1
|
Thowfeequ S, Hanna CW, Srinivas S. Origin, fate and function of extraembryonic tissues during mammalian development. Nat Rev Mol Cell Biol 2025; 26:255-275. [PMID: 39627419 DOI: 10.1038/s41580-024-00809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 03/28/2025]
Abstract
Extraembryonic tissues have pivotal roles in morphogenesis and patterning of the early mammalian embryo. Developmental programmes mediated through signalling pathways and gene regulatory networks determine the sequence in which fate determination and lineage commitment of extraembryonic tissues take place, and epigenetic processes allow the memory of cell identity and state to be sustained throughout and beyond embryo development, even extending across generations. In this Review, we discuss the molecular and cellular mechanisms necessary for the different extraembryonic tissues to develop and function, from their initial specification up until the end of gastrulation, when the body plan of the embryo and the anatomical organization of its supporting extraembryonic structures are established. We examine the interaction between extraembryonic and embryonic tissues during early patterning and morphogenesis, and outline how epigenetic memory supports extraembryonic tissue development.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Courtney W Hanna
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Shankar Srinivas
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Saade M, Martí E. Early spinal cord development: from neural tube formation to neurogenesis. Nat Rev Neurosci 2025; 26:195-213. [PMID: 39915695 DOI: 10.1038/s41583-025-00906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 03/26/2025]
Abstract
As one of the simplest and most evolutionarily conserved parts of the vertebrate nervous system, the spinal cord serves as a key model for understanding the principles of nervous system construction. During embryonic development, the spinal cord originates from a population of bipotent stem cells termed neuromesodermal progenitors, which are organized within a transient embryonic structure known as the neural tube. Neural tube morphogenesis differs along its anterior-to-posterior axis: most of the neural tube (including the regions that will develop into the brain and the anterior spinal cord) forms via the bending and dorsal fusion of the neural groove, but the establishment of the posterior region of the neural tube involves de novo formation of a lumen within a solid medullary cord. The early spinal cord primordium consists of highly polarized neural progenitor cells organized into a pseudostratified epithelium. Tight regulation of the cell division modes of these progenitors drives the embryonic growth of the neural tube and initiates primary neurogenesis. A rich history of observational and functional studies across various vertebrate models has advanced our understanding of the cellular events underlying spinal cord development, and these foundational studies are beginning to inform our knowledge of human spinal cord development.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| | - Elisa Martí
- Department of Cells and Tissues, Instituto de Biología Molecular de Barcelona CSIC, Barcelona, Spain.
| |
Collapse
|
3
|
Brumm AS, McCarthy A, Gerri C, Fallesen T, Woods L, McMahon R, Papathanasiou A, Elder K, Snell P, Christie L, Garcia P, Shaikly V, Taranissi M, Serhal P, Odia RA, Vasilic M, Osnato A, Rugg-Gunn PJ, Vallier L, Hill CS, Niakan KK. Initiation and maintenance of the pluripotent epiblast in pre-implantation human development is independent of NODAL signaling. Dev Cell 2025; 60:174-185.e5. [PMID: 39561779 DOI: 10.1016/j.devcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/05/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
The human blastocyst contains the pluripotent epiblast from which human embryonic stem cells (hESCs) can be derived. ACTIVIN/NODAL signaling maintains expression of the transcription factor NANOG and in vitro propagation of hESCs. It is unknown whether this reflects a functional requirement for epiblast development in human embryos. Here, we characterized NODAL signaling activity during pre-implantation human development. We showed that NANOG is an early molecular marker restricted to the nascent human pluripotent epiblast and was initiated prior to the onset of NODAL signaling. We further demonstrated that expression of pluripotency-associated transcription factors NANOG, SOX2, OCT4, and KLF17 were maintained in the epiblast in the absence of NODAL signaling activity. Genome-wide transcriptional analysis showed that NODAL signaling inhibition did not decrease NANOG transcription or impact the wider pluripotency-associated gene regulatory network. These data suggest differences in the signaling requirements regulating pluripotency in the pre-implantation human epiblast compared with existing hESC culture.
Collapse
Affiliation(s)
- A Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Todd Fallesen
- Crick Advanced Light Microscopy, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura Woods
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Riley McMahon
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Patricia Garcia
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | - Valerie Shaikly
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | | | - Paul Serhal
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Rabi A Odia
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Mina Vasilic
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Anna Osnato
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Peter J Rugg-Gunn
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
4
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
5
|
Zhu Q, Ge J, Liu Y, Xu JW, Yan S, Zhou F. Decoding anterior-posterior axis emergence among mouse, monkey, and human embryos. Dev Cell 2023; 58:63-79.e4. [PMID: 36626872 DOI: 10.1016/j.devcel.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Anterior-posterior axis formation regulated by the distal visceral endoderm (DVE) and anterior visceral endoderm (AVE) is essential for peri-implantation embryogenesis. However, the principles of the origin and specialization of DVE and AVE remain elusive. Here, with single-cell transcriptome analysis and pseudotime prediction, we show that DVE and AVE independently originate from the specialized primary endoderm in mouse blastocysts. Along distinct developmental paths, these two lineages, respectively, undergo four representative states with stage-specific transcriptional patterns around implantation. Further comparative analysis shows that AVE, but not DVE, is detected in human and non-human primate embryos, defining differences in polarity formation across species. Moreover, stem cell-assembled human blastoids lack DVE or AVE precursors, implying that additional induction of stem cells with DVE/AVE potential could promote the current embryo-like models and their post-implantation growth. Our work provides insight into understanding of embryonic polarity formation and early mammalian development.
Collapse
Affiliation(s)
- Qingyuan Zhu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jitao Ge
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia-Wen Xu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shengyi Yan
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fan Zhou
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
7
|
Filimonow K, de la Fuente R. Specification and role of extraembryonic endoderm lineages in the periimplantation mouse embryo. Theriogenology 2021; 180:189-206. [PMID: 34998083 DOI: 10.1016/j.theriogenology.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
During mammalian embryo development, the correct formation of the first extraembryonic endoderm lineages is fundamental for successful development. In the periimplantation blastocyst, the primitive endoderm (PrE) is formed, which gives rise to the parietal endoderm (PE) and visceral endoderm (VE) during further developmental stages. These PrE-derived lineages show significant differences in both their formation and roles. Whereas differentiation of the PE as a migratory lineage has been suggested to represent the first epithelial-to-mesenchymal transition (EMT) in development, organisation of the epithelial VE is of utmost importance for the correct axis definition and patterning of the embryo. Despite sharing a common origin, the striking differences between the VE and PE are indicative of their distinct roles in early development. However, there is a significant disparity in the current knowledge of each lineage, which reflects the need for a deeper understanding of their respective specification processes. In this review, we will discuss the origin and maturation of the PrE, PE, and VE during the periimplantation period using the mouse model as an example. Additionally, we consider the latest findings regarding the role of the PrE-derived lineages and early embryo morphogenesis, as obtained from the most recent in vitro models.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
8
|
Gordeev MN, Bakhmet EI, Tomilin AN. Pluripotency Dynamics during Embryogenesis and in Cell Culture. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Induction of Rosette-to-Lumen stage embryoids using reprogramming paradigms in ESCs. Nat Commun 2021; 12:7322. [PMID: 34916498 PMCID: PMC8677818 DOI: 10.1038/s41467-021-27586-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/19/2021] [Indexed: 01/01/2023] Open
Abstract
Blastocyst-derived stem cell lines were shown to self-organize into embryo-like structures in 3D cell culture environments. Here, we provide evidence that embryo-like structures can be generated solely based on transcription factor-mediated reprogramming of embryonic stem cells in a simple 3D co-culture system. Embryonic stem cells in these cultures self-organize into elongated, compartmentalized embryo-like structures reflecting aspects of the inner regions of the early post-implantation embryo. Single-cell RNA-sequencing reveals transcriptional profiles resembling epiblast, primitive-/visceral endoderm, and extraembryonic ectoderm of early murine embryos around E4.5-E5.5. In this stem cell-based embryo model, progression from rosette formation to lumenogenesis accompanied by progression from naïve- to primed pluripotency was observed within Epi-like cells. Additionally, lineage specification of primordial germ cells and distal/anterior visceral endoderm-like cells was observed in epiblast- or visceral endoderm-like compartments, respectively. The system presented in this study allows for fast and reproducible generation of embryo-like structures, providing an additional tool to study aspects of early embryogenesis.
