1
|
Lin S, Hay E, Thompson DA, Moosajee M, Webster AR, Mahroo OA, Henderson RH, Arno G. DYRK1A syndrome presenting with a familial exudative vitreoretinopathy (FEVR)-like retinovascular phenotype. Ophthalmic Genet 2025:1-5. [PMID: 40405340 DOI: 10.1080/13816810.2025.2503388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/04/2025] [Accepted: 05/04/2025] [Indexed: 05/24/2025]
Abstract
INTRODUCTION The DYRK1A gene plays a crucial role in central nervous system development, with haploinsufficiency leading to DYRK1A-related intellectual disability syndrome. Ocular manifestations are common in DYRK1A syndrome and include refractive error, strabismus and optic nerve hypoplasia. Retinal involvement, however is less frequently reported and remains uncharacterised. METHODS We conducted comprehensive ocular and systemic evaluations in two unrelated individuals with familial exudative vitreoretinopathy (FEVR)-like presentations and de novo DYRK1A variants. Genetic testing included whole genome sequencing with variant interpretation based on clinical guidelines. RESULTS Patient 1 had a previously reported recurrent pathogenic DYRK1A variant [c.1282C>T; p.(Arg428Ter)], whilst Patient 2 had a novel missense likely pathogenic variant [c.857T>C; p.(Leu286Pro)]. Both patients demonstrated systemic features consistent with DYRK1A syndrome. DISCUSSION These cases confirm vitreoretinal involvement as an associated finding in DYRK1A syndrome and highlight FEVR-like retinovascular abnormalities as a potential diagnostic clue for the condition in individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Siying Lin
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital & Department of Ophthalmology, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, The UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Eleanor Hay
- Department of Clinical Genetics, Great Ormond Street Hospital for Children, London, UK
| | - Dorothy A Thompson
- Department of Clinical and Academic Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mariya Moosajee
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, The UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London, UK
| | - Andrew R Webster
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, The UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Omar A Mahroo
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, The UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, St Thomas' Hospital, London, UK
| | - Robert H Henderson
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, The UCL Institute of Ophthalmology, London, UK
- Department of Clinical and Academic Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Gavin Arno
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital, The UCL Institute of Ophthalmology, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Division of Research, Greenwood Genetic Center, Greenwood, South Carolina, USA
| |
Collapse
|
2
|
Wolf G, Craigon C, Teoh ST, Essletzbichler P, Onstein S, Cassidy D, Uijttewaal ECH, Dvorak V, Cao Y, Bensimon A, Elling U, Ciulli A, Superti-Furga G. The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells. Cell Chem Biol 2025; 32:291-306.e6. [PMID: 39755121 DOI: 10.1016/j.chembiol.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored. Here, we utilized transporter-focused genetic screens to identify the ATP-binding cassette transporter ABCC1/MRP1 as a key PROTAC resistance factor. Unlike the previously identified inducible PROTAC exporter ABCB1/MDR1, ABCC1 is highly expressed among cancers of various origins and constitutively restricts PROTAC bioavailability. Moreover, in a genome-wide PROTAC resistance screen, we identified candidates involved in processes such as ubiquitination, mTOR signaling, and apoptosis as genetic factors involved in PROTAC resistance. In summary, our findings reveal ABCC1 as a crucial constitutively active efflux pump limiting PROTAC efficacy in various cancer cells, offering insights for overcoming drug resistance.
Collapse
Affiliation(s)
- Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Conner Craigon
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Shao Thing Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Svenja Onstein
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Diane Cassidy
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Esther C H Uijttewaal
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Yuting Cao
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Ariel Bensimon
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee DD1 5JJ, UK
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Martins JR, Silva IC, Mazzoni TS, de Barrios GH, Freitas FCDP, Barchuk AR. Minibrain plays a role in the adult brain development of honeybee (Apis mellifera) workers. INSECT MOLECULAR BIOLOGY 2025; 34:122-135. [PMID: 39167296 DOI: 10.1111/imb.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
The brain of adult honeybee (Apis mellifera) workers is larger than that of queens, facilitating behavioural differentiation between the castes. This brain diphenism develops during the pharate-adult stage and is driven by a caste-specific gene expression cascade in response to unique hormonal milieus. Previous molecular screening identified minibrain (mnb; DYRK1A) as a potential regulator in this process. Here, we used RNAi approach to reduce mnb transcript levels and test its role on brain diphenism development in honeybees. White-eyed unpigmented cuticle worker pupae were injected with dsRNA for mnb (Mnb-i) or gfp, and their phenotypes were assessed two and 8 days later using classic histological and transcriptomic analyses. After 2 days of the injections, Mnb-i bees showed 98% of downregulation of mnb transcripts. After 8 days, the brain of Mnb-i bees showed reduction in total volume and in the volume of the mushroom bodies (MB), antennal, and optic lobes. Additionally, signs of apoptosis were observed in the Kenyon cells region of the MB, and the cohesion of the brain tissues was affected. Our transcriptomic analyses revealed that 226 genes were affected by the knockdown of mnb transcripts, most of which allowing axonal fasciculation. These results suggest the evolutionary conserved mnb gene has been co-opted for promoting hormone-mediated developmental brain morphological plasticity generating caste diphenism in honeybees.
Collapse
Affiliation(s)
- Juliana Ramos Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Izabella Cristina Silva
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, UFScar, São Carlos, São Paulo, Brazil
| | - Talita Sarah Mazzoni
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Gabriela Helena de Barrios
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Flávia Cristina de Paula Freitas
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, UFScar, São Carlos, São Paulo, Brazil
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
4
|
Kim M, Jorge GL, Aschern M, Cuiné S, Bertrand M, Mekhalfi M, Putaux JL, Yang JS, Thelen JJ, Beisson F, Peltier G, Li-Beisson Y. The DYRKP1 kinase regulates cell wall degradation in Chlamydomonas by inducing matrix metalloproteinase expression. THE PLANT CELL 2024; 36:koae271. [PMID: 39401319 PMCID: PMC11852342 DOI: 10.1093/plcell/koae271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 10/02/2024] [Indexed: 01/01/2025]
Abstract
The cell wall of plants and algae is an important cell structure that protects cells from changes in the external physical and chemical environment. This extracellular matrix, composed of polysaccharides and glycoproteins, must be constantly remodeled throughout the life cycle. However, compared to matrix polysaccharides, little is known about the mechanisms regulating the formation and degradation of matrix glycoproteins. We report here that a plant kinase belonging to the DUAL-SPECIFICITY TYROSINE PHOSPHORYLATION-REGULATED KINASE (DYRK) family present in all eukaryotes regulates cell wall degradation after mitosis of Chlamydomonas reinhardtii by inducing the expression of matrix metalloproteinases (MMPs). Without the plant DYRK kinase (DYRKP1), daughter cells cannot disassemble parental cell walls and remain trapped inside for more than 10 days. On the other hand, the DYRKP1 complementation line shows normal degradation of the parental cell wall. Transcriptomic and proteomic analyses indicate a marked down-regulation of MMP gene expression and accumulation, respectively, in the dyrkp1 mutants. The mutants deficient in MMPs retain palmelloid structures for a longer time than the background strain, like dyrkp1 mutants. Our findings show that DYRKP1, by ensuring timely MMP expression, enables the successful execution of the cell cycle. Altogether, this study provides insight into the life cycle regulation in plants and algae.
