypanosomes. Exp Parasitol 2022; 239:108288. [PMID: 35660532 DOI: 10.1016/j.exppara.2022.108288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 11/04/2022]
Abstract
Trypanosomes are haemoflagellates found in vertebrate species and many of them can cause death in infected hosts including fish and humans. With the development of high-density farming in marine and freshwater fish aquaculture systems, severe disease or death, caused by trypanosomiasis, has been frequently reported. However, due to the lack of a model system, particularly for marine fish trypanosomes, and a paucity in the understanding of the biology and pathogenesis of these parasites, effective treatment for fish trypanosomiasis is significantly hampered. The goldfish is the common model system for freshwater fish trypanosomes, mainly of the species Trypanosoma carassii, while a similar model for marine fish trypanosomes has not yet been established. To address this issue, we found that Nile tilapia (Oreochromis niloticus) could be easily infected with a marine fish trypanosome, Trypanosoma epinepheli isolated from Lates calcarifer. Obvious clinical symptoms, associated with a high parasitemia (>108/ml), were found in the infected tilapias and more than 70% mortality was recorded in individuals within 20 days of infection. Interestingly, we also found that the Nile tilapia could also be infected with a freshwater fish trypanosome isolated from the largemouth bass (Micropterus salmoides) and caused significant death (more than 13%) in infected fish. This system not only provides an economical and effective laboratory model to study the biology and pathogenesis of marine and freshwater fish trypanosomes, but also provides a useful platform to develop vaccines and screen compounds for the protection and treatment of fish trypanosomiasis.
Collapse
|
3
|
Torzewski M. C-Reactive Protein: Friend or Foe? Phylogeny From Heavy Metals to Modified Lipoproteins and SARS-CoV-2. Front Cardiovasc Med 2022; 9:797116. [PMID: 35402541 PMCID: PMC8987351 DOI: 10.3389/fcvm.2022.797116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
Animal C-reactive protein (CRP) has a widespread existence throughout phylogeny implying that these proteins have essential functions mandatory to be preserved. About 500 million years of evolution teach us that there is a continuous interplay between emerging antigens and components of innate immunity. The most archaic physiological roles of CRP seem to be detoxication of heavy metals and other chemicals followed or accompanied by an acute phase response and host defense against bacterial, viral as well as parasitic infection. On the other hand, unusual antigens have emerged questioning the black-and-white perception of CRP as being invariably beneficial. Such antigens came along either as autoantigens like excessive tissue-stranded modified lipoprotein due to misdirected food intake linking CRP with atherosclerosis with an as yet open net effect, or as foreign antigens like SARS-CoV-2 inducing an uncontrolled CRP-mediated autoimmune response. The latter two examples impressingly demonstrate that a component of ancient immunity like CRP should not be considered under identical “beneficial” auspices throughout phylogeny but might effect quite the reverse as well.
Collapse
|
4
|
Duan Y, von Gersdorff Jørgensen L, Kania PW, Karami AM, Al‐Jubury A, Buchmann K. Eye fluke effects on Danish freshwater fish: Field and experimental investigations. JOURNAL OF FISH DISEASES 2021; 44:1785-1798. [PMID: 34289126 PMCID: PMC9292478 DOI: 10.1111/jfd.13496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Eye flukes in fish are common in freshwater lakes. Fish become infected by the penetration of cercariae released from freshwater snails, and high infection pressures may be associated with mortalities in a Danish lake. Examination of two other freshwater lakes, combined with laboratory study, supported the notion. We investigated 77 freshwater fish from two lakes and the infection level suggested the occurrence of a high cercarial infection pressure in the Danish lakes. Dominant genera were Tylodelphys and Diplostomum covering a range of species identified by PCR and sequencing of the 18S (partial)-ITS1-5.8S-ITS2-28S (partial) of the rDNA. Cercariae of the prevalent species Diplostomum pseudospathaceum were used to infect zebrafish Danio rerio for the elucidation of short-term effects on the fish host. Zebrafish did not display abnormal behaviour when exposed to 200-400 cercariae, but a dosage of 600 and 1,000 cercariae/fish proved lethal. When fish were exposed to sublethal dosages, 19 out of 27 immune genes were significantly regulated and three genes encoding cytokine (IL 4/13B, IL-6 and IL-8) were upregulated at 3 hr post-infection (hpi), whereas others were downregulated especially at a later time point. We suggest that direct massive cercarial penetration of fish surfaces may be detrimental and may represent a threat to fish populations.