Collapse
|
10
|
Kawamura N, Takaoka K, Hamada H, Hadjantonakis AK, Sun-Wada GH, Wada Y. Rab7-Mediated Endocytosis Establishes Patterning of Wnt Activity through Inactivation of Dkk Antagonism. Cell Rep 2021; 31:107733. [PMID: 32521258 PMCID: PMC8171381 DOI: 10.1016/j.celrep.2020.107733] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/16/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Endocytosis has been proposed to modulate cell signaling activities. However, the role of endocytosis in embryogenesis, which requires coordination of multiple signaling inputs, has remained less understood. We previously showed that mouse embryos lacking a small guanosine triphosphate (GTP)-binding protein Rab7 implicated in endocytic flow are defective in gastrulation. Here, we investigate how subcellular defects associated with Rab7 deficiency are related to the observed developmental defects. Rab7-deficient embryos fail to organize mesodermal tissues due to defects in Wnt-β-catenin signaling. Visceral endoderm (VE)-specific ablation of Rab7 results in patterning defects similar to systemic Rab7 deletion. Rab7 mutants accumulate the Wnt antagonist Dkk1 in the extracellular space and in intracellular compartments throughout the VE epithelium. These data indicate that Rab7-dependent endocytosis regulates the concentration and availability of extracellular Dkk1, thereby relieving the epiblast of antagonism. This intercellular mechanism therefore organizes distinct spatiotemporal patterns of canonical Wnt activity during the peri-gastrulation stages of embryonic development.
Collapse
Affiliation(s)
- Nobuyuki Kawamura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto 610-0395, Japan
| | - Katsuyoshi Takaoka
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Hiroshi Hamada
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto 610-0395, Japan.
| | - Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
11
|
Fiorentino J, Torres-Padilla ME, Scialdone A. Measuring and Modeling Single-Cell Heterogeneity and Fate Decision in Mouse Embryos. Annu Rev Genet 2020; 54:167-187. [PMID: 32867543 DOI: 10.1146/annurev-genet-021920-110200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation. In addition to key experimental findings, we review mathematical modeling approaches that help researchers interpret these findings. Disentangling the role of heterogeneity in cell fate decision will likely rely on the refined integration of experiments, large-scale omics data, and mathematical modeling, complemented by the use of synthetic embryos and gastruloids as promising in vitro models.
Collapse
Affiliation(s)
- Jonathan Fiorentino
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Institute of Functional Epigenetics (IFE) and Institute of Computational Biology (ICB), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Faculty of Biology, Ludwig-Maximilians Universität, D-82152 Planegg-Martinsried, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Institute of Functional Epigenetics (IFE) and Institute of Computational Biology (ICB), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
12
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
13
|
Mizuno K, Shiozawa K, Katoh TA, Minegishi K, Ide T, Ikawa Y, Nishimura H, Takaoka K, Itabashi T, Iwane AH, Nakai J, Shiratori H, Hamada H. Role of Ca 2+ transients at the node of the mouse embryo in breaking of left-right symmetry. SCIENCE ADVANCES 2020; 6:eaba1195. [PMID: 32743070 PMCID: PMC7375832 DOI: 10.1126/sciadv.aba1195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/11/2020] [Indexed: 05/14/2023]
Abstract
Immotile cilia sense extracellular signals such as fluid flow, but whether Ca2+ plays a role in flow sensing has been unclear. Here, we examined the role of ciliary Ca2+ in the flow sensing that initiates the breaking of left-right (L-R) symmetry in the mouse embryo. Intraciliary and cytoplasmic Ca2+ transients were detected in the crown cells at the node. These Ca2+ transients showed L-R asymmetry, which was lost in the absence of fluid flow or the PKD2 channel. Further characterization allowed classification of the Ca2+ transients into two types: cilium-derived, L-R-asymmetric transients (type 1) and cilium-independent transients without an L-R bias (type 2). Type 1 intraciliary transients occurred preferentially at the left posterior region of the node, where L-R symmetry breaking takes place. Suppression of intraciliary Ca2+ transients delayed L-R symmetry breaking. Our results implicate cilium-derived Ca2+ transients in crown cells in initiation of L-R symmetry breaking in the mouse embryo.
Collapse
Affiliation(s)
- Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Corresponding author. (K.Miz.); (H.H.)
| | - Kei Shiozawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takanobu A. Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsuyoshi Takaoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takeshi Itabashi
- RIKEN Center for Biosystems Dynamics Research, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Atsuko H. Iwane
- RIKEN Center for Biosystems Dynamics Research, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Junichi Nakai
- Department of Oral Function and Morphology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hidetaka Shiratori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
- Corresponding author. (K.Miz.); (H.H.)
| |
Collapse
|
14
|
Kajikawa E, Horo U, Ide T, Mizuno K, Minegishi K, Hara Y, Ikawa Y, Nishimura H, Uchikawa M, Kiyonari H, Kuraku S, Hamada H. Nodal paralogues underlie distinct mechanisms for visceral left-right asymmetry in reptiles and mammals. Nat Ecol Evol 2020; 4:261-269. [PMID: 31907383 DOI: 10.1038/s41559-019-1072-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
Unidirectional fluid flow generated by motile cilia at the left-right organizer (LRO) breaks left-right (L-R) symmetry during early embryogenesis in mouse, frog and zebrafish. The chick embryo, however, does not require motile cilia for L-R symmetry breaking. The diversity of mechanisms for L-R symmetry breaking among vertebrates and the trigger for such symmetry breaking in non-mammalian amniotes have remained unknown. Here we examined how L-R asymmetry is established in two reptiles, Madagascar ground gecko and Chinese softshell turtle. Both of these reptiles appear to lack motile cilia at the LRO. The expression of the Nodal gene at the LRO in the reptilian embryos was found to be asymmetric, in contrast to that in vertebrates such as mouse that are dependent on cilia for L-R patterning. Two paralogues of the Nodal gene derived from an ancient gene duplication are retained and expressed differentially in cilia-dependent and cilia-independent vertebrates. The expression of these two Nodal paralogues is similarly controlled in the lateral plate mesoderm but regulated differently at the LRO. Our in-depth analysis of reptilian embryos thus suggests that mammals and non-mammalian amniotes deploy distinct strategies dependent on different Nodal paralogues for rendering Nodal activity asymmetric at the LRO.
