1
|
Ayata M, Albayrak H, Eraslan R. Does fast sintering affect the optical properties, fracture strength, and microstructure of monolithic zirconia? Odontology 2025:10.1007/s10266-025-01110-8. [PMID: 40293628 DOI: 10.1007/s10266-025-01110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
The purpose of this study was to examine the influence of fast sintering on the optical properties, fracture strength, and microstructure of monolithic zirconia (MZ) ceramics. After 20 disc-shaped and 4 square-shaped samples from the MZ block were machined in the CAM device, groups were created by the sintering procedure in accordance with the manufacturer's recommendations: Standard (Grup S; disc-shaped n = 10 square-shaped n = 2) and fast (Grup F; disc-shaped n = 10 square-shaped n = 2). Then, hydrothermal aging was applied to all samples. To calculate translucency, opalescence, and fluorescence values, the LabCh color data of the samples were defined using spectrophotometers. The disc samples were biaxially fracture tested, and the values were determined. The chemical content, grain size (GS), and phase composition of the square-shaped samples were analyzed, respectively. Since the grain size did not conform to the normal distribution, the Mann-Whitney U test was used for statistical analysis, and all other variables were analyzed by an independent sample t test (α = 0.05). The sintering procedure affected translucency, opalescence, fracture strength, and GS significantly (P < 0.05), but not fluorescence (P > 0.05). While both groups had similar crystal structures, there were some minor differences in chemical content. All samples had a higher fracture strength than the ISO 6872 standard recommends. The sintering procedure had no clinically significant effect on the optical properties of MZ. The fast sintering procedure of MZ can be recommended.
Collapse
Affiliation(s)
- Mustafa Ayata
- Private Practice, Ortoperio Oral and Dental Health Polyclinic, Kocasinan, Kayseri, Türkiye
| | - Haydar Albayrak
- Department of Prosthodontics, Faculty of Dentistry, Erciyes University, Melikgazi, Kayseri, Türkiye
| | - Ravza Eraslan
- Department of Prosthodontics, Faculty of Dentistry, Erciyes University, Melikgazi, Kayseri, Türkiye.
| |
Collapse
|
2
|
Boonbanyen A, Juntavee N, Juntavee A. Color Characteristic Alteration of Different Yttrium Oxide-Containing Multilayer Partially Stabilized Zirconia at Different Sintering Rates. Eur J Dent 2025. [PMID: 40267954 DOI: 10.1055/s-0045-1806929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Sintering influences the optical properties of zirconia. This study examined the effect of altering sintering rates on color characteristics of 3, 4, and 5 mol% yttria (Y)-containing multilayer zirconia.A total of 135 specimens (width × length × thickness = 11.2 × 20 × 1.5 mm) were prepared from multilayer (cervical [C], middle [M], and incisal [I]) 3Y, 4Y, and 5Y zirconia, and randomly sintered at regular (RS: 10 °C/min), fast (FS: 35 °C/min), and speed (SS: 70 °C/min) sintering (n = 15/group). Translucency parameter (TP00), contrast ratio (CR), opalescence parameter (OP), and color difference (∆E00) were evaluated with the CIEL*a*b* system. Microstructure, crystalline (monoclinic [m], tetragonal [t], and cubic [c]) phases, and surface roughness (Ra) were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and 3D-digital topography.ANOVA and Bonferroni comparisons were determined for significant differences (p < 0.05).Significant differences in TP00, CR, OP, and ∆E00 of zirconia types, layers, sintering rates, and their interactions were indicated (p < 0.05). Significant increases in TP00 and ∆E00, but decreases in CR and OP, upon rising the amount of Y (5Y > 4Y > 3Y), region (I > M > C), and speed sintering (SS > FS > RS) (p < 0.05) were observed. Nevertheless, the color alteration was within an acceptable threshold (∆E00 ≤ 1.8); Ra values: 3Y > 4Y > 5Y. SEM indicated a larger grain for 5Y > 4Y > 3Y. XRD indicated higher t-phase in 3Y, whereas higher c-phase in 5Y.Increasing translucency and color alteration, and decreasing contrast and opalescence were influenced by Y content (5Y > 4Y > 3Y), region (I > M > C), and sintering rate (SS > FS > RS). Nonetheless, color alterations were within acceptable limits, suggesting the speed sintering rate to produce better color characteristics of restoration.
Collapse
Affiliation(s)
- Atthasit Boonbanyen
- Division of Biomaterials and Prosthodontics Research, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Niwut Juntavee
- Department of Prosthodontics, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Apa Juntavee
- Division of Pediatric Dentistry, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Homa M, Schneider O, Neumann P, Endres L, Rafai N, Reich S, Wolfart S, Tuna T. Three-unit CAD/CAM-manufactured lithium disilicate FDPs after an average observation period of 120 months. J Dent 2025; 155:105625. [PMID: 39947581 DOI: 10.1016/j.jdent.2025.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
OBJECTIVE In recent decades, CAD/CAM-fabricated lithium disilicate restorations have become popular and have been approved for fixed dental protheses (FDPs) up to the second premolar since 2013. This multicenter follow-up study collected long-term clinical data on three-unit anterior and premolar FDPs made of lithium disilicate to evaluate the material's suitability over >10 years. METHODS Thirty-two patients received a total of 32 three-unit anterior or premolar monolithic lithium disilicate FDPs. In exceptional aesthetically demanding cases, the labial cut back technique was used for minimal additional veneering. The study was conducted at University Hospital Aachen and three external private dental practices. Failure was defined as any event leading to the loss of an FDP. The survival and success rates were calculated using the Kaplan-Meier method. At the last follow-up examination in 2023 and 2024, 17 of the 32 patients (53,1 %) were re-examined. RESULTS The average observation period was 10 years and the longest follow-up period was 15 years. The cumulative survival rate after 10 years was 84.4 %. In detail the five failures recorded were due to one fracture of the connector, one repeated loss of retention, two cases of persistent pain and one loss of an abutment tooth. The cumulative success rate was 75 %. CONCLUSION Within the limitations of this study, lithium disilicate for CAD/CAM manufacturing appears to be a reliable material for full-contour three-unit FDPs, provided that the most posterior abutment tooth does not extend beyond the second premolar and that minimum connector thicknesses are maintained. In aesthetically demanding cases, the labial cut back technique combined with additional veneering can be used. CLINICAL SIGNIFICANCE This study is one of the few to provide long-term data on the clinical performance of three-unit FDPs made from lithium disilicate, specifically examining cases with premolar abutments. The findings highlight the reliability of this material under the specified conditions.
Collapse
Affiliation(s)
- Martin Homa
- Department of Prosthodontics and Biomaterials, Centre of Implantology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Oliver Schneider
- Private Dental Practice, Äußere Plauensche Straße 1, 08056, Zwickau, Germany
| | - Peter Neumann
- Private Dental Practice, Karl-Marx-Straße 124, 12043, Berlin-Neukölln, Germany
| | - Lutz Endres
- Private Dental Practice, Schleckheimer Straße 18, 52076, Aachen, Germany
| | - Nicole Rafai
- Private Dental Practice, Schlossparkstr. 16, 52072, Aachen, Germany
| | - Sven Reich
- Department of Prosthodontics and Biomaterials, Centre of Implantology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Stefan Wolfart
- Department of Prosthodontics and Biomaterials, Centre of Implantology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Taskin Tuna
- Department of Prosthodontics and Biomaterials, Centre of Implantology, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
4
|
Güntekin N, Kızılırmak B, Tunçdemir AR. Comparison of Mechanical and Optical Properties of Multilayer Zirconia After High-Speed and Repeated Sintering. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1493. [PMID: 40271684 PMCID: PMC11989518 DOI: 10.3390/ma18071493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025]
Abstract
This study aims to investigate the mechanical and optical properties of two different multilayer monolithic zirconia materials after the high-speed and repeated sintering process recommended by the manufacturers. In this study, specimens with a diameter of 12 mm and a thickness of 1 mm were fabricated using KATANA Zirconia YML (Kuraray Noritake) and IPS e.max ZirCAD Prime (Ivoclar Vivadent) multilayer zirconia. These specimens were processed with two different protocols to be used in the sintering process: high-speed and conventional sintering. Both protocols were repeated three times, after which the changes in the mechanical, microstructural and optical properties of the specimens were compared and analyzed. According to the biaxial flexural strength result, KATANA Zirconia YML (840.84 MPa) showed higher biaxial flexural strength compared to IPS e.max ZirCAD Prime (627.64 MPa) after repeated high-speed sintering. When the optical properties were analyzed, the translucency parameters of the IPS e.max ZirCAD Prime block were reliable in certain protocols. A comparison of mechanical and optical properties after repeated and high-speed sintering reveals that both materials offer advantages for different application requirements. The high biaxial flexural strength of KATANA Zirconia YML is more suitable for applications requiring strength. The homogeneous translucency of IPS e.max ZirCAD Prime is esthetically and optically safer for high-speed and repeated sintering processes.
Collapse
Affiliation(s)
| | - Burcu Kızılırmak
- Department of Prosthodontics, Faculty of Dentistry, Necmettin Erbakan University, 42090 Konya, Turkey; (N.G.); (A.R.T.)
| | | |
Collapse
|
5
|
Hassan Shohdy EI, Sabet A, Sherif AH, Salah T. The effect of speed sintering on the optical properties and microstructure of multi-layered cubic zirconia. J Prosthodont 2025; 34:316-322. [PMID: 38288518 DOI: 10.1111/jopr.13822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2025] Open
Abstract
PURPOSE Speed sintering was introduced to fabricate time-efficient chairside restorations, however, its influence on the microstructure and optical properties of zirconia is still unclear. This study investigated the influence of speed sintering on the microstructure and optical properties of ultra-translucent multi-layered cubic zirconia. MATERIALS AND METHODS Ultra-translucent cubic zirconia (Katana™ UTML; Kuraray Noritake Dental Inc., Aichi, Japan) was cut into a total of 80 specimens, twenty within each layer of the blank. The specimens were divided into 2 groups: speed and conventional sintering. The translucency parameter, opalescence, chromaticity, and color difference were recorded using a spectrophotometer. Scanning electron microscope images were used for crystallographic analysis. One-way ANOVA and Tukey's post-hoc test (p < 0.05) were used for data analysis. RESULTS Speed sintering significantly reduced the translucency and opalescence compared to conventional sintering excluding the opalescence of the dentin layer. Chromaticity significantly decreased with speed sintering in less chromatic layers and significantly increased in more chromatic layers. Mean color change ranged between 0.65 and 1.25 across different layers. Mean crystal size decreased with speed sintering. CONCLUSIONS With speed sintering, translucency, and opalescence decrease while chromaticity increases in the more chromatic layers. Additionally, no clinically perceptible color change was found compared to conventional sintering.
