1
|
Liu B, Liang JX, Ma ZY, Zhong YQ, Sun Y, Wang XY, Zhang DF, Zhang YA, Zhang XJ. The molecular adjuvant effect of the C-terminal peptide of complement C5a in a teleost fish. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110415. [PMID: 40373887 DOI: 10.1016/j.fsi.2025.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/19/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
The activation of the complement system can generate the component C5a, which has potent immunoregulatory activities, such as promoting phagocytosis, respiratory burst, and chemotaxis of leukocytes. Our previous study has shown that teleost C5a exhibits excellent molecular adjuvant function, however, the functional region and the underlying mechanism are still waiting for elucidation. Here, the sequence of grass carp C5a was determined through multiple sequence alignment. The homologous modeling showed that grass carp C5a mainly consists of α-helices. We synthesized the C-terminal peptide (37 amino acid residues) of C5a (C5a-CP) and found that the leukocytes of grass carp could be significantly chemoattracted by C5a-CP, and the phagocytic activity of grass carp IgM+ B cells, an important antigen-presenting cell in teleost fish, could be significantly enhanced by C5a-CP. Further study revealed that leukocyte populations, including IgM+ B cells, IgM- lymphocytes, and myeloid cells, all expressed the receptor of C5a (C5aR), and the pro-phagocytic activity of C5a-CP on IgM+ B cells could be blocked by anti-C5aR antibodies, suggesting that C5a-CP exerted the immunomodulatory effect through C5aR. To test the molecular adjuvant effect of C5a-CP, we immunized grass carp with a mixture of inactivated Aeromonas hydrophila or genotype II grass carp reovirus (GCRV-Ⅱ) and C5a-CP. The results showed that C5a-CP significantly increased the serum specific IgM level and total IgM concentration and reduced the mortality of immunized grass carp after A. hydrophila challenge, indicating that C5a-CP has excellent vaccine adjuvant functions. In summary, this study revealed that the C-terminus is the functional region of the immunomodulatory activity of teleost C5a and the C5a-CP is an excellent candidate adjuvant for vaccines.
Collapse
Affiliation(s)
- Bin Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia-Xin Liang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zi-You Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Qin Zhong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuan Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xin-Yuan Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - De-Feng Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Su X, Cui Y, Gong H, Xu T, Sun Y. The gene characteristics and adaptive evolution of the tumor necrosis factor superfamily (TNFSF) in miiuy croaker, Miichthysmiiuy. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110369. [PMID: 40288618 DOI: 10.1016/j.fsi.2025.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The tumor necrosis factor superfamily (TNFSF) is crucial in regulating immune responses, with its members mediating various biological functions through key signaling pathways. However, the gene characteristics of this family and their comparative and evolutionary analysis across species remain limited. In this study, 12 TNFSF genes were identified in the genome-wide of miiuy croaker. Analyses were conducted on evolutionary relationships, conserved motifs, gene duplication, and selection pressure. Conserved motif analyses revealed that the C-terminal motifs of vertebrate TNFSF proteins were more conserved than the N-terminus. Sequence alignment and conservation analysis identified an unrecognized helix structure within the TNF homology domain, which exhibited structural conservation among vertebrates. Synteny and selection pressure analyses indicated that the TNFSF in miiuy croaker exhibited tandem and segmental duplication events. Evolutionary selection pressures may contributed to the functional differentiation of this family. These findings could enhance the understanding of TNFSF gene characteristics and evolutionary relationships, and provide new insights for studying immune-related TNFSF genes.
Collapse
Affiliation(s)
- Xiaoqin Su
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanqiu Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hanfu Gong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
3
|
Tian TT, Wang J, Pan YR, Han XQ, Hu YZ, Li J, Zhang YA, Zhang XJ. Chinese yam polysaccharide induces the differentiation and natural antibody secretion of IgM + B cells to prevent Aeromonas hydrophila infection in grass carp. Int J Biol Macromol 2025; 300:140263. [PMID: 39863219 DOI: 10.1016/j.ijbiomac.2025.140263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Chinese yam polysaccharide (CYP) is an effective immunostimulant, however, its efficacy in grass carp, an important commercial fish species in Asia, remains untested. Here, our study evaluated the immunostimulatory effects of CYP on IgM+ B cells in vitro and on humoral immunity and immune defense against Aeromonas hydrophila infection in vivo. In vitro stimulation experiments showed that CYP could induce the secretion of IgM antibodies, because it could stimulate the proliferation and differentiation of head kidney IgM+ B cells. Moreover, CYP could also enhance the phagocytic activity of IgM+ B cells. When grass carp were intragastrically administrated (i.g.) with CYP, the serum IgM level increased, as did the capacity of serum IgM to bind to peptidoglycan (PGN) and lipopolysaccharide (LPS), indicating that CYP induced natural IgM production in grass carp. Correspondingly, the serum bactericidal ability to A. hydrophila enhanced. Immune protection experiments showed that CYP could protect grass carp from A. hydrophila infection in vivo, because the mortality rate and gut Aeromonas load of grass carp significantly decreased after CYP administration. Taken together, our study reveals immunostimulatory effects of CYP in grass carp, laying important foundation for the usage of CYP to control diseases in grass carp aquaculture.