Collapse
Affiliation(s)
- Minjae Kim
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Gabriel Lemes Jorge
- Division of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Moritz Aschern
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Cerdanyola 08193, Spain
- Doctoral Program of Biotechnology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona 08028, Spain
| | - Stéphan Cuiné
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Marie Bertrand
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Malika Mekhalfi
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Jean-Luc Putaux
- CNRS, CERMAV, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Jae-Seong Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Cerdanyola 08193, Spain
| | - Jay J Thelen
- Division of Biochemistry and Interdisciplinary Plant Group, Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Fred Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Gilles Peltier
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Yonghua Li-Beisson
- CEA, CNRS, Aix-Marseille University, Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), UMR7265, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| |
Collapse
|
5
|
Iketani M, Hatomi M, Fujita Y, Watanabe N, Ito M, Kawaguchi H, Ohsawa I. Inhalation of hydrogen gas mitigates sevoflurane-induced neuronal apoptosis in the neonatal cortex and is associated with changes in protein phosphorylation. J Neurochem 2024; 168:2775-2790. [PMID: 38849977 DOI: 10.1111/jnc.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
Inhalation of hydrogen (H2) gas is therapeutically effective for cerebrovascular diseases, neurodegenerative disorders, and neonatal brain disorders including pathologies induced by anesthetic gases. To understand the mechanisms underlying the protective effects of H2 on the brain, we investigated the molecular signals affected by H2 in sevoflurane-induced neuronal cell death. We confirmed that neural progenitor cells are susceptible to sevoflurane and undergo apoptosis in the retrosplenial cortex of neonatal mice. Co-administration of 1-8% H2 gas for 3 h to sevoflurane-exposed pups suppressed elevated caspase-3-mediated apoptotic cell death and concomitantly decreased c-Jun phosphorylation and activation of the c-Jun pathway, all of which are induced by oxidative stress. Anesthesia-induced increases in lipid peroxidation and oxidative DNA damage were alleviated by H2 inhalation. Phosphoproteome analysis revealed enriched clusters of differentially phosphorylated proteins in the sevoflurane-exposed neonatal brain that included proteins involved in neuronal development and synaptic signaling. H2 inhalation modified cellular transport pathways that depend on hyperphosphorylated proteins including microtubule-associated protein family. These modifications may be involved in the protective mechanisms of H2 against sevoflurane-induced neuronal cell death.
Collapse
Affiliation(s)
- Masumi Iketani
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mai Hatomi
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Life Sciences, Toyo University, Asaka, Japan
| | - Yasunori Fujita
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Nobuhiro Watanabe
- Autonomic Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masafumi Ito
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | | | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
6
|
Li J, Xiong N, West K, Leung M, Ching Y, Huang J, Yuan J, Yu CH, Leung J, Huen M. Nuclear F-actin assembly on damaged chromatin is regulated by DYRK1A and Spir1 phosphorylation. Nucleic Acids Res 2024; 52:8897-8912. [PMID: 38966995 PMCID: PMC11347173 DOI: 10.1093/nar/gkae574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.
Collapse
Affiliation(s)
- Junshi Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Nan Xiong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| | - Kirk L West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Manton Leung
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Yick Pang Ching
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian Yuan
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Cheng-Han Yu
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
| | - Justin Leung
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, S.A.R
| |
Collapse
|
7
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
8
|
Ghorbani N, Yaghubi R, Davoodi J, Pahlavan S. How does caspases regulation play role in cell decisions? apoptosis and beyond. Mol Cell Biochem 2024; 479:1599-1613. [PMID: 37976000 DOI: 10.1007/s11010-023-04870-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Caspases are a family of cysteine proteases, and the key factors behind the cellular events which occur during apoptosis and inflammation. However, increasing evidence shows the non-conventional pro-survival action of apoptotic caspases in crucial processes. These cellular events include cell proliferation, differentiation, and migration, which may appear in the form of metastasis, and chemotherapy resistance in cancerous situations. Therefore, there should be a precise and strict control of caspases activity, perhaps through maintaining the threshold below the required levels for apoptosis. Thus, understanding the regulators of caspase activities that render apoptotic caspases as non-apoptotic is of paramount importance both mechanistically and clinically. Furthermore, the functions of apoptotic caspases are affected by numerous post-translational modifications. In the present mini-review, we highlight the various mechanisms that directly impact caspases with respect to their anti- or non-apoptotic functions. In this regard, post-translational modifications (PTMs), isoforms, subcellular localization, transient activity, substrate availability, substrate selection, and interaction-mediated regulations are discussed.
Collapse
Affiliation(s)
- Negar Ghorbani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Roham Yaghubi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Jamshid Davoodi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Johnson HK, Wahl SE, Sesay F, Litovchick L, Dickinson AJ. Dyrk1a is required for craniofacial development in Xenopus laevis. Dev Biol 2024; 511:63-75. [PMID: 38621649 PMCID: PMC12024765 DOI: 10.1016/j.ydbio.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.
Collapse
Affiliation(s)
| | - Stacey E Wahl
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Fatmata Sesay
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA; Massey Comprehensive Cancer Center, Richmond, VA, USA
| | | |
Collapse
|
10
|
Lanzillotta C, Baniowska MR, Prestia F, Sette C, Nalesso V, Perluigi M, Barone E, Duchon A, Tramutola A, Herault Y, Di Domenico F. Shaping down syndrome brain cognitive and molecular changes due to aging using adult animals from the Ts66Yah murine model. Neurobiol Dis 2024; 196:106523. [PMID: 38705491 DOI: 10.1016/j.nbd.2024.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
Down syndrome (DS) is the most common condition with intellectual disability and is caused by trisomy of Homo sapiens chromosome 21 (HSA21). The increased dosage of genes on HSA21 is associated with early neurodevelopmental changes and subsequently at adult age with the development of Alzheimer-like cognitive decline. However, the molecular mechanisms promoting brain pathology along aging are still missing. The novel Ts66Yah model represents an evolution of the Ts65Dn, used in characterizing the progression of brain degeneration, and it manifest phenotypes closer to human DS condition. In this study we performed a longitudinal analysis (3-9 months) of adult Ts66Yah mice. Our data support the behavioural alterations occurring in Ts66Yah mice at older age with improvement in the detection of spatial memory defects and also a new anxiety-related phenotype. The evaluation of hippocampal molecular pathways in Ts66Yah mice, as effect of age, demonstrate the aberrant regulation of redox balance, proteostasis, stress response, metabolic pathways, programmed cell death and synaptic plasticity. Intriguingly, the genotype-driven changes observed in those pathways occur early promoting altered brain development and the onset of a condition of premature aging. In turn, aging may account for the subsequent hippocampal deterioration that fall in characteristic neuropathological features. Besides, the analysis of sex influence in the alteration of hippocampal mechanisms demonstrate only a mild effect. Overall, data collected in Ts66Yah provide novel and consolidated insights, concerning trisomy-driven processes that contribute to brain pathology in conjunction with aging. This, in turn, aids in bridging the existing gap in comprehending the intricate nature of DS phenotypes.
Collapse
Affiliation(s)
- Chiara Lanzillotta
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Monika Rataj Baniowska
- Université de Strasbourg, CNRS, Inserm, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Francesca Prestia
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Sette
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Valérie Nalesso
- Université de Strasbourg, CNRS, Inserm, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Marzia Perluigi
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, Inserm, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Antonella Tramutola
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Yann Herault
- Université de Strasbourg, CNRS, Inserm, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| | - Fabio Di Domenico
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
11
|
Shen MZ, Zhang Y, Wu F, Shen MZ, Liang JL, Zhang XL, Liu XJ, Li XS, Wang RS. MicroRNA-298 determines the radio-resistance of colorectal cancer cells by directly targeting human dual-specificity tyrosine(Y)-regulated kinase 1A. World J Gastrointest Oncol 2024; 16:1453-1464. [PMID: 38660649 PMCID: PMC11037043 DOI: 10.4251/wjgo.v16.i4.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer (CRC); yet, the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission. AIM To elucidate the role played by microRNA-298 (miR-298) in CRC radio-resistance. METHODS To establish a radio-resistant CRC cell line, HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period. The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR, and protein expression determination was realized through Western blotting. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay. Radio-induced apoptosis was discerned through flow cytometry analysis. RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells. MiR-298 emerged as a key determinant of cell survival following radiation exposure, as its overexpression led to a notable reduction in radiation-induced apoptosis. Intriguingly, miR-298 expression exhibited a strong correlation with CRC cell viability. Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A (DYRK1A) as miR-298's direct target. CONCLUSION Taken together, our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation, thereby positioning miR-298 as a promising candidate for mitigating radio-resistance in CRC.