Collapse
Affiliation(s)
- Engy Ibrahim Hassan Shohdy
- Fixed Prosthodontics Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Ahmed Sabet
- Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
- Fixed Prosthodontics Department, Faculty of Dentistry, British University in Egypt, Cairo, Egypt
| | - Ashraf Hussien Sherif
- Fixed Prosthodontics Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt
| | - Tarek Salah
- Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
- Faculty of Oral and Dental Medicine, Misr International University, Cairo, Egypt
| |
Collapse
|
6
|
Li X, Liang S, Li J, Tang W, Yu M, Ahmed MH, Liang S, Zhang F, Inokoshi M, Yao C, Huang C. Influence of surface treatments on highly translucent zirconia: Mechanical, optical properties and bonding performance. J Dent 2025; 154:105580. [PMID: 39828022 DOI: 10.1016/j.jdent.2025.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVES Highly translucent yttria-stabilized zirconia (YSZ) has become more popular due to its enhanced aesthetics. This study aimed to evaluate the influence of traditional air abrasion and a new etching and cleaning agent, Multi Etchant, on the mechanical performance, optical properties, and bond strength of highly translucent zirconia. METHODS Specimens of 6YSZ, 5YSZ, 4YSZ&5YSZ, and conventional 3YSZ were fabricated and underwent different surface treatments, including as milled, air abrasion, and Multi Etchant. The chemical, phase, and microstructural characterization of zirconia were analyzed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and optical profilometer. Furthermore, flexural strength, optical properties, and bond strength of zirconia with resin composite cement before and after three-month water storage were measured. RESULTS Highly translucent zirconia contained more c-ZrO2 and larger grain sizes (up to 1.85 μm), resulting in higher translucency but lower flexural strength compared to 3YSZ. Air abrasion substantially increased the flexural strength of 3YSZ and improved the bond strength of all zirconia types, with bond strength remaining stable after artificial aging. Multi Etchant did not significantly alter the mechanical or optical properties but enhanced the bond strength of UTML (6YSZ), TT-MT-ML (5YSZ), EZneer (5YSZ), and CER (3YSZ), particularly after water storage. CONCLUSIONS Yttria content variations between highly translucent and conventional zirconia affected mechanical and optical properties but not bond performance. The bonding strategy of air abrasion pretreatment can be effectively extended to highly translucent zirconia. Using an etchant containing adhesive monomer shows clinical potential, as it enhances long-term bond strength without compromising zirconia's durability. CLINICAL SIGNIFICANCE The air abrasion parameter of 0.2 MPa for 10 s can be extended from 3YSZ to highly translucent zirconia without impairing its properties. Air abrasion improves the bond strength of highly translucent zirconia.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Shengjie Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Jing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Wenhui Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Miaoyang Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Mohammed H Ahmed
- Department of Dental Biomaterials, Faculty of Dentistry, Tanta University, Tanta 31511, Egypt
| | - Shanshan Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Fei Zhang
- KU Leuven, Department of Oral Health Sciences, Biomaterials - BIOMAT, Leuven 3000, Belgium; KU Leuven, Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Leuven, Belgium
| | - Masanao Inokoshi
- Department of Oral Devices and Materials, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Chenmin Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
7
|
Mohamed O, Kim H, Makowka S, AlMozayen A, Sawangsri K, Li R. Impact of speed sintering on the mechanical and optical properties of multilayered zirconia. J Prosthet Dent 2025; 133:280.e1-280.e6. [PMID: 39472162 DOI: 10.1016/j.prosdent.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/13/2025]
Abstract
STATEMENT OF PROBLEM Speed sintering techniques have been introduced to shorten the sintering time of zirconia ceramics, yet their impact on multilayered zirconia properties remains understudied. PURPOSE The purpose of this in vitro study was to assess the effect of speed sintering on the optical properties and the mechanical flexural strength of multilayered zirconia materials. MATERIAL AND METHODS A total of 360 disks (Ø14 ±2 mm ×1.2 ±0.02 mm) were fabricated by following the International Organization for Standardization (ISO) 6872:2015 standard using 2 types of Vita A2 shade multilayered zirconia materials: IPS e.max ZirCAD Prime (ZP) and IPS e.max ZirCAD Prime Esthetic (ZPE). Each material comprised translucent (Tr), gradient l (Gr), and dentin (De) layers, with 60 disks per layer. Half were sintered using a standard sintering protocol and half using a speed sintering protocol. Biaxial flexural strength was accessed using a universal testing machine equipped with the Blue Hill Universal software program by following the ISO 6872:2015 standard, with 20 disks per subgroup. The spectrophotometric analysis of optical properties (contrast ratio [CR], translucency parameter [TP], and total transmittance [Tt%]) was performed using a dual-beam spectrophotometer (Ultrascan VIS) in accordance with the ISO 7491:2000 standard, with 10 disks per subgroup. The comparison of the optical properties and the mechanical flexural strength between the speed and standard protocol was analyzed using an unpaired t test (α=.05). RESULTS Speed sintering reduced biaxial flexural strength in all ZP layers (P<.05) and in ZPE-Gr (P<.05). A statistically significant difference in the CR was observed in the ZP-Tr, ZP-Gr, and ZPE-Gr layers (P<.05). The TP of the ZP-Gr, ZP-De, and ZPE-Gr layers was significantly lower when using the speed sintering protocol. Tt% was significantly lower with speed sintering for both materials (P<.05). CONCLUSIONS Speed sintering statistically changed both the optical (CR, TP, Tt%) and mechanical (flexural strength) properties of multilayered zirconia materials, but the differences may not be clinically relevant.
Collapse
Affiliation(s)
- Omar Mohamed
- Assistant Professor, University of Alabama at Birmingham, School of Dentistry, Birmingham, AL
| | - Hyeongil Kim
- Associate Professor, Restorative Dentistry Department, University at Buffalo School of Dental Medicine, Buffalo, NY
| | - Steven Makowka
- Facility Director, Materials Testing Facility, University at Buffalo School of Dental Medicine, Buffalo, NY
| | - Ahmed AlMozayen
- Clinical Assistant Professor, Restorative Dentistry Department, University at Buffalo School of Dental Medicine, Buffalo, NY
| | - Kedith Sawangsri
- Clinical Assistant Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH
| | - Rui Li
- Assistant Professor, Restorative Dentistry Department, University at Buffalo School of Dental Medicine, Buffalo, NY.
| |
Collapse
|
8
|
Cho MH, Seol HJ. Impact of Speed Sintering on Translucency, Opalescence and Microstructure of Dental Zirconia with a Combination of 5 mol% and 3 mol% Yttria-Stabilized Zirconia. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5148. [PMID: 39517423 PMCID: PMC11547037 DOI: 10.3390/ma17215148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Optical characteristics and microstructure of multilayered zirconia with different yttria contents in each layer can be influenced differently with a layer after speed sintering. The layer-wise translucency and opalescence of dental zirconia (E.max, E.max ZirCAD prime; Cercon, Cercon ht ML) after conventional (control) and speed sintering were analyzed using a spectrophotometer (n = 5). Specimens were subjected to microstructural analyses (n = 2) using field-emission scanning electron microscopy (FE-SEM) and phase analyses (n = 1) using high-resolution X-ray diffraction (HRXRD) and Rietveld refinement. The translucency parameter (TP) and opalescence parameter (OP) were analyzed using a 3-way ANOVA, followed by Scheffé's post hoc test (α = 0.05). The average grain size was analyzed using the Welch's t-test and Kruskal-Wallis test, followed by the Bonferroni-Dunn post hoc test (α = 0.05). Changes to the TP and OP after speed sintering were only observed in the dentin layers. Although the TP of E.max increased (p < 0.05), the difference was below the 50:50% perceptibility threshold (ΔE00 = 0.8). The OP of E.max decreased slightly, whereas that of Cercon increased slightly (p < 0.05). The microstructure and phase fraction of both zirconia barely changed. Therefore, speed sintering is considered to have a negligible clinical impact on the optical characteristics and microstructure.
Collapse
Affiliation(s)
- Mi-Hyang Cho
- Department of Dental Laboratory, Wonkwang Health Science University, Iksan-si 54538, Republic of Korea;
| | - Hyo-Joung Seol
- Department of Dental Materials, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea
| |
Collapse
|
9
|
Čokić SM, Li M, Huang S, Vleugels J, Van Meerbeek B, Zhang F. Coloring Multilayer Zirconia May Affect Its Optical and Mechanical Properties. J Dent Res 2024; 103:1091-1099. [PMID: 39364790 DOI: 10.1177/00220345241271211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The coloring process of monolithic dental zirconia caused considerable debate on the possible effects of different coloring methods. The main objective of this study was to investigate the influence of pigments in 3 multilayer 5-mol% yttria partially stabilized zirconia (5Y-PSZ) disks (Lava Esthetic A2 [Zr-AGG_A2] and Bleach [Zr-AGG_BL], both 3M Oral Care, and Katana STML A2 [Zr-NoAGG], Kuraray Noritake). The influence of pigment addition on the translucency parameter (TP00), fracture toughness, Vickers hardness, biaxial strength, and hydrothermal stability was assessed and correlated with the microstructure and phase composition. The pigment composition and distribution were evaluated by light and fluorescence microscopy, electron probe microanalysis, and nano-scanning electron microscopy. The chemical and phase composition and aging behavior were assessed using X-ray fluorescence and X-ray diffraction, respectively, while the aging sensitivity of the pigments was evaluated using micro-Raman spectroscopy. In contrast to Zr-NoAGG, possessing a typical 5Y-PSZ microstructure, the pigment additions in both Zr-AGG_A2/BL zirconia resulted in large yellow and blue fluorescent Er-, Hf-, and Al-containing agglomerates composed of small grains (0.57 µm and 0.38 µm, respectively, vs. 0.92 µm for the surrounding grains) with lower Y2O3 content. Zr-AGG_A2 had the lowest aging resistance, with transformation degradation occurring exclusively within the pigment agglomerates. All zirconia grades had a high Y2O3 content (4.2%-5.7 mol%) tetragonal ZrO2 phase and a high (42%-55 wt%) cubic ZrO2 phase content. Although no statistical differences were measured for hardness and toughness, Zr-NoAGG had a significantly higher TP00, higher flexural strength, and lower mechanical reliability compared to both Zr-AGG_A2/BL zirconia. The rare-earth oxide-containing zirconia agglomerates that were added as pigments to the multilayered monolithic Zr-AGG_A2/BL zirconia are the cause for their lower optical and mechanical properties and reduced aging resistance.
Collapse
Affiliation(s)
- S M Čokić
- Department of Oral Health Sciences, BIOMAT-Biomaterials Research Group & UZ Leuven, Dentistry, KU Leuven, Leuven, Belgium
| | - M Li
- Department of Materials Engineering (MTM), KU Leuven, Leuven, Belgium
| | - S Huang
- Department of Materials Engineering (MTM), KU Leuven, Leuven, Belgium
| | - J Vleugels
- Department of Materials Engineering (MTM), KU Leuven, Leuven, Belgium
| | - B Van Meerbeek
- Department of Oral Health Sciences, BIOMAT-Biomaterials Research Group & UZ Leuven, Dentistry, KU Leuven, Leuven, Belgium
| | - F Zhang
- Department of Oral Health Sciences, BIOMAT-Biomaterials Research Group & UZ Leuven, Dentistry, KU Leuven, Leuven, Belgium
- Department of Materials Engineering (MTM), KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Abed MH, Kadhim AJ. Effect of speed sintering process on the microstructure, flexural strength and translucency of zirconia. Heliyon 2024; 10:e37848. [PMID: 39323859 PMCID: PMC11422002 DOI: 10.1016/j.heliyon.2024.e37848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Objectives To determine the impact of the speed sintering program on the microstructure, flexural strength and translucency of zirconia in comparison with those of the conventional sintering program. Materials and methods rectangular shape specimens (12.5 × 15.5 × 1.2 mm) were prepared from four commercial pre-sintered zirconia ceramics (KATANA HTML, KATANA STML, InCoris TZI and InCoris ZI) that were sintered with conventional and speed sintering programs according to the manufacturer's instructions. The phase composition of the sintered specimens was determined by X-ray diffraction (XRD). The grain size was evaluated using scanning electron microscopy (SEM), while the three-point flexural strength was assessed based on the ISO 6872: 2015 standard. Translucency was assessed using a spectrophotometer. The data were analyzed using independent t tests (α = 0.05) and one-way ANOVA. Results The XRD patterns were similar for all the groups, indicating that there was no phase transformation. SEM revealed that the average grain size was lower than 1 μm. The grain size, flexural strength and translucency results showed increasing trends when speed sintering is compared with the conventional one but the differences were not significant (P > 0.05). Conclusions The results of this research indicate that the speed sintering program had no significant impact on the microstructure, flexural strength and translucency of the examined zirconia, a speed-sintering program can process the ceramic material within a short time with slightly increase their flexural strength and translucency Therefore, a speed-sintering program is appropriate for zirconia (Y-TZP).
Collapse
Affiliation(s)
- Mayada Hadi Abed
- Conservative and esthetic dentistry department, College of dentistry/ University of Baghdad, Iraq
| | - Alaa Jawad Kadhim
- Conservative and esthetic dentistry department, College of dentistry/ University of Baghdad, Iraq
| |
Collapse
|
11
|
Jeong JI, Kwon YH, Seol HJ. In Vitro Evaluation of Speed Sintering and Glazing Effects on the Flexural Strength and Microstructure of Highly Translucent Multilayered 5 mol% Yttria-Stabilized Zirconia. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4634. [PMID: 39336375 PMCID: PMC11433405 DOI: 10.3390/ma17184634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
This study aimed to investigate the impact of speed sintering and glazing on the flexural strength and microstructure of multilayered 5 mol% yttria-stabilized (5Y-) zirconia, which remains unknown. Bar-shaped specimens (N = 600) were fabricated from 5Y-zirconia (FX; Ceramill Zolid FX ML, ST; Katana STML) by cutting, polishing, sintering (conventional and speed sintering), and then glazing. A flexural strength test (n = 30/group), field emission scanning electron microscopy (FE-SEM) observation (n = 2/group), and an X-ray diffraction (XRD) study with Rietveld refinement (n = 1/group) were performed. The flexural strength was analyzed using three-way ANOVA and a post hoc Scheffé test. The grain size was analyzed using the Kruskal-Wallis H test and Bonferroni-Dunn post hoc test. Flexural strength slightly decreased in the nonglazed FX after speed sintering (p < 0.05). Glazing with and without glazing paste did not affect flexural strength at both sintering speeds (p > 0.05). Speed sintering and glazing minimally changed the Weibull modulus and phase fraction, and did not affect grain size (p > 0.05). ST had a larger grain size and lower tetragonal phase content than FX and had a lower flexural strength than FX in most groups (p < 0.05). Overall, the multilayered 5Y-zirconia is considered suitable for dental application using speed sintering and glazing.
Collapse
Affiliation(s)
- Ji-In Jeong
- Department of Dental Materials, School of Dentistry, Pusan National University, Yangsan-si 626-814, Republic of Korea
| | - Yong-Hoon Kwon
- Department of Dental Materials, School of Dentistry, Pusan National University, Yangsan-si 626-814, Republic of Korea
| | - Hyo-Joung Seol
- Department of Dental Materials, School of Dentistry, Pusan National University, Yangsan-si 626-814, Republic of Korea
| |
Collapse
|
12
|
Nonaka K, Teramae M, Pezzotti G. Effect of rapid cooling on residual stress and surface fracture toughness of dental zirconia. J Mech Behav Biomed Mater 2024; 157:106656. [PMID: 39033559 DOI: 10.1016/j.jmbbm.2024.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Short-time sintering of dental zirconia not only improves manufacturing efficiency of zirconia prosthetics, but also enables an attractive situation in which prosthetic treatment can be completed within a single visit. Although many studies have clarified the effects of heating rate and dwell time on the properties of dental zirconia during short-time sintering, there are only a few studies on rapid cooling. In this study, we investigated the effect of cooling rate on dental zirconia. It was found that the cooling rate had no effect on the three-point flexural strength, but a fast cooling rate improved fracture toughness at the material surface. Raman piezo-spectroscopy showed that a compressive stress layer formed in the neighborhood of the zirconia surface and that its thickness increased with increasing cooling rate. From the above results, it was concluded that the compressive stress layer formed on the surface by rapid cooling improved the apparent fracture toughness at the material surface.