Collapse
Affiliation(s)
- Tian-Tian Tian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Huang Z, Liu N, Xue M, Xu C, Fan Y, Meng Y, Jiang N, Li Y, Liu W, He Y, Zhou Y. Immunoglobulin M response in largemouth bass ( Micropterus salmoides) following ranavirus infection. Front Immunol 2025; 16:1515684. [PMID: 39944702 PMCID: PMC11814181 DOI: 10.3389/fimmu.2025.1515684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
Immunoglobulin M (IgM) and IgM+ B cells are key components of the humoral immune system, providing defense against pathogen invasion. While the role of IgM in the systemic and mucosal immune responses of fish to parasites and bacteria has been partially investigated, its function in viral infections remains underexplored. This study successfully developed a largemouth bass (Micropterus salmoides) model for ranavirus immersion infection. Our findings revealed that viral infection caused significant pathological changes in the gill and head kidney tissues, along with a marked upregulation of adaptive immune gene expression. Interestingly, fish that survived an initial viral infection exhibited minimal mortality and low viral loads in the gill and head kidney tissues when exposed to a higher viral concentration. Notably, in these fish with secondary infections, there was a significant increase in IgM protein levels in both the blood and gill mucus, as well as a pronounced accumulation of IgM+ B cells in the gill and head kidney tissues. Additionally, the serum contained high levels of virus-specific IgM, which demonstrated the ability to neutralize the virus. These findings highlight the crucial role of IgM in the immune response to viral infections in largemouth bass and suggest its potential as a target for enhancing viral resistance in aquaculture.
Collapse
Affiliation(s)
- Zhenyu Huang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Naicheng Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, Sichuan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, China
| |
Collapse
|
5
|
Wu L, Morel E, Simón R, Perdiguero P, Zhang YA, Ye J, Tafalla C. Teleost IgM+ plasma-like cells: beyond antibody secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:40-54. [PMID: 40073260 DOI: 10.1093/jimmun/vkae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/18/2024] [Indexed: 03/14/2025]
Abstract
Upon antigen encounter, B cells start a differentiation process toward antibody-secreting cells (ASCs), initially plasmablasts, and eventually long-lived plasma cells. All these ASCs specialize in secreting important amounts of antibodies and usually lose other functionalities of naïve B cells. This differentiation process is scarcely characterized in teleost fish, in which B cells have been shown to share many functional and phenotypic characteristics of mammalian B1 innate subsets. In this context, we were prompted to investigate further the functionalities of ASCs in teleosts, using rainbow trout (Oncorhynchus mykiss) as a model. Our results demonstrate that IgM+ plasma-like cells in the rainbow trout head kidney exhibit a strong IgM secreting capacity along with phagocytic and antigen-presenting capacities, even higher than those of naïve B cells. These IgM+ plasma-like cells were capable of surviving in vitro for 2 wk secreting IgM. Interestingly, they retained a functional B cell receptor that responded to TNP conjugated to lipopolysaccharide, a thymus-independent model antigen, which also rendered these cells more reactive to B cell receptor crosslinking. These findings shed light on the differentiation process of teleost B cells, demonstrating that teleost plasma-like cells conserve other phenotypical attributes beyond immunoglobulin secretion, being capable of directly responding to antigens. These findings point to an exclusive differentiation process of teleost B cells, which might provide mechanistic insights on how mammalian innate subsets such as B1 cells or IgM-expressing plasma cells differentiate.
Collapse
Affiliation(s)
- Liting Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, China
| | - Esther Morel
- Biotechnology Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rocío Simón
- Biotechnology Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro Perdiguero
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, China
| | - Carolina Tafalla
- Biotechnology Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
6
|
Han XQ, Cui ZW, Ma ZY, Wang J, Hu YZ, Li J, Ye JM, Tafalla C, Zhang YA, Zhang XJ. Phagocytic Plasma Cells in Teleost Fish Provide Insights into the Origin and Evolution of B Cells in Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:730-742. [PMID: 38984862 DOI: 10.4049/jimmunol.2400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Teleost IgM+ B cells can phagocytose, like mammalian B1 cells, and secrete Ag-specific IgM, like mammalian B2 cells. Therefore, teleost IgM+ B cells may have the functions of both mammalian B1 and B2 cells. To support this view, we initially found that grass carp (Ctenopharyngodon idella) IgM+ plasma cells (PCs) exhibit robust phagocytic ability, akin to IgM+ naive B cells. Subsequently, we sorted grass carp IgM+ PCs into two subpopulations: nonphagocytic (Pha-IgM+ PCs) and phagocytic IgM+ PCs (Pha+IgM+ PCs), both of which demonstrated the capacity to secrete natural IgM with LPS and peptidoglycan binding capacity. Remarkably, following immunization of grass carp with an Ag, we observed that both Pha-IgM+ PCs and Pha+IgM+ PCs could secrete Ag-specific IgM. Furthermore, in vitro concatenated phagocytosis experiments in which Pha-IgM+ PCs from an initial phagocytosis experiment were sorted and exposed again to beads confirmed that these cells also have phagocytic capabilities, thereby suggesting that all teleost IgM+ B cells have phagocytic potential. Additionally, we found that grass carp IgM+ PCs display classical phenotypic features of macrophages, providing support for the hypothesis that vertebrate B cells evolved from ancient phagocytes. These findings together reveal that teleost B cells are a primitive B cell type with functions reminiscent of both mammalian B1 and B2 cells, providing insights into the origin and evolution of B cells in vertebrates.
