1
|
Landmayer K, Iatarola BDO, Pereira TP, Mori RS, Obeid AT, Vertuan M, Chrisostomo DA, Magalhães AC, Alreshaid L, dos Santos PH, Prakki A, Francisconi-dos-Rios LF. Effect of EGCG-Methacrylate-Functionalized Resin Infiltrant on White Spot Lesions: An In Vitro Study. J Funct Biomater 2024; 16:6. [PMID: 39852562 PMCID: PMC11765685 DOI: 10.3390/jfb16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
This study evaluated the color change (ΔE00) and penetration depth (PD) of white spot lesions (WSLs) infiltrated with the resin infiltrant (Icon®) functionalized with methacrylate epigallocatechin-3-gallate (EGCG). To introduce polymerizable double bonds, EGCG was reacted with methacryloyl chloride (EM). Subsequently, the Icon resin infiltrant (I) was loaded with neat EGCG (IE) or EGCG-methacrylate (IEM) at 2 wt% each. WSLs were created on bovine enamel blocks and treated with I, IE, or IEM. Sound and untreated enamel surfaces were used as controls (C). Infiltrant PD (%) was determined by Confocal Laser Scanning Microscopy (CLSM, n = 12) analysis. For color change (ΔE00) determination (n = 14), ΔL, Δa, and Δb, half of each sample was kept sound as a reference area. The color was determined with a spectrophotometer. Data were statistically evaluated (p = 0.05). Surface morphology was obtained as a qualitative response variable using 3D CLSM. PD (%) did not differ statistically for I, IE, and IEM (p = 0.780). Groups I and IEM showed similar performance on color change (ΔE00) compared to the control group, while IE exhibited intermediate results, with no significant difference observed between the untreated, I, and IEM groups (p < 0.001). IEM promoted the masking of the WSL color without interfering with the PD.
Collapse
Affiliation(s)
- Karin Landmayer
- Restorative Discipline, Dental Research Institute, Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON M5G 1G6, Canada; (K.L.)
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| | - Bruna de Oliveira Iatarola
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| | - Talita Portela Pereira
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| | - Raquel Shimizu Mori
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| | - Alyssa Teixeira Obeid
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil
| | - Mariele Vertuan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil
| | - Daniela Alvim Chrisostomo
- Restorative Discipline, Dental Research Institute, Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON M5G 1G6, Canada; (K.L.)
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, SP, Brazil
| | - Lulwah Alreshaid
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, P.O. Box 3660, Riyadh 11481 K.S.A, Saudi Arabia
| | - Paulo Henrique dos Santos
- Restorative Discipline, Dental Research Institute, Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON M5G 1G6, Canada; (K.L.)
| | - Anuradha Prakki
- Restorative Discipline, Dental Research Institute, Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON M5G 1G6, Canada; (K.L.)
| | - Luciana Fávaro Francisconi-dos-Rios
- Department of Operative Dentistry, School of Dentistry, University of São Paulo, Avenida Professor Lineu Prestes, 2227, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
2
|
Bunz O, Diekamp M, Bizhang M, Testrich H, Piwowarczyk A. Surface roughness associated with bacterial adhesion on dental resin-based materials. Dent Mater J 2024; 43:621-628. [PMID: 39218688 DOI: 10.4012/dmj.2023-234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study investigates the surface quality and bacterial adhesion properties of various dental materials, including indirect composites, veneering composites, direct composites, polyether ether ketone (PEEK), and two millable polymethyl methacrylate (PMMA). Material specimens were processed following manufacturer instructions, initially evaluated for surface roughness and Streptococcus sanguinis (S. sanguinis) adhesion. Subsequently, toothbrushing simulation was employed to simulate aging, and changes in material surfaces were assessed via roughness measurements and bacterial adhesion testing. Prior to simulated aging, direct and indirect composites exhibited the lowest roughness values. However, after the simulated toothbrushing, veneering composites displayed the highest roughness levels. Both PMMA materials demonstrated the highest S. sanguinis adhesion levels, both before and after artificial aging. Interestingly, the indirect composite material showed a reduction in bacterial adhesion following toothbrushing simulation. Surprisingly, this study did not reveal a clear correlation between roughness and bacterial adhesion.
Collapse
Affiliation(s)
- Oskar Bunz
- Department of Prosthodontics, Faculty of Health, School of Dentistry, Witten/Herdecke University
| | | | - Mozhgan Bizhang
- Department of Operative and Preventive Dentistry, Faculty of Health, School of Dentistry, Witten/Herdecke University
| | | | - Andree Piwowarczyk
- Department of Prosthodontics, Faculty of Health, School of Dentistry, Witten/Herdecke University
| |
Collapse
|
3
|
Serbanoiu DC, Vartolomei AC, Ghiga DV, Moldovan M, Sarosi C, Petean I, Boileau MJ, Pacurar M. A Comparative Analysis of Enamel Surface Roughness Following Various Interproximal Reduction Techniques: An Examination Using Scanning Electron Microscopy and Atomic Force Microscopy. Biomedicines 2024; 12:1629. [PMID: 39200094 PMCID: PMC11351462 DOI: 10.3390/biomedicines12081629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Interproximal enamel reduction (IER) is a minimally invasive therapeutic procedure commonly used in orthodontics to address both functional and aesthetic issues. Its mechanical effects on enamel surfaces induce the formation of grooves, furrows, scratches, depressions, and valleys. The aim of this study was to assess the enamel surface roughness resulting after the application of currently available methods for interproximal reduction. Ninety freshly extracted human teeth were divided into six groups and subjected to the stripping procedure, using a different method for each group (diamond burs, abrasive strips of 90 μm, 60 μm, 40 μm, 15 μm, and abrasive discs). A single individual performed stripping according to the manufacturer's recommendations, involving interproximal reduction on one tooth's proximal face and leaving the other side untreated. Qualitative and quantitative assessment of the enamel surfaces was carried out using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), obtaining 2D and volumetric 3D images of the enamel surface microstructure and nanostructure. The study found that diamond burs and abrasive strips of 60 μm and 90 μm increased enamel roughness due to intense de-structuring effects, while the 40 μm polisher had a gentler effect and 15 μm abrasive strips and polishing discs preserved enamel surface quality and removed natural wear traces.
Collapse
Affiliation(s)
- Dan-Cosmin Serbanoiu
- Faculty of Dental Medicine, GEP University of Medicine Pharmacy, Science and Technology of Targu Mures, 540139 Târgu Mures, Romania; (D.-C.S.); (A.-C.V.); (D.-V.G.); (M.P.)
| | - Aurel-Claudiu Vartolomei
- Faculty of Dental Medicine, GEP University of Medicine Pharmacy, Science and Technology of Targu Mures, 540139 Târgu Mures, Romania; (D.-C.S.); (A.-C.V.); (D.-V.G.); (M.P.)
| | - Dana-Valentina Ghiga
- Faculty of Dental Medicine, GEP University of Medicine Pharmacy, Science and Technology of Targu Mures, 540139 Târgu Mures, Romania; (D.-C.S.); (A.-C.V.); (D.-V.G.); (M.P.)
| | - Marioara Moldovan
- Raluca Ripan Chemistry Research Institute, Babes-Bolyai University, 400294 Cluj-Napoca, Romania;
| | - Codruta Sarosi
- Raluca Ripan Chemistry Research Institute, Babes-Bolyai University, 400294 Cluj-Napoca, Romania;
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Marie-Jose Boileau
- Faculty of Dental Medicine, Bordeaux University, 33076 CEDEX Bordeaux, France;
| | - Mariana Pacurar
- Faculty of Dental Medicine, GEP University of Medicine Pharmacy, Science and Technology of Targu Mures, 540139 Târgu Mures, Romania; (D.-C.S.); (A.-C.V.); (D.-V.G.); (M.P.)
| |
Collapse
|
4
|
Ferreira I, de Campos MR, Sahm BD, da Costa Valente ML, Marcondes Agnelli JA, dos Reis AC. Influence of post-processing on the adhesion of dual-species biofilm on polylactic acid obtained by additive manufacturing. Saudi Dent J 2024; 36:733-739. [PMID: 38766297 PMCID: PMC11096603 DOI: 10.1016/j.sdentj.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Post-processing (PP) is performed to improve the surface, which can favor microbial adhesion and consequent pathological manifestations that impair the indication of polylactic acid (PLA) obtained by fused filament fabrication (FFF) for biomedical applications. This aims to evaluate the influence of chemical, thermal, and mechanical PP on the adhesion of Streptococcus mutants and Candida albicans, roughness, and wettability of the PLA obtained by FFF with and without thermal aging. Methods The specimens were designed in the 3D modeling program and printed. The chemical PP was performed by immersion in chloroform, the thermal by the annealing method, and the mechanical by polishing. Thermal aging was performed by alternating the temperature from 5 °C to 55 °C with 5000 cycles. Colony-forming unit (CFU/mL) counting was performed on dual-species biofilm of C. albicans and S. mutans. Roughness was analyzed by rugosimeter and wettability by the sessile drop technique. Data were verified for normality using the Shapiro-Wilk test, two-way ANOVA (α = 0.05) applied for CFU and wettability, and Kruskal-Wallis (α = 0.05) for roughness. Results Chemical, thermal, and mechanical PP methods showed no influence on CFU/mL of C. albicans (p = 0.296) and S. mutans (p = 0.055). Thermal aging did not influence microbial adhesion. Chemical PP had lower roughness, which had increased after aging. Wettability of the mechanical PP was lower. Conclusions Post-processing techniques, do not present an influence on the adhesion of S. mutans and C. albicans in PLA obtained by FFF, chemical PP reduced roughness, and mechanical reduced wettability. Thermal aging did not alter the microbial adhesion and altered the roughness and wettability.
Collapse
Affiliation(s)
- Izabela Ferreira
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School (FORP-USP), University of Sao Paulo, São Paulo, Brazil
| | - Murilo Rodrigues de Campos
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School (FORP-USP), University of Sao Paulo, São Paulo, Brazil
| | - Beatriz Danieletto Sahm
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School (FORP-USP), University of Sao Paulo, São Paulo, Brazil
| | - Mariana Lima da Costa Valente
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School (FORP-USP), University of Sao Paulo, São Paulo, Brazil
| | | | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School (FORP-USP), University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Rao LN, Shetty A, Dsouza N, Shetty H. Assessment of sealing efficacy, radiopacity, and surface topography of a bioinspired polymer for perforation repair. PeerJ 2024; 12:e17237. [PMID: 38699192 PMCID: PMC11064857 DOI: 10.7717/peerj.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Background Root perforation repair presents a significant challenge in dentistry due to inherent limitations of existing materials. This study explored the potential of a novel polydopamine-based composite as a root repair material by evaluating its sealing efficacy, radiopacity, and surface topography. Methods Confocal microscopy assessed sealing ability, comparing the polydopamine-based composite to the gold standard, mineral trioxide aggregate (MTA). Radiopacity was evaluated using the aluminium step wedge technique conforming to ISO standards. Surface roughness analysis utilized atomic force microscopy (AFM), while field emission scanning electron microscopy (FESEM) visualized morphology. Results The polydopamine-based composite exhibited significantly superior sealing efficacy compared to MTA (P < 0.001). Radiopacity reached 3 mm aluminium equivalent, exceeding minimum clinical requirements. AFM analysis revealed a smooth surface topography, and FESEM confirmed successful composite synthesis. Conclusion This study demonstrates promising properties of the polydopamine-based composite for root perforation repair, including superior sealing efficacy, clinically relevant radiopacity, and smooth surface topography. Further investigation is warranted to assess its clinical viability and potential translation to endodontic practice.