Collapse
Affiliation(s)
- Kazumichi Nonaka
- Department of Research and Development, SHOFU INC., Higashiyama-ku, Kyoto, Japan.
| | - Mitsuji Teramae
- Department of Research and Development, SHOFU INC., Higashiyama-ku, Kyoto, Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan; Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan
| |
Collapse
|
13
|
Juntavee N, Juntavee A, Jaralpong C. Flexural Strength of Two Multilayered and Monochromatic High Yttria Containing Zirconia Materials Following Different Sintering Parameters. Eur J Dent 2024; 18:551-562. [PMID: 37729931 PMCID: PMC11132776 DOI: 10.1055/s-0043-1772569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
OBJECTIVES Sintering parameters influence the properties of zirconia. This study examined the effect of altering sintering temperature and time of monochrome and multilayer 5 mol% yttria-partially stabilized zirconia (5Y-PSZ) on flexural strength. MATERIALS AND METHODS Three hundred specimens (width × length × thickness = 10 × 20 × 2 mm) were prepared from monolayer (ZX) and multilayer (ZM) 5Y-PSZ and randomly sintered at decreasing (TD: 1,450°C), regular (TR: 1,500°C), and increasing (TI: 1,550°C) sintering temperature, with extremely short (HE: 10 minutes), ultrashort (HU: 15 minutes), short (HS: 30 minutes), and regular (HR: 135 minutes) sintering time (n = 15/group). The precrack was induced on the tension side before testing for flexural strength (σ). STATISTICAL ANALYSIS Analysis of variance and Tukey's test were used for significant differences of σ at p < 0.05. The microstructure and crystalline (monoclinic; m, tetragonal; t, cubic; c) phase were evaluated by scanning electron microscope (SEM) and X-ray diffractometer (XRD). RESULTS ZXTIHS indicated the highest σ for ZX (315.81 ± 18.91 MPa), whereas ZMTIHS indicated the highest σ for ZM (335.21 ± 36.18 MPa). There was no significant difference for σ between ZX and ZM (p > 0.05). Sintering zirconia at TI or HR indicated significantly higher σ than sintering at TD or TR or with HS, HE, or HU for both ZX and ZM (p < 0.05). There was no significant difference for σ between TRHR and TIHS, TIHU, and TIHE (p > 0.05). SEM indicated intergranular and transgranular fractures. XRD revealed predominately c- and t-phases and minor amounts of m-phase. CONCLUSION Increasing sintered temperature with decreasing time offers acceptable strength to regular sintering. Raising sintering temperature with decreasing time is suggested to facilitate chairside restorative reconstruction.
Collapse
Affiliation(s)
- Niwut Juntavee
- Department of Prosthodontics, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Apa Juntavee
- Division of Pediatric Dentistry, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Chutikarn Jaralpong
- Division of Biomaterials and Prosthodontics Research, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
14
|
Alshahrani AM, Lim CH, Wolff MS, Janal MN, Zhang Y. Current speed sintering and high-speed sintering protocols compromise the translucency but not strength of yttria-stabilized zirconia. Dent Mater 2024; 40:664-673. [PMID: 38378371 PMCID: PMC11015968 DOI: 10.1016/j.dental.2024.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/05/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES To investigate the impacts of speed and high-speed sintering on the densification, microstructure, phase composition, translucency, and flexural strength of yttria-stabilized zirconia (YSZ). METHODS A total of 162 disc-shaped specimens (n = 18) were cold-isostatically pressed from 3YSZ (Zpex), 4YSZ (Zpex 4), and 5YSZ (Zpex Smile) powders (Tosoh Corporation) and sintered according to the following protocols: conventional (control, ∼12 h), speed (∼28 min for 3YSZ; ∼60 min for 4YSZ and 5YSZ), and high-speed (∼18 min) sintering. Dimensions of zirconia specimens after sintering and polishing (1-μm diamond grit finish) were Ø13.75 × 1 mm. Density, microstructure, phase content, translucency parameter, and biaxial flexural strength were evaluated using Archimedes', SEM, XRD, spectrophotometric, and piston-on-3-ball methods, respectively. Data were analyzed with either one-way ANOVA and Tukey's test or Kruskal-Wallis with Dunn's test (α = 0.05). RESULTS For all YSZ compositions, conventional sintering yielded the highest density followed by speed then high-speed sintering. All sintering protocols resulted in similar strength values; however, speed and high-speed sintering protocols afforded significantly lower translucency relative to conventional sintering. XRD analysis revealed similar spectra for YSZs sintered by various protocols. The speed sintered specimens had the smallest grain size whereas the high-speed sintered 5YSZ possessed the largest grain size among all groups. SEM examination of all YSZ compositions revealed that the average pore size was an order of magnitude smaller than the average grain size. SIGNIFICANCE Speed and high-speed sintering of YSZs yield similar strength but diminished density and translucency relative to their conventionally sintered counterparts.
Collapse
Affiliation(s)
- Abdulaziz M Alshahrani
- Laboratories for Microstructure Physics & Mechanics of Materials, Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Chek Hai Lim
- Laboratories for Microstructure Physics & Mechanics of Materials, Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark S Wolff
- Morton Amsterdam Dean, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malvin N Janal
- Department of Epidemiology & Health Promotion, New York University College of Dentistry, New York, NY 10010, USA
| | - Yu Zhang
- Laboratories for Microstructure Physics & Mechanics of Materials, Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Miura S, Shinya A, Koizumi H, Vallittu P, Lassila L, Fujisawa M. Effect of low-temperature degradation and sintering protocols on the color of monolithic zirconia crowns with different yttria contents. Dent Mater J 2024; 43:164-171. [PMID: 38296512 DOI: 10.4012/dmj.2023-194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
This study investigated the effects of low-temperature degradation (LTD) on the L*, a*, and b* values of highly translucent zirconia crowns. Four types of zirconia disks with different yttria contents (IPS e.max ZirCAD LT, IPS e.max ZirCAD MT, IPS e.max ZirCAD MT Multi, IPS e.max ZirCAD Prime, Ivoclar) and two shades (A2 and BL) were used. A crown was manufactured using four types of zirconia and LTD treated. Color measurements were performed, and the color difference (ΔE00) before and after LTD was calculated. The microstructure was determined through X-ray fluorescence and X-ray diffractometry. Highly translucent zirconia crowns showed greater changes in the a* and b* values than in the L* value after LTD, regardless of the shade. The Multi2 crowns exhibited a discernible color change due to the LTD treatment. The X-ray fluorescence results did not reveal any apparent change in the microstructure between sintering programs for all zirconia specimens.
Collapse
Affiliation(s)
- Shoko Miura
- Division of Fixed Prosthodontics, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
| | - Akikazu Shinya
- Department of Dental Materials Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University
- Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku
| | - Hiroyasu Koizumi
- Department of Dental Materials, Nihon University School of Tokyo
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
- Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku
- Welfare District of County of Southwest Finland
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku
| | - Masanori Fujisawa
- Division of Fixed Prosthodontics, Department of Restorative and Biomaterials Sciences, Meikai University School of Dentistry
| |
Collapse
|
16
|
Yousry M, Hammad I, Halawani ME, Aboushelib M. Translucency of recent zirconia materials and material-related variables affecting their translucency: a systematic review and meta-analysis. BMC Oral Health 2024; 24:309. [PMID: 38443872 PMCID: PMC10913643 DOI: 10.1186/s12903-024-04070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Recent forms of translucent zirconia material have been developed, offering a wide range of options and varieties for enhancing aesthetics, making it a preferred choice in the field of prosthetic dentistry. However, there is insufficient understanding regarding the recent types of zirconia materials and their optical behavior. Understanding the variables that influence the translucency of zirconia and identifying strategies to enhance its esthetics are crucial. PURPOSE The current systemic review highlights a comprehensive understanding of different zirconia generations in relation to their optical characteristics and evaluates material-related variables affecting their translucency. METHODS The present review studied in-vitro studies that evaluated the optical characteristics of different yttria content of yttria stabilized materials. The topics explored were: (1) the different zirconia material generations and their optical behavior; (2) material-related factors that affect their translucency. The research was restricted to online publication in the English language from July 1, 2010, to July 31, 2023, using PubMed, Scopus, and Science Direct resources. The search key terms and their combinations were "zirconia," "translucent zirconia," "cubic zirconia," "highly translucent zirconia," "yttria partially stabilized zirconia," "monolithic zirconia," "translucency," "optical properties," and "light transmission." RESULTS The data obtained from fifty-three studies addressed the optical characteristics of various zirconia generations. They reported that changing yttria content had a significant impact on translucency. Different kinds of zirconia ceramics of the same generation have varying translucencies. Achieving optimum aesthetics with monolithic zirconia is challenging due to factors related to material aspects such as the presence of additives, point defects, microstructure, thickness, phase distribution, and sintering conditions. CONCLUSIONS Newly developed monolithic dental zirconia ceramics have improved aesthetics and translucency. However, additional research is necessary to evaluate their performance and long-term durability. TRIAL REGISTRATION This systematic review was registered in PROSPERO, under number CRD42023474482.
Collapse
Affiliation(s)
- Mahinour Yousry
- Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Ihab Hammad
- Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mohamed El Halawani
- Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Moustafa Aboushelib
- Department of Dental Materials Science, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Stevens CD, Renné WG, Vág J. Translucency of chairside monolithic zirconias using different sintering ovens: An in vitro investigation. J Dent 2024; 142:104839. [PMID: 38216029 DOI: 10.1016/j.jdent.2024.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE To evaluate the translucency of several monolithic zirconias (MZ) processed in various sintering ovens designed for single-visit, chairside use. METHODS Discs (n = 40) from zirconia blocks were fabricated for each MZ at manufacturer-recommended minimal thicknesses, as provided in each material's instructions for use: IPS e.max ZirCAD LT (ZLT); CEREC Zirconia+ (CZ+); 3M Chairside (3M); KATANA Zirconia (KT). Groups (n = 10) were sintered following manufacturer instructions for each oven: CEREC SpeedFire, Ivoclar CS4, Ivoclar CS6, and Ivoclar S2 (laboratory furnace control). Specimens were highly polished on one side and glazed on the other. Each side was measured with a spectrophotometer against white and black backgrounds to determine translucency parameter (TP) and contrast ratio (CR) values. Results for TP and CR for each material and oven combination were compared with a linear mixed model. Oven precision was evaluated using the Kruskall-Wallis test. RESULTS Glazed specimens were more translucent than polished ones (p < 0.001). ZLT and CZ+ were more translucent than 3M and KT regardless of the sintering oven (p < 0.01). Several oven/material combinations reached or exceeded the S2 oven TP: CS4 with CZ+ and 3M; CS6 with ZLT and KT (p < 0.01). SpeedFire was significantly less precise (p < 0.05) and produced lower TP values for ZLT, CZ+, and KT (p < 0.01). Results for TP and CR were highly correlated. CONCLUSIONS MZ surface finish, material thickness, and oven used all had a significant effect on translucency. Some chairside-oriented solutions produced results with translucency equal to conventionally processed zirconia. CLINICAL SIGNIFICANCE The translucency of a ceramic restoration is an important factor in determining its esthetics. Clinicians desiring the most esthetic outcomes with monolithic zirconia should be aware of the significant effects that surface finishing, material thickness, and the sintering oven used can have on restoration translucency.
Collapse
Affiliation(s)
| | | | - János Vág
- Department of Restorative Dentistry and Endodontics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
18
|
Li Q, Yang Y, Chen K, Jiang Y, Swain MV, Yao M, He Y, Liang Y, Jian Y, Zhao K. Effect of low-temperature degradation on the fatigue performance of dental strength-gradient multilayered zirconia restorations. J Dent 2024; 142:104866. [PMID: 38281620 DOI: 10.1016/j.jdent.2024.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVES Fatigue and low-temperature degradation (LTD) are the main factors contributing to zirconia restoration failure. This study evaluated the effect of LTD on the fatigue performance of the novel "strength & shade-gradient" multilayered zirconia restorations. METHODS Discs (15 mm × 1.2 mm) of each yttria content layer from a newly developed strength-gradient multilayered zirconia were fabricated and under accelerated aging in an autoclave at 134℃ for 0 h, 32 h, and 64 h. Then, the phase transformation, microstructure, and mechanical properties after LTD were assessed. In addition, the crown samples, including the multi-Zir, 3Y-Zir, and 5Y-Zir were fabricated, and their monotonic and fatigue load before and after LTD, percentage of fatigue degradation (Sd) and the fracture morphology were investigated. Statistical analyses were performed using paired samples t-test (α' = α/3 = 0.017), one-way ANOVA and Weibull analysis. RESULTS After LTD, the phase transformation, surface roughness, depth of transformed zone, and residual stress were increased and inversely associated with the yttria content. The indentation elastic modulus and hardness after LTD decreased; however, there was no significant difference between the different yttria content layers. The monotonic and fatigue load of multi-Zir restorations decreased, but their Weibull modulus increased, and Sd decreased, similar to 3Y-Zir. The crack origin was associated with the cervical region. CONCLUSION These results show that although LTD reduces the absolute fatigue strength of strength-gradient multilayered zirconia restorations, it also reduces the effect of cyclic fatigue itself on the strength of zirconia (relative to monotonic strength), which might be due to the increase of residual stress. CLINICAL SIGNIFICANCE The novel "strength & shade-gradient" multilayered zirconia restorations show a promising performance during in vitro LTD and fatigue test and their reliability to some extent is comparable to 3Y-Zir. Yet, further in vivo longitudinal studies are warranted to confirm their precise performance.