Collapse
Affiliation(s)
- Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Wei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zi-You Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- School of Science and Medicine, Lake Superior State University, Sault Sainte Marie, MI
| | - Jian-Min Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Carolina Tafalla
- Animal Health Research Center (CISA), National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
7
|
Han XQ, Pan YR, Zhong YQ, Tian TT, Liu X, Zhang XJ, Zhang YA. Identification and functional analyses of CD4-1 + cells in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109649. [PMID: 38797336 DOI: 10.1016/j.fsi.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
In mammals, CD4 is found to be expressed on T cells and innate immune cells, however, teleost cells bearing CD4 have not been well identified and characterized. In this study, we identified two different CD4-1+ cell subsets in grass carp (Ctenopharyngodon idella): CD4-1+ lymphocytes (Lym) and CD4-1+ myeloid cells (Mye), both of which had the highest proportions in the head kidney. The mRNA expression analysis showed that CD4-1, CD4-2, TCRβ, CD3γ/δ, and LCK1 are highly expressed in CD4-1+ Lym and also expressed in CD4-1+ Mye. Furthermore, we found that CD4-1+ Lym have a Lym morphology and highly express T-cell cytokines, suggesting that they are CD4+ T cells equivalent to mammalian Th cells. On the other hand, CD4-1+ Mye were found to have a morphology of macrophage and highly express macrophage marker gene MCSFR, indicating that they are macrophages. In addition, functional analysis revealed that CD4-1+ Mye possess phagocytic ability and great antigen-processing ability. Taken together, our study sheds further light on the composition and function of CD4+ cells in teleost fish.
Collapse
Affiliation(s)
- Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Qin Zhong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Tian-Tian Tian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
8
|
Yang L, Wu Z, Ma TY, Zeng H, Chen M, Zhang YA, Zhou Y. Identification of ClpB, a molecular chaperone involved in the stress tolerance and virulence of Streptococcus agalactiae. Vet Res 2024; 55:60. [PMID: 38750480 PMCID: PMC11094935 DOI: 10.1186/s13567-024-01318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024] Open
Abstract
Bacterial ClpB is an ATP-dependent disaggregate that belongs to the Hsp100/Clp family and facilitates bacterial survival under hostile environmental conditions. Streptococcus agalactiae, which is regarded as the major bacterial pathogen of farmed Nile tilapia (Oreochromis niloticus), is known to cause high mortality and large economic losses. Here, we report a ClpB homologue of S. agalactiae and explore its functionality. S. agalactiae with a clpB deletion mutant (∆clpB) exhibited defective tolerance against heat and acidic stress, without affecting growth or morphology under optimal conditions. Moreover, the ΔclpB mutant exhibited reduced intracellular survival in RAW264.7 cells, diminished adherence to the brain cells of tilapia, increased sensitivity to leukocytes from the head kidney of tilapia and whole blood killing, and reduced mortality and bacterial loads in a tilapia infection assay. Furthermore, the reduced virulence of the ∆clpB mutant was investigated by transcriptome analysis, which revealed that deletion of clpB altered the expression levels of multiple genes that contribute to the stress response as well as certain metabolic pathways. Collectively, our findings demonstrated that ClpB, a molecular chaperone, plays critical roles in heat and acid stress resistance and virulence in S. agalactiae. This finding provides an enhanced understanding of the functionality of this ClpB homologue in gram-positive bacteria and the survival strategy of S. agalactiae against immune clearance during infection.
Collapse
Affiliation(s)
- Lan Yang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Tian-Yu Ma
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Hui Zeng
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Ming Chen
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology; Hubei Hongshan Laboratory; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, 430000, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510000, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture,, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Yu J, Kong W, Wang X, Cai C, Cheng G, Ding G, Xu Z. Mucosal immune responses of gut IgM in common carp (Cyprinus carpio) following infection with spring viremia of carp virus (SVCV). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109326. [PMID: 38134976 DOI: 10.1016/j.fsi.2023.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Immunoglobulin M (IgM) specifically recognizes various antigens and can activate complement, mediate cytotoxicity, opsonize and agglutinate pathogens to induce phagocytosis, all of which play an important role in immunity. However, the IgM response of common carp (Cyprinus carpio) in the intestinal mucosa after viral infection has not been thoroughly. Therefore, we successfully produced an anti-carp IgM monoclonal antibody and developed a model of viral infection to study the kinetics of immune responses after viral infection. Our results showed that the expression of IL1-β and Igs were dramatically increased, implying that common carp exhibited a significant innate and adaptive immune response to viral infection. Furthermore, we found that the IgM responses varied between the two infection strategies. At 14 days post-infection (DPI), a significant population of IgM+ B cells were observed in the gut, accompanied by a sharp rise in IgM levels. The immune response to secondary infection started at 7 DPI, suggesting that the IgM response is faster in the gut after re-infection. Importantly, we also explored the variability of different gut compartments to viral infection, and result revealed a stronger immune response in the hindgut than in the foregut and midgut. Overall, our findings indicate that IgM plays an important role in the intestinal immune response following primary and secondary viral infection, in which the hindgut plays a major immune function.