Collapse
Affiliation(s)
- Mei-Zhu Shen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fang Wu
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Mei-Zhen Shen
- Department of Radiotherapy, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jun-Lin Liang
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Long Zhang
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Jian Liu
- Department of Colorectal Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xin-Shu Li
- Department of Clinical Medicine, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ren-Sheng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
12
|
Lana-Elola E, Aoidi R, Llorian M, Gibbins D, Buechsenschuetz C, Bussi C, Flynn H, Gilmore T, Watson-Scales S, Haugsten Hansen M, Hayward D, Song OR, Brault V, Herault Y, Deau E, Meijer L, Snijders AP, Gutierrez MG, Fisher EMC, Tybulewicz VLJ. Increased dosage of DYRK1A leads to congenital heart defects in a mouse model of Down syndrome. Sci Transl Med 2024; 16:eadd6883. [PMID: 38266108 PMCID: PMC7615651 DOI: 10.1126/scitranslmed.add6883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). DS is a gene dosage disorder that results in multiple phenotypes including congenital heart defects. This clinically important cardiac pathology is the result of a third copy of one or more of the approximately 230 genes on Hsa21, but the identity of the causative dosage-sensitive genes and hence mechanisms underlying this cardiac pathology remain unclear. Here, we show that hearts from human fetuses with DS and embryonic hearts from the Dp1Tyb mouse model of DS show reduced expression of mitochondrial respiration genes and cell proliferation genes. Using systematic genetic mapping, we determined that three copies of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) gene, encoding a serine/threonine protein kinase, are associated with congenital heart disease pathology. In embryos from Dp1Tyb mice, reducing Dyrk1a gene copy number from three to two reversed defects in cellular proliferation and mitochondrial respiration in cardiomyocytes and rescued heart septation defects. Increased dosage of DYRK1A protein resulted in impairment of mitochondrial function and congenital heart disease pathology in mice with DS, suggesting that DYRK1A may be a useful therapeutic target for treating this common human condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Véronique Brault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Yann Herault
- Université de Strasbourg, CNRS UMR7104, INSERM U1258, Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, BP 10142, 1 rue Laurent Fries, 67404 Illkirch CEDEX, France
| | - Emmanuel Deau
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | - Laurent Meijer
- Perha Pharmaceuticals, Presqu'île de Perharidy, 29680 Roscoff, France
| | | | | | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | | |
Collapse
|
13
|
Fu Z, Xiang Y, Fu Y, Su Z, Tan Y, Yang M, Yan Y, Baghaei Daemi H, Shi Y, Xie S, Sun L, Peng G. DYRK1A is a multifunctional host factor that regulates coronavirus replication in a kinase-independent manner. J Virol 2024; 98:e0123923. [PMID: 38099687 PMCID: PMC10805018 DOI: 10.1128/jvi.01239-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) pose a major threat to human and animal health worldwide, which complete viral replication by hijacking host factors. Identifying host factors essential for the viral life cycle can deepen our understanding of the mechanisms of virus-host interactions. Based on our previous genome-wide CRISPR screen of α-CoV transmissible gastroenteritis virus (TGEV), we identified the host factor dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), but not DYRK1B, as a critical factor in TGEV replication. Rescue assays and kinase inhibitor experiments revealed that the effect of DYRK1A on viral replication is independent of its kinase activity. Nuclear localization signal modification experiments showed that nuclear DYRK1A facilitated virus replication. Furthermore, DYRK1A knockout significantly downregulated the expression of the TGEV receptor aminopeptidase N (ANPEP) and inhibited viral entry. Notably, we also demonstrated that DYRK1A is essential for the early stage of TGEV replication. Transmission electron microscopy results indicated that DYRK1A contributes to the formation of double-membrane vesicles in a kinase-independent manner. Finally, we validated that DYRK1A is also a proviral factor for mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. In conclusion, our work demonstrated that DYRK1A is an essential host factor for the replication of multiple viruses, providing new insights into the mechanism of virus-host interactions and facilitating the development of new broad-spectrum antiviral drugs.IMPORTANCECoronaviruses, like other positive-sense RNA viruses, can remodel the host membrane to form double-membrane vesicles (DMVs) as their replication organelles. Currently, host factors involved in DMV formation are not well defined. In this study, we used transmissible gastroenteritis virus (TGEV) as a virus model to investigate the regulatory mechanism of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) on coronavirus. Results showed that DYRK1A significantly inhibited TGEV replication in a kinase-independent manner. DYRK1A knockout (KO) can regulate the expression of receptor aminopeptidase N (ANPEP) and endocytic-related genes to inhibit virus entry. More importantly, our results revealed that DYRK1A KO notably inhibited the formation of DMV to regulate the virus replication. Further data proved that DYRK1A is also essential in the replication of mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. Taken together, our findings demonstrated that DYRK1A is a conserved factor for positive-sense RNA viruses and provided new insights into its transcriptional regulation activity, revealing its potential as a candidate target for therapeutic design.
Collapse
Affiliation(s)
- Zhen Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yixin Xiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhelin Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hakimeh Baghaei Daemi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Limeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| |
Collapse
|
14
|
Johnson HK, Wahl SE, Sesay F, Litovchick L, Dickinson AJ. Dyrk1a is required for craniofacial development in Xenopus laevis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575394. [PMID: 38260562 PMCID: PMC10802584 DOI: 10.1101/2024.01.13.575394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Loss of function mutations in the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis . Dyrk1a mRNA and protein was expressed throughout the developing head and was enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with DYRK1A mutations.
Collapse
|
15
|
Huang C, Luo H, Zeng B, Feng C, Chen J, Yuan H, Huang S, Yang B, Zou Y, Liu Y. Identification of two novel and one rare mutation in DYRK1A and prenatal diagnoses in three Chinese families with intellectual Disability-7. Front Genet 2023; 14:1290949. [PMID: 38179410 PMCID: PMC10765505 DOI: 10.3389/fgene.2023.1290949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Background and purpose: Intellectual disability-7 (MRD7) is a subtype disorder of intellectual disability (MRD) involving feeding difficulties, hypoactivity, and febrile seizures at an age of early onset, then progressive intellectual and physical development deterioration. We purposed to identify the underlying causative genetic factors of three individuals in each Chinese family who presented with symptoms of intellectual disability and facial dysmorphic features. We provided prenatal diagnosis for the three families and genetic counseling for the prevention of this disease. Methods: We collected retrospective clinical diagnostic evidence for the three probands in our study, which included magnetic resonance imaging (MRI), computerized tomography (CT), electroencephalogram (EEG), and intelligence tests for the three probands in our study. Genetic investigation of the probands and their next of kin was performed by Trio-whole exome sequencing (WES). Sanger sequencing or quantitative PCR technologies were then used as the next step to verify the variants confirmed with Trio-WES for the three families. Moreover, we performed amniocentesis to explore the state of the three pathogenic variants in the fetuses by prenatal molecular genetic diagnosis at an appropriate gestational period for the three families. Results: The three probands and one fetus were clinically diagnosed with microcephaly and exhibited intellectual developmental disability, postnatal feeding difficulties, and facial dysmorphic features. Combining probands' clinical manifestations, Trio-WES uncovered the three heterozygous variants in DYRK1A: a novel variant exon3_exon4del p.(Gly4_Asn109del), a novel variant c.1159C>T p.(Gln387*), and a previously presented but rare pathogenic variant c.1309C>T p.(Arg437*) (NM_001396.5) in three families, respectively. In light of the updated American College of Medical Genetic and Genomics (ACMG) criterion, the variant of exon3_exon4del and c.1159C>T were both classified as likely pathogenic (PSV1+PM6), while c1309C>T was identified as pathogenic (PVS1+PS2_Moderate+PM2). Considering clinical features and molecular testimony, the three probands were confirmed diagnosed with MRD7. These three discovered variants were considered as the three causal mutations for MRD7. Prenatal diagnosis detected the heterozygous dominant variant of c.1159C>T p.(Gln387*) in one of the fetuses, indicating a significant probability of MRD7, subsequently the gestation was intervened by the parents' determination and professional obstetrical operation. On the other side, prenatal molecular genetic testing revealed wild-type alleles in the other two fetuses, and their parents both decided to sustain the gestation. Conclusion: We identified two novel and one rare mutation in DYRK1A which has broadened the spectrum of DYRK1A and provided evidence for the diagnosis of MRD7 at the molecular level. Besides, this study has supported the three families with MRD7 to determine the causative genetic factors efficiently and provide concise genetic counseling for the three families by using Trio-WES technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bicheng Yang
- Department of Medical Genetics, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yongyi Zou
- Department of Medical Genetics, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yanqiu Liu
- Department of Medical Genetics, Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
17
|
Murray A, Gough G, Cindrić A, Vučković F, Koschut D, Borelli V, Petrović DJ, Bekavac A, Plećaš A, Hribljan V, Brunmeir R, Jurić J, Pučić-Baković M, Slana A, Deriš H, Frkatović A, Groet J, O'Brien NL, Chen HY, Yeap YJ, Delom F, Havlicek S, Gammon L, Hamburg S, Startin C, D'Souza H, Mitrečić D, Kero M, Odak L, Krušlin B, Krsnik Ž, Kostović I, Foo JN, Loh YH, Dunn NR, de la Luna S, Spector T, Barišić I, Thomas MSC, Strydom A, Franceschi C, Lauc G, Krištić J, Alić I, Nižetić D. Dose imbalance of DYRK1A kinase causes systemic progeroid status in Down syndrome by increasing the un-repaired DNA damage and reducing LaminB1 levels. EBioMedicine 2023; 94:104692. [PMID: 37451904 PMCID: PMC10435767 DOI: 10.1016/j.ebiom.2023.104692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".