Collapse
Affiliation(s)
- Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Uzuki Horo
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,SEEDS Program/JST Global Science Campus, Osaka University, Toyonaka, Japan.,NADA Senior High School, Kobe, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuichiro Hara
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masanori Uchikawa
- Graduate School for Frontier Biosciences, Osaka University, Suita, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
15
|
Molè MA, Weberling A, Zernicka-Goetz M. Comparative analysis of human and mouse development: From zygote to pre-gastrulation. Curr Top Dev Biol 2019; 136:113-138. [PMID: 31959285 DOI: 10.1016/bs.ctdb.2019.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of the mammalian embryo begins with formation of the totipotent zygote during fertilization. This initial cell is able to give rise to every embryonic tissue of the developing organism as well as all extra-embryonic lineages, such as the placenta and the yolk sac, which are essential for the initial patterning and support growth of the fetus until birth. As the embryo transits from pre- to post-implantation, major structural and transcriptional changes occur within the embryonic lineage to set up the basis for the subsequent phase of gastrulation. Fine-tuned coordination of cell division, morphogenesis and differentiation is essential to ultimately promote assembly of the future fetus. Here, we review the current knowledge of mammalian development of both mouse and human focusing on morphogenetic processes leading to the onset of gastrulation, when the embryonic anterior-posterior axis becomes established and the three germ layers start to be specified.
Collapse
|
16
|
Nowotschin S, Hadjantonakis AK. Guts and gastrulation: Emergence and convergence of endoderm in the mouse embryo. Curr Top Dev Biol 2019; 136:429-454. [PMID: 31959298 DOI: 10.1016/bs.ctdb.2019.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrulation is a central process in mammalian development in which a spatiotemporally coordinated series of events driven by cross-talk between adjacent embryonic and extra-embryonic tissues results in stereotypical morphogenetic cell behaviors, massive cell proliferation and the acquisition of distinct cell identities. Gastrulation provides the blueprint of the body plan of the embryo, as well as generating extra-embryonic cell types of the embryo to make a connection with its mother. Gastrulation involves the specification of mesoderm and definitive endoderm from pluripotent epiblast, concomitant with a highly ordered elongation of tissue along the anterior-posterior (AP) axis. Interestingly, cells with an endoderm identity arise twice during mouse development. Cells with a primitive endoderm identity are specified in the preimplantation blastocyst, and which at gastrulation intercalate with the emergent definitive endoderm to form a mosaic tissue, referred to as the gut endoderm. The gut endoderm gives rise to the gut tube, which will subsequently become patterned along its AP axis into domains possessing unique visceral organ identities, such as thyroid, lung, liver and pancreas. In this way, proper endoderm development is essential for vital organismal functions, including the absorption of nutrients, gas exchange, detoxification and glucose homeostasis.
Collapse
Affiliation(s)
- Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
17
|
Vianello S, Lutolf MP. Understanding the Mechanobiology of Early Mammalian Development through Bioengineered Models. Dev Cell 2019; 48:751-763. [PMID: 30913407 DOI: 10.1016/j.devcel.2019.02.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/13/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
Abstract
Research in developmental biology has been recently enriched by a multitude of in vitro models recapitulating key milestones of mammalian embryogenesis. These models obviate the challenge posed by the inaccessibility of implanted embryos, multiply experimental opportunities, and favor approaches traditionally associated with organoids and tissue engineering. Here, we provide a perspective on how these models can be applied to study the mechano-geometrical contributions to early mammalian development, which still escape direct verification in species that develop in utero. We thus outline new avenues for robust and scalable perturbation of geometry and mechanics in ways traditionally limited to non-implanting developmental models.
Collapse
Affiliation(s)
- Stefano Vianello
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Science (SB), EPFL, Lausanne, Switzerland.
| |
Collapse
|
18
|
Zhang S, Chen T, Chen N, Gao D, Shi B, Kong S, West RC, Yuan Y, Zhi M, Wei Q, Xiang J, Mu H, Yue L, Lei X, Wang X, Zhong L, Liang H, Cao S, Belmonte JCI, Wang H, Han J. Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells. Nat Commun 2019; 10:496. [PMID: 30700702 PMCID: PMC6353907 DOI: 10.1038/s41467-019-08378-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/04/2019] [Indexed: 11/09/2022] Open
Abstract
Spatially ordered embryo-like structures self-assembled from blastocyst-derived stem cells can be generated to mimic embryogenesis in vitro. However, the assembly system and developmental potential of such structures needs to be further studied. Here, we devise a nonadherent-suspension-shaking system to generate self-assembled embryo-like structures (ETX-embryoids) using mouse embryonic, trophoblast and extra-embryonic endoderm stem cells. When cultured together, the three cell types aggregate and sort into lineage-specific compartments. Signaling among these compartments results in molecular and morphogenic events that closely mimic those observed in wild-type embryos. These ETX-embryoids exhibit lumenogenesis, asymmetric patterns of gene expression for markers of mesoderm and primordial germ cell precursors, and formation of anterior visceral endoderm-like tissues. After transplantation into the pseudopregnant mouse uterus, ETX-embryoids efficiently initiate implantation and trigger the formation of decidual tissues. The ability of the three cell types to self-assemble into an embryo-like structure in vitro provides a powerful model system for studying embryogenesis.
Collapse
Affiliation(s)
- Shaopeng Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Tianzhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Naixin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Bingbo Shi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, 361102, China
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Qingqing Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Jinzhu Xiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Haiyuan Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Liang Yue
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Xiaohua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuepeng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Zhong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Liang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | | | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, 361102, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 10094, China. .,Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
19
|
Abstract
We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.
Collapse
Affiliation(s)
- Hui Ting Zhang
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
20
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
21
|
Stower MJ, Srinivas S. The Head's Tale: Anterior-Posterior Axis Formation in the Mouse Embryo. Curr Top Dev Biol 2017; 128:365-390. [PMID: 29477169 DOI: 10.1016/bs.ctdb.2017.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The establishment of the anterior-posterior (A-P) axis is a fundamental event during early development and marks the start of the process by which the basic body plan is laid down. This axial information determines where gastrulation, that generates and positions cells of the three-germ layers, occurs. A-P patterning requires coordinated interactions between multiple tissues, tight spatiotemporal control of signaling pathways, and the coordination of tissue growth with morphogenetic movements. In the mouse, a specialized population of cells, the anterior visceral endoderm (AVE) undergoes a migration event critical for correct A-P pattern. In this review, we summarize our understanding of the generation of anterior pattern, focusing on the role of the AVE. We will also outline some of the many questions that remain regarding the mechanism by which the first axial asymmetry is established, how the AVE is induced, and how it moves within the visceral endoderm epithelium.
Collapse
|
22
|
Takaoka K, Nishimura H, Hamada H. Both Nodal signalling and stochasticity select for prospective distal visceral endoderm in mouse embryos. Nat Commun 2017; 8:1492. [PMID: 29138408 PMCID: PMC5686177 DOI: 10.1038/s41467-017-01625-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/04/2017] [Indexed: 01/17/2023] Open
Abstract
Anterior–posterior (A–P) polarity of mouse embryos is established by distal visceral endoderm (DVE) at embryonic day (E) 5.5. Lefty1 is expressed first at E3.5 in a subset of epiblast progenitor cells (L1epi cells) and then in a subset of primitive endoderm cells (L1dve cells) fated to become DVE. Here we studied how prospective DVE cells are selected. Lefty1 expression in L1epi and L1dve cells depends on Nodal signaling. A cell that experiences the highest level of Nodal signaling begins to express Lefty1 and becomes an L1epi cell. Deletion of Lefty1 alone or together with Lefty2 increased the number of prospective DVE cells. Ablation of L1epi or L1dve cells triggered Lefty1 expression in a subset of remaining cells. Our results suggest that selection of prospective DVE cells is both random and regulated, and that a fixed prepattern for the A–P axis does not exist before the blastocyst stage. In the mouse embryo, anterior-posterior polarity is established by distal visceral endoderm (DVE) at embryonic day 5.5 but how this arises is unclear. Here, the authors show that expression of Lefty1 earlier can define DVE, and that future DVE cells are selected by Nodal signalling and stochasticity.