Collapse
Affiliation(s)
- Jiaqian Yu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinyou Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chang Cai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofeng Cheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - GuangYi Ding
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
10
|
Wang T, Jin S, Lv R, Meng Y, Li G, Han Y, Zhang Q. Development of an indirect ELISA for detection of the adaptive immune response of black carp (Mylopharyngodon piceus). J Immunol Methods 2023; 521:113550. [PMID: 37661050 DOI: 10.1016/j.jim.2023.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Black carp (Mylopharyngodon piceus) is an important fishery resource and the main breeding target in China. Due to the lack of an assay of immunoglobulin M (IgM) antibodies in black carp, there is no effective method to evaluate adaptive immune response, which limits immunological studies and vaccine development. The present study used mAbs (monoclonal antibodies) against serum IgM of grass carp as capture antibodies. The results of Western blot analysis indicated that these antibodies had strong affinity and specificity to IgM heavy chain in black carp serum and were used to detect the antibody titer, optimize the conditions, perform a sensitivity test, and develop an indirect ELISA (enzyme-linked immunosorbent assay) to detect specific IgM antibodies in the serum. This detection method has good specificity and is effective only for grass carp (Ctenopharyngodon idella) and black carp and not for crucian carp (Carassius aumtus), silver carp (Hypophthalmichthys molitrix), bighead carp (Hypophthalmichthys nobilis), mandarin fish (Siniperca chuatsi), black bream (Megalobrama skolkovii), or yellow catfish (Pseudobagrus fulvidraco). The lowest antigen detection level was 0.05 μg/ml. The error of experimental repetition in the same sample was 1.61-4.61%. The levels of specific IgM in black carp serum were steadily increased after immunization, peaked on day 28, and then slowly decreased. Indirect ELISA can be applied to detect the changes in specific antibodies in black carp serum. Moreover, indirect ELISA provides a convenient and reliable serological detection method for immunological research and evaluation of immune effects of a vaccine in black carp.
Collapse
Affiliation(s)
- Tongtong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Shanshan Jin
- School of Agriculture, Ludong University, Yantai, China
| | - Ruoxuan Lv
- School of Agriculture, Ludong University, Yantai, China
| | - Yuting Meng
- School of Agriculture, Ludong University, Yantai, China
| | - Guozhong Li
- School of Agriculture, Ludong University, Yantai, China
| | - Yuxing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Qiusheng Zhang
- School of Agriculture, Ludong University, Yantai, China.
| |
Collapse
|
11
|
Pan YR, Wu CS, Zhong YQ, Zhang YA, Zhang XJ. An Atlas of Grass Carp IgM+ B Cells in Homeostasis and Bacterial Infection Helps to Reveal the Unique Heterogeneity of B Cells in Early Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:964-980. [PMID: 37578390 DOI: 10.4049/jimmunol.2300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igμ genes (Igμ1, Igμ2, and/or Igμ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igμ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."
Collapse
Affiliation(s)
- Yi-Ru Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Qin Zhong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| |
Collapse
|
12
|
Song YL, Yao YY, Liu X, Tian TT, Ye JM, Zhang YA, Zhang XJ. Preparation of the monoclonal antibody against Nile tilapia Igλ and study on the Igλ + B cell subset in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108705. [PMID: 36958505 DOI: 10.1016/j.fsi.2023.108705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Immunoglobulins (Igs) are important effector molecules that mediate humoral immunity. A typical Ig consists of two heavy and two light chains. In teleosts, three Ig heavy chain isotypes (Igμ, Igδ and Igτ) and three Ig light chain isotypes (Igκ, Igλ and Igσ) have been identified. Compared to the heavy chains, teleost Ig light chains have been poorly studied due to the lack of antibodies. In this study, a mouse anti-Nile tilapia Igλ monoclonal antibody (mAb) was prepared, which could specifically recognize Igλ in serum and Igλ+ B cells in tissues. Further, the composition of IgM+ and Igλ+ B cell subsets was analyzed using this antibody and a mouse anti-tilapia IgM heavy chain mAb. The ratio of IgM+Igλ+ B cells to total IgM+ B cells in head kidney and peripheral blood was about 30%, while that in spleen was about 50%; the ratio of IgM-Igλ+ B cells to total Igλ+ B cells in head kidney and peripheral blood was about 45%, while that in spleen was about 25%. The IgM-Igλ+ B cells was speculated to be IgT+ B cells. Finally, we detected an increase in the level of specific antibodies against the surface antigen-Sip of Streptococcus agalactiae in serum after S. agalactiae infection, indicating that mouse anti-tilapia Igλ mAb can be used to detect the antibody level after immunization of Nile tilapia, which lays a foundation for the evaluation of immunization effect of tilapia vaccine.