Collapse
Affiliation(s)
- Lakshmi Nidhi Rao
- Department of Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Aditya Shetty
- Department of Conservative Dentistry and Endodontics, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Neevan Dsouza
- Department of Biostatistics, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Heeresh Shetty
- Department of Conservative Dentistry and Endodontics, Nair Dental College, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Jin C, Gray AR, Brunton PA, Farella M, Mei L. Effect of carbamide peroxide on biomechanical properties of vacuum-formed retainers: A split-mouth randomized controlled trial. J Dent 2024; 143:104902. [PMID: 38432352 DOI: 10.1016/j.jdent.2024.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE To investigate the effect of tooth whitening on biomechanical properties of vacuum-formed retainers (VFRs). METHODS Using a split-mouth, randomised controlled trial design, thirty participants were randomly allocated to receive whitening on either the upper or the lower arch, using 10 % carbamide peroxide for two weeks. Biomechanical properties such as hardness, tensile strength, and surface roughness were assessed two weeks after whitening was completed. RESULTS Tensile strength of the whitening arch (mean ± SD: 40.93 ± 3.96 MPa) was significantly lower than that of the control (47.40 ± 5.03 MPa) (difference 6.47 MPa, 95 % CI 4.51 - 8.42, p < 0.001). Hardness and internal roughness of the whitening arch (VHN = 14.63 ± 2.29 N/mm2 and Ra = 1.33 ± 0.35 µm, respectively) were significantly greater than those of the control (12.22 ± 1.86 N/mm2 and 0.96 ± 0.29 µm, respectively) (differences 2.41 N/mm2, 95 % CI 1.56 - 3.25, p < 0.001 and 0.37 µm, 95 % CI 0.23 - 0.51, p < 0.001, respectively). The whitening arch showed greater tooth colour change (ΔE = 6.00 ± 3.32) than the control (ΔE = 2.50 ± 1.70) (difference = 3.50, 95 % CI 2.43 - 4.56, p < 0.001). CONCLUSIONS Based on this short-term study, marked tooth colour change was achieved by whitening with VFRs as the whitening trays, but this changed the VFRs' biomechanical properties, including a decrease in tensile strength and an increase in hardness and internal roughness. CLINICAL SIGNIFICANCE The application of carbamide peroxide in VFRs may compromise their mechanical properties.
Collapse
Affiliation(s)
- Carrol Jin
- Discipline of Orthodontics, Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Andrew R Gray
- University of Otago, Biostatistics Centre, Division of Health Sciences, 310 Great King Street, Dunedin 9016, New Zealand
| | | | - Mauro Farella
- Discipline of Orthodontics, Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, New Zealand; Department of Surgical Sciences, University of Cagliari, Italy
| | - Li Mei
- Discipline of Orthodontics, Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand.
| |
Collapse
|
7
|
Ambeth N, Irudayaraj N, Sakthi N, Lakshmaiah D, Kadandale S, Ramachandran A. A Comparative Evaluation of Surface Properties of Cention N and TiO2-Enriched Cention N After Brushing Simulation and Erosive Challenge: An In Vitro Study. Cureus 2024; 16:e57048. [PMID: 38681379 PMCID: PMC11050732 DOI: 10.7759/cureus.57048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Background This study aimed to evaluate and compare the abrasive and erosive wear resistance of Cention N and titanium dioxide (TiO2) nanoparticle-enriched Cention N after three years of brushing simulation. Methodology A total of 48 freshly extracted mandibular molars were mounted in acrylic blocks and divided into two groups of 24 molars based on the type of restorative material used to restore them. Cavities of a standardized size were prepared. Group A was restored with Cention N, and group B was restored with 5% TiO2-enriched Cention N. Each group was further divided into three subgroups of eight. Subgroup 1 was the control subgroup. Subgroup 2 was the abrasive subgroup, subjected to the abrasive challenge in a brushing stimulator with 30,000 cycles to 10,000 cycles in the linear X-axis and Y-axis each and another 10,000 cycles divided into 5,000 cycles clockwise and 5,000 cycles anticlockwise. The total number of brushing cycles was equal to three years of brushing with a duration of eight to nine hours. Subgroup 3 was the erosive and abrasive subgroup, subjected to an erosive pH cycle consisting of exposure to Coca‑Cola for five minutes thrice a day for seven days, and then subjected to brushing simulation as above. After the surface treatment, specimens were subjected to the Vickers microhardness test using a diamond indenter and the surface roughness test using an optical profilometer. The resulting values were subjected to statistical analysis. Results There was a significant decrease in mean surface roughness in group B, where TiO2 nanoparticles were added after erosive challenge and brushing simulation, than in group A. There was an increase in mean microhardness in group B which was not significant. Conclusions With the addition of 5% TiO2 to Cention N, there was a significant reduction in surface roughness. The surface microhardness of Cention N containing 5% TiO2 increased non-significantly compared to the control group.
Collapse
Affiliation(s)
- Nivetha Ambeth
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| | - Nancy Irudayaraj
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| | - Nikesh Sakthi
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| | - Deepika Lakshmaiah
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| | - Sadasiva Kadandale
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| | - Anupama Ramachandran
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Chennai, IND
| |
Collapse
|
8
|
Wu J, Wang X, Jiang J, Bai Y. Fabrication of a novel aesthetic orthodontic bracket and evaluation of friction properties between PEEK and stainless steel wires. Technol Health Care 2024; 32:269-278. [PMID: 37393452 DOI: 10.3233/thc-230001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Polyetheretherketone (PEEK) is a polyaromatic semi-crystalline thermoplastic polymer with mechanical and lubrication properties favorable for biomedical applications. Despite of its aesthetic appearance, ceramic brackets are unsatisfactory in brittleness and thickness, while PEEK is a potential material for aesthetic orthodontic brackets. OBJECTIVE To fabricate a novel aesthetic orthodontic bracket and evaluate friction properties of PEEK and stainless steel wires. METHODS All polyether ether ketone (PEEK) and ceramic samples disks were made into disks (diameter, 5 mm; thickness, 2 mm). The tested surfaces of PEEK were ground with #600, #800 and #1200 SiC papers, followed by polishing with Sof-Lex kit (3M ESPE, USA). The surface roughness was tested using a laser profilometer device (VK-X200, Keyence, Japan). The COFs of the specimens and stainless steel (SS) archwires were tested using a Universal Micro-Tribotester (UMT-3, Bruker, USA). The wear scratches on the materials' surfaces were examined by using a scanning electron microscope (SEM) (Hitachi SU8010). The elastic modulus and hardness of samples were examined with a nano-indenter (XP, Keysight Technologies, USA). RESULTS The mean surface roughness of PEEK and Ceramic are 0.320 ± 0.028 μm and 0.343 ± 0.044 μm, respectively. PEEK has a lower Friction coefficient than Ceramic and the difference between the two groups was statistically significant (P< 0.05). The abrasive wear of Ceramic was the main wear style and was characterized by the observation of chipping fractures, while PEEK surface looked smooth without obvious scale-like desquamations and granular debris, indicating adhesive wear. CONCLUSION Within the limitations of the present study, PEEK shows lower coefficient of friction than ceramic. PEEK has excellent properties such as low friction coefficient, smooth surface and good mechanical properties, and thus meets the requirements for orthodontic brackets. It is considered as a potential bracket material with both low friction and aesthetic performance.
Collapse
Affiliation(s)
- Jiaqi Wu
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Xiujing Wang
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- National Center for Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
- National Clinical Research Center for Oral Diseases, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
9
|
Tu Y, Ren H, He Y, Ying J, Chen Y. Interaction between microorganisms and dental material surfaces: general concepts and research progress. J Oral Microbiol 2023; 15:2196897. [PMID: 37035450 PMCID: PMC10078137 DOI: 10.1080/20002297.2023.2196897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacterial adhesion to dental materials’ surfaces is the initial cause of dental materials-related infections. Therefore, inhibiting bacterial adhesion is a critical step in preventing and controlling these infections. To this end, it is important to know how the properties of dental materials affect the interactions between microorganisms and material surfaces to produce materials without biological contamination. This manuscript reviews the mechanism of bacterial adhesion to dental materials, the relationships between their surface properties and bacterial adhesion, and the impact of bacterial adhesion on their surface properties. In addition, this paper summarizes how these surface properties impact oral biofilm formation and proposes designing intelligent dental material surfaces that can reduce biological contamination.
Collapse
Affiliation(s)
- Yan Tu
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Huaying Ren
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yiwen He
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Ying
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Chen
- Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- CONTACT Yadong Chen Department of Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou310000, China
| |
Collapse
|
10
|
Waldman LJ, Butera T, Boyd JD, Grady ME. Sucrose-mediated formation and adhesion strength of Streptococcus mutans biofilms on titanium. Biofilm 2023; 6:100143. [PMID: 37534044 PMCID: PMC10391683 DOI: 10.1016/j.bioflm.2023.100143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Biofilms consist of bacterial cells surrounded by a matrix of extracellular polymeric substance (EPS), which protects the colony from many countermeasures, including antibiotic treatments. Growth and formation of bacterial biofilms are affected by nutrients available in the environment. In the oral cavity, the presence of sucrose affects the growth of Streptococcus mutans that produce acids that erode enamel and form dental caries. Biofilm formation on dental implants commonly leads to severe infections and can restrict osseointegration necessary for the implant to be successful. This work determines the effect of sucrose concentration on biofilm EPS formation and adhesion of Streptococcus mutans, a common oral colonizer, to titanium substrates simulating common dental implants. Biofilm formation and profiles are visualized at high magnification with scanning electron microscopy (SEM). Large mounds and complex structures consisting of bacterial cells and EPS can be seen in biofilms at sucrose concentrations that are favorable for biofilm growth. The laser spallation technique is used to apply stress wave loading to the biofilm, causing the biofilm to delaminate at a critical tensile stress threshold. The critical tensile stress threshold is the adhesion strength. Because laser spallation applies the stress loading to the rear of the substrate, bulk adhesion properties of the biofilm can be determined despite the heterogenous composition and low cohesion strength of the biofilm. Statistical analysis reveals that adhesion strength of biofilms initially increase with increasing sucrose concentration and then decrease as sucrose concentration continues to increase. The adhesion strength of bacterial biofilms to the substrate in this study is compared to the adhesion of osteoblast-like cells to the same substrates published previously. When sucrose is present in the biofilm growth environment, S. mutans adhesion is higher than that of the osteoblast-like cells. Results of this study suggest sucrose-mediated S. mutans biofilms may outcompete osteoblasts in terms of adhesion during osseointegration, which could explain higher rates of peri-implant disease associated with high sugar diets. Further studies demonstrating adhesion differentials between biofilms and cells including co-cultures are needed and motivated by the present work.
Collapse
Affiliation(s)
- Laura J. Waldman
- Department of Mechanical and Aerospace Engineering University of Kentucky, Lexington, KY, 40506, USA
| | - Tony Butera
- Department of Mechanical and Aerospace Engineering University of Kentucky, Lexington, KY, 40506, USA
| | - James D. Boyd
- Department of Mechanical Engineering Clemson University, Clemson, SC, 29634, USA
| | - Martha E. Grady
- Department of Mechanical and Aerospace Engineering University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
11
|
Lukomska-Szymanska M, Radwanski M, Kharouf N, Mancino D, Tassery H, Caporossi C, Inchingolo F, de Almeida Neves A, Chou YF, Sauro S. Evaluation of Physical-Chemical Properties of Contemporary CAD/CAM Materials with Chromatic Transition "Multicolor". MATERIALS (BASEL, SWITZERLAND) 2023; 16:4189. [PMID: 37297323 PMCID: PMC10254467 DOI: 10.3390/ma16114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
The use of materials for computer-aided design/computer-aided manufacturing (CAD/CAM) has been rapidly increasing in daily practice. However, one of the main issues regarding modern CAD/CAM materials is their aging in the oral environment, which may lead to significant changes in their overall properties. The aim of this study was to compare the flexural strength, water sorption, cross-link density (softening ratio%), surface roughness, and SEM analysis of three modern CAD/CAM "multicolor" composites. Grandio (Grandio disc multicolor-VOCO GmbH, Cuxhaven, Germany), Shofu (Shofu Block HC-Shofu Inc., Kyoto, Japan), and Vita (Vita Enamic multiColor-Vita Zahnfabrik, Bad Sackingen, Germany) were tested in this study. They were prepared in stick-shaped specimens and submitted to different tests after several aging protocols, such as thermocycling and mechanical cycle loading challenge. Further disc-shaped specimens were also created and tested for water sorption, cross-link density, surface roughness, and SEM ultramorphology, before and after storage in an ethanol-based solution. For flexural strength and ultimate tensile strength, Grandio showed the greatest values both at baseline and after aging (p < 0.05). Grandio and Vita Enamic presented the highest modulus of elasticity and the lowest water sorption (p < 0.05). A significant reduction (p < 0.05) in microhardness after ethanol storage (softening ratio%) was observed especially in Shofu. Grandio had the lowest roughness parameters compared to the other tested CAD/CAM materials, while ethanol storage significantly increased the Ra and RSm values in Shofu (p < 0.05). Despite the comparable modulus of elasticity of Vita and Grandio, this latter showed greater flexural strength and ultimate tensile strength both at baseline and after aging. Hence, Grandio and Vita Enamic may be employed for the anterior teeth and for those restorations requiring load-bearing capacity. Conversely, aging seems to affect several properties of Shofu, so its use for permanent restorations should be well-pondered based on the clinical situation.