Collapse
Affiliation(s)
- Qiulan Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yunxu Yang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Kuangyao Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yingyu Jiang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Michael V Swain
- Don State Technical University, Rostov-on-Don 344000, Russia; AMME, Sydney University, Sydney, Australia
| | - Mianfeng Yao
- Xiangya Hospital Central South University, Changsha 410008, China
| | - Ying He
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yujie Liang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Yutao Jian
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Institute of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| | - Ke Zhao
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
19
|
Labetić A, Klaser T, Skoko Ž, Jakovac M, Žic M. Flexural Strength and Morphological Study of Different Multilayer Zirconia Dental Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1143. [PMID: 38473614 DOI: 10.3390/ma17051143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Nowadays, yttria (Y3+)-stabilized ZrO2 (Y-TZP) is the most commonly used material in dental prosthetics. Y-TZP dental ceramics are mainly stabilized via the addition of 3 mol% yttrium oxide (Y2O3). These ceramics exhibit excellent mechanical properties, including high flexural strength, fracture toughness, elastic modulus, etc. Some manufacturers have recently introduced a new class of dental materials with multilayer composition with the aim of combining the advantages of adding more or less Y2O3 to the ceramic composition in one Y-TZP material. The flexural strength values of multilayer Y-TZP may vary depending on the dimensions of the specimen, layer distributions, and especially the layer exposed on the maximum tension side, i.e., loading configuration. Although previous studies have examined the flexural strength of separate Y-TZP layers, capturing the flexural strength of multilayer Y-TZP is still challenging. However, one should keep in mind that multilayer flexural strength is important for clinical indications. The objective of this study is to compare the flexural strength of three distinct multilayer translucent Y-TZP materials made up of layers with different Y3+ contents. Rectangular samples (2 mm × 2 mm × 16 mm) were prepared from CAD/CAM discs using the milling machine Programill PM7 (Ivoclar Vivadent AG). Milled bars were tested for flexural strength in a three-point bending test (ISO 6872:2015) using a universal testing machine (Inspekt Duo 5kN; Hegewald & Peschke, Nossen, Germany) at a crosshead speed of 0.5 mm/min. Representative samples of each type of material were selected for quantitative and qualitative analysis of the microstructure. Representative samples of each type of material were selected for structural, mechanical, and microstructural analyses.
Collapse
Affiliation(s)
- Andrea Labetić
- University of Zagreb School of Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Teodoro Klaser
- Ruder Boskovic Institute, P.O. Box 180, 10000 Zagreb, Croatia
| | - Željko Skoko
- Department of Physics, Faculty of Science, University of Zagreb, Bijenicka, c. 32, 10000 Zagreb, Croatia
| | - Marko Jakovac
- University of Zagreb School of Dental Medicine, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Mark Žic
- Ruder Boskovic Institute, P.O. Box 180, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Dimitriadis K, Moschovas D, Tulyaganov DU, Agathopoulos S. Microstructure, physical and mechanical properties of dental polychromic multilayer zirconia of uniform composition. Eur J Oral Sci 2024; 132:e12959. [PMID: 37864371 DOI: 10.1111/eos.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The present study aimed to compare the microstructure, physical, and mechanical properties of three commercially available dental polychromatic multilayer zirconia materials of uniform composition: Dima Mill Zirconia ML, VITA YZ/ST Multicolor, and VITA YZ/XT Multicolor (with 3, 4, and 5 mol% Y2 O3 , respectively); thus, the influence of Y2 O3 content on the above properties of the produced materials was experimentally studied. Homogeneous zirconia ceramics with a dense micro- and nanostructure, without pores or defects, were produced after milling the blocks and sintering, which resulted in yttrium-stabilized tetragonal and cubic zirconia. Statistical analysis of the results of measurable magnitudes was performed by the one-way ANOVA test. The increase of Y2 O3 content (from 3 to 5 mol%) favored larger grain and crystallite sizes and a decrease of the values of the mechanical properties; yet, the differences were statistically insignificant. Clinically, these differences are expected to have no impact on their function in the oral cavity, both in terms of their fracture propensity and the damage that can be caused to the opposing teeth. Accordingly, the experimental results qualify the polychromic multilayer zirconia ceramics of uniform composition fabricated by milling technology for use in dental restorations.
Collapse
Affiliation(s)
- Konstantinos Dimitriadis
- Division of Dental Technology, Department of Biomedical Sciences, University of West Attica, Athens, Greece
- Department of Materials Science and Engineering, School of Engineering, University of Ioannina, Ioannina, Greece
| | - Dimitrios Moschovas
- Department of Materials Science and Engineering, School of Engineering, University of Ioannina, Ioannina, Greece
| | - Dilshat U Tulyaganov
- Department of Natural-Mathematical Sciences, Turin Polytechnic University in Tashkent, Tashkent, Uzbekistan
| | - Simeon Agathopoulos
- Department of Materials Science and Engineering, School of Engineering, University of Ioannina, Ioannina, Greece
| |
Collapse
|
21
|
Liu H, Inokoshi M, Xu K, Tonprasong W, Minakuchi S, Van Meerbeek B, Vleugels J, Zhang F. Does speed-sintering affect the optical and mechanical properties of yttria-stabilized zirconia? A systematic review and meta-analysis of in-vitro studies. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:312-328. [PMID: 37705876 PMCID: PMC10495607 DOI: 10.1016/j.jdsr.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Zirconia restorations are increasingly popular in dental treatment. Yttria-stabilized zirconia (YSZ) needs to be sintered for clinical applications and novel speed-sintering protocols are being developed for chairside treatments. Whether the properties of speed-sintered YSZ meet clinical requirements, however, remains unclear. Therefore, we conducted a systematic review and meta-analysis on the influence of speed-sintering on the optical and mechanical properties of dental YSZ according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. A literature search was conducted using PubMed, Embase, and Web of Science databases for relevant articles published between January 1, 2010 and February 28, 2022 in English, Chinese, or Japanese. After full-text evaluation and quality assessment, 26 articles were selected. Meta-analysis revealed that speed-sintering does not significantly affect the CIEDE2000-based translucency parameter, contrast ratio, three-point flexural strength, biaxial flexural strength, or fracture toughness of YSZ (p < 0.01) compared to conventional sintering. However, the CIELab-based translucency parameter of conventionally sintered YSZ is higher than that of speed-sintered YSZ. The descriptive analysis indicated that speed-sintering does not affect the hardness of YSZ compared to that of conventionally sintered YSZ. The results indicate that speed-sintering is suitable for preparing YSZ for dental restorations.
Collapse
Affiliation(s)
- Hengyi Liu
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Kaiqi Xu
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Watcharapong Tonprasong
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Shunsuke Minakuchi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7 blok a, B-3000 Leuven, Belgium
| | - Jef Vleugels
- KU Leuven (University of Leuven), Department of Materials Engineering, Kasteelpark Arenberg 44, BE-3001 Leuven, Belgium
| | - Fei Zhang
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7 blok a, B-3000 Leuven, Belgium
- KU Leuven (University of Leuven), Department of Materials Engineering, Kasteelpark Arenberg 44, BE-3001 Leuven, Belgium
| |
Collapse
|
22
|
Attia MA, Radwan M, Blunt L, Bills P, Tawfik A, Arafa AM. Effect of different sintering protocols on the fracture strength of 3-unit monolithic gradient zirconia fixed partial dentures: An in vitro study. J Prosthet Dent 2023; 130:908.e1-908.e8. [PMID: 37802734 DOI: 10.1016/j.prosdent.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
STATEMENT OF PROBLEM Strength-gradient zirconia combining 3 zirconia formulations with different flexural strengths has been reported to have outstanding mechanical properties. However, data concerning the effect of different sintering protocols on the fracture strength of 3-unit monolithic gradient zirconia fixed partial dentures (FPDs) are sparse. PURPOSE The purpose of this in vitro study was to test the effect of different sintering protocols on the fracture strength of 3-unit monolithic gradient zirconia FPDs. MATERIAL AND METHODS Two custom-made stainless-steel master dies were designed to replicate a mandibular right second premolar and second molar prepared to receive a 3-unit monolithic zirconia FPD. Thirty monolithic zirconia FPDs were milled from gradient zirconia blanks and allocated to 3 groups (n=10) according to the sintering protocols: high-speed sintering, speed sintering, and conventional sintering. The FPDs were cemented onto the corresponding dies with traditional glass ionomer cement. All FPDs were cyclic loaded (600 000 cycles/49 N/1.7 Hz) in a mastication simulator. Fracture load measurements for each FPD were determined by using a universal testing machine. Scanning electron microscopy (SEM) at ×80 magnification was used to examine a fractured FPD from each group. A representative specimen from each group was examined with SEM at ×30 000 magnification to determine the grain size. One-way ANOVA, pair-wise Tukey honestly significant difference (HSD), and Pearson correlation tests were used for statistical analysis of the data (α=.05). RESULTS The high-speed sintered FPDs recorded the highest statistically significant fracture load mean ±standard deviation value (2526 ±300 N), followed by the speed sintered FPDs (2136 ±127 N), while the lowest statistically significant fracture load mean value was recorded with the conventionally sintered FPDs (1361 ±181 N) (P<.001). In addition, the mean ±standard deviation grain size values were 488 ±272 nm for the high-speed sintered specimen, 578 ±409 nm for the speed sintered specimen, and 832 ±551 nm for the conventionally sintered specimen (P<.001). A significant negative correlation was found between fracture strength and grain size among the 3 groups. CONCLUSIONS The fracture strength of 3-unit monolithic gradient zirconia FPDs sintered by using a high-speed protocol was significantly higher than that of speed and conventionally sintered FPDs (P<.001). The high-speed sintering protocol reduced the mean grain size of gradient zirconia FPDs compared with that of both speed and conventional sintering protocols.
Collapse
Affiliation(s)
- Mazen A Attia
- Associate Professor, Department of Fixed Prosthodontics, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed Radwan
- Lecturer, Department of Fixed Prosthodontics, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| | - Liam Blunt
- Professor, Engineering and Physical Sciences Research Council (EPSRC) Future Advanced Metrology Hub, University of Huddersfield, Huddersfield, England, United Kingdom
| | - Paul Bills
- Professor, Engineering and Physical Sciences Research Council (EPSRC) Future Advanced Metrology Hub, University of Huddersfield, Huddersfield, England, United Kingdom
| | - Ahmed Tawfik
- PhD Researcher, Engineering and Physical Sciences Research Council (EPSRC) Future Advanced Metrology Hub, University of Huddersfield, Huddersfield, England, United Kingdom
| | - Ahmed M Arafa
- Lecturer, Department of Fixed Prosthodontics, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
23
|
Yousry MA, Hammad IA, El Halawani MT, Aboushelib MN. Effect of sintering time on microstructure and optical properties of yttria-partially stabilized monolithic zirconia. Dent Mater 2023; 39:1169-1179. [PMID: 37845165 DOI: 10.1016/j.dental.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVES To evaluate the impact of speed sintering on the microstructure and optical properties of 3 and 5 mol% yttria-partially stabilized monolithic zirconias. METHODS 120 plate-shaped zirconia specimens (10x10x 0.4 mm) were prepared from three commercial 5 mol% yttria-partially stabilized zirconia blocks (5Y-PSZs); Katana UTML (Kuraray Noritake), Cercon xtML (Dentsply Sirona), and Zolid FX white (Amann Girrbach), and two commercial 3 mol% yttria-partially stabilized zirconia blocks (3Y-PSZs); Lava Plus (3 M ESPE) and InCoris (Sirona, GmbH). Specimens were either conventional sintered (CS) using a 7-hour program or speed sintered (SS) using a quick 90-minute program. The microstructure was inspected with a scanning electron microscope (SEM), and phase fractions were detected using x-ray diffraction analysis (XRD). Translucency (TP00), and contrast ratio (CR) were obtained using a spectrophotometer (VITA Easyshade V). Color difference (ΔE00) between both sintering processes was calculated with the CIEDE2000 formula. ΔE00 up to 1.8 was set as the acceptability threshold. Data were analyzed using two-way ANOVA, Krusakll-Wallis, and Mann-Whitney U tests. (n = 12, α = .05). RESULTS Grain size was significantly decreased after SS for all tested materials (P < .0001). The average grain sizes of 5Y-PSZs were significantly larger than those of 3Y-PSZs. The atomic structure, microstructure, and transparency of CS and SS were all affected by the amount of yttria, the size of the crystals, and tetragonality. SS significantly reduced TP00 (F = 7135.95, P < 0.0001) and increased CR (F = 453.21, P < 0.0001). The CS Katana presented the highest TP00 and lowest CR value. ΔE00 between the CS and SS groups were clinically acceptable except for Lava, which had values above the set threshold (1.89). SIGNIFICANCE SS altered the grain size and internal structure of the tested materials, which was reflected in translucency.