Collapse
Affiliation(s)
- Yan-Ling Song
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xun Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tian-Tian Tian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jian-Min Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
13
|
Cui Z, Zhao H, Chen X. Molecular and functional characterization of two IgM subclasses in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108581. [PMID: 36754157 DOI: 10.1016/j.fsi.2023.108581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
As the predominant immunoglobulin (Ig) isotype, IgM plays a crucial role in the acquired immunity of vertebrates. There is only one Igμ gene in mammals, except cattle, while the number of Igμ gene varies among teleost fish. In the current study, we found two functional Igμ genes (Igμ1 and Igμ2) and a pseudo Cμ gene (ψIgμ) in large yellow croaker (Larimichthys crocea). Both Igμ1 and Igμ2 genes possessed two transcript variants, which encoded the heavy chains of secreted (sIgM1 and sIgM2) and membrane-bound IgM1 and IgM2 (mIgM1 and mIgM2), respectively. Both the heavy chains of sIgM1 and sIgM2 consisted of a variable Ig domain, four constant Ig domains (CH1, CH2, CH3 and CH4) and a secretory tail, while those of mIgM1 and mIgM2 consisted of a variable Ig domain, three constant Ig domains (CH1, CH2 and CH3), a transmembrane domain and a short cytoplasmic tail. Cysteine residues that are necessary for the formation of intrachain and interchain disulfide bonds and tryptophan residues that are important for the folding of the Ig superfamily domain were well conserved in large yellow croaker IgM1 and IgM2. Interestingly, large yellow croaker IgM2 had an extra cysteine (C94) in the CH1 domain compared with IgM1, which may cause the structural difference between IgM1 and IgM2. A liquid chromatography-tandem mass spectrometry analysis revealed that both IgM1 and IgM2 were present at the protein level in large yellow croaker serum. Both the Igμ1 and Igμ2 genes were mainly expressed in systemic immune tissues, such as head kidney and spleen, but the expression level of Igμ2 was much lower than that of Igμ1. After Pseudomonas plecoglossicida infection, the expression levels of Igμ1 and Igμ2 in both the spleen and head kidney were significantly upregulated, with a higher upregulation of Igμ2 than that of Igμ1. These results suggested that Igμ1 and Igμ2 may play a differential role in the immune response of large yellow croaker against bacterial infection.
Collapse
Affiliation(s)
- Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Han Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
14
|
Mu Q, Dong Z, Kong W, Wang X, Yu J, Ji W, Su J, Xu Z. Response of immunoglobulin M in gut mucosal immunity of common carp ( Cyprinus carpio) infected with Aeromonas hydrophila. Front Immunol 2022; 13:1037517. [PMID: 36466906 PMCID: PMC9713697 DOI: 10.3389/fimmu.2022.1037517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin (Ig) M is an important immune effector that protects organisms from a wide variety of pathogens. However, little is known about the immune response of gut mucosal IgM during bacterial invasion. Here, we generated polyclonal antibodies against common carp IgM and developed a model of carp infection with Aeromonas hydrophila via intraperitoneal injection. Our findings indicated that both innate and adaptive immune responses were effectively elicited after A. hydrophila infection. Upon bacterial infection, IgM+ B cells were strongly induced in the gut and head kidney, and bacteria-specific IgM responses were detected in high levels both in the gut mucus and serum. Moreover, our results suggested that IgM responses may vary in different infection strategies. Overall, our findings revealed that the infected common carp exhibited high resistance to this representative enteropathogenic bacterium upon reinfection, suggesting that IgM plays a key role in the defense mechanisms of the gut against bacterial invasion. Significantly, the second injection of A. hydrophila induces strong local mucosal immunity in the gut, which is essential for protection against intestinal pathogens, providing reasonable insights for vaccine preparation.
Collapse
Affiliation(s)
- Qingjiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiaqian Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Wu L, Yang Y, Gao A, Li J, Ye J. Teleost fish IgM+ plasma-like cells possess IgM-secreting, phagocytic, and antigen-presenting capacities. Front Immunol 2022; 13:1016974. [PMID: 36225937 PMCID: PMC9550268 DOI: 10.3389/fimmu.2022.1016974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Plasma cells are terminally differentiated antibody-secreting B lymphocytes that contribute to humoral immunity by producing large numbers of antibodies. Increasing evidence suggests that teleost fish B cells share certain characteristics with mammalian B1 B cells, including antibody-secreting, phagocytic, and antigen-presenting capacities. However, the difference between mature B cells and plasma cells remains unclear. In this study, we found that, based on their light-scattering characteristics, tilapia anterior kidney (AK) leukocytes can be categorized into two IgM+ B-cell subsets: the lymphoid (L) gate and granulocyte–monocyte/macrophage (G-M) subsets. G-M gate cells are more numerous than L-gate cells and have higher mean fluorescence, but lower forward scatter and side scatter. We analyzed the morphological and ultrastructural features of sorted IgM+ cells and found that L-gate IgM+ cells have a high nucleus–cytoplasm ratio and lymphocyte-like morphology, whereas G-M gate IgM+ cells have a small nucleus, more abundant endoplasmic reticulum, and a larger number of mitochondria, and have a plasma cell-like or macrophage-like morphology. To further characterize the cell types, we examined the specific patterns of expression of B-cell- and T-cell-related genes. We found that B-cell-specific genes were expressed by both L-gate and G-M gate IgM+ cells, and that G-M gate IgM+ cells secreted extremely