Collapse
Affiliation(s)
| | - Mateusz Radwanski
- Department of Endodontics, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland;
| | - Naji Kharouf
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France; (N.K.)
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Strasbourg University, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France; (N.K.)
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Strasbourg University, 67000 Strasbourg, France
| | - Herve Tassery
- Ecole de Médecine Dentaire de Marseille, Université d’Aix-Marseille, 13385 Marseille, France
- Laboratoire Bioinginierie et Nanoscience, LBN, Université de Montpellier, 545 Pr JL Viala, 34090 Montpellier, France
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Aline de Almeida Neves
- Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Yu Fu Chou
- Dental Biomaterials and Minimally Invasive Dentistry, Departamento de Odontología, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, C/Del Pozo s/n, Alfara del Patriarca, 46115 Valencia, Spain
| | - Salvatore Sauro
- Independent Researcher, Roma, 65B, 00030 Labico, Italy
- Dental Biomaterials and Minimally Invasive Dentistry, Departamento de Odontología, Facultad de Ciencias de la Salud, Universidad CEU-Cardenal Herrera, C/Del Pozo s/n, Alfara del Patriarca, 46115 Valencia, Spain
| |
Collapse
|
12
|
Hu J, Yu J, Liu H, Wang Z, Haapasalo M, Haney EF, Hancock REW, Deng S, Shen Y. Dynamic killing effectiveness of mouthrinses and a D-enantiomeric peptide on oral multispecies biofilms grown on dental restorative material surfaces. J Dent 2023; 134:104552. [PMID: 37201774 DOI: 10.1016/j.jdent.2023.104552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVE To evaluate the dynamics of killing of oral multispecies biofilms grown on dental restorative materials by commercially available mouthrinses and a D-enantiomeric peptide. METHODS Four composite resins (3M Supreme, 3M Supreme flow, Kerr Sonicfill, and Shofu Beautifil II) and one glass ionomer (GC Fuji II) were used as restorative materials. Plaque biofilms were grown on the surfaces of restorative material discs for 1 week. The surface roughness and biofilm attachment were assessed by atomic force microscopy and scanning electron microscopy. One-week-old biofilms grown anaerobically at 37°C were exposed to each of five solutions for one minute (twice daily for seven days): Listerine Total care and Paroex Gum mouthrinses, 0.12% chlorhexidine, 0.001% D-enantiomeric peptide DJK-5, and sterile water. The dynamic variation of the biovolume of the biofilms and the percentage of dead bacteria were monitored and analyzed using confocal laser scanning microscopy. RESULTS All restorative materials had similar surface roughness with intact biofilm attachment. The percentage of dead bacteria and biovolume of biofilms treated by each oral rinse solution remained constant between days 1 and 7, with no statistically significant difference. DJK-5 showed the highest percentage of dead bacteria (up to 75.7%; cf. ∼20-40% for other mouthrinses) of all solutions tested within 7 days. CONCLUSIONS DJK-5 outperformed conventional mouthrinses in killing bacteria in oral multispecies biofilms grown on dental restorative materials. CLINICAL SIGNIFICANCE The antimicrobial peptide DJK-5 is effective against oral biofilms and serves as a promising candidate for the development of future mouthrinses to improve long-term oral hygiene.
Collapse
Affiliation(s)
- Jinghao Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China; Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Jian Yu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
13
|
El Samahy MM, Abdelhamid AM, El Shabrawy SM, Hanno KI. Evaluation of physicomechanical properties of milled versus 3D-printed denture base resins: A comparative in vitro study. J Prosthet Dent 2023; 129:797.e1-797.e7. [PMID: 37121625 DOI: 10.1016/j.prosdent.2023.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 05/02/2023]
Abstract
STATEMENT OF PROBLEM Studies comparing the physicomechanical characteristics of denture base resins manufactured by computer-aided design and computer-aided manufacturing (CAD-CAM) milling and 3-dimensional (3D) printing are sparse, resulting in challenges when choosing a fabrication method for complete dentures. PURPOSE The purpose of this in vitro study was to evaluate and compare the impact strength, flexural strength, and the surface roughness of denture base resins manufactured by CAD-CAM milling and 3D printing before and after thermocycling and polishing. MATERIAL AND METHODS Evaluation of the physicomechanical properties (n=35) was completed before and after 500 thermocycles. Impact strength (n=14) was measured with a Charpy impact tester and flexural strength (n=14) with the 3-point bend test. Surface roughness (Ra) was evaluated (n=7) with a profilometer before and after thermocycling and polishing and by viewing the surface topography before and after polishing using a scanning electron microscope at ×2000. The Mann-Whitney U test and Wilcoxon sign rank test were used for statistical analysis (α=.05). RESULTS Milled specimens showed statistically significantly higher impact strength before thermocycling and statistically significantly higher flexural strength before and after thermocycling (P=.004) compared with 3D-printed specimens. The Ra values for the milled group were significantly lower than for the 3D-printed group both before and after thermocycling (P=.006) and after polishing (P=.027). Thermocycling resulted in a statistically significant difference in flexural strength (P=.018) in both groups and in surface roughness in the milled group (P=.048); but no significant effect was found on impact strength (P>.05). Ra values for the 3D-printed group decreased after polishing (P=.048). CONCLUSIONS Milled specimens had higher flexural and impact strength and lower surface roughness values than 3D-printed specimens. Polishing significantly reduced the surface roughness in 3D-printed specimens but had no significant effect on milled specimens.
Collapse
Affiliation(s)
- Marwa M El Samahy
- Resident, Department of Prosthodontics, Faculty of Dentistry, University of Alexandria, Alexandria, Egypt
| | - Ahmed M Abdelhamid
- Professor, Department of Prosthodontics, Faculty of Dentistry, University of Alexandria, Alexandria, Egypt
| | - Sonia M El Shabrawy
- Professor, Department of Dental Biomaterials, Faculty of Dentistry, University of Alexandria, Alexandria, Egypt
| | - Kenda I Hanno
- Lecturer, Department of Prosthodontics, Faculty of Dentistry, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
14
|
Using Copper-Doped Mesoporous Bioactive Glass Nanospheres to Impart Anti-Bacterial Properties to Dental Composites. Pharmaceutics 2022; 14:pharmaceutics14102241. [PMID: 36297676 PMCID: PMC9611516 DOI: 10.3390/pharmaceutics14102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Experimental dental resin composites containing copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were developed to impart anti-bacterial properties. Increasing amounts of Cu-MBGN (0, 1, 5 and 10 wt%) were added to the BisGMA/TEGDMA resin matrix containing micro- and nano-fillers of inert glass, keeping the resin/filler ratio constant. Surface micromorphology and elemental analysis were performed to evaluate the homogeneous distribution of filler particles. The study investigated the effects of Cu-MBGN on the degree of conversion, polymerization shrinkage, porosity, ion release and anti-bacterial activity on S. mutans and A. naeslundii. Experimental materials containing Cu-MBGN showed a dose-dependent Cu release with an initial burst and a further increase after 28 days. The composite containing 10% Cu-MBGN had the best anti-bacterial effect on S. mutans, as evidenced by the lowest adherence of free-floating bacteria and biofilm formation. In contrast, the 45S5-containing materials had the highest S. mutans adherence. Ca release was highest in the bioactive control containing 15% 45S5, which correlated with the highest number of open porosities on the surface. Polymerization shrinkage was similar for all tested materials, ranging from 3.8 to 4.2%, while the degree of conversion was lower for Cu-MBGN materials. Cu-MBGN composites showed better anti-bacterial properties than composites with 45S5 BG.
Collapse
|
15
|
Vulović S, Todorović A, Stančić I, Popovac A, Stašić JN, Vencl A, Milić‐Lemić A. Study on the surface properties of different commercially available
CAD
/
CAM
materials for implant‐supported restorations. J ESTHET RESTOR DENT 2022; 34:1132-1141. [DOI: 10.1111/jerd.12958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan Vulović
- University of Belgrade School of Dental Medicine, Department of Prosthodontics Belgrade Serbia
| | - Aleksandar Todorović
- University of Belgrade School of Dental Medicine, Department of Prosthodontics Belgrade Serbia
| | - Ivica Stančić
- University of Belgrade School of Dental Medicine, Department of Prosthodontics Belgrade Serbia
| | - Aleksandra Popovac
- University of Belgrade School of Dental Medicine, Department of Prosthodontics Belgrade Serbia
| | - Jovana N. Stašić
- University of Belgrade School of Dental Medicine, DentalNet Research Group Belgrade Serbia
| | - Aleksandar Vencl
- University of Belgrade Faculty of Mechanical Engineering Belgrade Serbia
- South Ural State University Chelyabinsk Russia
| | - Aleksandra Milić‐Lemić
- University of Belgrade School of Dental Medicine, Department of Prosthodontics Belgrade Serbia
| |
Collapse
|
16
|
Surface and Structural Studies of Age-Related Changes in Dental Enamel: An Animal Model. MATERIALS 2022; 15:ma15113993. [PMID: 35683290 PMCID: PMC9182525 DOI: 10.3390/ma15113993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/28/2023]
Abstract
In the animal kingdom, continuously erupting incisors provided an attractive model for studying the enamel matrix and mineral composition of teeth during development. Enamel, the hardest mineral tissue in the vertebrates, is a tissue sensitive to external conditions, reflecting various disturbances in its structure. The developing dental enamel was monitored in a series of incisor samples extending the first four weeks of postnatal life in the spiny mouse. The age-dependent changes in enamel surface morphology in the micrometre and nanometre-scale and a qualitative assessment of its mechanical features were examined by applying scanning electron microscopy (SEM) and atomic force microscopy (AFM). At the same time, structural studies using XRD and vibrational spectroscopy made it possible to assess crystallinity and carbonate content in enamel mineral composition. Finally, a model for predicting the maturation based on chemical composition and structural factors was constructed using artificial neural networks (ANNs). The research presented here can extend the existing knowledge by proposing a pattern of enamel development that could be used as a comparative material in environmental, nutritional, and pharmaceutical research.