Collapse
Affiliation(s)
- Mahinour A Yousry
- Division of Fixed Prosthodontics, Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Ihab A Hammad
- Division of Fixed Prosthodontics, Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mohamed T El Halawani
- Division of Fixed Prosthodontics, Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Moustafa N Aboushelib
- Department of Dental Materials Science, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Lubauer J, Schuenemann FH, Belli R, Lohbauer U. Speed-sintering and the mechanical properties of 3-5 mol% Y 2O 3-stabilized zirconias. Odontology 2023; 111:883-890. [PMID: 36859729 PMCID: PMC10492746 DOI: 10.1007/s10266-023-00796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
Ever faster workflows for the fabrication of all-ceramic restorations are of high economic interest. For that purpose, sintering protocols have been optimized for use in modern sintering furnaces, the so-called speed-sintering. However, conventional furnaces are still the most widely used equipment to sinter zirconia restorations. In this in-vitro study, we evaluated the feasibility of a speed-sintering protocol using a conventional sintering furnace to sinter different dental zirconias (stabilized with 3 mol% up to 5.4 mol% Y2O3) in comparison to a conventional sintering program. The properties evaluated were Young's modulus, Poisson's ratio, density, biaxial flexural strength, and fracture toughness. We show here that despite differences being dependent on material, the physical and mechanical properties of speed-sintered zirconia are comparable to those obtained by the conventional sintering.
Collapse
Affiliation(s)
- Julia Lubauer
- Zahnklinik 1-Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstraße 11, 91054, Erlangen, Germany
| | - Fernanda Haverroth Schuenemann
- Zahnklinik 1-Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstraße 11, 91054, Erlangen, Germany
| | - Renan Belli
- Zahnklinik 1-Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstraße 11, 91054, Erlangen, Germany.
| | - Ulrich Lohbauer
- Zahnklinik 1-Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstraße 11, 91054, Erlangen, Germany
| |
Collapse
|
25
|
Cho MH, Seol HJ. Effect of High-Speed Sintering on the Optical Properties, Microstructure, and Phase Distribution of Multilayered Zirconia Stabilized with 5 mol% Yttria. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5570. [PMID: 37629861 PMCID: PMC10456241 DOI: 10.3390/ma16165570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
As dental 5 mol% yttria-stabilized (5Y-) zirconia demand high esthetics, it is necessary to clarify how the optical properties are affected by high-speed sintering, which is not yet fully understood. Our study aimed to investigate the effect of high-speed sintering on the translucency and opalescence parameters (TP and OP, respectively), as well as their related microstructure and phase distribution, using two types of multilayered 5Y-zirconia. Multilayered 5Y-zirconia (Cercon xt ML, Lava Esthetic) were cut layer-by-layer, followed by conventional and high-speed sintering. The TP and OP values were subsequently obtained using a spectrophotometer, and field emission scanning electron microscopy images were used to analyze the average grain size. The phase fractions were analyzed using X-ray diffraction. Regardless of the zirconia type, the TP was slightly lowered by high-speed sintering in all the layers except the dentin layer (DL) for Lava Esthetic (p < 0.05). The OP decreased by high-speed sintering in the DL for Cercon xt ML and in all the layers for Lava Esthetic (p < 0.05). The decrease in translucency after high-speed sintering was attributed to a decrease in the yttria-rich t'-phase with low tetragonality, along with an increase in the yttria-lean t-phase with high tetragonality.
Collapse
Affiliation(s)
- Mi-Hyang Cho
- Department of Dental Lab, Wonkwang Health Science University, Iksan-si 54538, Republic of Korea;
| | - Hyo-Joung Seol
- Department of Dental Materials, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea
| |
Collapse
|
26
|
Attia MA, Shokry TE. Effect of dynamic loading on fracture resistance of gradient zirconia fixed partial denture frameworks. J Prosthet Dent 2023; 130:242-249. [PMID: 34740458 DOI: 10.1016/j.prosdent.2021.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/19/2022]
Abstract
STATEMENT OF PROBLEM The new strength-gradient zirconia composed of 3-mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and 5-mol% yttria-stabilized tetragonal zirconia polycrystal (5Y-TZP) has been claimed to have superior mechanical properties. However, data on the fracture resistance of 3-unit gradient 5Y-TZP and 3Y-TZP fixed partial denture frameworks are lacking. PURPOSE The purpose of this in vitro study was to evaluate the effect of dynamic loading on the fracture resistance of gradient zirconia fixed partial denture frameworks. MATERIAL AND METHODS Two standardized stainless-steel master dies were designed to simulate a mandibular left second premolar and second molar prepared to receive zirconia frameworks. The frameworks were designed with a 0.6-mm uniform wall thickness. The mesiodistal width of the connectors was 3 ±0.02 mm, and the occlusogingival height was 3 ±0.02 mm. Forty zirconia frameworks were fabricated and divided into 2 groups according to the tested materials (n=20): 3Y-TZP and gradient 5Y-TZP and 3Y-TZP. The frameworks were cemented onto their corresponding dies with a conventional glass ionomer cement. Half of the cemented frameworks in each group underwent 600 000 cycles of dynamic loading in a mastication simulator (n=10). The other half was fractured without dynamic loading (n=10). Fracture resistance measurements (N) for each framework were recorded by using a universal testing machine at a crosshead speed of 1 mm/min. A fractured framework from each group was examined by using a scanning electron microscope (SEM) at ×100 magnification. The data obtained were statistically analyzed by using 2-way ANOVA, the pairwise Tukey honestly significant difference (HSD), and simple main effect tests to detect the difference between group mean values (α=.05). RESULTS The mean ±standard deviation of fracture load value before dynamic loading was 1919 ±193 N for the 3Y-TZP group and 908 ±99 N for the gradient 5Y-TZP and 3Y-TZP group. In addition, the mean fracture load value after dynamic loading was 1418 ±163 N for the 3Y-TZP group and 716 ±85 N for the gradient 5Y-TZP and 3Y-TZP group. The interaction between the effects of the zirconia material and dynamic loading on the fracture resistance was statistically significant (P=.002). The 3Y-TZP group had a statistically significant, higher fracture load mean value the gradient 5Y-TZP and 3Y-TZP group before and after dynamic loading (P<.001). CONCLUSIONS The fracture resistance of 3Y-TZP frameworks was significantly higher than that of gradient 5Y-TZP and 3Y-TZP frameworks before and after dynamic loading. Dynamic loading significantly reduced the fracture resistance of 3Y-TZP and gradient 5Y-TZP and 3Y-TZP frameworks.
Collapse
Affiliation(s)
- Mazen A Attia
- Associate Professor, Department of Fixed Prosthodontics, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt.
| | - Tamer E Shokry
- Professor, Department of Fixed Prosthodontics, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
27
|
Salah K, Sherif AH, Mandour MH, Nossair SA. Optical effect of rapid sintering protocols on different types of zirconia. J Prosthet Dent 2023; 130:253.e1-253.e7. [PMID: 37330359 DOI: 10.1016/j.prosdent.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/19/2023]
Abstract
STATEMENT OF PROBLEM Rapid sintering protocols are available for the fabrication of zirconia restorations, but whether rapid sintering influences color or translucency is unclear. PURPOSE The purpose of this in vitro study was to investigate the effect of different rapid sintering protocols on the color and translucency of cubic and tetragonal zirconias. MATERIAL AND METHODS Sixty disk-shaped specimens of 1-mm-thick cubic (DD CubeX2) and tetragonal (DD Bio ZX2) zirconia were investigated. Specimens of each type of zirconia were divided into three groups: conventional, speed, and superspeed sintering protocols. The conventional group of each zirconia type served as the control for calculating color differences. Translucency for each group was assessed by the translucency parameter and contrast ratio. Two-way analysis of variance was used for statistical analysis of the data (α=.05). RESULTS The translucency of cubic and tetragonal zirconia decreased after speed and superspeed sintering (P<.001). Superspeed sintering resulted in a greater color change than speed sintering (P<.001). CONCLUSIONS Rapid sintering protocols produced a significant effect on the color and translucency of cubic and tetragonal zirconias.
Collapse
Affiliation(s)
- Kerolos Salah
- Former Postgraduate student, Department of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Future University, New Cairo, Egypt.
| | - Ashraf Hussein Sherif
- Professor, Department of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Future University, New Cairo, Egypt
| | - Mona H Mandour
- Professor, Department of Crown and Bridge, Faculty of Dental Medicine, Al-Azhar University, Girls' Branch, Cairo, Egypt
| | - Shereen Ahmed Nossair
- Assistant Professor, Department of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Future University, New Cairo, Egypt
| |
Collapse
|
28
|
Alshahrani AM, Lim CH, Kim J, Zhang Y. Transient thermal stresses developed during speed sintering of 3 mol% yttria-stabilized tetragonal zirconia polycrystals. Dent Mater 2023; 39:522-528. [PMID: 37045719 PMCID: PMC10168597 DOI: 10.1016/j.dental.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVES To investigate transient thermal stresses that developed in 3Y-TZP green compacts during speed sintering. METHODS A total of 312 disc-shaped green compacts (Ø17.1 ×1, 1.5, 2, 2.5, 3 mm) were cold-isostatically pressed from 3Y-TZP powder (Zpex, Tosoh Corp.) for speed sintering studies as well as compositional analysis and biaxial flexural strength measurements (both at room temperature and following heating at 90 °C/min to 500 °C). Flexural strength was determined using the piston-on-3-ball method. Phase assemblies were analyzed using the X-ray diffraction method. Effects of heating/cooling rates on transient stresses were investigated by conducting definitive sintering studies to determine the threshold for fracture. Finite element analysis (FEA) was used to validate the experimental findings using measured thermomechanical properties. RESULTS The bulk and relative density of the green compact were 2.95 ± 0.03 g/cm3 and 48.52% ± 0.45%. The flexural strength was drastically decreased from 10.3 ± 0.4 MPa to 1.09 ± 0.07 MPa following heating at 90 °C/min to 500 °C. The monoclinic and tetragonal contents were 54.9% and 45.1%, respectively. The threshold for fracture was located at 500 °C during the first heating stage with a 90 °C/min heating rate in specimens of 2.5 mm thickness or greater. No fractures occurred in the second heating stage and cooling phase. The FEA estimated that the principal transient tensile stress was ∼1.14 MPa at 500 °C during the heating phase, which exceeded the corresponding flexural strength (1.09 ± 0.07 MPa). SIGNIFICANCE Advanced FEA methods are an accurate and efficient tool to analyze the history of transient stresses during sintering of ceramic dental restorations.
Collapse
Affiliation(s)
- Abdulaziz M Alshahrani
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Chek Hai Lim
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeongho Kim
- Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Rd, U-3037, Storrs, CT 06269, USA
| | - Yu Zhang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Oyar P, Durkan R. The effects of heating rate and sintering time on the biaxial flexural strength of monolithic zirconia ceramics. BIOMED ENG-BIOMED TE 2023:bmt-2022-0338. [PMID: 36930871 DOI: 10.1515/bmt-2022-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
The strength of zirconia ceramic materials used in restorations is dependent upon sintering. Varying sintering protocols may affect the biaxial flexural strength of zirconia materials. This in vitro study was conducted to investigate the effects of sintering parameters on the biaxial flexural strength of monolithic zirconia. Two different monoblock zirconia ceramics were used. Following coloration, samples of both types of ceramics were divided into groups according to whether or not biaxial flexural strength testing was performed directly after sintering or following thermocycling. Biaxial flexural strength data was analysed with a Shapiro Wilk normality test, followed by 1-way ANOVA, Tukey post hoc tests for inter-group comparisons, and paired samples t-tests for intra-group comparisons. A significant difference was found between the biaxial flexural strengths of Zircon X and Upcera ceramics before thermocycling (p<0.05). In both Zircon X and Upcera ceramic groups, the thermocycling process created a significant difference in the biaxial flexural strength values of the ceramic samples in Group 6 (p<0.05) which had the slowest heating rate and longest holding time. The zirconia ceramics have higher BFS at higher heating rates either before or after thermocycling. The holding time has significant effects on thermocycling and flexural strength. The zirconia achieved its optimum strength when it sintered at longer time regardless of heating rates.
Collapse
Affiliation(s)
- Perihan Oyar
- Professor, Dental Prosthetics Technology, Vocational School of Health Services, Hacettepe University, Ankara, Türkiye
| | - Rukiye Durkan
- Department of Prosthodontics, Faculty of Dentistry, Istanbul Okan University, Istanbul, Türkiye
| |
Collapse
|
30
|
Inokoshi M, Liu H, Yoshihara K, Yamamoto M, Tonprasong W, Benino Y, Minakuchi S, Vleugels J, Van Meerbeek B, Zhang F. Layer characteristics in strength-gradient multilayered yttria-stabilized zirconia. Dent Mater 2023; 39:430-441. [PMID: 36914432 DOI: 10.1016/j.dental.2023.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES To investigate crystallography, translucency, phase content, microstructure and flexural strength of two commercial strength-gradient multilayered dental zirconia grades. METHODS Two zirconia grades, i.e., KATANA Zirconia YML (Kuraray Noritake; referred to as "YML"; composed of four layers: enamel, body 1-3) and IPS e.max ZirCAD Prime (Ivoclar Vivadent; referred to as "Prime"; composed of three layers: enamel, transition, body) were investigated. Fully sintered square-shaped zirconia specimens from each layer were prepared. Microstructure, chemical composition, translucency parameter and zirconia-phase composition of each layer were characterized. Four-point and biaxial flexural strength of each layer was measured using fully sintered bar- and square-shaped specimens. Square-shaped samples were used to measure strength across the layers. RESULTS For both multilayer zirconia grades, the 'enamel' layer contains a higher amount of c-ZrO2, which resulted in higher translucency but lower flexural strength than the 'body' layers. The characteristic 4-point flexural strength of the YML 'body 2' (923 MPa) and 'body 3' (911 MPa) layers, and of the Prime 'body' (989 MPa) layer were comparable and higher than for the YML 'enamel' (634 MPa), Prime 'transition' (693 MPa) and 'enamel' (535 MPa) layers. The biaxial strength of specimens sectioned across the layers was in-between that of the 'enamel' and 'body' layers for both YML and Prime, implying the interfaces did not form a weak link. SIGNIFICANCE The difference in yttria content affects the phase composition and mechanical properties of each layer of the multi-layer zirconia. The strength-gradient approach allowed to integrate monoliths with irreconcilable properties.