high levels of IgM. However, T-cell-related genes were highly expressed only in L-gate IgM– cells. These results suggest that G-M gate IgM+ cells are similar to plasma-like cells, with high antibody-secreting capacity. Given that G-M gate cells include the granulocyte, monocyte, and macrophage cell types, but not B cells, monocyte/macrophage markers were used to investigate the cell types further. A macrophage receptor with a collagenous structure was frequently observed, and macrophage-expressed gene-1 was highly expressed, in the G-M gate IgM+ cells. Phagocytic capacity, as determined by ingestion of beads or bacteria, was significantly higher in G-M gate IgM+ cells than in L-gate IgM+ cells, as was antigen-processing capacity. Our findings show that tilapia AK leukocytes can be divided into two IgM+ B-cell subsets and that G-M gate IgM+ cells resemble plasma-like cells, having high antibody-secreting, phagocytic, and antigen-presenting capacities. Thus, this study increases our understanding of the functions of teleost fish plasma-like cells.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Along Gao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- School of Science and Medicine, Lake Superior State University, Sault Sainte Marie, MI, United States
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
- *Correspondence: Jianmin Ye,
| |
Collapse
|
16
|
Lu TZ, Liu X, Wu CS, Ma ZY, Wang Y, Zhang YA, Zhang XJ. Molecular and Functional Analyses of the Primordial Costimulatory Molecule CD80/86 and Its Receptors CD28 and CD152 (CTLA-4) in a Teleost Fish. Front Immunol 2022; 13:885005. [PMID: 35784316 PMCID: PMC9245511 DOI: 10.3389/fimmu.2022.885005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The moderate activation of T cells in mammals requires the costimulatory molecules, CD80 and CD86, on antigen-presenting cells to interact with their respective T cell receptors, CD28 and CD152 (CTLA-4), to promote costimulatory signals. In contrast, teleost fish (except salmonids) only possess CD80/86 as their sole primordial costimulatory molecule. However, the mechanism, which underlies the interaction between CD80/86 and its receptors CD28 and CD152 still requires elucidation. In this study, we cloned and identified the CD80/86, CD28, and CD152 genes of the grass carp (Ctenopharyngodon idella). The mRNA expression analysis showed that CD80/86, CD28, and CD152 were constitutively expressed in various tissues. Further analysis revealed that CD80/86 was highly expressed in IgM+ B cells. Conversely, CD28 and CD152 were highly expressed in CD4+ and CD8+ T cells. Subcellular localization illustrated that CD80/86, CD28, and CD152 are all located on the cell membrane. A yeast two-hybrid assay exhibited that CD80/86 can bind with both CD28 and CD152. In vivo assay showed that the expression of CD80/86 was rapidly upregulated in Aeromonas hydrophila infected fish compared to the control fish. However, the expression of CD28 and CD152 presented the inverse trend, suggesting that teleost fish may regulate T cell activation through the differential expression of CD28 and CD152. Importantly, we discovered that T cells were more likely to be activated by A. hydrophila after CD152 was blocked by anti-CD152 antibodies. This suggests that the teleost CD152 is an inhibitory receptor of T cell activation, which is similar to the mammalian CD152. Overall, this study begins to define the interaction feature between primordial CD80/86 and its receptors CD28 and CD152 in teleost fish, alongside providing a cross-species understanding of the evolution of the costimulatory signals throughout vertebrates.
Collapse
Affiliation(s)
- Tao-Zhen Lu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xun Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zi-You Ma
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yang Wang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yong-An Zhang, ; Xu-Jie Zhang,
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
- *Correspondence: Yong-An Zhang, ; Xu-Jie Zhang,
| |
Collapse
|
17
|
Ma ZY, Liang JX, Li WS, Sun Y, Wu CS, Hu YZ, Li J, Zhang YA, Zhang XJ. Complement C3a Enhances the Phagocytic Activity of B Cells Through C3aR in a Fish. Front Immunol 2022; 13:873982. [PMID: 35386704 PMCID: PMC8977587 DOI: 10.3389/fimmu.2022.873982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system is an important part of the immune system of teleost fish. Besides, teleost B cells possess both phagocytic activity and adaptive humoral immune function, unlike mammalian B1 cells with phagocytic activity and B2 cells specific to adaptive humoral immunity. However, the cross talk between complement system and phagocytic B cells in teleost fish still requires elucidation. Here, we show that, unlike tetrapods with a single C3 gene, nine C3 genes were identified from the grass carp (Ctenopharyngodon idella) genome, named C3.1-C3.9. Expression analysis revealed that C3.1 is the dominant C3 molecule in grass carp, for its expression was significantly higher than that of the other C3 molecules both at the mRNA and protein levels. The C3a fragment of C3.1 (C3a.1) was determined after the conserved C3 convertase cleavage site. Structural analysis revealed that C3a.1 consists of four α-helixes, with the C-terminal region forming a long α-helix, which is the potential functional region. Interestingly, we found that the recombinant GST-C3a.1 protein and the C-terminal α-helix peptide of C3a.1 both could significantly enhance the phagocytic activity of IgM+ B cells. Further study revealed that the C3a receptor (C3aR) was highly expressed in grass carp IgM+ B cells, and the phagocytosis-stimulating activity of C3a.1 could be dramatically inhibited by the anti-C3aR antibodies, indicating that C3a.1 performed the stimulating function through C3aR on IgM+ B cells. Taken together, our study not only uncovered the novel phagocytosis-stimulating activity of C3a, but also increased our knowledge of the cross talk between complement system and phagocytic B cells in teleost fish.