Collapse
|
17
|
Cua J, Crespo E, Phelps S, Ramirez R, Roque-Torres G, Oyoyo U, Kwon SR. Tooth Color Change and Erosion: Hydrogen Peroxide Versus Non-peroxide Whitening Strips. Oper Dent 2022; 47:301-308. [PMID: 35584321 DOI: 10.2341/20-302-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 11/23/2022]
Abstract
AIM The study evaluated the efficacy and potential erosion of non-peroxide strips compared to hydrogen peroxide (HP) whitening strips (WSs). METHODS Color evaluation samples (N=64) were distributed into four groups and treated according to manufacturer's directions. NC: Negative control treated with water; BT: Non-peroxide Brilliant Dissolving Strips; FM: Non-peroxide Fancymay Teeth WSs; WS: Crest 3D Brilliance HP White Strips. A contact-type spectrophotometer was used to measure color at baseline (T1), 1-day posttreatment (T2), and 1-week posttreatment (T3). Teeth were cut to a rectangular block for micro-CT erosion assessment. The samples (N=30) were divided into five groups. In addition to the four groups for color assessment, a positive control (PC) treated with 0.25% citric acid was added. The samples were scanned, reconstructed, and measured for erosion depth using a micro-CT analysis program software. Kruskal-Wallis test was used to determine differences in color change and erosion depth among the groups. Tests of hypotheses were two-sided with an alpha level of 0.05. RESULTS The mean ΔE*ab at 1-day/1-week posttreatment were 2.4/2.5, 2.8/2.9, 2.8/3.2, and 8.6/11.0 for NC, BT, FM, and WS, respectively. There was a statistically significant difference for ΔE*ab at 1-day and 1-week posttreatment (p<0.001). Group WS had the highest color change, while the other three groups did not differ from each other (p>0.05). Mean erosion depths in microns were 0.52, 0.58, 0.42, 0.49, and 29.55 for NC, BT, FM, WS, and PC, respectively. There was a statistically significant difference among the groups (p=0.004). Group PC had the greatest erosion, while the other groups had negligible erosion that did not differ from each other (p>0.05). CONCLUSION Peroxide WSs had superior whitening efficacy compared to non-peroxide strips. None of the tested products compromised tooth structure integrity through enamel erosion.
Collapse
Affiliation(s)
- J Cua
- John Cua, RDH, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - E Crespo
- Elisabeth Crespo, RDH, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - S Phelps
- Sarah Phelps, RDH, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - R Ramirez
- Rachel Ramirez, RDH, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - G Roque-Torres
- Gina Roque-Torres, DDS, MS, PhD, assistant professor, Center for Dental Research, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - U Oyoyo
- Udochukwu Oyoyo, MPH, assistant professor, Dental Education Services, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - S R Kwon
- *So Ran Kwon, DDS, MS, PhD, MS, professor & director of Student Research Program, Division of General Dentistry, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| |
Collapse
|
18
|
Özarslan M, Bilgili Can D, Avcioglu NH, Çalışkan S. Effect of different polishing techniques on surface properties and bacterial adhesion on resin-ceramic CAD/CAM materials. Clin Oral Investig 2022; 26:5289-5299. [PMID: 35474553 DOI: 10.1007/s00784-022-04497-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate the adhesion of Streptococcus mutans on the surface of CAD/CAM materials with various surface treatments. METHODS Vita Enamic, Lava Ultimate, and Cerasmart materials were used in this study. A total of 90 samples were prepared (n = 10). After various finishing and polishing procedures (non-polished, manual polished, and glazed), surface roughness (SR) measurements, surface free energy (SFE), and elemental and topographic analysis with FIB-SEM/EDX were used to evaluate the samples' surface properties. To improve bacterial adhesion, CAD/CAM materials were covered with sterile artificial saliva containing mucin for pellicle formation and incubated for 1 h at 37 °C. Bacteria were then inoculated into the pellicle-coated specimens, and incubation was performed at 37 °C for 24 h. Bacterial adhesion was determined as × 105 CFU/mL and monitored using FIB-SEM analysis. The Kolmogorov-Smirnov test was used to statistically analyze the normality of the distribution; the groups were then compared using one-way ANOVA and Tukey's test. RESULTS The SR of the control group was statistically higher in all materials (p < 0.05). There were no statistically significant differences in SR between all materials in the non-polished and manual polished groups (p > 0.05). The Vita Enamic control group exhibited the highest SFE value. The highest S. mutans adhesion was observed in non-polished (p < 0.05). Vita Enamic samples had higher CFU than other groups. CONCLUSIONS Non-polished surfaces showed higher SR and bacterial adhesion. Polishing processes affected the surface properties and bacterial adhesion. CLINICAL RELEVANCE Care must be taken in polishing restorations to minimize the risk of bacterial adhesion and recurrent caries. TRIAL REGISTRATION In this study, the materials used for dental treatments are in vitro evaluated. Due to that, this study is not registered to clinical trials.
Collapse
Affiliation(s)
- Merve Özarslan
- Department of Prosthetic Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Dilber Bilgili Can
- Department of Restorative Dentistry, Faculty of Dentistry, Van Yuzuncu Yil University, Van, 65080, Turkey.
| | - Nermin Hande Avcioglu
- Biology Department, Biotechnology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Seçil Çalışkan
- Department of Pediatric Dentistry, Faculty of Dentistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
19
|
Németh KD, Haluszka D, Seress L, Lovász BV, Szalma J, Lempel E. Effect of Air-Polishing and Different Post-Polishing Methods on Surface Roughness of Nanofill and Microhybrid Resin Composites. Polymers (Basel) 2022; 14:polym14091643. [PMID: 35566812 PMCID: PMC9100913 DOI: 10.3390/polym14091643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
Air-abrasion is a popular prophylactic procedure to maintain oral hygiene. However, depending on the applied air-abrasive powder, it can damage the surface of the tooth and restorations, making it susceptible to plaque accumulation. The purpose of this study was to investigate the effect of 5 s and 10 s air-abrasion of calcium carbonate on surface roughness (Ra) of enamel, nanofill, and microhybrid resin-composites and the effect of post-polishing with two-step rubber- (RP) or one-step brush polisher (BP) to re-establish the surface smoothness. Surface topography was visualized by scanning-electron-microscopy. The quantitative measurement of the Ra was carried out with atomic-force-microscopy. Air-abrasion for 10 s decreased the Ra of enamel as a result of abrasion of the natural surface texture. Post-polishing with RP after 10 s air-abrasion did not change the Ra or BP; however, Ra was increased significantly by scratching the surface. Air-abrasion increased the Ra of resin composites significantly, irrespective of the application time. While RP provided a similarly smooth surface to the control in the case of microhybrid resin composite, BP increased the Ra significantly. The Ra for the control group of the nanofill-resin composite was initially high, which was further increased by air-abrasion. RP and BP re-established the initial Ra with deeper and shallower scratches after BP. Both the material and treatment type showed a large effect on Ra.
Collapse
Affiliation(s)
- Kinga Dorottya Németh
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary;
| | - Dóra Haluszka
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37–47, 1094 Budapest, Hungary;
| | - László Seress
- Central Electron Microscope Laboratory, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary;
| | - Bálint Viktor Lovász
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary; (B.V.L.); (J.S.)
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary; (B.V.L.); (J.S.)
| | - Edina Lempel
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary;
- Correspondence: ; Tel.: +36-72-535926
| |
Collapse
|
20
|
El-Gar YHA, Etman WM, Genaid TM, Al-Madboly LA. Potent Antibacterial and Antibiofilm Activities of a Synthetic Remineralizing Preparation of Nano-Hydroxyapatite Against Cariogenic Streptococcus mutans Using an Ex-vivo Animal Model. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.738326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AimThe aim to this study is to evaluate the biocompatibility and antibiofilm actions of two nano-hydroxy apatite (NHA).MethodologyNano-hydroxy apatites are biomaterials use in direct contact with living tissues. Therefore, they should be tested for their safety beside assessment of their minimum inhibitory (MIC) and minimum bactericidal concentration (MBC) using broth microdilution method. One hundred and twenty extracted bovine incisors were collected and cleaned to ensure the absence of any defects. Enamel blocks with different size (2 × 2 × 3 mm) and (5 × 5 × 2 mm) were prepared from their labial surfaces using an isomet saw. Enamel blocks are used for detecting the suitable concentration will be used in the following experiments using energy dispersive X-ray analysis (EDX). The remaining enamel blocks divided into 5 equal groups to detect inhibitory effect against bacterial adhesion to the initial enamel caries like lesions using viable count technique beside the antibiofilm activity against mature biofilm of Streptococcus mutans (S. mutans) using confocal laser microscopy. The remaining enamel blocks were used as a representing data for detecting surface topography for each group by using the scanning electron microscopy (SEM).ResultThe data showed safety of NHA suspensions. Additionally, only NHA suspension of large nanoparticle size (NHA-LPS) had MIC of 1.25 mg/ml against S. mutans. Also, have the higher percentages of Ca and P in the enamel blocks. Furthermore, the lowest level of bacterial adhesion was recorded in (group III) treated by NHA-LPS which was non-significantly different with the positive control group V. Biofilm thickness in group IV treated with NHA-small particle size (SPS) recorded high biofilm thickness followed by group III. Interestingly, group III showed greater killing effect against mature biofilm which is slightly higher than the positive control group V. In group III, surface topography revealed very smooth enamel surface with closed pores. Accordingly, NHA-LPS suspension had antiadhesive, antibacterial, and antibiofilm effect against cariogenic S. mutans representing a promising possibility to be recommended for safe effective remineralization.
Collapse
|
21
|
Han Y, Yu Q, Dong X, Hou J, Han J. Plasma SiOx:H Nanocoatings to Enhance the Antibacterial and Anti-Inflammatory Properties of Biomaterials. Int J Nanomedicine 2022; 17:381-394. [PMID: 35125867 PMCID: PMC8808046 DOI: 10.2147/ijn.s339000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Materials and Methods Results Conclusion
Collapse
Affiliation(s)
- Ye Han
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, People’s Republic of China
| | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Xiaoqing Dong
- Marketing Department, PlasmaDent Inc., Columbia, MO, USA
| | - Jianxia Hou
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, People’s Republic of China
| | - Jianmin Han
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, People’s Republic of China
- Correspondence: Jianmin Han; Jianxia Hou, Tel +86-10-82195746; +86-13683696349, Fax +86-10-62164691; +86-10-82195496, Email ;
| |
Collapse
|
22
|
Oliveira JMDS, Cavalcanti TFS, Leite IF, Dos Santos DMRC, Porto ICCDM, de Aquino FLT, Sonsin AF, Lins RML, Vitti RP, de Freitas JD, Barreto EDO, de Souza ST, Kamiya RU, do Nascimento TG, Tonholo J. Propolis in Oral Healthcare: Antibacterial Activity of a Composite Resin Enriched With Brazilian Red Propolis. Front Pharmacol 2021; 12:787633. [PMID: 34912230 PMCID: PMC8667603 DOI: 10.3389/fphar.2021.787633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to obtain a Brazilian red propolis (BRP) enriched composite resin and to perform the characterization of its antibacterial activity, mechanical, and physical-chemical properties. Brazilian red propolis ethyl acetate extract (EABRP) was characterized by LC-ESI-Orbitrap-FTMS, UPLC-DAD, antibacterial activity, total flavonoids content, and radical scavenging capacity. BRP was incorporated to a commercial composite resin (RC) to obtain BRP enriched composite at 0.1, 0.15 and 0.25% (RP10, RP15 and RP25, respectively). The antibacterial activity RPs was evaluated against Streptococcus mutans by contact direct test and expressed by antibacterial ratio. The RPs were characterized as its cytotoxicity against 3T3 fibroblasts, flexural strength (FS), Knoop microhardness (KHN), post-cure depth (CD), degree of conversion (DC%), water sorption (Wsp), water solubility (Wsl), average roughness (Ra), and thermal analysis. Were identified 50 chemical compounds from BRP extract by LC-ESI-Orbitrap-FTMS. EABRP was bacteriostatic and bactericide at 125 and 500 μg/ml, respectively. The RP25 exhibited antibacterial ratio of 90.76% after 1 h of direct contact with S. mutans (p < 0.0001) while RC no showed significative antibacterial activity (p = 0.1865), both compared with cell control group. RPs and RC no showed cytotoxicity. RPs exhibited CD from 2.74 to 4.48 mm, DC% from 80.70 to 83.96%, Wsp from 17.15 to 21.67 μg/mm3, Wsl from 3.66 to 4.20 μg/mm3, Ra from 14.48 to 20.76 nm. RPs showed thermal resistance between 448–455°C. The results support that propolis can be used on development of modified composite resins that show antibacterial activity and that have compatible mechanical and physical-chemical properties to the indicate for composite resins.