Collapse
Affiliation(s)
- Aoife Murray
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; The London Down Syndrome Consortium (LonDownS), London, UK.
| | - Gillian Gough
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ana Cindrić
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Frano Vučković
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - David Koschut
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cellular Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Vincenzo Borelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Dražen J Petrović
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia; Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Bekavac
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ante Plećaš
- Faculty of Veterinary Medicine, Department of Anatomy, Histology and Embryology, University of Zagreb, Zagreb, Croatia
| | - Valentina Hribljan
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Reinhard Brunmeir
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Julija Jurić
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Anita Slana
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Helena Deriš
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Azra Frkatović
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Jűrgen Groet
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; The London Down Syndrome Consortium (LonDownS), London, UK
| | - Niamh L O'Brien
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; The London Down Syndrome Consortium (LonDownS), London, UK
| | - Hong Yu Chen
- Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Frederic Delom
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Steven Havlicek
- Laboratory of Neurogenetics, Genome Institute of Singapore, A∗STAR, Singapore
| | - Luke Gammon
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Sarah Hamburg
- The London Down Syndrome Consortium (LonDownS), London, UK
| | - Carla Startin
- The London Down Syndrome Consortium (LonDownS), London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Psychiatry, University College London, London, UK; School of Psychology, University of Roehampton, London, UK
| | - Hana D'Souza
- The London Down Syndrome Consortium (LonDownS), London, UK; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Dinko Mitrečić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mijana Kero
- Department of Medical Genetics, Children's Hospital Zagreb, Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljubica Odak
- Department of Medical Genetics, Children's Hospital Zagreb, Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Božo Krušlin
- Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Laboratory of Neurogenetics, Genome Institute of Singapore, A∗STAR, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore
| | - Norris Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore
| | - Susana de la Luna
- ICREA, Genome Biology Programme (CRG), Universitat Pompeu Fabra (UPF), CIBER of Rare Diseases, Barcelona, Spain
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Ingeborg Barišić
- Department of Medical Genetics, Children's Hospital Zagreb, Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Michael S C Thomas
- The London Down Syndrome Consortium (LonDownS), London, UK; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Andre Strydom
- The London Down Syndrome Consortium (LonDownS), London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Psychiatry, University College London, London, UK
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy; Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Gordan Lauc
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia; Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Ivan Alić
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; Faculty of Veterinary Medicine, Department of Anatomy, Histology and Embryology, University of Zagreb, Zagreb, Croatia.
| | - Dean Nižetić
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK; The London Down Syndrome Consortium (LonDownS), London, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
18
|
Svandova E, Lesot H, Sharpe P, Matalova E. Making the head: Caspases in life and death. Front Cell Dev Biol 2023; 10:1075751. [PMID: 36712975 PMCID: PMC9880857 DOI: 10.3389/fcell.2022.1075751] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.
Collapse
Affiliation(s)
- Eva Svandova
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
19
|
Unnisa A, Greig NH, Kamal MA. Inhibition of Caspase 3 and Caspase 9 Mediated Apoptosis: A Multimodal Therapeutic Target in Traumatic Brain Injury. Curr Neuropharmacol 2023; 21:1001-1012. [PMID: 35339178 PMCID: PMC10227914 DOI: 10.2174/1570159x20666220327222921] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the significant causes of death and morbidity, and it is hence a focus of translational research. Apoptosis plays an essential part in the pathophysiology of TBI, and its inhibition may help overcome TBI's negative consequences and improve functional recovery. Although physiological neuronal death is necessary for appropriate embryologic development and adult cell turnover, it can also drive neurodegeneration. Caspases are principal mediators of cell death due to apoptosis and are critical for the required cleavage of intracellular proteins of cells committed to die. Caspase-3 is the major executioner Caspase of apoptosis and is regulated by a range of cellular components during physiological and pathological conditions. Activation of Caspase-3 causes proteolyzation of DNA repair proteins, cytoskeletal proteins, and the inhibitor of Caspase-activated DNase (ICAD) during programmed cell death, resulting in morphological alterations and DNA damage that define apoptosis. Caspase-9 is an additional crucial part of the intrinsic pathway, activated in response to several stimuli. Caspases can be altered post-translationally or by modulatory elements interacting with the zymogenic or active form of a Caspase, preventing their activation. The necessity of Caspase-9 and -3 in diverse apoptotic situations suggests that mammalian cells have at least four distinct apoptotic pathways. Continued investigation of these processes is anticipated to disclose new Caspase regulatory mechanisms with consequences far beyond apoptotic cell death control. The present review discusses various Caspase-dependent apoptotic pathways and the treatment strategies to inhibit the Caspases potentially.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, KSA;
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, NSW, Australia
| |
Collapse
|
20
|
Deboever E, Fistrovich A, Hulme C, Dunckley T. The Omnipresence of DYRK1A in Human Diseases. Int J Mol Sci 2022; 23:ijms23169355. [PMID: 36012629 PMCID: PMC9408930 DOI: 10.3390/ijms23169355] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023] Open
Abstract
The increasing population will challenge healthcare, particularly because the worldwide population has never been older. Therapeutic solutions to age-related disease will be increasingly critical. Kinases are key regulators of human health and represent promising therapeutic targets for novel drug candidates. The dual-specificity tyrosine-regulated kinase (DYRKs) family is of particular interest and, among them, DYRK1A has been implicated ubiquitously in varied human diseases. Herein, we focus on the characteristics of DYRK1A, its regulation and functional role in different human diseases, which leads us to an overview of future research on this protein of promising therapeutic potential.