Collapse
Affiliation(s)
- Yajiao Duan
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Per Walter Kania
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Asma M. Karami
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Azmi Al‐Jubury
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Kurt Buchmann
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
5
|
Srisapoome P, Thummabancha K, Wongpanya R. Molecular Characterization and Defense Functions of the Nile Tilapia ( Oreochromis niloticus) DnaJ B9b and DnaJ C3a Genes in Response to Pathogenic Bacteria under High-Temperature Stress Conditions. Biomolecules 2021; 11:biom11101509. [PMID: 34680142 PMCID: PMC8533496 DOI: 10.3390/biom11101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
DnaJ proteins or heat shock protein 40s (HSP40s) form one of the largest heat shock protein families. In this study, 2 cDNAs encoding Nile tilapia (Oreochromis niloticus) DnaJ proteins (On-DnaJ B9b and On-DnaJ C3a) were successfully cloned and characterized. The structures and organizations of these two genes are first reported in the present study. On-DnaJ B9b is approximately 2.1 kb long and contains 2 exons and 1 intron, while On-DnaJ C3a is approximately 12 kb long and contains 12 exons and 11 introns. Under normal conditions, On-DnaJ B9b mRNA is highly expressed in gonad and trunk kidney tissues, while On-DnaJ C3a transcripts are abundantly expressed in gills, intestine, liver, and trunk kidney tissues. Following pathogenic infections, the expression of both genes is induced in the liver, spleen and head kidney tissues of Nile tilapia that were infected with two virulent pathogenic bacteria, Streptococcus agalactiae and Flavobacterium columnare. Silencing of these two genes was first carried out, and the results clearly indicated their crucial roles under both heat and bacterial stress conditions. The fundamental knowledge obtained from this study indicates the characteristic basic biofunctions of heat shock proteins in the regulation of intracellular proteins during infection, which involve preventing protein aggregation, promoting protein refolding, and activating unfolded protein degradation.
Collapse
Affiliation(s)
- Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2579-2924
| | - Kubpaphas Thummabancha
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Center of Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
6
|
Yin X, Li X, Chen N, Mu L, Wu H, Yang Y, Han K, Huang Y, Wang B, Jian J, Wang A, Ye J. Hemopexin as an acute phase protein regulates the inflammatory response against bacterial infection of Nile tilapia (Oreochromis niloticus). Int J Biol Macromol 2021; 187:166-178. [PMID: 34298052 DOI: 10.1016/j.ijbiomac.2021.07.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Hemopexin, a high affinity heme-binding protein is widely involved in variety physiological and pathological processes. It is an important acute phase response protein, and is important in regulating the inflammatory response. In this study, the open reading frame of Nile tilapia hemopexin (OnHpx) gene was amplified. The expression pattern of OnHpx in natural and bacterial challenged tilapia tissues were analyzed through RT-qPCR. The results indicated the OnHpx was most abundant in liver, and increased significantly in liver, spleen, head kidney and peripheral blood after bacterial challenge. Furthermore, the OnHpx mRNA was also significantly up-regulated in monocytes/macrophages and hepatocytes under the stimulation of S. agalactiae or A. hydrophila. In addition, the recombinant OnHpx protein could effectively reduce the bacteria proliferation and alleviate the inflammatory reaction caused by bacteria. Moreover, the (r)OnHpx also regulated the respiratory burst of monocytes/macrophages and played an important role in the antioxidant process. To our knowledge, these results provide the first evidence on the antibacterial and anti-inflammatory response mechanism of Hpx in early vertebrates. This brings new insights about the understanding of the evolutionary origins and ancient roles of the Hpx in the innate immune defense.