Collapse
Affiliation(s)
- José Marcos Dos Santos Oliveira
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Health Research, Cesmac University Center, Maceió, Brazil
| | - Théo Fortes Silveira Cavalcanti
- Postgraduate Program in Materials, Center of Technology, Federal University of Alagoas, Maceió, Brazil.,Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil
| | | | | | - Isabel Cristina Celerino de Moraes Porto
- Faculty of Dentistry, Federal University of Alagoas, Maceió, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Fernanda Lima Torres de Aquino
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Artur Falqueto Sonsin
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | - Emiliano de Oliveira Barreto
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Samuel Teixeira de Souza
- Postgraduate Program in Physics, Institute of Physics, Federal University of Alagoas, Maceió, Brazil
| | - Regianne Umeko Kamiya
- Postgraduate Program in Health Sciences, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Ticiano Gomes do Nascimento
- Postgraduate Program in Pharmaceutical Sciences, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | - Josealdo Tonholo
- Postgraduate Program of Chemistry and Biotechnology, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
23
|
Vilela ALR, Machado AC, Queiroz LL, Batista PHM, Faria-E-Silva AL, Menezes MDS. Effect of Interval Time between Corrosive and Abrasive Challenges on a Nanoparticulate Composite Resin. Eur J Dent 2021; 15:607-611. [PMID: 34492727 PMCID: PMC8630937 DOI: 10.1055/s-0041-1726161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective
This study aimed to evaluate the effect of interval time after acidic beverage intake and brushing on roughness and hardness of resin composite.
Materials and Methods
Nanofilled resin composites were tested as per interval time (no interval, 15 or 30 minutes) between aging media (isotonic, sports drink) and brushing. Specimens (
n
= 9) were subjected to three cycles daily for 5 days with immersion in beverage followed by simulated brushing (585 strokes). The brushing (control) group was submitted only in brushing cycles. Roughness and microhardness were analyzed in the baseline and end of the experiment. Surface morphology was analyzed by using scanning electron microscopy (SEM).
Statistical analysis
Data were analyzed by one-way ANOVA and Tukey’s honestly significant difference (α = 0.05).
Results
Roughness was higher in no interval group and lower in 30 minutes and control. The 15 minutes present no statistical difference between control, 30 minutes and no interval. The hardness not present difference between groups. The SEM showed the no interval more roughness than 15 and 30 minutes, control and baseline.
Conclusion
The interval time between erosive and abrasive challenge is important to preserve the smoothness surface of composite resin.
Collapse
Affiliation(s)
- Ana Laura Rezende Vilela
- Department of Restorative Dentistry and Dental Materials, Dental School, Federal University of Uberlândia, Brazil
| | | | - Lucas Lemes Queiroz
- Department of Restorative Dentistry and Dental Materials, Dental School, Federal University of Uberlândia, Brazil
| | - Pedro Henrique Mauro Batista
- Department of Restorative Dentistry and Dental Materials, Dental School, Federal University of Uberlândia, Brazil
| | | | - Murilo de Sousa Menezes
- Department of Restorative Dentistry and Dental Materials, Dental School, Federal University of Uberlândia, Brazil
| |
Collapse
|
24
|
Schneider BJ, Hiers RD, Currier GF, Kadioglu O, Johnston SE, Zhao YD, Esteban Florez FL, Khajotia SS. Assessment of Streptococcus mutans biofilms on orthodontic adhesives over 7 days. Am J Orthod Dentofacial Orthop 2021; 160:50-57. [PMID: 34090735 PMCID: PMC8238838 DOI: 10.1016/j.ajodo.2020.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The purpose of this study was to compare the metabolism of Streptococcus mutans biofilms after 1-7 days of growth on different orthodontic adhesives. METHODS Specimens of 6 commercial orthodontic adhesives were fabricated in custom-made molds and polymerized using a light-emitting diode light-curing unit. Bioluminescent S mutans (UA159:JM10) biofilms were grown on ultraviolet-sterilized specimens for 1, 3, 5, and 7 days (n = 18 biofilms/d/product) in anaerobic conditions at 37°C. The metabolism of biofilms (relative luminescence unit [RLU]) was measured 0, 2, 4, and 6 minutes after exposure to D-luciferin solution using a microplate reader. A linear mixed-effects model was used to analyze the logarithm of RLU (log RLU). The model included fixed effects of products, days, and minutes. Tukey-Kramer post-hoc tests were then performed on the significant predictors of log RLU (α = 0.05). RESULTS Days (P <0.0001) and minutes (P <0.0001) were independent predictors of log RLU, but the products were not (P = 0.5869). After adjusting for minutes, the log RLU was analyzed with a post-hoc test, and all differences between days were significant with the exceptions of day 3 from day 5 (P = 0.0731) and day 5 from day 7 (P = 0.8802). After adjusting for day, log RLU was analyzed with a post-hoc test and all differences in minutes were significant. CONCLUSIONS No significant differences in the metabolism of S mutans biofilms were observed among the 6 orthodontic adhesives. Biofilms that were grown for 3 days demonstrated the highest levels of biofilm metabolism as evidenced by higher mean log RLU values relative to 1, 5, and 7-day growth durations.
Collapse
Affiliation(s)
- Benjamin J Schneider
- Division of Orthodontics, Department of Developmental Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Rochelle D Hiers
- Division of Dental Biomaterials, Department of Restorative Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - G Frans Currier
- Division of Orthodontics, Department of Developmental Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Onur Kadioglu
- Division of Orthodontics, Department of Developmental Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Sarah E Johnston
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Fernando L Esteban Florez
- Division of Dental Biomaterials, Department of Restorative Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Okla
| | - Sharukh S Khajotia
- Division of Dental Biomaterials, Department of Restorative Sciences, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Okla.
| |
Collapse
|
25
|
Kurt A, Özyurt E, Topcuoğlu N. Effect of different beverages on surface properties and cariogenic biofilm formation of composite resin materials. Microsc Res Tech 2021; 84:2936-2946. [PMID: 34105836 DOI: 10.1002/jemt.23852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/30/2021] [Indexed: 11/06/2022]
Abstract
The consumption of certain beverages may affect the physical and biological properties of resin composites (RCs) according to type. This in vitro study aimed to evaluate the surface properties and cariogenic biofilm formation in microhybrid and nanohybrid RCs after immersion in different beverages. The effects of four beverages (distilled water-control, tea, coffee, and cola) on two RCs (microhybrid and nanohybrid) were evaluated. Changes in the surface properties were evaluated for each group using surface roughness measurement (n = 10), scanning electron microscopy (SEM) (n = 4) observation, and energy-dispersive X-ray spectroscopy (EDX) (n = 5) analysis. In vitro Streptococcus mutans biofilm formation on the specimens of each group was determined using confocal laser scanning microscopy and SEM analysis (n = 14). The data were analyzed using two-way analysis of variance, with Bonferroni as a post-hoc test and Pearson's correlation (p < .05). Microhybrid RC presented more surface roughness (p = .014) and cariogenic biofilm formation (p = .040). The surface roughness (F = 0.733, p = .536) and cariogenic biofilm formation (F = 1.685, p = .181) values were not affected by the beverages. However, according to qualitative SEM and EDX measurements, these parameters varied depending on the beverage groups. No correlation was found between surface roughness and cariogenic biofilm formation (r = 0.135, p = .287). Microhybrid RCs had a rougher surface and a higher amount of cariogenic biofilm formation than nanohybrid RCs after being subjected to different beverages.
Collapse
Affiliation(s)
- Ayşegül Kurt
- Department of Prosthodontics, Faculty of Dentistry, Trakya University, Edirne, Turkey
| | - Esra Özyurt
- Department of Restorative Dentistry, Faculty of Dentistry, Trakya University, Edirne, Turkey
| | - Nursen Topcuoğlu
- Department of Oral Microbiology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
26
|
Khalid S, Gao A, Wang G, Chu PK, Wang H. Tuning surface topographies on biomaterials to control bacterial infection. Biomater Sci 2021; 8:6840-6857. [PMID: 32812537 DOI: 10.1039/d0bm00845a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial contamination and subsequent formation of biofilms frequently cause failure of surgical implants and a good understanding of the bacteria-surface interactions is vital to the design and safety of biomaterials. In this review, the physical and chemical factors that are involved in the various stages of implant-associated bacterial infection are described. In particular, topographical modification strategies that have been employed to mitigate bacterial adhesion via topographical mechanisms are summarized and discussed comprehensively. Recent advances have improved our understanding about bacteria-surface interactions and have enabled biomedical engineers and researchers to develop better and more effective antibacterial surfaces. The related interdisciplinary efforts are expected to continue in the quest for next-generation medical devices to attain the ultimate goal of improved clinical outcomes and reduced number of revision surgeries.
Collapse
Affiliation(s)
- Saud Khalid
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | | | | | | | | |
Collapse
|
27
|
Çakmak G, Subaşı MG, Yilmaz B. Effect of thermocycling on the surface properties of resin-matrix CAD-CAM ceramics after different surface treatments. J Mech Behav Biomed Mater 2021; 117:104401. [PMID: 33652235 DOI: 10.1016/j.jmbbm.2021.104401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To evaluate the effect of thermocycling on the water contact angle (WCA), surface roughness (SR), and microhardness (MH) of resin-matrix computer-assisted design and computer-assisted manufacturing (CAD-CAM) ceramics after different surface treatments (conventional polishing or 2 different surface sealants). MATERIAL AND METHODS Two different types of resin-matrix CAD-CAM ceramics; a nanoparticle-filled resin (CeraSmart; CS) and a resin nanoceramic (Lava Ultimate; LU) were tested. Rectangular-shaped plates (1 mm-thick) were divided into 3 groups (n = 8) in terms of surface treatment methods applied: conventional polishing (control) or 2 surface sealants (Optiglaze (OG) and Palaseal (PS)). Scanning electron microscope images ( × 1000 and × 700 magnifications) of each material were taken from 2 additional specimens before surface treatments. After surface treatments, WCAs of deionized water, SR, and MH values of specimens were measured. All specimens were subjected to 5000 thermocycling and measurements were repeated. SR, WCA, and MH data before and after thermocycling were compared by using a 2-way ANOVA (α=.05). RESULTS A significant interaction was found between the surface treatment and the material for WCA after thermocycling (P < .001), for SR before thermocycling (P = .014), and for MH both before and after thermocycling (P < .001). SEM images before surface treatments revealed that the surface of CS was mechanically rougher with a more microretentive topography compared with the surface of LU. No significant correlation was found between SR and WCA (P > 0.05). CONCLUSIONS Thermocycling affected the SR, MH, and WCA of all resin-matrix CAD-CAM ceramics.