Collapse
Affiliation(s)
- Estelle Deboever
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| | - Alessandra Fistrovich
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, AZ 85721, USA
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA
| | - Travis Dunckley
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Correspondence: (E.D.); (T.D.)
| |
Collapse
|
21
|
A reassessment of Jackson's checklist and identification of two Down syndrome sub-phenotypes. Sci Rep 2022; 12:3104. [PMID: 35210468 PMCID: PMC8873406 DOI: 10.1038/s41598-022-06984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/10/2022] [Indexed: 11/08/2022] Open
Abstract
Down syndrome (DS) is characterised by several clinical features including intellectual disability (ID) and craniofacial dysmorphisms. In 1976, Jackson and coll. identified a checklist of signs for clinical diagnosis of DS; the utility of these checklists in improving the accuracy of clinical diagnosis has been recently reaffirmed, but they have rarely been revised. The purpose of this work is to reassess the characteristic phenotypic signs and their frequencies in 233 DS subjects, following Jackson's checklist. 63.77% of the subjects showed more than 12 signs while none showed less than 5, confirming the effectiveness of Jackson's checklist for the clinical diagnosis of DS. An association between three phenotypic signs emerged, allowing us to distinguish two sub-phenotypes: Brachycephaly, short and broad Hands, short Neck (BHN), which is more frequent, and "non-BHN". The strong association of these signs might be interpreted in the context of the growth defects observed in DS children suggesting decreased cell proliferation. Lastly, cognitive assessments were investigated for 114 subjects. The lack of association between the presence of a physical sign or the number of signs present in a subject and cognitive skills disproves the stereotype that physical characteristics are predictive of degree of ID.
Collapse
|
22
|
Dehkordi MH, Munn RGK, Fearnhead HO. Non-Canonical Roles of Apoptotic Caspases in the Nervous System. Front Cell Dev Biol 2022; 10:840023. [PMID: 35281082 PMCID: PMC8904960 DOI: 10.3389/fcell.2022.840023] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Caspases are a family of cysteine proteases that predominantly cleave their substrates after aspartic acid residues. Much of what we know of caspases emerged from investigation a highly conserved form of programmed cell death called apoptosis. This form of cell death is regulated by several caspases, including caspase-2, caspase-3, caspase-7, caspase-8 and caspase-9. However, these “killer” apoptotic caspases have emerged as versatile enzymes that play key roles in a wide range of non-apoptotic processes. Much of what we understand about these non-apoptotic roles is built on work investigating how “killer” caspases control a range of neuronal cell behaviors. This review will attempt to provide an up to date synopsis of these roles.
Collapse
Affiliation(s)
- Mahshid H. Dehkordi
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
| | | | - Howard O. Fearnhead
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland
- *Correspondence: Howard O. Fearnhead,
| |
Collapse
|
23
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
24
|
Kinases leave their mark on caspase substrates. Biochem J 2021; 478:3179-3184. [PMID: 34492095 DOI: 10.1042/bcj20210399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
Apoptosis is a cell death program that is executed by the caspases, a family of cysteine proteases that typically cleave after aspartate residues during a proteolytic cascade that systematically dismantles the dying cell. Extensive signaling crosstalk occurs between caspase-mediated proteolysis and kinase-mediated phosphorylation, enabling integration of signals from multiple pathways into the decision to commit to apoptosis. A new study from Maluch et al. examines how phosphorylation within caspase cleavage sites impacts the efficiency of substrate cleavage. The results demonstrate that while phosphorylation in close proximity to the scissile bond is generally inhibitory, it does not necessarily abrogate substrate cleavage, but instead attenuates the rate. In some cases, this inhibition can be overcome by additional favorable substrate features. These findings suggest potential nuanced physiological roles for phosphorylation of caspase substrates with exciting implications for targeting caspases with chemical probes and therapeutics.
Collapse
|
25
|
Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Front Microbiol 2021; 12:658721. [PMID: 33854493 PMCID: PMC8040976 DOI: 10.3389/fmicb.2021.658721] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation constitutes a major post-translational modification that critically regulates the half-life, intra-cellular distribution, and activity of proteins. Among the large number of kinases that compose the human kinome tree, those targeting RNA-binding proteins, in particular serine/arginine-rich (SR) proteins, play a major role in the regulation of gene expression by controlling constitutive and alternative splicing. In humans, these kinases belong to the CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group and several studies indicate that they also control viral replication via direct or indirect mechanisms. The aim of this review is to describe known and emerging activities of CMGC kinases that share the common property to phosphorylate SR proteins, as well as their interplay with different families of viruses, in order to advance toward a comprehensive knowledge of their pro- or anti-viral phenotype and better assess possible translational opportunities.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| |
Collapse
|
26
|
Méjécase C, Way CM, Owen N, Moosajee M. Ocular Phenotype Associated with DYRK1A Variants. Genes (Basel) 2021; 12:234. [PMID: 33562844 PMCID: PMC7915179 DOI: 10.3390/genes12020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A or DYRK1A, contributes to central nervous system development in a dose-sensitive manner. Triallelic DYRK1A is implicated in the neuropathology of Down syndrome, whereas haploinsufficiency causes the rare DYRK1A-related intellectual disability syndrome (also known as mental retardation 7). It is characterised by intellectual disability, autism spectrum disorder and microcephaly with a typical facial gestalt. Preclinical studies elucidate a role for DYRK1A in eye development and case studies have reported associated ocular pathology. In this study families of the DYRK1A Syndrome International Association were asked to self-report any co-existing ocular abnormalities. Twenty-six patients responded but only 14 had molecular confirmation of a DYRK1A pathogenic variant. A further nineteen patients from the UK Genomics England 100,000 Genomes Project were identified and combined with 112 patients reported in the literature for further analysis. Ninety out of 145 patients (62.1%) with heterozygous DYRK1A variants revealed ocular features, these ranged from optic nerve hypoplasia (13%, 12/90), refractive error (35.6%, 32/90) and strabismus (21.1%, 19/90). Patients with DYRK1A variants should be referred to ophthalmology as part of their management care pathway to prevent amblyopia in children and reduce visual comorbidity, which may further impact on learning, behaviour, and quality of life.
Collapse
Affiliation(s)
- Cécile Méjécase
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Christopher M. Way
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Nicholas Owen
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
27
|
de Paula Junior DE, de Oliveira MT, Bruscadin JJ, Pinheiro DG, Bomtorin AD, Coelho Júnior VG, Moda LMR, Simões ZLP, Barchuk AR. Caste-specific gene expression underlying the differential adult brain development in the honeybee Apis mellifera. INSECT MOLECULAR BIOLOGY 2021; 30:42-56. [PMID: 33044766 DOI: 10.1111/imb.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Apis mellifera adult workers feature more developed key brain regions than queens, which allows them to cope with the broad range of duties they need to perform in a colony. However, at the end of larval development, the brain of queens is largely more developed than that of workers. Major morphogenetic changes take place after metamorphosis that shift caste-specific brain development. Here, we tested the hypothesis that this phenomenon is hormonally governed and involves differential gene expression. Our molecular screening approach revealed a set of differentially expressed genes in Pp (first pharate-adult phase) brains between castes mainly coding for tissue remodelling and energy-converting proteins (e.g. hex 70a and ATPsynβ). An in-depth qPCR analysis of the transcriptional behaviour during pupal and pharate-adult developmental stage in both castes and in response to artificially augmented hormone titres of 18 genes/variants revealed that: i. subtle differences in hormone titres between castes might be responsible for the differential expression of the EcR and insulin/insulin-like signalling (IIS) pathway genes; ii. the morphogenetic activity of the IIS in brain development must be mediated by ILP-2, iii. which together with the tum, mnb and caspase system, can constitute the molecular effectors of the caste-specific opposing brain developmental trajectories.