Collapse
Affiliation(s)
- Xiaoxue Yin
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Xiaoyu Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, PR China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Life Omics, Beijing 102206, PR China
| | - Nuo Chen
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Liangliang Mu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China.
| | - Hairong Wu
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Yanjian Yang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Kailiang Han
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Yu Huang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Bei Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jichang Jian
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Anli Wang
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China
| | - Jianmin Ye
- School of Life Sciences, South China Normal University, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, PR China.
| |
Collapse
|
7
|
Jacobs SH, Dóró E, Hammond FR, Nguyen-Chi ME, Lutfalla G, Wiegertjes GF, Forlenza M. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. eLife 2021; 10:64520. [PMID: 34114560 PMCID: PMC8238505 DOI: 10.7554/elife.64520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterise their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterised by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge, this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.
Collapse
Affiliation(s)
- Sem H Jacobs
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Eva Dóró
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Modulation of the Tissue Expression Pattern of Zebrafish CRP-Like Molecules Suggests a Relevant Antiviral Role in Fish Skin. BIOLOGY 2021; 10:biology10020078. [PMID: 33498981 PMCID: PMC7912335 DOI: 10.3390/biology10020078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary The clinical use of the human short pentraxin C-reactive protein as a health biomarker is expanded worldwide. The acute increase of the serum levels of short pentraxins in response to bacterial infections is evolutionarily conserved, as are the main functions of pentraxins. Interestingly, fish orthologs have been found to increase similarly after bacterial and viral stimuli, thus becoming promising candidates for health biomarkers of both types of infection in this group of vertebrates. To preliminarily assess their adequacy for this application, zebrafish and a fish rhabdovirus were chosen as infection model systems for the analysis of the levels of gene expression of all short pentraxins in healthy and infected animals in a wide range of tissues. Because some significant increases were found in skin (a very suitable sampling source for testing purposes), further transcript analyses were carried out in this tissue. Due to the functional similarities between pentraxins and antibodies, it was also checked whether short pentraxins can compensate for the deficiencies in adaptive immunity by using mutant zebrafish lacking this system. In conclusion, the obtained results suggest that short pentraxins are highly reactant against viruses in skin and their overexpression seems to reflect a mechanism to compensate for the loss of adaptive immunity. Abstract Recent studies suggest that short pentraxins in fish might serve as biomarkers for not only bacterial infections, as in higher vertebrates including humans, but also for viral ones. These fish orthologs of mammalian short pentraxins are currently attracting interest because of their newly discovered antiviral activity. In the present work, the modulation of the gene expression of all zebrafish short pentraxins (CRP-like proteins, CRP1-7) was extensively analyzed by quantitative polymerase chain reaction. Initially, the tissue distribution of crp1-7 transcripts and how the transcripts varied in response to a bath infection with the spring viremia of carp virus, were determined. The expression of crp1-7 was widely distributed and generally increased after infection (mostly at 5 days post infection), except for crp1 (downregulated). Interestingly, several crp transcription levels significantly increased in skin. Further assays in mutant zebrafish of recombinant activation gene 1 (rag1) showed that all crps (except for crp2, downregulated) were already constitutively highly expressed in skin from rag1 knockouts and only increased moderately after viral infection. Similar results were obtained for most mx isoforms (a reporter gene of the interferon response), suggesting a general overcompensation of the innate immunity in the absence of the adaptive one.
Collapse
|
9
|
Men WQ, Xu SG, Mou R. Hepatic transcriptome study of Taenia asiatica infection in suckling pigs. Microb Pathog 2020; 152:104598. [PMID: 33157217 DOI: 10.1016/j.micpath.2020.104598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023]
Abstract
Taenia asiatica is a crucial Taenia that is prevalent in East and Southeast Asia. Domestic pigs and wild boars are essential intermediate hosts for Taenia. Cysticercus larvae are mainly parasitic in the liver of domestic pigs. The Taenia asiatica was collected from Liangmu Township, Duyun City, Guizhou Province. Twelve Yorkshire Suckling pigs of 20 days of age were randomly divided into an experimental and control group of 6 pigs each. RNA sequencing (RNA-seq) technology was used to detect the expression differences of the mRNA transcriptomes in the liver of the experimental and control group at different infection times. Differential genes were analyzed by bioinformatics and verified by Real Time-PCR(RT-PCR). On the 15th and 75th days after infection, 152 and 558 differentially expressed genes were detected in the liver of the experimental group, respectively, accounting for 0.85% and 3.12% of all identified transcribed RNA genes, respectively. Through GO and KEGG related bioinformatics analysis, it was found that these differentially expressed genes are involved in the immune response, material metabolism, fibrosis, and tissue proliferation and repair of suckling pig liver, and related to MHC antigen processing and presentation, cytochrome P450, transforming growth factor-beta (TGF-β) signaling pathway and so on. Cysticercus asiatica parasites cause significant differential gene expression in the liver of suckling pigs. Specific differentially expressed genes are involved in biological processes such as liver metabolism, immune response, and tissue repair or regeneration in suckling pigs. The immune evasion is related to the immuno-suppressive response of the intermediate host.