Collapse
Affiliation(s)
- Zi-You Ma
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jia-Xin Liang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wen-Shuo Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuan Sun
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie MI, United States
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
18
|
Wang J, Wu CS, Hu YZ, Yang L, Zhang XJ, Zhang YA. Plasmablasts induced by chitosan oligosaccharide secrete natural IgM to enhance the humoral immunity in grass carp. Carbohydr Polym 2022; 281:119073. [PMID: 35074109 DOI: 10.1016/j.carbpol.2021.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
Abstract
Chitosan oligosaccharide (COS) is an attractive immunopotentiator capable of driving humoral immunity in vertebrates, but its cellular and molecular mechanisms still require elucidation. In this study, COS induced the proliferation and differentiation of splenic IgM+ B cells into IgMlo and IgMhi B cell subsets in grass carp (Ctenopharyngodon idella). The IgMlo B cells were further identified as short-lived plasmablasts that secreted natural IgM with binding-abilities to lipopolysaccharide (LPS) and peptidoglycan (PGN). Moreover, the mannose receptor (MR) and integrins were discovered and identified as the binding-receptors of COS on IgMlo plasmablasts. The MR synergized with integrins to trigger intracellular signal transduction to boost plasmablast generation and expansion. Notably, IgMlo plasmablasts originally generated in spleen but they migrated into blood to secrete natural IgM, which augmented the serum bactericidal activity. Taken together, this study revealed the cellular and molecular mechanisms of COS-triggered humoral immunity in fish.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Lan Yang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
19
|
Wangkaghart E, Deville S, Wang B, Srisapoome P, Wang T, Secombes CJ. Immune response and protective efficacy of two new adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02, administered with a Streptococcus agalactiae ghost vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2021; 116:19-29. [PMID: 34153428 DOI: 10.1016/j.fsi.2021.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Streptococcus agalactiae is one of the most important pathogens infecting tilapia worldwide and causes meningoencephalitis, septicemia and high mortalities with considerable losses. Various types of vaccines have been developed against S. agalactiae infection, such as inactivated vaccines, live attenuated vaccines and subunit vaccines. Bacterial ghosts (BGs) are nonliving, empty cell envelopes and have been reported as novel vaccine candidates. Therefore, the main aims of this study were to develop an S. agalactiae ghost vaccine (SAGV) and to evaluate the immune response and protective effect of SAGV against S. agalactiae with two novel adjuvants, Montanide™ ISA 763B VG and Montanide™ GEL02. Nile tilapia, mean weight 50 g, were divided into four groups as follows; 1) fish injected with PBS as control, 2) fish injected with the SAGV alone; 3) fish injected with the SAGV+Montanide™ ISA 763B VG; and 4) fish injected with SAGV+Montanide™ GEL02. Following vaccination, innate immunity parameters including serum lysozyme, myeloperoxidase, catalase, and bactericidal activity were all significantly enhanced. Moreover, specific serum IgM antibodies were induced and reached their highest level 2-8 weeks post vaccination. Importantly, the relative percent survival of tilapia vaccinated against the SAGV formulated with both adjuvants was 80-93%. Furthermore, the transcription of immune-related genes (IgM, TCRβ, IL-1β, IL-8 and TNFα) were up-regulated in tilapia after vaccination, indicating that both cellular and humoral immune responses were induced by these adjuvanted vaccines. In summary, Montanide™ ISA 763B VG and Montanide™ GEL02 can enhance immunoprotection induced by the SAGV vaccine against streptococcosis, demonstrating that both have value as potential adjuvants of fish vaccines.
Collapse
Affiliation(s)
- Eakapol Wangkaghart
- Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand.
| | - Sebastien Deville
- SEPPIC, Paris La Défense, 50 Boulevard National, CS 90020, 92257, La Garenne Colombes Cedex, France.
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China.
| | - Prapansak Srisapoome
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Jatujak, Bangkok, 10900, Thailand.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
20
|
Leya T, Ahmad I, Valappil RK, Kurcheti PP, Tripathi G, Sharma R, Bedekar MK. Development of species-specific IgM antibodies and elevation of mucosal immune response in Labeo rohita using recombinant bicistronic nano DNA vaccine priming. FISH & SHELLFISH IMMUNOLOGY 2021; 113:185-195. [PMID: 33857623 DOI: 10.1016/j.fsi.2021.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Immunoglobulin (IgM) is the primary immunoglobulin essential for defense mechanisms in fish. It is difficult to reliably quantify IgM because a lack of standardization in methodology and limited availability of commercially reagents. In the present study, a polyclonal antibody was developed for the specific detection and quantification of IgM in Labeo rohita. Recombinant bicistronic NanoDNA plasmid (RBND Vac) encoding the glyceraldehyde-3-phosphate dehydrogenase gene of Edwarsiella tarda conjugated with poly (lactic-co-glycolic acid) - Chitosan (PLGA-Chit) was developed and its potential as a DNA vaccine, to prevent the infection of E. tarda in L. rohita was investigated. Two treatment groups [T1 - (PLGA-Chit-NPs-pDNA), T2 - (PLGA-NPs-pDNA) and one control group (T0 - 1 × PBS)] were utilized. Polyclonal antibody was developed to estimate IgM titers in the serum and mucosal associated tissues (MAT) using Enzyme-linked Immunosorbent Assay (ELISA) technique. Additionally, immune gene expression was studied using qRT-PCR. Vaccinated groups also exhibited a significant increase in the total serum protein, globulin concentration and relatively less mortality was observed in T1 group. IgM level in serum and mucosal tissues (skin, gill and gut) increased significantly days post vaccination compared to control group, also non-specific immune parameters (myeloperoxidase and lysozyme levels) showed significant improvement in vaccinated fish. Furthermore, histopathological examination confirmed minor damage in physiological structure of kidney and liver tissues in vaccinated fish. Knowledge of the immunoglobulin in L. rohita primed with RBND Vac complex provides the better protection against E. tarda. The normal physiology findings of this study will aid in monitoring changes in the health status of fish, when the animals undergo vaccination by immersion method.