Collapse
Affiliation(s)
- Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan.
| | - Hengyi Liu
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Pathology & Experimental Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mao Yamamoto
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Watcharapong Tonprasong
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Yasuhiko Benino
- Okayama University, Graduate School of Environmental and Life Science, 1 Chome-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Shunsuke Minakuchi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Jef Vleugels
- KU Leuven (University of Leuven), Department of Materials Engineering, Kasteelpark Arenberg 44, BE-3001 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, Blok a - Box 7001, BE-3000 Leuven, Belgium
| | - Fei Zhang
- KU Leuven (University of Leuven), Department of Materials Engineering, Kasteelpark Arenberg 44, BE-3001 Leuven, Belgium; KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, Blok a - Box 7001, BE-3000 Leuven, Belgium
| |
Collapse
|
31
|
Strasser T, Wertz M, Koenig A, Koetzsch T, Rosentritt M. Microstructure, composition, and flexural strength of different layers within zirconia materials with strength gradient. Dent Mater 2023; 39:463-468. [PMID: 36907821 DOI: 10.1016/j.dental.2023.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVES The aim of this study was to compare composition, microstructure, and mechanical strength of current multilayer zirconia blanks. METHODS Bar shaped specimens were made from several layers of multilayer zirconia blanks (Cercon ht ML, Dentsply Sirona, US; Katana Zirconia YML, Kuraray, J;SHOFU Disk ZR Lucent Supra, Shofu, J; priti multidisc ZrO2 Multi Translucent, Pritidenta, D; IPS e.max ZirCAD Prime, Ivoclar Vivadent, FL). Flexural strength was determined in a three-point bending test on extra-thin bars. X-ray diffraction (XRD) with Rietveld refinement was used to assess crystal structure and scanning electron microscopy (SEM) imaging to visualize the microstructure of each material and layer. RESULTS Mean flexural strength varied between 467.5 ± 97.5 MPa (top layer, IPS e.max ZirCAD Prime) and 898.0 ± 188.5 MPa (bottom layer, Cercon ht ML) with significant (p ≤ 0.055) differences between the individual layers. XRD indicated 5Y-TZP for enamel-layers, 3Y-TZP for dentine-layers, individual mixtures of 3Y-TZP, 4Y-TZP, or 5 Y-TZP for intermediate layers. SEM analysis showed grain sizes between approx. 0.15 and 4 µm. Grain size tended to decrease from top to bottom layers. SIGNIFICANCE The investigated blanks differ predominantly in the intermediate layers. In addition to dimensioning of restorations, the milling position in the blanks must also be taken into account when using multilayer zirconia as restorative material.
Collapse
Affiliation(s)
- Thomas Strasser
- Department of Prosthetic Dentistry, University Hospital of Regensburg, 93053 Regensburg, Germany.
| | - Markus Wertz
- Department of Prosthodontics and Material Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Andreas Koenig
- Department of Prosthodontics and Material Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Torsten Koetzsch
- Institute of Mineralogy, Crystallography and Materials Science, Leipzig University, 04275 Leipzig, Germany
| | - Martin Rosentritt
- Department of Prosthetic Dentistry, University Hospital of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
32
|
Nasarudin NA, Razali M, Goh V, Chai WL, Muchtar A. Expression of Interleukin-1β and Histological Changes of the Three-Dimensional Oral Mucosal Model in Response to Yttria-Stabilized Nanozirconia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2027. [PMID: 36903142 PMCID: PMC10003861 DOI: 10.3390/ma16052027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Over the years, advancement in ceramic-based dental restorative materials has led to the development of monolithic zirconia with increased translucency. The monolithic zirconia fabricated from nano-sized zirconia powders is shown to be superior in physical properties and more translucent for anterior dental restorations. Most in vitro studies on monolithic zirconia have focused mainly on the effect of surface treatment or the wear of the material, while the nanotoxicity of this material is yet to be explored. Hence, this research aimed to assess the biocompatibility of yttria-stabilized nanozirconia (3-YZP) on the three-dimensional oral mucosal models (3D-OMM). The 3D-OMMs were constructed using human gingival fibroblast (HGF) and immortalized human oral keratinocyte cell line (OKF6/TERT-2), co-cultured on an acellular dermal matrix. On day 12, the tissue models were exposed to 3-YZP (test) and inCoris TZI (IC) (reference material). The growth media were collected at 24 and 48 h of exposure to materials and assessed for IL-1β released. The 3D-OMMs were fixed with 10% formalin for the histopathological assessments. The concentration of the IL-1β was not statistically different between the two materials for 24 and 48 h of exposure (p = 0.892). Histologically, stratification of epithelial cells was formed without evidence of cytotoxic damage and the epithelial thickness measured was the same for all model tissues. The excellent biocompatibility of nanozirconia, as evidenced by the multiple endpoint analyses of the 3D-OMM, may indicate the potential of its clinical application as a restorative material.
Collapse
Affiliation(s)
- Naziratul Adirah Nasarudin
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Masfueh Razali
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Victor Goh
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Andanastuti Muchtar
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
33
|
Demachkia AM, Velho HC, Valandro LF, Dimashkieh MR, Samran A, Tribst JPM, de Melo RM. Endocrown restorations in premolars: influence of remaining axial walls of tooth structure and restorative materials on fatigue resistance. Clin Oral Investig 2023:10.1007/s00784-023-04895-6. [PMID: 36781479 DOI: 10.1007/s00784-023-04895-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
OBJECTIVES To evaluate the effect of the remaining tooth structure and different CAD/CAM materials on the fatigue performance and failure mode of endodontically treated premolars restored with endocrowns. MATERIALS AND METHODS Ninety maxillary premolars were endodontically treated and assigned into 6 groups (n = 15) according to the number of remaining axial walls (four, three, and two) and restorative materials (ultra-translucent zirconia 5Y-PSZ [KATANA UTML] and lithium disilicate [IPS e.max-CAD]). The specimens were subjected to cyclic fatigue loading test (initial load 200 N; 20 Hz). An incremental step load of 100 N per 10,000 cycles was applied until failure. The fatigue failure load (FFL) and number of failure cycles (CFFs) data were statistically analyzed with two-way ANOVA and Kaplan-Meier test (α = 0.05). Failed specimens were examined under a stereomicroscope 25 × and failure modes were determined. RESULTS FFL and CFF were significantly influenced by restorative material (p < 0.05). 5Y-PSZ endocrowns showed significantly higher FFL when compared with lithium disilicate. The number of remaining walls did not affect the fatigue behavior or failure mode of the specimens. Of the lithium disilicate restorations, 51% had repairable failures, while 95% 5Y-PSZ restorations had non-repairable failures. CONCLUSIONS Zirconia endocrowns showed better FFL than lithium disilicate endocrowns, regardless of the number of remaining axis walls. Lithium disilicate and 5Y-PSZ endocrowns showed FFL higher than the normal masticatory loads. CLINICAL RELEVANCE Restoring endodontically treated premolars with endocrown could be a promising treatment, regardless of the remaining axial walls. However, precaution should be taken in material selection since it affects the fatigue resistance and failure mode.
Collapse
Affiliation(s)
- Amir Mohidin Demachkia
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo,777. 12245000, São José Dos Campos, São Paulo, Brazil.
| | - Helder Callegaro Velho
- Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul State, Brazil
| | - Luiz Felipe Valandro
- Post-Graduate Program in Oral Science, Faculty of Dentistry, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande Do Sul State, Brazil
| | - Mohiddin Rida Dimashkieh
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Abdulaziz Samran
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - João Paulo Mendes Tribst
- Department of Oral Regenerative Medicine, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Renata Marques de Melo
- Department of Dental Materials and Prosthodontics, Institute of Science and Technology, São Paulo State University (UNESP), Av. Engenheiro Francisco José Longo,777. 12245000, São José Dos Campos, São Paulo, Brazil
| |
Collapse
|
34
|
Yan M, Ding SJ, Lin CW, Wei CL, Huang YW, Yang CC. Aging resistance of highly translucent zirconia ceramics with rapid sintering. J Oral Sci 2023; 65:15-19. [PMID: 36403959 DOI: 10.2334/josnusd.22-0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE Rapid sintering technology has become one of the most direct methods for shortening the manufacturing time of zirconia restorations. This study aimed to explore the aging resistance of rapid-sintered 5 mol% yttria-partially-stabilized zirconia (5Y-PSZ). METHODS Specimens were made from two types of 5Y-PSZ material and subjected to rapid sintering (RS) and conventional sintering (CS). After in vitro aging for 5 h, morphology observation, grain size measurement, and phase composition analysis were performed. The mechanical properties were evaluated by biaxial, three-point flexural tests, and the Vickers microhardness test. Results were analyzed by 3-way ANOVA. RESULTS Both the RS group and the CS group had a dense microstructure. The tested zirconia ceramics had different grain sizes, which were affected by the interaction between the sintering method and aging. Both groups revealed the same characteristic peaks of the cubic phase after aging. Regardless of the sintering method used, there was no significant difference in the mechanical properties of the tested zirconia before and after aging. CONCLUSION The rapid-sintered 5Y-PSZ materials had a microstructure, phase composition and mechanical properties similar to those of conventional sintered materials. The characteristics of the materials prepared using the two sintering methods did not change significantly after aging.
Collapse
Affiliation(s)
- Min Yan
- Institute of Oral Sciences, Chung Shan Medical University.,Department of Dentistry, Chung Shan Medical University Hospital, Chung Shan Medical University
| | - Shinn-Jyh Ding
- Institute of Oral Sciences, Chung Shan Medical University.,Department of Dentistry, Chung Shan Medical University Hospital, Chung Shan Medical University
| | - Cheng-Wei Lin
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology
| | - Cian-Li Wei
- Institute of Oral Sciences, Chung Shan Medical University
| | - Yi-Wen Huang
- Institute of Oral Sciences, Chung Shan Medical University
| | - Chun-Chuan Yang
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management
| |
Collapse
|
35
|
Nonaka K, Teramae M, Pezzotti G. Effect of Ga 2O 3 Dopant on High Speed Sintered 5 mol% Y 2O 3 Stabilized Dental Zirconia. MATERIALS (BASEL, SWITZERLAND) 2023; 16:714. [PMID: 36676451 PMCID: PMC9866617 DOI: 10.3390/ma16020714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The high-speed sintering of zirconia has become essential for ceramic dental prosthesis treatment in a single visit. Previous studies have shown that 5 mol% yttria-stabilized zirconia (5Y zirconia), with the exception of some types, loses strength and translucency with high-speed sintering. In this study, 0.15-0.92 wt% Ga2O3, which is expected to promote the sintering of zirconia, was added to improve the properties of 5Y zirconia high-speed sintered bodies, and the effect of its addition was evaluated. The specimens were characterized by density and translucency measurements, a three-point bending test, X-ray diffraction (XRD), scanning electron microscopy (SEM), and shrinkage measurement. The addition of Ga2O3 improved both translucency and flexural strength of 5Y zirconia high-speed sintered bodies. XRD and SEM observations revealed that this improvement in properties was due to the change in the crystal phase composition and the decrease in the amount and size of pores due to the addition of Ga2O3. Shrinkage measurements also revealed that the addition of Ga2O3 changed the sintering behavior of 5Y zirconia, suggesting that this change led to a reduction in porosity. From the above results, it was concluded that Ga2O3 addition is effective in improving the properties of 5Y zirconia high-speed sintered bodies.