Collapse
Affiliation(s)
- Wan-Qi Men
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Characteristic and Key Laboratory of Modern Pathogenic Biology, Guizhou Medical University, Guiyang, 550025, China
| | - Shi-Gang Xu
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Characteristic and Key Laboratory of Modern Pathogenic Biology, Guizhou Medical University, Guiyang, 550025, China
| | - Rong Mou
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China; Characteristic and Key Laboratory of Modern Pathogenic Biology, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
11
|
Local immune depression in Baltic cod ( Gadus morhua) liver infected with Contracaecum osculatum. J Helminthol 2020; 94:e112. [PMID: 31907099 DOI: 10.1017/s0022149x19001111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Third-stage larvae of the anisakid nematode Contracaecum osculatum infecting cod (Gadus morhua) liver elicit a host immune response involving both innate and adaptive factors, but the reactions differ between liver and spleen. Inflammatory reactions occur in both liver and spleen, but a series of immune effector genes are downregulated in liver infected with nematodes whereas these genes in spleen from the same fish are upregulated. A series of novel primer and probe sets targeting cod immune responses were developed and applied in a real-time quantitative polymerase chain reaction set-up to measure the expression of immune-relevant genes in liver and spleen of infected and uninfected cod. In infected liver, 12 of 23 genes were regulated. Genes encoding cytokines associated with inflammatory reactions (IL-1β, IL-6, IL-8) were significantly upregulated, whereas genes encoding effector molecules, assisting the elimination of pathogens, C-reactive protein (CRP)-PII, hepcidin, lysozyme G1, lysozyme G2, C3 and IgDm, were significantly downregulated. The number of downregulated genes increased with the parasite burden. In spleen, 14 of 23 immune genes showed significant regulation and nine of these were upregulated, including genes encoding CRPI, CRPII, C3, hepcidin and transferrin. The general gene expression level was higher in spleen compared to liver, and although inflammation was induced in nematode-infected liver, the effector molecule genes were depressed, which suggests a worm-induced immune suppression locally in the liver.
Collapse
|
12
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
13
|
Magnadóttir B, Kraev I, Guðmundsdóttir S, Dodds AW, Lange S. Extracellular vesicles from cod (Gadus morhua L.) mucus contain innate immune factors and deiminated protein cargo. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 99:103397. [PMID: 31108150 DOI: 10.1016/j.dci.2019.103397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Extracellular vesicles are released from cells and participate in cell communication via transfer of protein and genetic cargo derived from the parent cells. EVs play roles in normal physiology and immunity and are also linked to various pathological processes. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes with physiological and pathophysiological roles. PADs cause post-translational protein deimination, resulting in structural and, in some cases, functional changes in target proteins and are also linked to EV biogenesis. This study describes for the first time EVs isolated from cod mucosa. Mucosal EVs were characterised by electron microscopy, nanoparticle tracking analysis and EV-specific surface markers. Cod mucosal EVs were found to carry PAD, complement component C3 and C-reactive proteins. C3 was found to be deiminated in both whole mucus and mucosal EVs, with some differences, and further 6 deiminated immune and cytoskeletal proteins were identified in EVs by LC-MS/MS analysis. As mucosal surfaces of teleost fish reflect human mucosal surfaces, these findings may provide useful insights into roles of EVs in mucosal immunity throughout phylogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, MK7 6AA, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
14
|
Xie J, Obiefuna V, Hodgkinson JW, McAllister M, Belosevic M. Teleost antimicrobial peptide hepcidin contributes to host defense of goldfish (Carassius auratus L.) against Trypanosoma carassii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:11-15. [PMID: 30659854 DOI: 10.1016/j.dci.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Hepcidin is an antimicrobial peptide and an iron regulatory protein that prevents the release of excess iron in the blood. There is evidence suggesting that teleost hepcidin is a major player in antimicrobial defense against various bacteria species, but little is known regarding the effects of teleost hepcidin in protozoan parasitic infections. We examined the role of hepcidin during the course of infection of goldfish with Trypanosoma carassii. Quantitative real-time PCR was used to determine the expression of hepcidin in goldfish immune organs during the course of T. carassii infection. During the acute phase of the T. carassii infection, the mRNA levels of hepcidin were up-regulated in liver and kidney. In contrast, an up-regulation of hepcidin mRNA expression in spleen was observed during the chronic phase of the infection. Furthermore, a synthetic goldfish hepcidin peptide induced trypanosome lysis in vitro, and parasite surface disruption was confirmed by scanning electron microscopy (SEM) analysis. These results suggest that, in addition to well-characterized direct antibacterial activities, teleost hepcidin also exhibits trypanocidal activity.