Collapse
Affiliation(s)
- D E de Paula Junior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - M T de Oliveira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - J J Bruscadin
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - D G Pinheiro
- Faculdade de Ciências Agrárias e Veterinárias, UNESP - Universidade Estadual Paulista, São Paulo, Brazil
| | - A D Bomtorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - V G Coelho Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - L M R Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| | - Z L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - A R Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Brazil
| |
Collapse
|
28
|
Laham AJ, Saber-Ayad M, El-Awady R. DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Cell Mol Life Sci 2021; 78:603-619. [PMID: 32870330 PMCID: PMC11071757 DOI: 10.1007/s00018-020-03626-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual kinase that can phosphorylate its own activation loop on tyrosine residue and phosphorylate its substrates on threonine and serine residues. It is the most studied member of DYRK kinases, because its gene maps to human chromosome 21 within the Down syndrome critical region (DSCR). DYRK1A overexpression was found to be responsible for the phenotypic features observed in Down syndrome such as mental retardation, early onset neurodegenerative, and developmental heart defects. Besides its dual activity in phosphorylation, DYRK1A carries the characteristic of duality in tumorigenesis. Many studies indicate its possible role as a tumor suppressor gene; however, others prove its pro-oncogenic activity. In this review, we will focus on its multifaceted role in tumorigenesis by explaining its participation in some cancer hallmarks pathways such as proliferative signaling, transcription, stress, DNA damage repair, apoptosis, and angiogenesis, and finally, we will discuss targeting DYRK1A as a potential strategy for management of cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amina Jamal Laham
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, UAE.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.
| | - Raafat El-Awady
- College of Medicine, University of Sharjah, Sharjah, UAE.
- College of Pharmacy, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
29
|
A Crosstalk Between Dual-Specific Phosphatases and Dual-Specific Protein Kinases Can Be A Potential Therapeutic Target for Anti-cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:357-382. [PMID: 33539023 DOI: 10.1007/978-3-030-49844-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While protein tyrosine kinases (PTKs) play an initiative role in growth factor-mediated cellular processes, protein tyrosine phosphatases (PTPs) negatively regulates these processes, acting as tumor suppressors. Besides selective tyrosine dephosphorylation of PTKs via PTPs may affect oncogenic pathways during carcinogenesis. The PTP family contains a group of dual-specificity phosphatases (DUSPs) that regulate the activity of Mitogen-activated protein kinases (MAPKs), which are key effectors in the control of cell growth, proliferation and survival. Abnormal MAPK signaling is critical for initiation and progression stages of carcinogenesis. Since depletion of DUSP-MAPK phosphatases (MKPs) can reduce tumorigenicity, altering MAPK signaling by DUSP-MKP inhibitors could be a novel strategy in anti-cancer therapy. Moreover, Cdc25A is, a DUSP and a key regulator of the cell cycle, promotes cell cycle progression by dephosphorylating and activating cyclin-dependent kinases (CDK). Cdc25A-CDK pathway is a novel mechanism in carcinogenesis. Besides the mammalian target of rapamycin (mTOR) kinase inhibitors or mammalian target of rapamycin complex 1 (mTORC1) inhibition in combination with the dual phosphatidylinositol 3 kinase (PI3K)/mTOR or AKT kinase inhibitors are more effective in inhibiting the phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and cap-dependent translation. Dual targeting of the Akt and mTOR signaling pathways regulates cellular growth, proliferation and survival. Like the Cdc2-like kinases (CLK), dual-specific tyrosine phosphorylation-regulated kinases (DYRKs) are essential for the regulation of cell fate. The crosstalk between dual-specific phosphatases and dual- specific protein kinases is a novel drug target for anti-cancer therapy. Therefore, the focus of this chapter involves protein kinase modules, critical biochemical checkpoints of cancer therapy and the synergistic effects of protein kinases and anti-cancer molecules.
Collapse
|
30
|
Ernst J, Alabek ML, Eldib A, Madan-Khetarpal S, Sebastian J, Bhatia A, Liasis A, Nischal KK. Ocular findings of albinism in DYRK1A-related intellectual disability syndrome. Ophthalmic Genet 2020; 41:650-655. [PMID: 32838606 DOI: 10.1080/13816810.2020.1814349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Pathogenic variants in DYRK1A are associated with DYRK1A-related intellectual disability syndrome (DIDS). Common features of this diagnosis include microcephaly, intellectual disability, speech impairment, and distinct facial features. Reported ocular features include deep-set eyes, myopia, and strabismus. We present a case of DYRK1A-related intellectual disability syndrome with ocular findings of albinism and explore the possible pathogenesis of this previously unreported manifestation. MATERIALS AND METHODS This is a single, retrospective case report of a child with DIDS who underwent an ophthalmic exam including detailed visual electrophysiology. Results: A 21-month-old female with microcephaly, failure to thrive, language delay, cleft palate, and cardiac defects had an ophthalmic exam showing myopia, strabismus, a hypopigmented fundus and crossed asymmetry on visual evoked potential (VEP), consistent with ocular findings of albinism. Whole exome sequencing identified a pathogenic DYRK1A variant; no albinism gene variants were reported. Her constellation of features is consistent with a diagnosis of DYRK1A-related intellectual disability syndrome; however, ocular features of albinism have not previously been reported in this condition. CONCLUSIONS This is, to the best of our knowledge, the first report of ocular findings of albinism in a case of DYRK1A-related intellectual disability syndrome. We propose that ocular albinism is a novel ocular phenotype of DYRK1A-related disease. Ophthalmic exams in patients with this diagnosis should include thorough evaluation for ocular albinism, including VEPs.
Collapse
Affiliation(s)
- Julia Ernst
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
- Medical University of Warsaw , Warsaw, Poland
| | - Michelle L Alabek
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Amgad Eldib
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Suneeta Madan-Khetarpal
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh , Pittsburgh, PA, USA
| | - Jessica Sebastian
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Aashim Bhatia
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh , Pittsburgh, PA, USA
- UPMC Radiology Department at Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Alkiviades Liasis
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
| | - Ken K Nischal
- UPMC Eye Center , Pittsburgh, PA, USA
- Ophthalmology Departement, UPMC Children's Hospital of Pittsburgh , Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh , Pittsburgh, PA, USA
| |
Collapse
|
31
|
Wan X, Wu X, Hill MA, Ebner DV. ReN VM spheroids in matrix: A neural progenitor three-dimensional in vitro model reveals DYRK1A inhibitors as potential regulators of radio-sensitivity. Biochem Biophys Res Commun 2020; 531:535-542. [PMID: 32807492 DOI: 10.1016/j.bbrc.2020.07.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Pre-clinical testing of small molecules for therapeutic development across many pathologies relies on the use of in-vitro and in-vivo models. When designed and implemented well, these models serve to predict the clinical outcome as well as the toxicity of the evaluated therapies. The two-dimensional (2D) reductionist approach where cells are incubated in a mono-layer on hard plastic microtiter plates is relatively inexpensive but not physiologically relevant. In contrast, well developed and applied three dimensional (3D) in vitro models could be employed to bridge the gap between 2D in vitro primary screening and expensive in vivo rodent models by incorporating key features of the tissue microenvironment to explore differentiation, cortical development, cancers and various neuronal dysfunctions. These features include an extracellular matrix, co-culture, tension and perfusion and could replace several hundred rodents in the drug screening validation cascade. METHODS Human neural progenitor cells from middle brain (ReN VM, Merck Millipore, UK) were expanded as instructed by the supplier (Merck Millipore, UK), and then seeded in 96-well low-attachment plates (Corning, UK) to form multicellular spheroids followed by adding a Matrigel layer to mimic extracellular matrix around neural stem cell niche. ReN VM cells were then differentiated via EGF and bFGF deprivation for 7 days and were imaged at day 7. Radiotherapy was mimicked via gamma-radiation at 2Gy in the absence and presence of selected DYRK1A inhibitors Harmine, INDY and Leucettine 41 (L41). Cell viability was measured by AlamarBlue assay. Immunofluorescence staining was used to assess cell pluripotency marker SOX2 and differentiation marker GFAP. RESULTS After 7 days of differentiation, neuron early differentiation marker (GFAP, red) started to be expressed among the cells expressing neural stem cell marker SOX2 (green). Radiation treatment caused significant morphology change including the reduced viability of the spheroids. These spheroids also revealed sensitizing potential of DYRK1A inhibitors tested in this study, including Harmine, INDY and L41. DISCUSSION & CONCLUSIONS Combined with the benefit of greatly reducing the issues associated with in vivo rodent models, including reducing numbers of animals used in a drug screening cascade, cost, ethics, and potential animal welfare burden, we feel the well-developed and applied 3D neural spheroid model presented in this study will provide a crucial tool to evaluate combinatorial therapies, optimal drug concentrations and treatment dosages.