Collapse
Affiliation(s)
- Kazumichi Nonaka
- Department of Research and Development, SHOFU INC., Higashiyama-ku, Kyoto 605-0983, Japan
| | - Mitsuji Teramae
- Department of Research and Development, SHOFU INC., Higashiyama-ku, Kyoto 605-0983, Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
36
|
Albayrak H, Eraslan R, Aydinlioglu Ö. Effect of sintering procedures on optical properties, chemical composition, and grain size of monolithic zirconia ceramic at different thicknesses after hydrothermal aging: An in vitro study. J Indian Prosthodont Soc 2023; 23:57-64. [PMID: 36588376 PMCID: PMC10088447 DOI: 10.4103/jips.jips_345_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/09/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
Aim The purpose of the present study was to examine the optical properties, chemical composition, and grain size (GS) of monolithic zirconia (MZ) ceramic at different thicknesses sintered using different procedures after hydrothermal aging. Settings and Design An in vitro study. Materials and Methods Forty MZ discs (0.5-mm thickness [Group-0.5] and 1-mm thickness [Group-1]; 12 mm diameter) were milled and divided according to standard (Group-ST) and speed (Group-SP) sintering procedures. All specimens were hydrothermally aged at 134°C after sintering. Translucency (TP), opalescence (OP), and fluorescence (ΔEabFNx01-FL) parameters were calculated using the color coordinates (LFNx01, aFNx01, bFNx01, respectively) of the discs. The chemical composition and the GS of the specimens were characterized using X-ray fluorescence spectroscopy and a scanning electron microscopy, respectively. Statistical Analysis Used TPs and ΔEabFNx01-FLs were analyzed using independent samples t-tests and Mann-Whitney U-tests while a two-way analysis of variance (ANOVA) was used for OPs. Results Group-1 showed significantly lower TP than Group-0.5 (P < 0.001) but a significantly higher OP (P = 0.014). Group-SP showed significantly higher OP (P = 0.00003) and ΔEabFNx01-FL (P = 0.0026) values than Group-ST without considering the thickness. Group-SP (0.29 ± 0.119 μm) had a smaller GS than Group-ST (0.306 ± 0.142 μm). Compared to Group-ST, Group-SP had a lower percentage of Y2O3 and a higher percentage of Al2O3. Conclusion The effect of the sintering procedure on TP and OP of MZ was not perceived by the naked eye. The speed sintering procedure may increase Δ EFNx01ab-FL of MZ to higher values than natural teeth when compared with standard sintering. The speed sintering may cause minor changes in GS and the chemical composition of MZ.
Collapse
Affiliation(s)
- Haydar Albayrak
- Department of Prosthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Ravza Eraslan
- Department of Prosthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Ömer Aydinlioglu
- Department of Textile Engineering, Erciyes University, Kayseri, Turkey
| |
Collapse
|
37
|
Cho MH, Seol HJ. Optical Properties, Microstructure, and Phase Fraction of Multi-Layered Monolithic Zirconia with and without Yttria-Gradient. MATERIALS (BASEL, SWITZERLAND) 2022; 16:41. [PMID: 36614380 PMCID: PMC9821384 DOI: 10.3390/ma16010041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The differences in the optical properties of multi-layered zirconia with and without yttria-gradient are not fully understood. This study aimed to evaluate and compare the optical properties, related microstructures, and phase fractions of multi-layered zirconia with and without yttria-gradient. For this, multi-layered zirconia of 5 mol% yttria (5Y) stabilized (Katana STML) and 4Y/5Y stabilized (e.max MT Multi) were cut layerwise, sintered, and analyzed using the opalescence parameter (OP), average transmittance (AT%), translucency parameter (TP), and contrast ratio (CR). The average grain size and phase fractions were obtained from field-emission scanning electron micrographs and X-ray diffraction patterns, respectively. Although the TP values of Katana STML and e.max MT Multi did not show a significant difference (except for transition layer 1), the results of AT and CR showed that the translucency of e.max MT Multi was slightly higher than that of Katana STML (p < 0.05). The opalescence gradient was higher in Katana STML than in the e.max MT Multi. In both zirconia types, translucency increased from the dentin to enamel layer based on the AT, TP, and CR results, while OP decreased (p < 0.05). The higher translucency from the dentin to enamel layer in Katana STML was caused by the pigmentation gradient, while in e.max MT Multi, it was caused by the difference in phase fraction and the pigmentation gradient.
Collapse
Affiliation(s)
- Mi-Hyang Cho
- Department of Dental Lab, Wonkwang Health Science University, Iksan-si 54538, Republic of Korea
| | - Hyo-Joung Seol
- Department of Dental Materials, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan-si 50612, Republic of Korea
| |
Collapse
|
38
|
Madruga CFL, Dal Piva AMDO, Pereira GKR, Caneppele TMF, Valandro LF, Bottino MA. Sintering mode of a translucent Y-TZP: Effects on its biaxial flexure fatigue strength, surface morphology and translucency. J ESTHET RESTOR DENT 2022; 34:1197-1205. [PMID: 35560703 PMCID: PMC9790507 DOI: 10.1111/jerd.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This investigation evaluated the effect of two sintering modes of a translucent zirconia (Y-TZP) on its surface roughness, topography, phase-transformation (t → m), translucency and biaxial flexure fatigue strength. MATERIALS AND METHODS To do so, 50 Y-TZP discs (Ø = 15 mm; thickness = 1.2 mm; IPS e.max ZirCAD LT) were prepared and divided into two groups: Standard mode (SM) and Fast mode (FM). Staircase fatigue testing was performed (piston-on-three balls set-up, ISO 6872:2015), as well as surface roughness, profilometry, scanning electron microscopy (SEM-FEG), energy dispersive X-ray spectroscopy (EDX), phase transformation (t → m) using X-ray diffraction analysis (XRD), translucency parameter analysis (TP and TP00 ) and fractography. RESULTS The results showed no statistical significant differences for roughness parameters (p > 0.05, SM: Ra = 0.13 ± 0.02, Rz = 1.21 ± 0.26 and RSm = 24.91 ± 2.19; FM: Ra = 0.14 ± 0.03, Rz = 1.32 ± 0.25 and RSm = 24.68 ± 2.16) or flexural fatigue strength (SM: 512 (464-560) MPa; FM: 542 (472-611) MPa) between the groups. In addition, similarity in surface morphological features (SEM and profilometry), composition and phases (EDX and XRD) was observed between the firing protocols. Fractography showed that the failure origin occurred on the tensile side. Sintering mode did not affect the TP (F = 0.001, p = 0.97) and TP00 (F = 0.12, p = 0.72). CONCLUSIONS Therefore, the fast-sintering mode is suggested as a viable alternative to the standard mode since it does not influence the evaluated surface morphology, microstructure, fatigue strength and translucency of a translucent monolithic zirconia. CLINICAL SIGNIFICANCE The fast sintering mode is a viable alternative for zirconia without compromising its topography, microstructure, mechanical performance or translucency.
Collapse
Affiliation(s)
- Camila Ferreira Leite Madruga
- Post‐Graduate Program in Applied Sciences to Oral Health (Restorative Dentistry)São Paulo State University (Unesp), Institute of Science and TechnologySão José dos CamposSão Paulo StateBrazil
| | - Amanda Maria de Oliveira Dal Piva
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA)Universiteit van Amsterdam and Vrije UniversiteitAmsterdamNoord‐HollandThe Netherlands
| | - Gabriel Kalil Rocha Pereira
- Post‐Graduate Program in Oral Science (Prosthodontics Units), Faculty of DentistryFederal University of Santa Maria (UFSM)Santa MariaRio Grande do Sul StateBrazil
| | - Taciana Marco Ferraz Caneppele
- Post‐Graduate Program in Applied Sciences to Oral Health (Restorative Dentistry)São Paulo State University (Unesp), Institute of Science and TechnologySão José dos CamposSão Paulo StateBrazil
| | - Luiz Felipe Valandro
- Post‐Graduate Program in Oral Science (Prosthodontics Units), Faculty of DentistryFederal University of Santa Maria (UFSM)Santa MariaRio Grande do Sul StateBrazil
| | - Marco Antonio Bottino
- Post‐Graduate Program in Applied Sciences to Oral Health (Restorative Dentistry)São Paulo State University (Unesp), Institute of Science and TechnologySão José dos CamposSão Paulo StateBrazil
| |
Collapse
|
39
|
Yoo SK, Jo YH, Yeo ISL, Yoon HI, Lee JH, Ahn JS, Han JS. Analysis of surface characteristics of (Y, Nb)-TZP after finishing and polishing. J Adv Prosthodont 2022; 14:335-345. [PMID: 36685792 PMCID: PMC9832147 DOI: 10.4047/jap.2022.14.6.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This in vitro study aimed to evaluate the surface characteristics of a full veneer crown fabricated chairside (CS) from a (Y, Nb)-TZP zirconia block in response to conventional zirconia grinding and polishing. MATERIALS AND METHODS Zirconia crowns (n = 40) were first prepared and divided into two groups of materials: Labside (LS) and CS, after which each specimen went through a five-step grinding and polishing procedure. Following each surface treatment, surface characteristics were analyzed using confocal laser microscopy (CLSM), average surface roughness (Ra) values were processed from the profile data through Gaussian filtering, and X-ray diffraction pattern analysis was performed to evaluate the monoclinic (M) phase content. Then, a representative specimen was selected for field-emission scanning electron microscopy (FE-SEM), followed by a final analysis of the roughness and X-ray diffraction of the specimens using the independent t-test and repeated measures analysis of variance (RM-ANOVA). RESULTS In every group, polishing significantly reduced the Ra values (P < .001). There was no significant difference in Ra between the polished state CS and LS. Furthermore, CLSM and FE-SEM investigations revealed that even though grain exposure was visible in CS specimens throughout the as-delivered and ground states, the exposure was reduced after polishing. Moreover, while no phase transformation was visible in the LS, phase transformation was visible in CS after every surface treatment, with the M phase content of the CS group showing a significant reduction after polishing (P < .001). CONCLUSION Within the limits of this study, clinically acceptable level of surface finishing of (Y, Nb)-TZP can be achieved after conventional zirconia polishing sequence.
Collapse
Affiliation(s)
- Seong-keun Yoo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ye-Hyeon Jo
- Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyung-In Yoon
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jin-Soo Ahn
- Department of Dental Biomaterials Science and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jung-Suk Han
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Miura S, Shinya A, Koizumi H, Fujisawa M. Effect of speed sintering of monolithic zirconia with different yttria contents on color and crystal phase. Eur J Oral Sci 2022; 130:e12898. [PMID: 36335285 DOI: 10.1111/eos.12898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
This study evaluated the color and microstructure of monolithic zirconia crowns with different yttrium oxide (Y2 O3 ) contents treated by conventional or speed sintering. Four types of zirconia ceramics were assessed: two monolayer zirconia, and two multilayer zirconia. The monolithic zirconia crowns were fabricated using a dental computer-aided design/computer-aided manufacturing (CAD/CAM) system and in two shades (A2 and BL). After milling, the zirconia crowns were sintered using either speed sintering or conventional sintering. For each combination of zirconia (4), shade (2), and sintering condition (2), the color parameters were determined at three positions of each of nine crowns using a non-contact dental spectrophotometer. In addition, the zirconia phases in the specimens were quantified using X-ray diffractometry. Significant differences in the ΔE00 values at different measurement positions were observed for the Multi2 crown of the BL shade group. The color difference resulting from conventional and speed sintering programs was not affected by the difference in yttria content of Mono1, Mono2, and Multi1. However, in Multi2, containing 3Y-TZP and 5Y-PSZ, a color change was caused by the use of speed sintering. Therefore, when performing speed sintering with Multi2, it is necessary to select the color in consideration of these results or take measures for staining.
Collapse
Affiliation(s)
- Shoko Miura
- Division of Fixed Prosthodontics, Department of Restorative & Biomaterials Sciences, Meikai University School of Dentistry, Sakado, Saitama, Japan
| | - Akikazu Shinya
- Department of Dental Materials Sciences, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.,Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| | - Hiroyasu Koizumi
- Department of Dental Materials, Nihon University School of Dentistry, Tokyo, Japan
| | - Masanori Fujisawa
- Division of Fixed Prosthodontics, Department of Restorative & Biomaterials Sciences, Meikai University School of Dentistry, Sakado, Saitama, Japan
| |
Collapse
|
41
|
Abd Wahab NAA, Ghani ZA, Shariff KA, Husein A, Hussein AI. Upscaling of CaO Derived from Cockle Shells as Stabilizer for Zirconia with Improved Properties for Dental Applications. SOLID STATE PHENOMENA 2022; 337:73-79. [DOI: 10.4028/p-a3eb02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The aim of this study was to upscale the production of calcium oxide (CaO) derived from cockle shells using an improved protocol and determine its purity, as well as to study the hardness of the new, improved calcia stabilized zirconia (Ca-SZ). A mixture of diluted cockle shells powder with hydrochloric acid solutions (HCl) was stirred to obtain calcium chloride (CaCl2). The homogenous CaCO3 solutions were obtained by mixing CaCl2 solution with potassium carbonate (KCO3) using upscaled mechanochemical synthesis process. Then, CaCO3 powder underwent calcination process at a temperature in range of 300°C – 550°C to obtain CaO powders. CaO showed the result under FESEM analysis as a spherical shape with crystal-like structure as well dispersed with no visible agglomeration. The yield production of CaO obtained was approximately about 5.0g which was upgraded from a previous study. The morphologies of Ca-SZ were observed at three different sintering temperatures at 1200°C, 1300°C and 1400°C were selected in order to understand the morphological and mechanical properties of Ca-SZ after incorporating 8wt% of CaO powders derived from cockle shells. The Ca-SZ pellets were then characterized using Field Emission Scanning Electron Microscopy (FESEM) and Vickers Hardness Test to ensure the effectiveness of CaO powder in fabricating Calcia-Stabilized Zirconia (Ca-SZ). As a result, sintered Ca-SZ at 1400°C showed the most promising performance for nano-CaO act as a stabilizer as it has the highest hardness at 590.03MPa with significantly difference (p<0.05) among all sintered Ca-SZ specimens. Therefore, these findings revealed that by adjusting the previous protocol, upscaling of a pure CaO may be synthesized using natural Ca source from cockle shells. The fabricated Ca-SZ showed a significantly lower hardness when sintered at 1400°C, which may be easier for machining.