Collapse
Affiliation(s)
- Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Victory Obiefuna
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mark McAllister
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
15
|
Abstract
C-reactive protein (CRP) is an evolutionarily conserved protein. From arthropods to humans, CRP has been found in every organism where the presence of CRP has been sought. Human CRP is a pentamer made up of five identical subunits which binds to phosphocholine (PCh) in a Ca2+-dependent manner. In various species, we define a protein as CRP if it has any two of the following three characteristics: First, it is a cyclic oligomer of almost identical subunits of molecular weight 20–30 kDa. Second, it binds to PCh in a Ca2+-dependent manner. Third, it exhibits immunological cross-reactivity with human CRP. In the arthropod horseshoe crab, CRP is a constitutively expressed protein, while in humans, CRP is an acute phase plasma protein and a component of the acute phase response. As the nature of CRP gene expression evolved from a constitutively expressed protein in arthropods to an acute phase protein in humans, the definition of CRP became distinctive. In humans, CRP can be distinguished from other homologous proteins such as serum amyloid P, but this is not the case for most other vertebrates and invertebrates. Literature indicates that the binding ability of CRP to PCh is less relevant than its binding to other ligands. Human CRP displays structure-based ligand-binding specificities, but it is not known if that is true for invertebrate CRP. During evolution, changes in the intrachain disulfide and interchain disulfide bonds and changes in the glycosylation status of CRP may be responsible for different structure-function relationships of CRP in various species. More studies of invertebrate CRP are needed to understand the reasons behind such evolution of CRP. Also, CRP evolved as a component of and along with the development of the immune system. It is important to understand the biology of ancient CRP molecules because the knowledge could be useful for immunodeficient individuals.
Collapse
Affiliation(s)
- Asmita Pathak
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
16
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
17
|
Ronza P, Robledo D, Bermúdez R, Losada AP, Pardo BG, Martínez P, Quiroga MI. Integrating Genomic and Morphological Approaches in Fish Pathology Research: The Case of Turbot ( Scophthalmus maximus) Enteromyxosis. Front Genet 2019; 10:26. [PMID: 30766546 PMCID: PMC6365611 DOI: 10.3389/fgene.2019.00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/16/2019] [Indexed: 01/04/2023] Open
Abstract
Enteromyxosis, caused by Enteromyxum scophthalmi, is one of the most devastating diseases stemming from myxozoan parasites in turbot (Scophthalmus maximus L.), being a limiting factor for its production. The disease develops as a cachectic syndrome, associated to catarrhal enteritis and leukocytic depletion, with morbidity and mortality rates usually reaching 100%. To date, no effective treatment exists and there are different unknown issues concerning its pathogenesis. The gross and microscopic lesions associated to enteromyxosis have been thoroughly described, and several morphopathological studies have been carried out to elucidate the mechanisms of this host-parasite interaction. More recently, efforts have been focused on a multidisciplinary approach, combining histopathology and transcriptome analysis, which has provided significant advances in the understanding of the pathogenesis of this parasitosis. RNA-Seq technology was applied at early and advanced stages of the disease on fishes histologically evaluated and classified based on their lesional degree. In the same way, the transcriptomic data were analyzed in relation to the morphopathological picture and the course of the disease. In this paper, a comprehensive review of turbot enteromyxosis is presented, starting from the disease description up to the most novel information extracted by an integrated approach on the infection mechanisms and host response. Further, we discuss ongoing strategies toward a full understanding of host-pathogen interaction and the identification of suitable biomarkers for early diagnosis and disease management strategies.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Diego Robledo