Collapse
Affiliation(s)
- Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. .,Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Gottingen, Germany.
| | - Hiromi Nishimura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan.,RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
23
|
Sadler TW. Establishing the Embryonic Axes: Prime Time for Teratogenic Insults. J Cardiovasc Dev Dis 2017; 4:E15. [PMID: 29367544 PMCID: PMC5715709 DOI: 10.3390/jcdd4030015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 01/21/2023] Open
Abstract
A long standing axiom in the field of teratology states that the teratogenic period, when most birth defects are produced, occurs during the third to eighth weeks of development post-fertilization. Any insults prior to this time are thought to result in a slowing of embryonic growth from which the conceptus recovers or death of the embryo followed by spontaneous abortion. However, new insights into embryonic development during the first two weeks, including formation of the anterior-posterior, dorsal-ventral, and left-right axes, suggests that signaling pathways regulating these processes are prime targets for genetic and toxic insults. Establishment of the left-right (laterality) axis is particularly sensitive to disruption at very early stages of development and these perturbations result in a wide variety of congenital malformations, especially heart defects. Thus, the time for teratogenic insults resulting in birth defects should be reset to include the first two weeks of development.
Collapse
Affiliation(s)
- Thomas W Sadler
- Senior Fellow, Greenwood Genetics Center, Greenwood, SC 29646, USA.
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.
- Department of Anatomy, Quillen College of Medicine, East Tennessee State University, Johnson, TN 37614, USA.
- 78 Lemon Gulch Lane, Sheridan, MT 59749, USA.
| |
Collapse
|
24
|
Matsuo I, Hiramatsu R. Mechanical perspectives on the anterior-posterior axis polarization of mouse implanted embryos. Mech Dev 2017; 144:62-70. [DOI: 10.1016/j.mod.2016.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 01/21/2023]
|
25
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
26
|
Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: Linking cellular phenotypes to lineage decisions. Dev Dyn 2016; 246:245-261. [DOI: 10.1002/dvdy.24471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Teresa Rayon
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Maria Jose Andreu
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares (CNIC); Madrid Spain
| |
Collapse
|
27
|
Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency. Nat Commun 2016; 7:12589. [PMID: 27586544 PMCID: PMC5025790 DOI: 10.1038/ncomms12589] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo. Stem cell plasticity is crucial for early embryo development and the differentiation of stem cells. Here, the authors show that the extracellular protein Cripto sustains mouse ESC self-renewal and maintains mouse EpiSC as well as human ESC pluripotency and controls the metabolic reprogramming in ESCs to EpiSC transition.
Collapse
|
28
|
Yoshida M, Kajikawa E, Kurokawa D, Noro M, Iwai T, Yonemura S, Kobayashi K, Kiyonari H, Aizawa S. Conserved and divergent expression patterns of markers of axial development in reptilian embryos: Chinese soft-shell turtle and Madagascar ground gecko. Dev Biol 2016; 415:122-142. [DOI: 10.1016/j.ydbio.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/06/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
|
29
|
Wang G, Liu L, Guo S, Zhang C. Expression and distribution of forkhead activin signal transducer 2 (FAST2) during follicle development in mouse ovaries and pre-implantation embryos. Acta Histochem 2016; 118:632-639. [PMID: 27432806 DOI: 10.1016/j.acthis.2016.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022]
Abstract
Xenopus forkhead activin signal transducer 1 (xFAST 1) was first characterized in Xenopus as the transcriptional partner for Smad proteins. FAST2, which is the xFAST 1 homologues in mouse, is expressed during early developmental stages of the organism. However, the function of FAST2 in mouse ovaries and pre-implantation embryos is unclear. Therefore, we investigated its expression during these processes. In postnatal mice, FAST2 was expressed in oocytes and thecal cells from postnatal day (PD) 1 to PD 21. In gonadotropin-induced immature mice, FAST2 was expressed in oocytes, thecal cells and newly formed corpora lutea (CLs), but was expressed at a lower level in degenerated CLs. Similar results were observed upon western blot analyses. In meloxicam-treated immature mice, ovulation was inhibited and FAST2 was expressed in thecal cells, luteinized granulosa cells and entrapped oocytes. Immunofluorescence results showed that FAST2 was expressed in the cytoplasm and nucleus but not the nucleolus from the zygote to 8-cell embryo stage, after which it was localized to the cytoplasm of the morulae and inner cell mass of the blastocysts. Taken together, these observations suggest that FAST2 is expressed in a cell-specific manner during ovarian follicle development, ovulation, luteinization and early embryonic development, and that FAST2 might play important roles in these physiological processes.
Collapse
|
30
|
Souilhol C, Perea-Gomez A, Camus A, Beck-Cormier S, Vandormael-Pournin S, Escande M, Collignon J, Cohen-Tannoudji M. NOTCH activation interferes with cell fate specification in the gastrulating mouse embryo. Development 2016; 142:3649-60. [PMID: 26534985 DOI: 10.1242/dev.121145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NOTCH signalling is an evolutionarily conserved pathway involved in intercellular communication essential for cell fate choices during development. Although dispensable for early aspects of mouse development, canonical RBPJ-dependent NOTCH signalling has been shown to influence lineage commitment during embryonic stem cell (ESC) differentiation. NOTCH activation in ESCs promotes the acquisition of a neural fate, whereas its suppression favours their differentiation into cardiomyocytes. This suggests that NOTCH signalling is implicated in the acquisition of distinct embryonic fates at early stages of mammalian development. In order to investigate in vivo such a role for NOTCH signalling in shaping cell fate specification, we use genetic approaches to constitutively activate the NOTCH pathway in the mouse embryo. Early embryonic development, including the establishment of anterior-posterior polarity, is not perturbed by forced NOTCH activation. By contrast, widespread NOTCH activity in the epiblast triggers dramatic gastrulation defects. These are fully rescued in a RBPJ-deficient background. Epiblast-specific NOTCH activation induces acquisition of neurectoderm identity and disrupts the formation of specific mesodermal precursors including the derivatives of the anterior primitive streak, the mouse organiser. In addition, we show that forced NOTCH activation results in misregulation of NODAL signalling, a major determinant of early embryonic patterning. Our study reveals a previously unidentified role for canonical NOTCH signalling during mammalian gastrulation. It also exemplifies how in vivo studies can shed light on the mechanisms underlying cell fate specification during in vitro directed differentiation.