Collapse
Affiliation(s)
- Tasok Leya
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India; College of Fisheries Science, Birsa Agricultural University, Gumla, Ranchi, 834006, India
| | - Irshad Ahmad
- College of Fisheries Science, Birsa Agricultural University, Gumla, Ranchi, 834006, India
| | | | | | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Rupam Sharma
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | |
Collapse
|
21
|
Cui ZW, Zhang XY, Chen XH, Zhang XJ, Zhang YA. Splicing variants of grass carp (Ctenopharyngodon idellus) IL-21: Functions in IgM + B cell proliferation and IgM secretion. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103728. [PMID: 32387557 DOI: 10.1016/j.dci.2020.103728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/03/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
In mammals, interleukin 21 (IL-21) is a type I four-helical bundle cytokine produced by activated T cells that has pleiotropic functions on immune cells. Although IL-21 has been discovered in fish, the splicing variants of this cytokine and their functions on B cells are unclear. In this study, based on the original transcript of grass carp IL-21 (named gcIL-21sv1 in this study), two alternative splicing variants, named gcIL-21sv2 and gcIL-21sv3, were cloned and characterized. The protein sequences of gcIL-21sv1 and gcIL-21sv2 consist of four α-helixes, and only the six amino acid residues at the C-terminal are different. Unlike gcIL-21sv1 and gcIL-21sv2, gcIL-21sv3 lacks the C-terminal region. The expression analysis showed that gcIL-21sv1, gcIL-21sv2, and gcIL-21sv3 were constitutively expressed in all the tested tissues, and their expression could be significantly up-regulated by LPS and Poly (I:C) in head kidney leukocytes (HKLs), with the fold change of gcIL-21sv1 being higher than that of gcIL-21sv2 and gcIL-21sv3. Recombinant gcIL-21sv1 and gcIL-21sv2, but not gcIL-21sv3, could induce the proliferation of IgM+ B cells and the secretion of IgM, with the activity of gcIL-21sv1 being stronger than that of gcIL-21sv2, indicating that the C-terminal region plays important roles in the function of gcIL-21. Taken together, this study found that, like IL-21 in human and mouse, IL-21 splicing variants also exist in fish, and the regulatory activities of these variants in humoral immunity are differ, suggesting that grass carp may balance the immune response mediated by IL-21 through alternative splicing.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiang-Yang Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Hua Chen
- Department of Clinical Laboratory, General Hospital of Central Theater Command, PLA, Wuhan, 430070, China.
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
22
|
Cui ZW, Kong LL, Zhao F, Tan AP, Deng YT, Jiang L. Two types of TNF-α and their receptors in snakehead (Channa argus): Functions in antibacterial innate immunity. FISH & SHELLFISH IMMUNOLOGY 2020; 104:470-477. [PMID: 32585357 DOI: 10.1016/j.fsi.2020.05.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a pluripotent mediator of pro-inflammatory and antimicrobial defense mechanisms and a regulator of lymphoid organ development. Although two types of TNF-α have been identified in several teleost species, their functions in pathogen infection remain largely unexplored, especially in pathogen clearance. Herein, we cloned and characterized two types of TNF-α, termed shTNF-α1 and shTNF-α2, and their receptors, shTNFR1 and shTNFR2, from snakehead (Channa argus). These genes were constitutively expressed in all tested tissues, and were induced by Aeromonas schubertii and Nocardia seriolae in head kidney and spleen in vivo, and by lipoteichoic acid (LTA), lipopolysaccharides (LPS), and Polyinosinic-polycytidylic acid [Poly (I:C)] in head kidney leukocytes (HKLs) in vitro. Moreover, recombinant shTNF-α1 and shTNF-α2 upregulated the expression of endogenous shTNF-α1, shTNF-α2, shTNFR1, and shTNFR2, and enhanced intracellular bactericidal activity, with shTNF-α1 having a greater effect than shTNF-α2. These findings suggest important roles of fish TNFα1, TNFα2, and their receptors in bacterial infection and pathogen clearance, and provide a new insight into their function in antibacterial innate immunity.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lu-Lu Kong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.
| | - Ai-Ping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yu-Ting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|