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Midlothian, United Kingdom
| | - Roberto Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana Paula Losada
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| | - Belén G Pardo
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
18
|
Intelectin 3 is dispensable for resistance against a mycobacterial infection in zebrafish (Danio rerio). Sci Rep 2019; 9:995. [PMID: 30700796 PMCID: PMC6353920 DOI: 10.1038/s41598-018-37678-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Tuberculosis is a multifactorial bacterial disease, which can be modeled in the zebrafish (Danio rerio). Abdominal cavity infection with Mycobacterium marinum, a close relative of Mycobacterium tuberculosis, leads to a granulomatous disease in adult zebrafish, which replicates the different phases of human tuberculosis, including primary infection, latency and spontaneous reactivation. Here, we have carried out a transcriptional analysis of zebrafish challenged with low-dose of M. marinum, and identified intelectin 3 (itln3) among the highly up-regulated genes. In order to clarify the in vivo significance of Itln3 in immunity, we created nonsense itln3 mutant zebrafish by CRISPR/Cas9 mutagenesis and analyzed the outcome of M. marinum infection in both zebrafish embryos and adult fish. The lack of functional itln3 did not affect survival or the mycobacterial burden in the zebrafish. Furthermore, embryonic survival was not affected when another mycobacterial challenge responsive intelectin, itln1, was silenced using morpholinos either in the WT or itln3 mutant fish. In addition, M. marinum infection in dexamethasone-treated adult zebrafish, which have lowered lymphocyte counts, resulted in similar bacterial burden in both WT fish and homozygous itln3 mutants. Collectively, although itln3 expression is induced upon M. marinum infection in zebrafish, it is dispensable for protective mycobacterial immune response.
Collapse
|
19
|
Magnadóttir B, Hayes P, Gísladóttir B, Bragason BÞ, Hristova M, Nicholas AP, Guðmundsdóttir S, Lange S. Pentraxins CRP-I and CRP-II are post-translationally deiminated and differ in tissue specificity in cod (Gadus morhua L.) ontogeny. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:1-11. [PMID: 29777721 DOI: 10.1016/j.dci.2018.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Pentraxins are fluid phase pattern recognition molecules that form an important part of the innate immune defence and are conserved between fish and human. In Atlantic cod (Gadus morhua L.), two pentraxin-like proteins have been described, CRP-I and CRP-II. Here we show for the first time that these two CRP forms are post-translationally deiminated (an irreversible conversion of arginine to citrulline) and differ with respect to tissue specific localisation in cod ontogeny from 3 to 84 days post hatching. While both forms are expressed in liver, albeit at temporally differing levels, CRP-I shows a strong association with nervous tissue while CRP-II is strongly associated to mucosal tissues of gut and skin. This indicates differing roles for the two pentraxin types in immune responses and tissue remodelling, also elucidating novel roles for CRP-I in the nervous system. The presence of deimination positive bands for cod CRPs varied somewhat between mucus and serum, possibly facilitating CRP protein moonlighting, allowing the same protein to exhibit a range of biological functions and thus meeting different functional requirements in different tissues. The presented findings may further current understanding of the diverse roles of pentraxins in teleost immune defences and tissue remodelling, as well as in various human pathologies, including autoimmune diseases, amyloidosis and cancer.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK.