Collapse
Affiliation(s)
- Céline Souilhol
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Aitana Perea-Gomez
- Institut Jacques Monod, CNRS, UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Anne Camus
- Institut Jacques Monod, CNRS, UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Sarah Beck-Cormier
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Marie Escande
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| | - Jérôme Collignon
- Institut Jacques Monod, CNRS, UMR7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France CNRS URA 2578, Paris F-75015, France
| |
Collapse
|
31
|
Galvão A, Skarzynski D, Ferreira-Dias G. Nodal Promotes Functional Luteolysis via Down-Regulation of Progesterone and Prostaglandins E2 and Promotion of PGF2α Synthetic Pathways in Mare Corpus Luteum. Endocrinology 2016; 157:858-71. [PMID: 26653568 DOI: 10.1210/en.2015-1362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the present work, we investigated the role of Nodal, an embryonic morphogen from the TGFβ superfamily in corpus luteum (CL) secretory activity using cells isolated from equine CL as a model. Expression pattern of Nodal and its receptors activin receptor A type IIB (ACVR2B), activin receptor-like kinase (Alk)-7, and Alk4, as well as the Nodal physiological role, demonstrate the involvement of this pathway in functional luteolysis. Nodal and its receptors were immune localized in small and large luteal cells and endothelial cells, except ACVR2B, which was not detected in the endothelium. Nodal mRNA in situ hybridization confirmed its transcription in steroidogenic and endothelial cells. Expression analysis of the aforementioned factors evidenced that Nodal and Alk7 proteins peaked at the mid-CL (P < .01), the time of luteolysis initiation, whereas Alk4 and ACVR2B proteins increased from mid- to late CL (P < .05). The Nodal treatment of luteal cells decreased progesterone and prostaglandin (PG) E2 concentrations in culture media (P < .05) as well as mRNA and protein of secretory enzymes steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, cytosolic PGE2 synthase, and microsomal PGE2 synthase-1 (P < .05). Conversely, PGF2α secretion and gene expression of PG-endoperoxidase synthase 2 and PGF2α synthase were increased after Nodal treatment (P < .05). Mid-CL cells cultured with PGF2α had increased Nodal protein expression (P < .05) and phosphorylated mothers against decapentaplegic-3 phosphorylation (P < .05). Finally, the supportive interaction between Nodal and PGF2α on luteolysis was shown to its greatest extent because both factors together more significantly inhibited progesterone (P < .05) and promoted PGF2α (P < .05) synthesis than Nodal or PGF2α alone. Our results neatly pinpoint the sites of action of the Nodal signaling pathway toward functional luteolysis in the mare.
Collapse
Affiliation(s)
- António Galvão
- Institute of Animal Reproduction and Food Research (A.G., D.S.), Polish Academy of Sciences, 10-748 Olsztyn, Poland; Faculty of Veterinary Medicine (A.G., G.F.-D.), Centre for Interdisciplinary Research in Animal Health, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Dariusz Skarzynski
- Institute of Animal Reproduction and Food Research (A.G., D.S.), Polish Academy of Sciences, 10-748 Olsztyn, Poland; Faculty of Veterinary Medicine (A.G., G.F.-D.), Centre for Interdisciplinary Research in Animal Health, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Graça Ferreira-Dias
- Institute of Animal Reproduction and Food Research (A.G., D.S.), Polish Academy of Sciences, 10-748 Olsztyn, Poland; Faculty of Veterinary Medicine (A.G., G.F.-D.), Centre for Interdisciplinary Research in Animal Health, University of Lisbon, 1300-477 Lisbon, Portugal
| |
Collapse
|
32
|
Yoshida M, Kajikawa E, Kurokawa D, Tokunaga T, Onishi A, Yonemura S, Kobayashi K, Kiyonari H, Aizawa S. Conserved and divergent expression patterns of markers of axial development in eutherian mammals. Dev Dyn 2015; 245:67-86. [PMID: 26404161 DOI: 10.1002/dvdy.24352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/12/2015] [Accepted: 09/12/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Mouse embryos are cup shaped, but most nonrodent eutherian embryos are disk shaped. Extraembryonic ectoderm (ExEc), which may have essential roles in anterior-posterior (A-P) axis formation in mouse embryos, does not develop in many eutherian embryos. To assess A-P axis formation in eutherians, comparative analyses were made on rabbit, porcine, and Suncus embryos. RESULTS All embryos examined expressed Nodal initially throughout epiblast and visceral endoderm; its expression became restricted to the posterior region before gastrulation. Anterior visceral endoderm (AVE) genes were expressed in Otx2-positive visceral endoderm, with Dkk1 expression being most anterior. The mouse pattern of AVE formation was conserved in rabbit embryos, but had diverged in porcine and Suncus embryos. No structure that was molecularly equivalent to Bmp-positive ExEc, existed in rabbit or pig embryos. In Suncus embryos, A-P axis was determined at prehatching stage, and these embryos attached to uterine wall at future posterior side. CONCLUSIONS Nodal, but not Bmp, functions in epiblast and visceral endoderm development may be conserved in eutherians. AVE functions may also be conserved, but the pattern of its formation has diverged among eutherians. Roles of BMP and NODAL gradients in AVE formation seem to have been established in a subset of rodents.
Collapse
Affiliation(s)
- Michio Yoshida
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Eriko Kajikawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan.,Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Misaki, Miura, Kanagawa, Japan
| | - Tomoyuki Tokunaga
- Animal Development and Differentiation Research Unit, Animal Research Division, National Institute of Agrobiological Sciences (NIAS), Tsukuba-shi, Ibaraki, Japan
| | - Akira Onishi
- Laboratory of Animal Reproduction, Department of Animal Science and Resources, Nihon University College of Bioresource Sciences, Fujisawa, Kanagawa, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, Biosystem Dynamics Group, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Chuo-ku, Kobe, Japan
| | - Kensaku Kobayashi
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| | - Shinichi Aizawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan.,Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, Chuo-ku, Kobe, Japan
| |
Collapse
|
33
|
Role of physical forces in embryonic development. Semin Cell Dev Biol 2015; 47-48:88-91. [PMID: 26474539 DOI: 10.1016/j.semcdb.2015.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 11/24/2022]
Abstract
Physical forces play essential roles in animal development. Given that embryonic development takes place under spatial constraints, cells experience forces from neighboring cells and/or remote tissues and can transduce such forces into biochemical signals. Cells can also generate forces through active migration, movement, or deformation and thereby influence the behavior of their neighbors. Although the contribution of mechanical forces to development has been well established in general, here I will focus on recent findings that address the involvement of physical forces in body axis determination, gastrulation and cardiovascular development.
Collapse
|
34
|
Development of the anterior-posterior axis is a self-organizing process in the absence of maternal cues in the mouse embryo. Cell Res 2015; 25:1368-71. [PMID: 26337800 PMCID: PMC4670986 DOI: 10.1038/cr.2015.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Papanayotou C, Collignon J. Activin/Nodal signalling before implantation: setting the stage for embryo patterning. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0539. [PMID: 25349448 DOI: 10.1098/rstb.2013.0539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activins and Nodal are members of the transforming growth factor beta (TGF-β) family of growth factors. Their Smad2/3-dependent signalling pathway is well known for its implication in the patterning of the embryo after implantation. Although this pathway is active early on at preimplantation stages, embryonic phenotypes for loss-of-function mutations of prominent components of the pathway are not detected before implantation. It is only fairly recently that an understanding of the role of the Activin/Nodal signalling pathway at these stages has started to emerge, notably from studies detailing how it controls the expression of target genes in embryonic stem cells. We review here what is currently known of the TGF-β-related ligands that determine the activity of Activin/Nodal signalling at preimplantation stages, and recent advances in the elucidation of the Smad2/3-dependent mechanisms underlying developmental progression.