Collapse
Affiliation(s)
- Xiao Wan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, England, UK
| | - Xiaoning Wu
- Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ, Oxford, England, UK
| | - Mark A Hill
- Oxford Institute for Radiation Oncology, University of Oxford, OX3 7DQ, Oxford, England, UK
| | - Daniel V Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, England, UK.
| |
Collapse
|
32
|
Lee KS, Choi M, Kwon DW, Kim D, Choi JM, Kim AK, Ham Y, Han SB, Cho S, Cheon CK. A novel de novo heterozygous DYRK1A mutation causes complete loss of DYRK1A function and developmental delay. Sci Rep 2020; 10:9849. [PMID: 32555303 PMCID: PMC7299959 DOI: 10.1038/s41598-020-66750-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/14/2020] [Indexed: 01/01/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) is essential for human development, and DYRK1A haploinsufficiency is associated with a recognizable developmental syndrome and variable clinical features. Here, we present a patient with DYRK1A haploinsufficiency syndrome, including facial dysmorphism, delayed motor development, cardiovascular system defects, and brain atrophy. Exome sequencing identified a novel de novo heterozygous mutation of the human DYRK1A gene (c.1185dup), which generated a translational termination codon and resulted in a C-terminally truncated protein (DYRK1A-E396ter). To study the molecular effect of this truncation, we generated mammalian cell and Drosophila models that recapitulated the DYRK1A protein truncation. Analysis of the structure and deformation energy of the mutant protein predicted a reduction in protein stability. Experimentally, the mutant protein was efficiently degraded by the ubiquitin-dependent proteasome pathway and was barely detectable in mammalian cells. More importantly, the mutant kinase was intrinsically inactive and had little negative impact on the wild-type protein. Similarly, the mutant protein had a minimal effect on Drosophila phenotypes, confirming its loss-of-function in vivo. Together, our results suggest that the novel heterozygous mutation of DYRK1A resulted in loss-of-function of the kinase activity of DYRK1A and may contribute to the developmental delay observed in the patient.
Collapse
Affiliation(s)
- Kyu-Sun Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Gajeong-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Miri Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk, 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, 30-1 Yeonje-ri, Osong-eup, Heungduk-gu, Cheongju-si, Chungbuk, 28644, Republic of Korea
| | - Dae-Woo Kwon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Gajeong-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Doyoun Kim
- Innovative Target Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Jang-dong, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jong-Moon Choi
- Green Cross Genome, Green Cross Laboratories, 107 Ihyeon-ro 30 beon-gil, Giheung-gu, Yongin-si, Gyeonggi, 16924, Republic of Korea
| | - Ae-Kyeong Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngwook Ham
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk, 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, 30-1 Yeonje-ri, Osong-eup, Heungduk-gu, Cheongju-si, Chungbuk, 28644, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 30-1 Yeonje-ri, Osong-eup, Heungduk-gu, Cheongju-si, Chungbuk, 28644, Republic of Korea
| | - Sungchan Cho
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk, 28116, Republic of Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Gajeong-dong, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Chong Kun Cheon
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongnam, 50612, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
33
|
Zhao C, Wang D, Gao Z, Kan H, Qiu F, Chen L, Li H. Licocoumarone induces BxPC-3 pancreatic adenocarcinoma cell death by inhibiting DYRK1A. Chem Biol Interact 2020; 316:108913. [PMID: 31838052 DOI: 10.1016/j.cbi.2019.108913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Protein kinases play an indispensable role in signaling pathways that regulate tumor cell functions, which represent potent therapeutic targets in cancers. Dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) as a serine/threonine kinase has recently been reported to be upregulated in pancreatic ductal adenocarcinoma (PDAC) and show protumorigenic effect. By activity-guided phytochemical investigation of the extracts from Glycyrrhiza uralensis Fisch, we expect to find the effective constituents that can suppress pancreatic cancer cell proliferation and/or induce cells apoptotic by inhibiting DYRK1A. Eight isopentenyl-substituted compounds (1-8), including four coumarins (1-4), one benzofuran (5), and three flavonoids (6-8), were isolated and identified from G. uralensis Fisch. Among them, licocoumarone (LC, 5) showed effective inhibitory activity against DYRK1A with an IC50 value of 12.56 μM. Molecular docking analysis suggested that LC completely occupied the whole pocket of DYRK1A and formed obvious hydrophobic interactions and hydrogen bonds with DYRK1A residues. Further in vitro validation, including Microscale Thermophoresis (MST) and drug affinity responsive target stability (DARTS) techniques, demonstrated the specific combining capacity of LC to DYRK1A. Meanwhile, LC induced significant cytotoxicity against DYRK1A-overexpressing BxPC-3 cells with an IC50 value of 50.77 μM. Mechanism studies revealed that LC reduced c-MET protein level by inhibiting DYRK1A. These findings provide preliminary evidences that LC as a natural DYRK1A inhibitor suppresses human pancreatic adenocarcinoma BxPC-3 cell proliferation and induces cell apoptotic, which might present new options and possibilities for targeted therapies in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Chao Zhao
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dun Wang
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zexuan Gao
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongfeng Kan
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feng Qiu
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
34
|
Lechner C, Flaßhoff M, Falke H, Preu L, Loaëc N, Meijer L, Knapp S, Chaikuad A, Kunick C. [ b]-Annulated Halogen-Substituted Indoles as Potential DYRK1A Inhibitors. Molecules 2019; 24:E4090. [PMID: 31766108 PMCID: PMC6891749 DOI: 10.3390/molecules24224090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Since hyperactivity of the protein kinase DYRK1A is linked to several neurodegenerative disorders, DYRK1A inhibitors have been suggested as potential therapeutics for Down syndrome and Alzheimer's disease. Most published inhibitors to date suffer from low selectivity against related kinases or from unfavorable physicochemical properties. In order to identify DYRK1A inhibitors with improved properties, a series of new chemicals based on [b]-annulated halogenated indoles were designed, synthesized, and evaluated for biological activity. Analysis of crystal structures revealed a typical type-I binding mode of the new inhibitor 4-chlorocyclohepta[b]indol-10(5H)-one in DYRK1A, exploiting mainly shape complementarity for tight binding. Conversion of the DYRK1A inhibitor 8-chloro-1,2,3,9-tetrahydro-4H-carbazol-4-one into a corresponding Mannich base hydrochloride improved the aqueous solubility but abrogated kinase inhibitory activity.
Collapse
Affiliation(s)
- Christian Lechner
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Maren Flaßhoff
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Hannes Falke
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Nadége Loaëc
- Faculté de Médecine et des Sciences de la Santé UBO, 22 avenue Camille Desmoulins, 29200-Brest, France
- ManRos Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, France
| | - Laurent Meijer
- ManRos Therapeutics & Perha Pharmaceuticals, Perharidy Research Center, 29680 Roscoff, France
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| |
Collapse
|
35
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
36
|
Pallavicini G, Berto GE, Di Cunto F. Precision Revisited: Targeting Microcephaly Kinases in Brain Tumors. Int J Mol Sci 2019; 20:ijms20092098. [PMID: 31035417 PMCID: PMC6539168 DOI: 10.3390/ijms20092098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme and medulloblastoma are the most frequent high-grade brain tumors in adults and children, respectively. Standard therapies for these cancers are mainly based on surgical resection, radiotherapy, and chemotherapy. However, intrinsic or acquired resistance to treatment occurs almost invariably in the first case, and side effects are unacceptable in the second. Therefore, the development of new, effective drugs is a very important unmet medical need. A critical requirement for developing such agents is to identify druggable targets required for the proliferation or survival of tumor cells, but not of other cell types. Under this perspective, genes mutated in congenital microcephaly represent interesting candidates. Congenital microcephaly comprises a heterogeneous group of disorders in which brain volume is reduced, in the absence or presence of variable syndromic features. Genetic studies have clarified that most microcephaly genes encode ubiquitous proteins involved in mitosis and in maintenance of genomic stability, but the effects of their inactivation are particularly strong in neural progenitors. It is therefore conceivable that the inhibition of the function of these genes may specifically affect the proliferation and survival of brain tumor cells. Microcephaly genes encode for a few kinases, including CITK, PLK4, AKT3, DYRK1A, and TRIO. In this review, we summarize the evidence indicating that the inhibition of these molecules could exert beneficial effects on different aspects of brain cancer treatment.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10126 Turin, Italy.