Collapse
|
42
|
Restoring Teeth with an Advanced Lithium Disilicate Ceramic: A Case Report and 1-Year Follow-Up. Case Rep Dent 2022; 2022:6872542. [PMID: 36157203 PMCID: PMC9507783 DOI: 10.1155/2022/6872542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Advancements in materials science and bonding protocols as well as new manufacturing methods foster the development of novel ceramic materials to meet the increased demands for highly aesthetic, biocompatible, and long-lasting restorations in fixed prosthodontics. This case report highlights the minimally invasive rehabilitation with a new advanced lithium disilicate (ALD) ceramic block. It is reinforced with virgilite crystals in managing esthetic demand of patient besides having a high flexural strength. According to the manufacturer, the material provides a biaxial strength measured at >700 MPa and improved optical properties. The remarkable speed sintering time of approx. 4.5 minutes makes processing very fast. Time efficiency, predictability, and economically interesting treatment options are of great importance in current dentistry and can be well implemented in CAD/CAM dentistry. The newly introduced ALD ceramic for the “Chairside Economical Restoration of Esthetic Ceramics”/“CEramic REConstruction” (CEREC) system produces an esthetically pleasing and clinically excellent restoration. The shorter processing time combined with high flexural strength will optimize the chairside workflow. New treatment indication options for lithium disilicate ceramics will expand. Although more evidence from long-term clinical studies is needed to verify the clinical performance and manufacturer recommendations regarding indication, preparation and cementation must be followed very strictly. In the present case report, restorations were indicated for seven posterior teeth, which were prepared, scanned, designed with CEREC-Primescan SW 5.1.3, and fabricated with MCX5. The monolithic restorations were placed adhesively. The rehabilitation with the ALD blocks resulted in an aesthetically pleasing, functional outcome that improved overall treatment time and increased patient and practitioner satisfaction, which remained stable over a one-year follow-up period.
Collapse
|
43
|
Conventional, Speed Sintering and High-Speed Sintering of Zirconia: A Systematic Review of the Current Status of Applications in Dentistry with a Focus on Precision, Mechanical and Optical Parameters. J Clin Med 2022; 11:jcm11164892. [PMID: 36013131 PMCID: PMC9409711 DOI: 10.3390/jcm11164892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 01/17/2023] Open
Abstract
The aim of this systematic review was to provide an overview of the technical and clinical outcomes of conventional, speed sintering and high-speed sintering protocols of zirconia in the dental field. Data on precision, mechanical and optical parameters were evaluated and related to the clinical performance of zirconia ceramic. The PICOS search strategy was applied using MEDLINE to search for in vitro and in vivo studies using MeSH Terms by two reviewers. Of 66 potentially relevant studies, 5 full text articles were selected and 10 were further retrieved through a manual search. All 15 studies included in the systematic review were in vitro studies. Mechanical, precision and optical properties (marginal and internal fit, fracture strength and modulus, wear, translucency and opalescence, aging resistance/hydrothermal aging) were evaluated regarding 3-, 4- and 5-YTZP zirconia material and conventional, high- and high-speed sintering protocols. Mechanical and precision results were similar or better when speed or high-speed sintering methods were used for 3-, 4- and 5-YTZP zirconia. Translucency is usually reduced when 3 Y-TZP is used with speed sintering methods. All types of zirconia using the sintering procedures performed mechanically better compared to lithium disilicate glass ceramics but glass ceramics showed better results regarding translucency.
Collapse
|
44
|
Nonaka K, Teramae M, Pezzotti G. Evaluation of the Effect of High-Speed Sintering and Specimen Thickness on the Properties of 5 mol% Yttria-Stabilized Dental Zirconia Sintered Bodies. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5685. [PMID: 36013827 PMCID: PMC9412651 DOI: 10.3390/ma15165685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
High-speed sintering of zirconia has become essential to single-visit dental prosthetic treatments. This important prosthetic dentistry technique demands a translucent material tougher than porcelain. Previous studies on high-speed sintered zirconia did not take heat and material thickness into consideration. We evaluated pre-sintered specimen thickness and the effect of high-speed sintering on the properties of 5 mol% Y2O3-stabilized zirconia (5Y zirconia). High-speed sintered bodies of 5Y zirconia were evaluated by density measurements, translucency measurements, three-point flexural and fracture toughness tests, X-ray diffraction (XRD), and scanning electron microscopy (SEM). High-speed sintering reduced the translucency and mechanical properties of 5Y zirconia. XRD and SEM observation results clarified that these reductions were due to the change in crystal phase composition and to the increase in residual pores, respectively, both resulting from high-speed sintering. Moreover, in high-speed sintering, as the thickness of the specimen increased, the number and size of internal pores increased, and the translucency and strength decreased. The threshold value for avoiding a reduction in translucency and mechanical properties was found to lie at ~4.4 mm. From the above results, it was concluded that 5Y zirconia is not suitable for high-speed sintering applications.
Collapse
Affiliation(s)
- Kazumichi Nonaka
- Department of Research and Development, SHOFU INC, Higashiyama-ku, Kyoto 605-0983, Japan
| | - Mitsuji Teramae
- Department of Research and Development, SHOFU INC, Higashiyama-ku, Kyoto 605-0983, Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
45
|
Alfrisany NM, Somogyi-Ganss E, Tam L, Hatton BD, Sodhi RN, De Souza GM. Room-temperature atomic layer deposition of SiO2 on microcracked ZrO2 layers. J Mech Behav Biomed Mater 2022; 134:105410. [DOI: 10.1016/j.jmbbm.2022.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
|
46
|
Mayinger F, Buser R, Laier M, Schönhoff LM, Kelch M, Hampe R, Stawarczyk B. Impact of the material and sintering protocol, layer thickness, and thermomechanical aging on the two-body wear and fracture load of 4Y-TZP crowns. Clin Oral Investig 2022; 26:6617-6628. [PMID: 35840737 DOI: 10.1007/s00784-022-04616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The aim of this study is to investigate the influence of the material and corresponding sintering protocol, layer thickness, and aging on the two-body wear (2BW) and fracture load (FL) of 4Y-TZP crowns. MATERIALS AND METHODS Multi-layer 4Y-TZP crowns in three thicknesses (0.5 mm/1.0 mm/1.5 mm) were sintered by high-speed (Zolid RS) or conventional (Zolid Gen-X) sintering. 2BW of ceramic and enamel antagonist after aging (1,200,000 mechanical-, 6000 thermal-cycles) was determined by 3D-scanning before and after aging and subsequent matching to determine volume and height loss (6 subgroups, n = 16/subgroup). FL was examined initially and after aging (12 subgroups, n = 16/subgroup). Fractographic analyses were performed using light-microscope imaging. Global univariate analysis of variance, one-way ANOVA, linear regression, Spearman's correlation, Kolgomorov-Smirnov, Mann-Whitney U, and t test were computed (alpha = 0.05). Weibull moduli were determined. Fracture types were analyzed using Ciba Geigy table. RESULTS Material/sintering protocol did not influence 2BW (crowns: p = 0.908, antagonists: p = 0.059). High-speed sintered Zolid RS presented similar (p = 0.325-0.633) or reduced (p < 0.001-0.047) FL as Zolid Gen-X. Both 4Y-TZPs showed an increased FL with an increasing thickness (0.5(797.3-1429 N) < 1.0(2087-2634 N) < 1.5(2683-3715 N)mm; p < 0.001). For most groups, aging negatively impacted FL (p < 0.001-0.002). Five 0.5 mm specimens fractured, four showed cracks during and after aging. CONCLUSIONS High-speed sintered crowns with a minimum thickness of 1.0 mm showed sufficient mechanical properties to withstand masticatory forces, even after a simulated aging period of 5 years. CLINICAL RELEVANCE Despite the manufacturer indicating a thickness of 0.5 mm to be suitable for single crowns, a minimum thickness of 1.0 mm should be used to ensure long-term satisfactory results.
Collapse
Affiliation(s)
- Felicitas Mayinger
- Department of Prosthetic Dentistry, Dental School, LMU Munich, Goethestraße 70, 80336, Munich, Germany.
| | - Ramona Buser
- Department of Prosthetic Dentistry, Dental School, LMU Munich, Goethestraße 70, 80336, Munich, Germany.,Department of Reconstructive Dentistry and Gerodontology, University of Bern, Freiburgstrasse 7, 3007, Bern, Switzerland
| | - Maximilian Laier
- Department of Prosthetic Dentistry, Dental School, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Lisa Marie Schönhoff
- Department of Prosthetic Dentistry, Dental School, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Matthias Kelch
- Department of Prosthetic Dentistry, Dental School, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Rüdiger Hampe
- Department of Prosthetic Dentistry, Dental School, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Bogna Stawarczyk
- Department of Prosthetic Dentistry, Dental School, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| |
Collapse
|
47
|
Lüchtenborg J, Willems E, Zhang F, Wesemann C, Weiss F, Nold J, Sun J, Sandra F, Bai J, Reveron H, Chevalier J, Spies BC. Accuracy of additively manufactured zirconia four-unit fixed dental prostheses fabricated by stereolithography, digital light processing and material jetting compared with subtractive manufacturing. Dent Mater 2022; 38:1459-1469. [DOI: 10.1016/j.dental.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
|
48
|
Čokić SM, Cóndor M, Vleugels J, Meerbeek BV, Oosterwyck HV, Inokoshi M, Zhang F. Mechanical properties-translucency-microstructure relationships in commercial monolayer and multilayer monolithic zirconia ceramics. Dent Mater 2022; 38:797-810. [PMID: 35450705 DOI: 10.1016/j.dental.2022.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To evaluate the phase composition, microstructure, optical properties and mechanical properties of eight commercially available multilayer and monolayer monolithic dental zirconias. METHODS Five commercial 3Y-TZP (GC ST, GC HT [GC, Tokyo Japan]; Katana ML, Katana HT [Kuraray Noritake] and Lava Plus [3M Oral Care]) and three Y-PSZ (Katana STML, Katana UTML [Kuraray Noritake]; GC UHT [GC, Tokyo Japan]) zirconia ceramic grades were cut in plate-shaped specimens, sintered according to the manufacturer's instructions and mirror polished. The zirconia chemical composition was determined using X-ray fluorescence (XRF), phase composition was characterized using X-ray diffraction (XRD), while the grain size was measured using scanning electron microscopy (SEM). The translucency Parameter (TP) and Contrast Ratio (CR) were measured with a spectrophotometer (n = 10/group). The indentation fracture toughness (n = 10), Vickers hardness (n = 10) and biaxial strength (n = 20) of the sintered ceramics were assessed. The stress distribution during biaxial testing was assessed by Finite element analysis (FEA). Statistical analysis involved one-way ANOVA and post-hoc Tukey's HSD test and Pearson correlation test (α = 0.05). RESULTS FEA showed that the stress distribution in plate shape specimens was the same as for disks, rationalizing the use of plates for biaxial strength testing. As expected, higher quantities of Y2O3 were related to a higher cubic ZrO2 phase content and lower tetragonality t-ZrO2, which improved translucency but diminished flexural strength and toughness. While there was no significant correlation between grain size and other material properties, addition of pigments to the zirconia grade statistically negatively affected hardness. CONCLUSION Even though an improvement in strength and translucency could be recorded for the last Y-TZP generation, future research still needs to strive for combined improvement of optical properties and mechanical reliability of zirconia ceramics.
Collapse
Affiliation(s)
- Stevan M Čokić
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium.
| | - Mar Cóndor
- KU Leuven (University of Leuven), Department of Mechanical Engineering, Biomechanics Section (BMe), Arenberg, Leuven, Belgium
| | - Jef Vleugels
- KU Leuven (University of Leuven), Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium
| | - Hans Van Oosterwyck
- KU Leuven (University of Leuven), Department of Mechanical Engineering, Biomechanics Section (BMe), Arenberg, Leuven, Belgium
| | - Masanao Inokoshi
- Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Fei Zhang
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Leuven, Belgium; KU Leuven (University of Leuven), Department of Materials Engineering (MTM), Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
| |
Collapse
|
49
|
Multilayer Super-Translucent Zirconia for Chairside Fabrication of a Monolithic Posterior Crown. Case Rep Dent 2022; 2022:4474227. [PMID: 35371572 PMCID: PMC8967591 DOI: 10.1155/2022/4474227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
This case report describes the chairside fabrication of a monolithic posterior crown using a multilayer super-translucent zirconia material. According to the manufacturer’s information, the newly introduced multilayer zirconia (4-YTZP) offers a unique combination of fracture strength (>850 MPa with speed-sintering) and improved optical properties, thus allowing a reduced minimum material thickness and optional temporary luting. By using up-to-date components of the CEREC system, including superfast dry-milling and a speed-sintering process, the fabrication of a monolithic zirconia crown is possible within an acceptable timeframe for the chairside workflow (60-75 min). The usage of a multilayer super-translucent material allows for the individualization of the restoration, typically in a single combined stain and glaze firing. However, it should be noted that clinical data for this type of restoration are still sparse. Therefore, manufacturer recommendations regarding indication, preparation, and cementation must be followed very strictly.
Collapse
|
50
|
Yılmaz Savaş T, Akın C. Effects of sintering protocol and dipping time on the optical properties of monolithic zirconia. J Prosthet Dent 2022; 127:801.e1-801.e8. [DOI: 10.1016/j.prosdent.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
|