Collapse
Affiliation(s)
- Costis Papanayotou
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75205 Paris, France
| | - Jérôme Collignon
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75205 Paris, France
| |
Collapse
|
36
|
Stower MJ, Srinivas S. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0546. [PMID: 25349454 PMCID: PMC4216468 DOI: 10.1098/rstb.2013.0546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The elaboration of anterior–posterior (A–P) pattern is one of the earliest events during development and requires the precisely coordinated action of several players at the level of molecules, cells and tissues. In mammals, it is controlled by a specialized population of migratory extraembryonic epithelial cells, the anterior visceral endoderm (AVE). The AVE is a signalling centre that is responsible for several important patterning events during early development, including specifying the orientation of the A–P axis and the position of the heart with respect to the brain. AVE cells undergo a characteristic stereotypical migration which is crucial to their functions.
Collapse
Affiliation(s)
- Matthew J Stower
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
37
|
Hoshino H, Shioi G, Aizawa S. AVE protein expression and visceral endoderm cell behavior during anterior-posterior axis formation in mouse embryos: Asymmetry in OTX2 and DKK1 expression. Dev Biol 2015; 402:175-91. [PMID: 25910836 DOI: 10.1016/j.ydbio.2015.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 11/27/2022]
Abstract
The initial landmark of anterior-posterior (A-P) axis formation in mouse embryos is the distal visceral endoderm, DVE, which expresses a series of anterior genes at embryonic day 5.5 (E5.5). Subsequently, DVE cells move to the future anterior region, generating anterior visceral endoderm (AVE). Questions remain regarding how the DVE is formed and how the direction of the movement is determined. This study compares the detailed expression patterns of OTX2, HHEX, CER1, LEFTY1 and DKK1 by immunohistology and live imaging at E4.5-E6.5. At E6.5, the AVE is subdivided into four domains: most anterior (OTX2, HHEX, CER1-low/DKK1-high), anterior (OTX2, HHEX, CER1-high/DKK1-low), main (OTX2, HHEX, CER1, LEFTY1-high) and antero-lateral and posterior (OTX2, HHEX-low). The study demonstrates how this pattern is established. AVE protein expression in the DVE occurs de novo at E5.25-E5.5. Neither HHEX, LEFTY1 nor CER1 expression is asymmetric. In contrast, OTX2 expression is tilted on the future posterior side with the DKK1 expression at its proximal domain; the DVE cells move in the opposite direction of the tilt.
Collapse
Affiliation(s)
- Hideharu Hoshino
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0046, Japan.
| | - Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0046, Japan.
| | - Shinichi Aizawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0046, Japan; Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0046, Japan.
| |
Collapse
|
38
|
Kumar A, Lualdi M, Lyozin GT, Sharma P, Loncarek J, Fu XY, Kuehn MR. Nodal signaling from the visceral endoderm is required to maintain Nodal gene expression in the epiblast and drive DVE/AVE migration. Dev Biol 2014; 400:1-9. [PMID: 25536399 DOI: 10.1016/j.ydbio.2014.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023]
Abstract
In the early mouse embryo, a specialized population of extraembryonic visceral endoderm (VE) cells called the distal VE (DVE) arises at the tip of the egg cylinder stage embryo and then asymmetrically migrates to the prospective anterior, recruiting additional distal cells. Upon migration these cells, called the anterior VE (AVE), establish the anterior posterior (AP) axis by restricting gastrulation-inducing signals to the opposite pole. The Nodal-signaling pathway has been shown to have a critical role in the generation and migration of the DVE/AVE. The Nodal gene is expressed in both the VE and in the pluripotent epiblast, which gives rise to the germ layers. Previous findings have provided conflicting evidence as to the relative importance of Nodal signaling from the epiblast vs. VE for AP patterning. Here we show that conditional mutagenesis of the Nodal gene specifically within the VE leads to reduced Nodal expression levels in the epiblast and incomplete or failed DVE/AVE migration. These results support a required role for VE Nodal to maintain normal levels of expression in the epiblast, and suggest signaling from both VE and epiblast is important for DVE/AVE migration.
Collapse
Affiliation(s)
- Amit Kumar
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States
| | - Margaret Lualdi
- Laboratory Animal Sciences Program, SAIC-Frederick, Frederick, MD 21702, United States
| | - George T Lyozin
- Department of Pediatrics (Neonatology), The University of Utah, Salt Lake City, UT 84112, United States
| | - Prashant Sharma
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States
| | - Xin-Yuan Fu
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Michael R Kuehn
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States.
| |
Collapse
|
39
|
Papanayotou C, Benhaddou A, Camus A, Perea-Gomez A, Jouneau A, Mezger V, Langa F, Ott S, Sabéran-Djoneidi D, Collignon J. A novel nodal enhancer dependent on pluripotency factors and smad2/3 signaling conditions a regulatory switch during epiblast maturation. PLoS Biol 2014; 12:e1001890. [PMID: 24960041 PMCID: PMC4068991 DOI: 10.1371/journal.pbio.1001890] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/15/2014] [Indexed: 02/07/2023] Open
Abstract
HBE, a newly discovered enhancer element, mediates the influence of pluripotency factors and Activin/Nodal signaling on early Nodal expression in the mouse embryo, and controls the activation of later-acting Nodal enhancers. During early development, modulations in the expression of Nodal, a TGFβ family member, determine the specification of embryonic and extra-embryonic cell identities. Nodal has been extensively studied in the mouse, but aspects of its early expression remain unaccounted for. We identified a conserved hotspot for the binding of pluripotency factors at the Nodal locus and called this sequence “highly bound element” (HBE). Luciferase-based assays, the analysis of fluorescent HBE reporter transgenes, and a conditional mutation of HBE allowed us to establish that HBE behaves as an enhancer, is activated ahead of other Nodal enhancers in the epiblast, and is essential to Nodal expression in embryonic stem cells (ESCs) and in the mouse embryo. We also showed that HBE enhancer activity is critically dependent on its interaction with the pluripotency factor Oct4 and on Activin/Nodal signaling. Use of an in vitro model of epiblast maturation, relying on the differentiation of ESCs into epiblast stem cells (EpiSCs), revealed that this process entails a shift in the regulation of Nodal expression from an HBE-driven phase to an ASE-driven phase, ASE being another autoregulatory Nodal enhancer. Deletion of HBE in ESCs or in EpiSCs allowed us to show that HBE, although not necessary for Nodal expression in EpiSCs, is required in differentiating ESCs to activate the differentiation-promoting ASE and therefore controls this regulatory shift. Our findings clarify how early Nodal expression is regulated and suggest how this regulation can promote the specification of extra-embryonic precusors without inducing premature differentiation of epiblast cells. More generally, they open new perspectives on how pluripotency factors achieve their function. In the early mouse embryo, Nodal, a member of the TGFbeta superfamily of signalling proteins, promotes the differentiation of extra-embryonic tissues, as well as tissues within the developing embryo itself. Characterising the regulation of Nodal gene expression is essential to understand how Nodal signals in diverse tissue types and at different stages of embryonic development. Four distinct enhancer sequences have been shown to regulate Nodal expression, although none could account for it in the preimplantation epiblast or in embryonic stem cells. We identified a novel enhancer, HBE, responsible for the earliest aspects of Nodal expression. We show that activation of HBE depends on its interaction with a well-known pluripotency factor called Oct4. HBE itself also controls the activation of at least one other Nodal enhancer. Our findings clarify how early Nodal expression is regulated and reveal how pluripotency factors may control the onset of differentiation in embryonic tissues.