Collapse
Affiliation(s)
- Gülce Çakmak
- Department of Prosthodontics, Istanbul Okan University Faculty of Dentistry, Istanbul, Turkey and ITI Scholar, Division of Postdoctoral and Research, National Autonomous University of Mexico, Mexico City, Mexico.
| | - Meryem Gülce Subaşı
- Department of Prosthodontics, Kütahya Health Sciences University Faculty of Dentistry, Kütahya, Turkey
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Restorative and Prosthetic Dentistry, The Ohio State University, Ohio, USA
| |
Collapse
|
28
|
Surface roughness of high-performance polymers used for fixed implant-supported prostheses. J Prosthet Dent 2021; 126:254.e1-254.e6. [PMID: 33583619 DOI: 10.1016/j.prosdent.2020.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022]
Abstract
STATEMENT OF PROBLEM High-performance polymers have been recommended by their manufacturers as a framework material for implant-supported fixed prostheses. However, little is known about the surface roughness of high-performance polymers in different compositions and whether they require layering with a composite resin or acrylic resin on the tissue surface. PURPOSE The purpose of this in vitro study was to evaluate the surface roughness of different computer-aided design and computer-aided manufacture (CAD-CAM) high-performance polymers and the effect of polishing on their surface roughness. MATERIAL AND METHODS Seventy high-performance polymer specimens (n=10) for 4 different polyetheretherketone (PEEK) brands (BRE, CP, ZZ, J), 1 polyetherketoneketone (PEKK) (PK), and 2 different fiber-reinforced composite resin (FRC) materials (T, TR) were milled from 7×8×30-mm CAD-CAM blocks. The surface roughness (Ra) of each specimen was measured on the same surfaces after milling (baseline) and after polishing by using a contact profilometer. Two-way repeated measures ANOVA (MIXED procedure) and the Bonferroni corrected t test (α=.05) were used to analyze the surface roughness data. RESULTS No significant differences were found among high-performance polymers when the baseline surface roughness measurements of the materials were compared (P>.05). All materials (BRE, PK, CP, T, TR, ZZ), except for a PEEK material (J) (P<.05), had no significant differences in their surface roughness before and after polishing. After polishing, the surface roughness of the J PEEK material was higher than that of CP, PK, T, and ZZ (P<.05). CONCLUSIONS The surface roughness of high-performance polymers in different compositions after milling was similar. Polishing increased the surface roughness of only one PEEK (J) material. All surface roughness values were above the clinical acceptability threshold of 0.2 μm.
Collapse
|
29
|
Bilgili Can D, Dündar A, Barutçugil Ç, Koyuncu Özyurt Ö. Evaluation of surface characteristic and bacterial adhesion of low-shrinkage resin composites. Microsc Res Tech 2021; 84:1783-1793. [PMID: 33586287 DOI: 10.1002/jemt.23735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 11/10/2022]
Abstract
This study aimed to examine the surface characteristics of low shrinkage composites and adhesion of Streptococcus mutans and Streptococcus mitis to these materials. Control material (glass) and three low shrinkage composites (Charisma Diamond, Kalore GC, Beatiful II LS) were used. After polishing procedure was applied to composite specimens, surface roughness (SR), surface free energy (SFE), and contact angle measurements were performed. Surfaces of composite were analyzed using scanning electron microscope and energy-dispersive X-ray spectroscopy. After pellicle formation with artificial saliva, S. mutans and S. mitis biofilms were incubated in 5% CO2 for 24 h at 37°C and were analyzed using confocal laser scanning microscopy. The lowest SR and highest SFE values were found in the control group. While the contact angle of control was statistically lower than composites, statistically difference was not found between composite groups. S. mutans adhesion of composites was significantly lower than control group, but there was no significant difference between composites. S. mitis adhesion of all groups was statistically similar. SR did not affect the S. mutans and S. mitis adhesion. Less adherence of S. mutans to low shrinkage composites was associated with low SFE and high contact angle values. Even though the highest SR was observed in the Charisma Diamond, no difference was found between the composites in terms of bacterial adhesion.
Collapse
Affiliation(s)
- Dilber Bilgili Can
- Department of Restorative Dentistry, Faculty of Dentistry, Yüzüncü Yıl University, Van, Turkey
| | - Ayşe Dündar
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Çağatay Barutçugil
- Department of Restorative Dentistry, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Özlem Koyuncu Özyurt
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
30
|
Boyd JD, Stromberg AJ, Miller CS, Grady ME. Biofilm and cell adhesion strength on dental implant surfaces via the laser spallation technique. Dent Mater 2021; 37:48-59. [PMID: 33208265 PMCID: PMC7775913 DOI: 10.1016/j.dental.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The aims of this study are to quantify the adhesion strength differential between an oral bacterial biofilm and an osteoblast-like cell monolayer to a dental implant-simulant surface and develop a metric that quantifies the biocompatible effect of implant surfaces on bacterial and cell adhesion. METHODS High-amplitude short-duration stress waves generated by laser pulse absorption are used to spall bacteria and cells from titanium substrates. By carefully controlling laser fluence and calibration of laser fluence with applied stress, the adhesion difference between Streptococcus mutans biofilms and MG 63 osteoblast-like cell monolayers on smooth and rough titanium substrates is obtained. The ratio of cell adhesion strength to biofilm adhesion strength (i.e., Adhesion Index) is determined as a nondimensionalized parameter for biocompatibility assessment. RESULTS Adhesion strength of 143 MPa, with a 95% C.I. (114, 176), is measured for MG 63 cells on smooth titanium and 292 MPa, with a 95% C.I. (267, 306), on roughened titanium. Adhesion strength for S. mutans on smooth titanium is 320 MPa, with a 95% C.I. (304, 333), and remained relatively constant at 332 MPa, with a 95% C.I. (324, 343), on roughened titanium. The calculated Adhesion Index for smooth titanium is 0.451, with a 95% C.I. (0.267, 0.622), which increased to 0.876, with a 95% C.I. (0.780, 0.932), on roughened titanium. SIGNIFICANCE The laser spallation technique provides a platform to examine the tradeoffs of adhesion modulators on both biofilm and cell adhesion. This tradeoff is characterized by the Adhesion Index, which is proposed to aid biocompatibility screening and could help improve implantation outcomes. The Adhesion Index is implemented to determine surface factors that promote favorable adhesion of cells greater than biofilms. Here, an Adhesion Index ≫ 1 suggests favorable biocompatibility.
Collapse
Affiliation(s)
- J D Boyd
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
| | - A J Stromberg
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - C S Miller
- Department of Oral Health Practice, College of Dentistry, University of Kentucky, Lexington, KY, USA; Department of Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - M E Grady
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
31
|
Adhesion of Streptococcus mutans on remineralized enamel surface induced by poly(amido amine) dendrimers. Colloids Surf B Biointerfaces 2021; 197:111409. [DOI: 10.1016/j.colsurfb.2020.111409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 11/21/2022]
|
32
|
Yin W, Xu S, Wang Y, Zhang Y, Chou SH, Galperin MY, He J. Ways to control harmful biofilms: prevention, inhibition, and eradication. Crit Rev Microbiol 2020; 47:57-78. [PMID: 33356690 DOI: 10.1080/1040841x.2020.1842325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biofilms are complex microbial architectures that encase microbial cells in a matrix comprising self-produced extracellular polymeric substances. Microorganisms living in biofilms are much more resistant to hostile environments than their planktonic counterparts and exhibit enhanced resistance against the microbicides. From the human perspective, biofilms can be classified into beneficial, neutral, and harmful. Harmful biofilms impact food safety, cause plant and animal diseases, and threaten medical fields, making it urgent to develop effective and robust strategies to control harmful biofilms. In this review, we discuss various strategies to control biofilm formation on infected tissues, implants, and medical devices. We classify the current strategies into three main categories: (i) changing the properties of susceptible surfaces to prevent biofilm formation; (ii) regulating signalling pathways to inhibit biofilm formation; (iii) applying external forces to eradicate the biofilm. We hope this review would motivate the development of innovative and effective strategies for controlling harmful biofilms.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Siyang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yuling Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Shan-Ho Chou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
33
|
Human blood plasma factors affect the adhesion kinetics of Staphylococcus aureus to central venous catheters. Sci Rep 2020; 10:20992. [PMID: 33268809 PMCID: PMC7710740 DOI: 10.1038/s41598-020-77168-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/27/2020] [Indexed: 01/03/2023] Open
Abstract
Staphylococcus aureus is a common cause of catheter-related blood stream infections (CRBSI). The bacterium has the ability to form multilayered biofilms on implanted material, which usually requires the removal of the implanted medical device. A first major step of this biofilm formation is the initial adhesion of the bacterium to the artificial surface. Here, we used single-cell force spectroscopy (SCFS) to study the initial adhesion of S. aureus to central venous catheters (CVCs). SCFS performed with S. aureus on the surfaces of naïve CVCs produced comparable maximum adhesion forces on three types of CVCs in the low nN range (~ 2–7 nN). These values were drastically reduced, when CVC surfaces were preincubated with human blood plasma or human serum albumin, and similar reductions were observed when S. aureus cells were probed with freshly explanted CVCs withdrawn from patients without CRBSI. These findings indicate that the initial adhesion capacity of S. aureus to CVC tubing is markedly reduced, once the CVC is inserted into the vein, and that the risk of contamination of the CVC tubing by S. aureus during the insertion process might be reduced by a preconditioning of the CVC surface with blood plasma or serum albumin.
Collapse
|
34
|
Cavitt TB, Carlisle JG, Dodds AR, Faulkner RA, Garfield TC, Ghebranious VN, Hendley PR, Henry EB, Holt CJ, Lowe JR, Lowry JA, Oskin DS, Patel PR, Smith D, Wei W. Thermodynamic Surface Analyses to Inform Biofilm Resistance. iScience 2020; 23:101702. [PMID: 33205020 PMCID: PMC7649285 DOI: 10.1016/j.isci.2020.101702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/01/2022] Open
Abstract
Biofilms are the habitat of 95% of bacteria successfully protecting bacteria from many antibiotics. However, inhibiting biofilm formation is difficult in that it is a complex system involving the physical and chemical interaction of both substrate and bacteria. Focusing on the substrate surface and potential interactions with bacteria, we examined both physical and chemical properties of substrates coated with a series of phenyl acrylate monomer derivatives. Atomic force microscopy (AFM) showed smooth surfaces often approximating surgical grade steel. Induced biofilm growth of five separate bacteria on copolymer samples comprising varying concentrations of phenyl acrylate monomer derivatives evidenced differing degrees of biofilm resistance via optical microscopy. Using goniometric surface analyses, the van Oss-Chaudhury-Good equation was solved linear algebraically to determine the surface energy profile of each polymerized phenyl acrylate monomer derivative, two bacteria, and collagen. Based on the microscopy and surface energy profiles, a thermodynamic explanation for biofilm resistance is posited.
Collapse
Affiliation(s)
- T. Brian Cavitt
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jasmine G. Carlisle
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Alexandra R. Dodds
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Rebecca A. Faulkner
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Tyson C. Garfield
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Verena N. Ghebranious
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Phillip R. Hendley
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Emily B. Henry
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Charles J. Holt
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jordan R. Lowe
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jacob A. Lowry
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - D. Spencer Oskin
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Pooja R. Patel
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Devin Smith
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Wenting Wei
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| |
Collapse
|
35
|
Effects of Various Polishing Techniques on the Surface Characteristics of the Ti-6Al-4V Alloy and on Bacterial Adhesion. COATINGS 2020. [DOI: 10.3390/coatings10111057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ti-6Al-4V, although widely used in dental materials, causes peri-implant inflammation due to the long-term accumulation of bacteria around the implant, resulting in bone loss and eventual failure of the implant. This study aims to overcome the problem of dental implant infection by analyzing the influence of Ti-6Al-4V surface characteristics on the quantity of accumulated bacteria. Ti-6Al-4V specimens, each with different surface roughness are produced by mechanical, chemical, and electrolytic polishing. The surface roughness, surface contact angle, surface oxygen content, and surface structure were measured via atomic force microscopy (AFM), laser scanning confocal microscopy (LSCM), drop shape analysis (using sessile drop), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The micro and macro surface roughness are 10.33–120.05 nm and 0.68–2.34 μm, respectively. The surface X direction and Y direction contact angle are 21.38°–96.44° and 18.37°–92.72°, respectively. The surface oxygen content is 47.36–59.89 at.%. The number of colonies and the optical density (OD) are 7.87 × 106–17.73 × 106 CFU/mL and 0.189–0.245, respectively. The bacterial inhibition were the most effective under the electrolytic polishing of Ti-6Al-4V. The electrolytic polishing of Ti-6Al-4V exhibited the best surface characteristics: the surface roughness of 10 nm, surface contact angle of 92°, and surface oxygen content of 54 at.%, respectively. This provides the best surface treatment of Ti-6Al-4V in dental implants.