| | - Berglind Gísladóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Þór Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX London, UK.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
20
|
Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018; 9:1105. [PMID: 29892285 PMCID: PMC5985312 DOI: 10.3389/fimmu.2018.01105] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Baris Kerimoglu
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
21
|
Trites MJ, Barreda DR. Contributions of transferrin to acute inflammation in the goldfish, C. auratus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:300-309. [PMID: 27623236 DOI: 10.1016/j.dci.2016.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
Transferrin is an evolutionary conserved protein that in addition to having a critical role in iron transport also has been shown to have a crucial role in host defence, by depriving iron from invading pathogens. Recently cleaved transferrin products was shown to activate macrophages in vitro. We now use an in vivo model of self-resolving peritonitis in goldfish, coupled with gene expression and protein analysis to evaluate the contributions of cleaved transferrin to acute inflammation. We show, for the first time, that cleaved transferrin products are produced in vivo early during an acute inflammatory response. These cleaved transferrin fragments were produced during pathogen-induced, but not sterile, inflammation. Both macrophages and neutrophils were able to contribute to transferrin cleavage. However, only macrophages contributed to this innate process through inducible expression of transferrin. The appearance of transferrin cleavage products in vivo correlated with the influx of leukocytes but did not necessarily correlate the induction of robust respiratory burst and nitric oxide responses. Overall, this study adds to a growing body of work highlighting the role of transferrin as an immune regulator during acute inflammation. Given the significant conservation of this and related molecules, these findings have potentially broad implications for host defences and inflammation control across evolution.
Collapse
Affiliation(s)
- M J Trites
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
22
|
RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insights into parasite invasion and immune evasion strategies. Int J Parasitol 2016; 46:507-17. [PMID: 27109557 DOI: 10.1016/j.ijpara.2016.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 03/06/2016] [Indexed: 12/13/2022]
Abstract
Enteromyxum scophthalmi, an intestinal myxozoan parasite, is the causative agent of a threatening disease for turbot (Scophthalmus maximus, L.) aquaculture. The colonisation of the digestive tract by this parasite leads to a cachectic syndrome associated with high morbidity and mortality rates. This myxosporidiosis has a long pre-patent period and the first detectable clinical and histopathological changes are subtle. The pathogenic mechanisms acting in the early stages of infection are still far from being fully understood. Further information on the host-parasite interaction is needed to assist in finding efficient preventive and therapeutic measures. Here, a RNA-seq-based transcriptome analysis of head kidney, spleen and pyloric caeca from experimentally-infected and control turbot was performed. Only infected fish with early signs of infection, determined by histopathology and immunohistochemical detection of E. scophthalmi, were selected. The RNA-seq analysis revealed, as expected, less intense transcriptomic changes than those previously found during later stages of the disease. Several genes involved in IFN-related pathways were up-regulated in the three organs, suggesting that the IFN-mediated immune response plays a main role in this phase of the disease. Interestingly, an opposite expression pattern had been found in a previous study on severely infected turbot. In addition, possible strategies for immune system evasion were suggested by the down-regulation of different genes encoding complement components and acute phase proteins. At the site of infection (pyloric caeca), modulation of genes related to different structural proteins was detected and the expression profile indicated the inhibition of cell proliferation and differentiation. These transcriptomic changes provide indications regarding the mechanisms of parasite attachment to and invasion of the host. The current results contribute to a better knowledge of the events that characterise the early stages of turbot enteromyxosis and provide valuable information to identify molecular markers for early detection and control of this important parasitosis.
Collapse
|
23
|
Kovacevic N, Belosevic M. Molecular and functional characterization of goldfish (Carassius auratus L.) Serum Amyloid A. FISH & SHELLFISH IMMUNOLOGY 2015; 47:942-953. [PMID: 26523984 DOI: 10.1016/j.fsi.2015.10.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Quantitative expression analysis of goldfish SAA revealed the highest mRNA levels in the kidney, spleen and intestine with lower mRNA levels in muscle and liver. Goldfish SAA was differentially expressed in goldfish immune cells with highest mRNA levels observed in neutrophils. To functionally assess goldfish SAA, recombinant protein (rgSAA) was generated by prokaryotic expression and functionally characterized. Monocytes and macrophages treated with rgSAA exhibited differential gene expression of pro-inflammatory and anti-inflammatory cytokines. rgSAA induced gene expression of both pro-inflammatory (TNFα1, TNFα2) and anti-inflammatory cytokines (IL-10, TGFβ) in monocytes. rgSAA induced IL-1β1 and SAA gene expression in macrophages. rgSAA was chemotactic to macrophages and neutrophils, but not monocytes. rgSAA did not affect respiratory burst induced by heat-killed Aeromonas salmonicida. rgSAA treatment of macrophages down-regulated their production of nitric oxide. rgSAA exhibited antibacterial properties against Escherichia coli in a concentration dependent manner.
Collapse
Affiliation(s)
- Nikolina Kovacevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|