Collapse
Affiliation(s)
- Costis Papanayotou
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (JC); (CP)
| | - Ataaillah Benhaddou
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne Camus
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Aitana Perea-Gomez
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Alice Jouneau
- Unité de Biologie du Développement et de la reproduction, UMR INRA-ENVA, INRA, Jouy-en-Josas, France
| | - Valérie Mezger
- Epigenetics and Cell Fate, UMR7216, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Francina Langa
- Centre d'Ingénierie Génétique Murine, Institut Pasteur, Paris, France
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Délara Sabéran-Djoneidi
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- Epigenetics and Cell Fate, UMR7216, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Jérôme Collignon
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (JC); (CP)
| |
Collapse
|
40
|
Ketamine exposure in early development impairs specification of the primary germ cell layers. Neurotoxicol Teratol 2014; 43:59-68. [PMID: 24746641 DOI: 10.1016/j.ntt.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 01/25/2023]
Abstract
Preclinical and clinical evidence implicates N-methyl-d-aspartate receptor (NMDAr) signaling in early embryological development. However, the role of NMDAr signaling in early development has not been well studied. Here, we use a mouse embryonic stem cell model to perform a step-wise exploration of the effects of NMDAr signaling on early cell fate specification. We found that antagonism of the NMDAr impaired specification into the neuroectodermal and mesoendodermal cell lineages, with little or no effect on specification of the extraembryonic endoderm cell lineage. Consistent with these findings, exogenous NMDA promoted neuroectodermal differentiation. Finally, NMDAr antagonism modified expression of several key targets of TGF-β superfamily signaling, suggesting a mechanism for these findings. In summary, this study shows that NMDAr antagonism interferes with the normal developmental pathways of embryogenesis, and suggests that interference is most pronounced prior to neuroectodermal and mesoendodermal cell fate specification.
Collapse
|
41
|
Robertson EJ. Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin Cell Dev Biol 2014; 32:73-9. [PMID: 24704361 DOI: 10.1016/j.semcdb.2014.03.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 01/28/2023]
Abstract
Nodal signals in the early post-implantation stage embryo are essential to establish initial proximal-distal (P-D) polarity and generate the final anterior-posterior (A-P) body axis. Nodal signaling in the epiblast results in the phosphorylation of Smad2 in the overlying visceral endoderm necessary to induce the AVE, in part via Smad2-dependent activation of the T-box gene Eomesodermin. Slightly later following mesoderm induction a continuum of dose-dependent Nodal signaling during the process of gastrulation underlies specification of mesodermal and definitive endoderm progenitors. Dynamic Nodal expression during the critical 72 h time window immediately following implantation, accomplished by a series of feed-back and feed-forward mechanisms serves to provide key positional cues required for establishment of the body plan and controls cell fate decisions in the early mammalian embryo.
Collapse
Affiliation(s)
- Elizabeth J Robertson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
42
|
Hiramatsu R, Matsuoka T, Kimura-Yoshida C, Han SW, Mochida K, Adachi T, Takayama S, Matsuo I. External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos. Dev Cell 2014; 27:131-144. [PMID: 24176640 DOI: 10.1016/j.devcel.2013.09.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/16/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
Mouse anterior-posterior axis polarization is preceded by formation of the distal visceral endoderm (DVE) by unknown mechanisms. Here, we show by in vitro culturing of embryos immediately after implantation in microfabricated cavities that the external mechanical cues exerted on the embryo are crucial for DVE formation, as well as the elongated egg cylinder shape, without affecting embryo-intrinsic transcriptional programs except those involving DVE-specific genes. This implies that these developmental events immediately after implantation are not simply embryo-autonomous processes but require extrinsic factors from maternal tissues. Moreover, the mechanical forces induce a breach of the basement membrane barrier at the distal portion locally, and thereby the transmigrated epiblast cells emerge as the DVE cells. Thus, we propose that external mechanical forces exerted by the interaction between embryo and maternal uterine tissues directly control the location of DVE formation at the distal tip and consequently establish the mammalian primary body axis.
Collapse
Affiliation(s)
- Ryuji Hiramatsu
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan; Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Toshiki Matsuoka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Sung-Woong Han
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Taiji Adachi
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isao Matsuo
- Department of Molecular Embryology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan; Department of Pediatric and Neonatal-Perinatal Research, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
43
|
Trott J, Martinez Arias A. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency. Biol Open 2013; 2:1049-56. [PMID: 24167715 PMCID: PMC3798188 DOI: 10.1242/bio.20135934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022] Open
Abstract
Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES) cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.
Collapse
Affiliation(s)
- Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
- Present address: Institute of Medical Biology, 8A Biomedical Grove, No. 06-06 Immunos, Singapore 138648
| | | |
Collapse
|
44
|
Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell 2013; 25:610-22. [PMID: 23747191 DOI: 10.1016/j.devcel.2013.05.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 04/10/2013] [Accepted: 05/06/2013] [Indexed: 01/18/2023]
Abstract
In embryonic stem (ES) cells and in early mouse embryos, the transcription factor Oct4 is an essential regulator of pluripotency. Oct4 transcriptional targets have been described in ES cell lines; however, the molecular mechanisms by which Oct4 regulates establishment of pluripotency in the epiblast (EPI) have not been fully elucidated. Here, we show that neither maternal nor zygotic Oct4 is required for the formation of EPI cells in the blastocyst. Rather, Oct4 is first required for development of the primitive endoderm (PE), an extraembryonic lineage. EPI cells promote PE fate in neighboring cells by secreting Fgf4, and Oct4 is required for expression of Fgf4, but we show that Oct4 promotes PE development cell-autonomously, downstream of Fgf4 and Mapk. Finally, we show that Oct4 is required for the expression of multiple EPI and PE genes as well as multiple metabolic pathways essential for the continued growth of the preimplantation embryo.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
45
|
Moerkamp AT, Paca A, Goumans MJ, Kunath T, Kruithof BPT, Kruithof-de Julio M. Extraembryonic endoderm cells as a model of endoderm development. Dev Growth Differ 2013; 55:301-8. [PMID: 23414197 DOI: 10.1111/dgd.12036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
In recent years the multipotent extraembryonic endoderm (XEN) stem cells have been the center of much attention. In vivo, XEN cells contribute to the formation of the extraembryonic endoderm, visceral and parietal endoderm and later on, the yolk sac. Recent data have shown that the distinction between embryonic and extraembryonic endoderm is not as strict as previously thought due to the integration, and not the displacement, of the visceral endoderm into the definitive embryonic endoderm. Therefore, cells from the extraembryonic endoderm also contribute to definitive endoderm. Many research groups focused on unraveling the potential and ability of XEN cells to both support differentiation and/or differentiate into endoderm-like tissues as an alternative to embryonic stem (ES) cells. Moreover, the conversion of ES to XEN cells, shown recently without genetic manipulations, uncovers significant and novel molecular mechanisms involved in extraembryonic endoderm and definitive endoderm development. XEN cell lines provide a unique model for an early mammalian lineage that complements the established ES and trophoblast stem cell lines. Through the study of essential genes and signaling requirements for XEN cells in vitro, insights will be gained about the developmental program of the extraembryonic and embryonic endodermal lineage in vivo. This review will provide an overview on the current literature focusing on XEN cells as a model for primitive endoderm and possibly definitive endoderm as well as the potential of using these cells for therapeutic applications.