Collapse
|
36
|
Ismail HS, Ali AI, Abo El-Ella MA, Mahmoud SH. Effect of different polishing techniques on surface roughness and bacterial adhesion of three glass ionomer-based restorative materials: In vitro study. J Clin Exp Dent 2020; 12:e620-e625. [PMID: 32905005 PMCID: PMC7462382 DOI: 10.4317/jced.56616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background Although many reports concluded that polishing of glass ionomers is crucial for smoother surface and limiting the adhesion of cariogenic bacteria, there is no specific surface treatment protocol recommended. A novel material in the same category was released recently claimed to have surface smoothness comparable to resin composite and bacterial adhesion less than other types of glass ionomers. In this study, different polishing systems were tested with three glass ionomers one of them is the novel material to find the most appropriate polishing protocol. Objectives: To evaluate and compare the surface roughness and bacterial adhesion to resin modified glass ionomer, bioactive ionic resin and conventional glass ionomer restorative materials after different polishing protocols in vitro. Material and Methods The materials tested includes resin modified glass ionomer, bioactive ionic resin, and conventional glass ionomer. The polishing protocols were divided into four groups: group 1 = (Mylar matrix strips, Control), group 2 = (one-step, PoGo), group 3 = (two-step, Prisma Gloss) and group 4 = (three-step, Sof-Lex). From each material, eleven cylindrical specimens were prepared for each group according to the manufacturers' instructions. The surface roughness for all specimens was measured using atomic force microscope in tapping mode. the same specimens were subjected to bacterial adhesion testing after being coated with artificial saliva. Data were analyzed with two-way analysis of variance followed by Post hoc multiple comparisons. Results The highest Ra and S. mutans adhesion values were recorded for all materials in two-step group. The lowest Ra and S. mutans adhesion values were seen in one-step and three step groups. Conclusions One-step polishing system was more effective and may be preferable for polishing of the three studied glass ionomer-based materials compared to two-step and three-step systems. Key words:Activa bioactive restorative, glass ionomer, surface roughness, bacterial adhesion, surface treatment.
Collapse
Affiliation(s)
- Hoda S Ismail
- Assistant Lecturer, Operative Dentistry Dept, Faculty of Dentistry, Mansoura University, Egypt
| | - Ashraf I Ali
- Associate Professor, Operative Dentistry Dept, Faculty of Dentistry, Mansoura University, Egypt
| | | | - Salah H Mahmoud
- Clinical Professor and Chairman of Operative Dentistry, Faculty of Dentistry, Mansoura University, Egypt
| |
Collapse
|
37
|
Abstract
Antibiotic resistance is a global human health threat, causing routine treatments of bacterial infections to become increasingly difficult. The problem is exacerbated by biofilm formation by bacterial pathogens on the surfaces of indwelling medical and dental devices that facilitate high levels of tolerance to antibiotics. The development of new antibacterial nanostructured surfaces shows excellent prospects for application in medicine as next-generation biomaterials. The physico-mechanical interactions between these nanostructured surfaces and bacteria lead to bacterial killing or prevention of bacterial attachment and subsequent biofilm formation, and thus are promising in circumventing bacterial infections. This Review explores the impact of surface roughness on the nanoscale in preventing bacterial colonization of synthetic materials and categorizes the different mechanisms by which various surface nanopatterns exert the necessary physico-mechanical forces on the bacterial cell membrane that will ultimately result in cell death.
Collapse
|
38
|
Möhlhenrich SC, Alexandridis C, Peters F, Kniha K, Modabber A, Danesh G, Fritz U. Three-dimensional evaluation of bracket placement accuracy and excess bonding adhesive depending on indirect bonding technique and bracket geometry: an in-vitro study. Head Face Med 2020; 16:17. [PMID: 32741369 PMCID: PMC7397578 DOI: 10.1186/s13005-020-00231-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed at comparing bracket placement and excess bonding adhesive depending on different indirect bonding (IDB) techniques and bracket geometries. METHODS Four hundred eighty brackets without hook (WOH) and 360 with hook (WH) were placed on 60 plaster models. Three IDB techniques were tested: polyvinyl-siloxane vacuum-form (PVS-VF), polyvinyl-siloxane putty (PVS-putty), and translucence double-polyvinyl-siloxane (double-PVS). PVS-VF and PVS-putty were combined with chemically, and double-PVS was combined with light cured bonding adhesive. Virtual images of models before and after bracket transfer were generated, and computerized images were compared. Linear, angular deviations, and excess bonding adhesive were measured. RESULTS Linear differences between the three groups were obtained for PVS-VF (WH: 1.08, SD 0.50 mm; WOH: 0.86, SD 0.25 mm), PVS-putty (WH: 0.73, SD 0.51 mm; WOH: 0.58, SD 0.28 mm), and double-PVS (WH: 0.65, SD 0.45 mm; WOH: 0.59, SD 0.33 mm) (P < 0.001). Hooks affected bracket placement accuracy in PVS-VF (P < 0.001) and PVS-putty (P = 0.029). Angular differences were observed for brackets WOH between the PVS-VF (0.64, SD 0.48°) and double-PVS group (0.92, SD 0.76°) (P < 0.001) and within double-PVS group (WH: 0.66, SD 0.51° vs. WOH: 0.92, SD 0.76°, P < 0.001). Highest amount of excess adhesive was obtained for PVS-putty group (WH: 6.54, SD 5.31 mm 2). CONCLUSIONS The double-PVS group revealed promising results with respect to transfer accuracy, whereas the PVS-VF group provided least excess bonding adhesive. Basically, hooks lead to lower precision and higher excess bonding adhesive. PVS trays for IDB generate high bracket placement accuracy. PVS-putty is the easiest to handle with and also the cheapest, but leads to large excess bonding adhesive, especially in combination with hooked brackets or tubes.
Collapse
Affiliation(s)
| | - Constantin Alexandridis
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Florian Peters
- Department of Oral and Maxillofacial Surgery, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Kristian Kniha
- Department of Oral and Maxillofacial Surgery, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Golamreza Danesh
- Department of Orthodontics, University of Witten/Herdecke, Alfred-Herrhausen Str. 45, 58455, Witten, Germany
| | - Ulrike Fritz
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
39
|
Vyas N, Sammons RL, Kuehne SA, Johansson C, Stenport V, Wang QX, Walmsley AD. The effect of standoff distance and surface roughness on biofilm disruption using cavitation. PLoS One 2020; 15:e0236428. [PMID: 32730291 PMCID: PMC7392287 DOI: 10.1371/journal.pone.0236428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/06/2020] [Indexed: 12/02/2022] Open
Abstract
Effective biofilm removal from surfaces in the mouth is a clinical challenge. Cavitation bubbles generated around a dental ultrasonic scaler are being investigated as a method to remove biofilms effectively. It is not known how parameters such as surface roughness and instrument distance from biofilm affect the removal. We grew Strepotococcus sanguinis biofilms on coverslips and titanium discs with varying surface roughness (between 0.02-3.15 μm). Experimental studies were carried out for the biofilm removal using high speed imaging and image analysis to calculate the area of biofilm removed at varying ultrasonic scaler standoff distances from the biofilm. We found that surface roughness up to 2 μm does not adversely affect biofilm removal but a surface roughness of 3 μm caused less biofilm removal. The standoff distance also has different effects depending on the surface roughness but overall a distance of 1 mm is just as effective as a distance of 0.5 mm. The results show significant biofilm removal due to an ultrasonic scaler tip operating for only 2s versus 15-60s in previous studies. The technique developed for high speed imaging and image analysis of biofilm removal can be used to investigate physical biofilm disruption from biomaterial surfaces in other fields.
Collapse
Affiliation(s)
- N. Vyas
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - R. L. Sammons
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - S. A. Kuehne
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - C. Johansson
- Department of Prosthetic Dentistry/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - V. Stenport
- Department of Prosthetic Dentistry/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Q. X. Wang
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, United Kingdom
| | - A. D. Walmsley
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
40
|
Functional Coatings for Orthodontic Archwires-A Review. MATERIALS 2020; 13:ma13153257. [PMID: 32707959 PMCID: PMC7435379 DOI: 10.3390/ma13153257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023]
Abstract
In this literature review, the current state-of-art of coatings for orthodontic archwires’ increasing antimicrobial and relevant mechanical properties, such as surface topography, friction or corrosion resistance, has been presented. There is a growing request for orthodontic appliances, therefore, most researchers focus on innovative functional coatings to cover orthodontic archwires and brackets. Orthodontic appliances are exposed to the unfavorable oral cavity environment, consisting of saliva flow, food, temperature and appliance force. As a consequence, friction or biocorrosion processes may occur. This can affect the functionality of the orthodontic elements, causing changes in their microstructure, surface topography and mechanical properties. Furthermore, the material which the orthodontic archwire is made from is of particular importance in terms of the possible corrosion resistance. This is especially important for patients who are hypersensitive to metals, for example, nickel, which causes allergic reactions. In the literature, there are some studies, carried out in vitro and in vivo, mostly examining the antibacterial, antiadherent, mechanical and roughness properties of functional coatings. They are clinically acceptable but still some properties have to be studied and be developed for better results. In this paper the influence of additives such as nanoparticles of silver and nitrogen-doped TiO2 applied on orthodontic brackets by different methods on the antimicrobial properties was analyzed. Future improvement of coating techniques as well as modification of the archwire composition can reduce the release of nickel ions and eliminate friction and bacterial adhesion problems, thus accelerating treatment time.
Collapse
|
41
|
Liang J, Liu F, Zou J, Xu HHK, Han Q, Wang Z, Li B, Yang B, Ren B, Li M, Peng X, Li J, Zhang S, Zhou X, Cheng L. pH-Responsive Antibacterial Resin Adhesives for Secondary Caries Inhibition. J Dent Res 2020; 99:1368-1376. [PMID: 32600095 DOI: 10.1177/0022034520936639] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Secondary caries caused by dental plaque is one of the major reasons for the high failure rate of resin composite restoration. Although antimicrobial agent-modified dental restoration systems have been researched for years, few reported intelligent anticaries materials could respond to the change of the oral environment and help keep oral eubiosis. Herein, we report tertiary amine (TA)-modified resin adhesives (TA@RAs) with pH-responsive antibacterial effect to reduce the occurrence of secondary caries. Two kinds of newly designed TA monomers were synthesized: DMAEM (dodecylmethylaminoethyl methacrylate) and HMAEM (hexadecylmethylaminoethyl methacrylate). In the minimum inhibitory concentration and minimum bactericidal concentration test against Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii, they exhibited antibacterial effect only in acidic medium, which preliminarily verified the acid-activated effect of TAs. Then DMAEM and HMAEM were incorporated into adhesive resin at the mass fraction of 5%, yielding TA@RAs. In vivo and in vitro tests showed that the mechanical properties and biocompatibility of the adhesive were not affected. A S. mutans biofilm model in acidic and neutral medium was used and confirmed that TA@RAs could respond to the critical pH value of de-/remineralization and acquire reversible antibiofilm effect via the protonation and deprotonation of TAs. Meanwhile, the stability of antibacterial effect was confirmed via a 5-d pH-cycling experiment and a saliva-derived biofilm aging model. Furthermore, 16S rRNA gene sequencing showed that TA@RAs could increase the diversity of the saliva-derived biofilms, which implied that the novel materials could help regulate the microbial community to a healthy one. Finally, an in vitro demineralization model and in vivo secondary caries model were applied and demonstrated that TA@RAs could prevent secondary dental caries effectively. In summary, the reversible pH-responsive and non-drug release antibacterial resin adhesives ingeniously overcome the defect of the present materials and hold great promise for clinical application.