Collapse
Affiliation(s)
- Asja T Moerkamp
- Department of Molecular and Cell Biology, Centre of Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Park CB, Dufort D. NODAL signaling components regulate essential events in the establishment of pregnancy. Reproduction 2013; 145:R55-64. [DOI: 10.1530/rep-12-0103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Successful mammalian reproduction is dependent on a receptive and nurturing uterine environment. In order to establish pregnancy in humans, the uterus must i) be adequately prepared to receive the blastocyst, ii) engage in a coordinated molecular dialog with the embryo to facilitate implantation, and iii) undergo endometrial decidualization. Although numerous factors have been implicated in these essential processes, the precise network of molecular interactions that govern receptivity, embryo implantation, and decidualization remain unclear. NODAL, a morphogen in the transforming growth factor β superfamily, is well known for its critical functions during embryogenesis; however, recent studies have demonstrated an emerging role for NODAL signaling during early mammalian reproduction. Here, we review the established data and a recent wave of new studies implicating NODAL signaling components in uterine cycling, embryo implantation, and endometrial decidualization in humans and mice.
Collapse
|
47
|
Quail DF, Siegers GM, Jewer M, Postovit LM. Nodal signalling in embryogenesis and tumourigenesis. Int J Biochem Cell Biol 2013; 45:885-98. [PMID: 23291354 DOI: 10.1016/j.biocel.2012.12.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/19/2012] [Accepted: 12/24/2012] [Indexed: 12/22/2022]
Abstract
With few exceptions, most cells in adult organisms have lost the expression of stem cell-associated proteins and are instead characterized by tissue-specific gene expression and function. This cell fate specification is dictated spatially and temporally during embryogenesis. It has become increasingly apparent that the elegant and complicated process of cell specification is "undone" in cancer. This may be because cancer cells respond to their microenvironment and mutations by acquiring a more permissive, plastic epigenome, or because cancer cells arise from mutated stem cells. Regardless, these advanced cancer cells must use stem cell-associated proteins to sustain their phenotype. One such protein is Nodal, an embryonic morphogen belonging to the transforming growth factor-β (TGF-β) superfamily. First described in early developmental models, Nodal orchestrates embryogenesis by regulating a myriad of processes, including mesendoderm induction, left-right asymmetry and embryo implantation. Nodal is relatively restricted to embryonic and reproductive cell types and is thus absent from most normal adult tissues. However, recent studies focusing on a variety of malignancies have demonstrated that Nodal expression re-emerges during cancer progression. Moreover, in almost every cancer studied thus far, the acquisition of Nodal expression is associated with increased tumourigenesis, invasion and metastasis. As the list of cancers that express Nodal grows, it is essential that the scientific and medical communities fully understand how this morphogen is regulated in both normal and neoplastic conditions. Herein, we review the literature relating to normal and pathological Nodal signalling. In particular, we emphasize the role that this secreted protein plays during morphogenic events and how it signals to support stem cell maintenance and tumour progression.
Collapse
Affiliation(s)
- Daniela F Quail
- Department of Anatomy and Cell Biology, University of Western Ontario and Robarts Research Institute, London, ON, Canada
| | | | | | | |
Collapse
|
48
|
Stephenson RO, Rossant J, Tam PPL. Intercellular interactions, position, and polarity in establishing blastocyst cell lineages and embryonic axes. Cold Spring Harb Perspect Biol 2012; 4:4/11/a008235. [PMID: 23125013 DOI: 10.1101/cshperspect.a008235] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The formation of the three lineages of the mouse blastocyst provides a powerful model system to study interactions among cell behavior, cell signaling, and lineage development. Hippo signaling differences between the inner and outer cells of the early cleavage stages, combined with establishment of a stably polarized outer epithelium, lead to the establishment of the inner cell mass and the trophectoderm, whereas FGF signaling differences among the individual cells of the ICM lead to gradual separation and segregation of the epiblast and primitive endoderm lineages. Events in the late blastocyst lead to the formation of a special subset of cells from the primitive endoderm that are key sources for the signals that establish the subsequent body axis. The slow pace of mouse early development, the ability to culture embryos over this time period, the increasing availability of live cell imaging tools, and the ability to modify gene expression at will are providing increasing insights into the cell biology of early cell fate decisions.
Collapse
Affiliation(s)
- Robert O Stephenson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
49
|
Spatial restriction of bone morphogenetic protein signaling in mouse gastrula through the mVam2-dependent endocytic pathway. Dev Cell 2012; 22:1163-75. [PMID: 22698281 DOI: 10.1016/j.devcel.2012.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 01/27/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022]
Abstract
The embryonic body plan is established through positive and negative control of various signaling cascades. Late endosomes and lysosomes are thought to terminate signal transduction by compartmentalizing the signaling molecules; however, their roles in embryogenesis remain poorly understood. We showed here that the endocytic pathway participates in the developmental program by regulating the signaling activity. We modified the mouse Vam2 (mVam2) locus encoding a regulator of membrane trafficking. mVam2-deficient cells exhibited abnormally fragmented late endosomal compartments. The mutant cells could terminate signaling after the removal of the growth factors including TGF-β and EGF, except BMP-Smad1/Smad5 signaling. mVam2-deficient embryos exhibited ectopic activation of BMP signaling and disorganization of embryo patterning. We found that mVam2, which interacts with BMP type I receptor, is required for the spatiotemporal modulation of BMP signaling, via sequestration of the receptor complex in the late stages of the endocytic pathway.
Collapse
|
50
|
Morris SA, Grewal S, Barrios F, Patankar SN, Strauss B, Buttery L, Alexander M, Shakesheff KM, Zernicka-Goetz M. Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nat Commun 2012; 3:673. [PMID: 22334076 PMCID: PMC3293425 DOI: 10.1038/ncomms1671] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 01/09/2012] [Indexed: 12/12/2022] Open
Abstract
The development of an anterior-posterior (AP) polarity is a crucial process that in the mouse has been very difficult to analyse, because it takes place as the embryo implants within the mother. To overcome this obstacle, we have established an in-vitro culture system that allows us to follow the step-wise development of anterior visceral endoderm (AVE), critical for establishing AP polarity. Here we use this system to show that the AVE originates in the implanting blastocyst, but that additional cells subsequently acquire AVE characteristics. These 'older' and 'younger' AVE domains coalesce as the egg cylinder emerges from the blastocyst structure. Importantly, we show that AVE migration is led by cells expressing the highest levels of AVE marker, highlighting that asymmetry within the AVE domain dictates the direction of its migration. Ablation of such leading cells prevents AVE migration, suggesting that these cells are important for correct establishment of the AP axis.
Collapse
Affiliation(s)
- Samantha A. Morris
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- These authors contributed equally to this work.
- Present address: Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; Department of Medicine, Division of Hematology/Oncology, Children's Hospital Boston, Massachusetts, USA
| | - Seema Grewal
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- These authors contributed equally to this work.
| | - Florencia Barrios
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
- These authors contributed equally to this work.
| | - Sameer N. Patankar
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Bernhard Strauss
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge CB2 1QN, UK
| | - Lee Buttery
- Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Morgan Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kevin M. Shakesheff
- Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|