Collapse
Affiliation(s)
- J Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - F Liu
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, China
| | - J Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - H H K Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA.,Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Q Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Z Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - B Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - B Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - B Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - M Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - X Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - J Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - S Zhang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, China
| | - X Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - L Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Lee KH, Lee JY, Roy PK, Mizan MFR, Hossain MI, Park SH, Ha SD. Viability of Salmonella Typhimurium biofilms on major food-contact surfaces and eggshell treated during 35 days with and without water storage at room temperature. Poult Sci 2020; 99:4558-4565. [PMID: 32868000 PMCID: PMC7598110 DOI: 10.1016/j.psj.2020.05.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/22/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022] Open
Abstract
Salmonella is one of the main foodborne pathogens that affect humans and farm animals. The Salmonella genus comprises a group of food-transmitted pathogens that cause highly prevalent foodborne diseases throughout the world. The aim of this study was to appraise the viability of Salmonella Typhimurium biofilm under water treatment at room temperature on different surfaces, specifically stainless steel (SS), plastic (PLA), rubber (RB), and eggshell (ES). After 35 D, the reduction of biofilm on SS, PLA, RB, and ES was 3.35, 3.57, 3.22, and 2.55 log CFU/coupon without water treatment and 4.31, 4.49, 3.50, and 1.49 log CFU/coupon with water treatment, respectively. The dR value (time required to reduce bacterial biofilm by 99% via Weibull modeling) of S. Typhimurium without and with water treatment was the lowest on PLA (176.86 and 112.17 h, respectively) and the highest on ES (485.37 and 2,436.52 h, respectively). The viability of the S. Typhimurium on ES and the 3 food-contact surfaces was monitored for 5 wk (35 D). The results of this study provide valuable information for the control of S. Typhimurium on different surfaces in the food industry, which could reduce the risk to consumers.
Collapse
Affiliation(s)
- Ki-Hoon Lee
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea
| | - Ji-Young Lee
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea
| | - Md Iqbal Hossain
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyeonggi-do 456-756, South Korea.
| |
Collapse
|
43
|
Świetlicka I, Kuc D, Świetlicki M, Arczewska M, Muszyński S, Tomaszewska E, Prószyński A, Gołacki K, Błaszczak J, Cieślak K, Kamiński D, Mielnik-Błaszczak M. Near-Surface Studies of the Changes to the Structure and Mechanical Properties of Human Enamel under the Action of Fluoride Varnish Containing CPP-ACP Compound. Biomolecules 2020; 10:biom10050765. [PMID: 32422985 PMCID: PMC7277937 DOI: 10.3390/biom10050765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
Changes to the features of the enamel surface submitted to induced demineralisation and subsequent remineralisation were studied. The in vitro examination was conducted on polished slices of human molar teeth, divided in four groups: the untreated control (n = 20), challenged by a demineralisation with orthophosphoric acid (H3PO4) (n = 20), and challenged by a demineralisation following remineralisation with fluoride (F) varnish containing casein phosphopeptides (CPP) and amorphous calcium phosphate (ACP) compounds (n = 20). The specimens’ enamel surfaces were subjected to analysis of structure, molecular arrangement, mechanical features, chemical composition, and crystalline organization of apatite crystals. Specimens treated with acid showed a significant decrease in crystallinity, calcium, and phosphorus levels as well as mechanical parameters, with an increase in enamel surface roughness and degree of carbonates when compared to the control group. Treatment with fluoride CPP–ACP varnish provided great improvements in enamel arrangement, as the destroyed hydroxyapatite structure was largely rebuilt and the resulting enamel surface was characterised by greater regularity, higher molecular and structural organisation, and a smoother surface compared to the demineralised one. In conclusion, this in vitro study showed that fluoride CPP–ACP varnish, by improving enamel hardness and initiating the deposition of a new crystal layer, can be an effective remineralising agent for the treatment of damaged enamel.
Collapse
Affiliation(s)
- Izabela Świetlicka
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence: (I.Ś.); (M.A.)
| | - Damian Kuc
- Chair and Department of Paediatric Dentistry, Medical University of Lublin, 20-059 Lublin, Poland; (D.K.); (M.M.-B.)
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (M.Ś.); (A.P.)
| | - Marta Arczewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence: (I.Ś.); (M.A.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Adam Prószyński
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; (M.Ś.); (A.P.)
| | - Krzysztof Gołacki
- Department of Mechanical Engineering and Automatics, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| | | | - Krystian Cieślak
- Institute of Renewable Energy Engineering, Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Daniel Kamiński
- Department of Crystallography, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Maria Mielnik-Błaszczak
- Chair and Department of Paediatric Dentistry, Medical University of Lublin, 20-059 Lublin, Poland; (D.K.); (M.M.-B.)
| |
Collapse
|
44
|
Keleştemur S, Çobandede Z, Çulha M. Biofilm formation of clinically important microorganisms on 2D and 3D poly (methyl methacrylate) substrates: A surface-enhanced Raman scattering study. Colloids Surf B Biointerfaces 2020; 188:110765. [DOI: 10.1016/j.colsurfb.2019.110765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/05/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
|
45
|
Wang R, Deng L, Lei Z, Wu P, Wang Y, Hao L, Li T, Jiang L. Nanoscale adhesion forces of glucosyltransferase B and C genes regulated Streptococcal mutans probed by AFM. Mol Oral Microbiol 2020; 35:49-55. [PMID: 31957978 DOI: 10.1111/omi.12277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Abstract
Glucosyltransferases (Gtfs), represented by GtfB and GtfC, are important virulence factors of Streptococcus mutans and the major etiologic pathogens of tooth decay. However, the individual roles of gtfB and gtfC in the initial attachment of S. mutans are not known. We used atomic force microscopy to explore the contribution of gtfB and gtfC, as well as enamel-surface roughness, on the initial attachment of S. mutans. Adhesion forces of four S. mutans strains (wild-type, ΔgtfB, ΔgtfC, and ΔgtfBC), onto etched enamel surfaces, were determined. Force curves showed that, with increasing etching time from 0 to 10 s, the forces of all strains increased accordingly with acid-exposure time, the adhesion forces of wild-type strains were significantly greater than those of mutant strains (p < .05), and the forces of the three mutants were similar (p < .05). When the etching time was increased from 10 to 30 s, difference in force between 20 and 30 s was not observed, and adhesion forces among ΔgtfB, ΔgtfC, and wild-type strains were not significantly different when the etching time was >20 s (p > .05). These data suggest that the roughness and morphology of enamel surfaces may have a significant influence upon the initial attachment of bacteria, and that gtfB and gtfC are essential for the adhesion activity of bacteria. Furthermore, gtfB seems to be more important than gtfC for bacterial-biofilm formation, and gtfB inactivation is an effective strategy to inhibit the virulence of cariogenic biofilms.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ling Deng
- Nursing school, Gui Zhou University of Traditional Chinese Medicine, Gui yang, PR China
| | - Zixue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peiyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yigan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tianjiao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Correlation between the normal position of a particle on a rough surface and the van der Waals force. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Świetlicka I, Arczewska M, Muszyński S, Tomaszewska E, Świetlicki M, Kuc D, Mielnik-Błaszczak M, Gołacki K, Cieślak K. Surface analysis of etched enamel modified during the prenatal period. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117271. [PMID: 31226619 DOI: 10.1016/j.saa.2019.117271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Structural changes in the enamel surface subjected to induced demineralization and assessment of the influence of prenatal administration of β-hydroxy β-methylbutyrate (HMB) on enamel resistance were investigated. The examination was conducted on five sets of teeth from one-day-old spiny mice (Acomys cahirinus), one from the control and four from the experimental groups. Surface structure, molecular arrangement and crystalline organization of offspring's enamel both before and after etching were studied. Obtained results revealed that the physical and molecular arrangements of enamel were altered after the prenatal supplementation, and significantly affected its final structure and resistance against acid action. The enamel of incisors from the offspring which mothers were supplemented with HMB in a high dose (0.2 g/kgbw) and in the late period of gestation (26th-39th day) showed the highest endurance against acid treatment demonstrating only vestigial changes in their surface structure after acid action. Comparing to the remaining experimental groups, it was characterized by a reduced roughness and fractal dimension, significantly lower degree of demineralization and simultaneous lack of notable differences in the Raman spectra before and after acid etching. The results suggest that an increased enamel resiliency was the effect of a relatively high degree of mineralization and higher organization of the surface.
Collapse
Affiliation(s)
- Izabela Świetlicka
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Marta Arczewska
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland.
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Damian Kuc
- Department of Paedodontics, Medical University of Lublin, Lublin, Poland
| | | | - Krzysztof Gołacki
- Department of Mechanical Engineering and Automatics, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Krystian Cieślak
- Institute of Renewable Energy Engineering, Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland
| |
Collapse
|
48
|
Kurt A, Cilingir A, Bilmenoglu C, Topcuoglu N, Kulekci G. Effect of different polishing techniques for composite resin materials on surface properties and bacterial biofilm formation. J Dent 2019; 90:103199. [DOI: 10.1016/j.jdent.2019.103199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/08/2019] [Accepted: 09/21/2019] [Indexed: 11/28/2022] Open
|
49
|
Ma G, Tang Y, Zeng Q, Zheng J. On adhesion mechanism of salivary pellicle‐PDMS interface. BIOSURFACE AND BIOTRIBOLOGY 2019. [DOI: 10.1049/bsbt.2019.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Genlei Ma
- Tribology Research InstituteKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Yue Tang
- Tribology Research InstituteKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Qihang Zeng
- Tribology Research InstituteKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Jing Zheng
- Tribology Research InstituteKey Laboratory of Advanced Technologies of MaterialsMinistry of EducationSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| |
Collapse
|
50
|
Doll K, Yang I, Fadeeva E, Kommerein N, Szafrański SP, Bei der Wieden G, Greuling A, Winkel A, Chichkov BN, Stumpp NS, Stiesch M. Liquid-Infused Structured Titanium Surfaces: Antiadhesive Mechanism to Repel Streptococcus oralis Biofilms. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23026-23038. [PMID: 31173692 DOI: 10.1021/acsami.9b06817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To combat implant-associated infections, there is a need for novel materials which effectively inhibit bacterial biofilm formation. In the present study, the antiadhesive properties of titanium surface functionalization based on the "slippery liquid-infused porous surfaces" (SLIPS) principle were demonstrated and the underlying mechanism was analyzed. The immobilized liquid layer was stable over 13 days of continuous flow in an oral flow chamber system. With increasing flow rates, the surface exhibited a significant reduction in attached biofilm of both the oral initial colonizer Streptococcus oralis and an oral multispecies biofilm composed of S. oralis, Actinomyces naeslundii, Veillonella dispar, and Porphyromonas gingivalis. Using single cell force spectroscopy, reduced S. oralis adhesion forces on the lubricant layer could be measured. Gene expression patterns in biofilms on SLIPS, on control surfaces, and expression patterns of planktonic cultures were also compared. For this purpose, the genome of S. oralis strain ATCC 9811 was sequenced using PacBio Sequel technology. Even though biofilm cells showed clear changes in gene expression compared to planktonic cells, no differences could be detected between bacteria on SLIPS and on control surfaces. Therefore, it can be concluded that the ability of liquid-infused titanium to repel S. oralis biofilms is mainly due to weakened bacterial adhesion to the underlying liquid interface.
Collapse
Affiliation(s)
- Katharina Doll
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Ines Yang
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Elena Fadeeva
- Institute of Quantum Optics , Leibniz University of Hannover , Welfengarten 1 , 30167 Hannover , Germany
| | - Nadine Kommerein
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Gesa Bei der Wieden
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Boris N Chichkov
- Institute of Quantum Optics , Leibniz University of Hannover , Welfengarten 1 , 30167 Hannover , Germany
| | - Nico S Stumpp
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science , Hannover Medical School , Carl-Neuberg-Strasse 1 , 30625 Hannover , Germany
| |
Collapse
|