- Department of Neurosciences, University of Turin, 10126 Turin, Italy.
- Neuroscience Institute of Turin (NIT), 10126 Turin, Italy.
| |
Collapse
|
37
|
Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: A lifelong relationship. Pharmacol Ther 2019; 194:199-221. [PMID: 30268771 DOI: 10.1016/j.pharmthera.2018.09.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dosage of the serine threonine kinase DYRK1A is critical in the central nervous system (CNS) during development and aging. This review analyzes the functions of this kinase by considering its interacting partners and pathways. The role of DYRK1A in controlling the differentiation of prenatal newly formed neurons is presented separately from its role at the pre- and post-synaptic levels in the adult CNS; its effects on synaptic plasticity are also discussed. Because this kinase is positioned at the crossroads of many important processes, genetic dosage errors in this protein produce devastating effects arising from DYRK1A deficiency, such as in MRD7, an autism spectrum disorder, or from DYRK1A excess, such as in Down syndrome. Effects of these errors have been shown in various animal models including Drosophila, zebrafish, and mice. Dysregulation of DYRK1A levels also occurs in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Finally, this review describes inhibitors that have been assessed in vivo. Accurate targeting of DYRK1A levels in the brain, with either inhibitors or activators, is a future research challenge.
Collapse
Affiliation(s)
- Maria L Arbones
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028 Barcelona, Spain.
| | - Aurore Thomazeau
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jean M Delabar
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| |
Collapse
|
38
|
Rozen EJ, Roewenstrunk J, Barallobre MJ, Di Vona C, Jung C, Figueiredo AF, Luna J, Fillat C, Arbonés ML, Graupera M, Valverde MA, de la Luna S. DYRK1A Kinase Positively Regulates Angiogenic Responses in Endothelial Cells. Cell Rep 2018; 23:1867-1878. [PMID: 29742440 DOI: 10.1016/j.celrep.2018.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/18/2017] [Accepted: 03/31/2018] [Indexed: 11/23/2022] Open
Abstract
Angiogenesis is a highly regulated process essential for organ development and maintenance, and its deregulation contributes to inflammation, cardiac disorders, and cancer. The Ca2+/nuclear factor of activated T cells (NFAT) signaling pathway is central to endothelial cell angiogenic responses, and it is activated by stimuli like vascular endothelial growth factor (VEGF) A. NFAT phosphorylation by dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) is thought to be an inactivating event. Contrary to expectations, we show that the DYRK family member DYRK1A positively regulates VEGF-dependent NFAT transcriptional responses in primary endothelial cells. DYRK1A silencing reduces intracellular Ca2+ influx in response to VEGF, which dampens NFAT activation. The effect is exerted at the level of VEGFR2 accumulation leading to impairment in PLCγ1 activation. Notably, Dyrk1a heterozygous mice show defects in developmental retinal vascularization. Our data establish a regulatory circuit, DYRK1A/ Ca2+/NFAT, to fine-tune endothelial cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Esteban J Rozen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Julia Roewenstrunk
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - María José Barallobre
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institut de Biologia Molecular de Barcelona (IBMB), 08028 Barcelona, Spain
| | - Chiara Di Vona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Carole Jung
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ana F Figueiredo
- Vascular Signaling Laboratory, ProCURE and Oncobell Programs, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jeroni Luna
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Cristina Fillat
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Maria L Arbonés
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institut de Biologia Molecular de Barcelona (IBMB), 08028 Barcelona, Spain
| | - Mariona Graupera
- Vascular Signaling Laboratory, ProCURE and Oncobell Programs, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Spain
| | - Miguel A Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
39
|
Raveau M, Shimohata A, Amano K, Miyamoto H, Yamakawa K. DYRK1A-haploinsufficiency in mice causes autistic-like features and febrile seizures. Neurobiol Dis 2018; 110:180-191. [PMID: 29223763 DOI: 10.1016/j.nbd.2017.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 11/28/2022] Open
Abstract
Mutations and copy number variants affecting DYRK1A gene encoding the dual-specificity tyrosine phosphorylation-regulated kinase 1A are among the most frequent genetic causes of neurodevelopmental disorders including autism spectrum disorder (ASD) associated with microcephaly, febrile seizures and severe speech acquisition delay. Here we developed a mouse model harboring a frame-shift mutation in Dyrk1a resulting in a protein truncation and elimination of its kinase activity site. Dyrk1a+/- mice showed significant impairments in cognition and cognitive flexibility, communicative ultrasonic vocalizations, and social contacts. Susceptibility to hyperthermia-induced seizures was also significantly increased in these mice. The truncation leading to haploinsufficiency of DYRK1A in mice thus recapitulates the syndromic phenotypes observed in human patients and constitutes a useful model for further investigations of the mechanisms leading to ASD, speech delay and febrile seizures.
Collapse
Affiliation(s)
- Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Kenji Amano
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
| |
Collapse
|
40
|
Karar M, Paul S, Mallick A, Majumdar T. Shipment of a photodynamic therapy agent into model membrane and its controlled release: A photophysical approach. Chem Phys Lipids 2017; 210:122-128. [PMID: 29056528 DOI: 10.1016/j.chemphyslip.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 10/18/2017] [Indexed: 01/06/2023]
Abstract
Harmine, an efficient cancer cell photosensitizer (PS), emits intense violet color when it is incorporated in well established self assembly based drug carrier formed by cationic surfactants of identical positive charge of head group but varying chain length, namely, dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB). Micelle entrapped drug emits in the UV region when it interacts with non-toxic β-cyclodextrin (β-CD). Inspired by these unique fluorescence/structural switching properties of the anticancer drug, in the present work we have monitored the interplay of the drug between micelles and non-toxic β-CDs. We have observed that the model membranes formed by micelles differing in their hydrophobic chain length interact with the drug differently. Variation in the surfactant chain length plays an important role for structural switching i.e. in choosing a particular structural form of the drug that will be finally presented to their targets. The present study shows that in case of necessity, the bound drug molecule can be removed from its binding site in a controlled manner by the use of non-toxic β-CD and it is exploited to serve a significant purpose for the removal of excess/unused adsorbed drugs from the model cell membranes. We believe this kind of β-CD driven translocation of drugs monitored by fluorescence switching may find possible applications in controlled release of the drug inside cells.
Collapse
Affiliation(s)
- Monaj Karar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Suvendu Paul
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Arabinda Mallick
- Department of Chemistry, Kashipur Michael Madhusudan Mahavidyalaya, Purulia, West Bengal, 723132, India.
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
41
|
Serrano BP, Szydlo HS, Alfandari D, Hardy JA. Active site-adjacent phosphorylation at Tyr-397 by c-Abl kinase inactivates caspase-9. J Biol Chem 2017; 292:21352-21365. [PMID: 29066624 DOI: 10.1074/jbc.m117.811976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
Caspase-9 (casp-9) is an initiator caspase and plays a central role in activating apoptotic cell death. Control of all caspases is tightly regulated by a series of phosphorylation events enacted by several different kinases. Caspase-9 is the most heavily phosphorylated of all caspases, with phosphorylation of at least 11 distinct residues in all three caspase-9 domains by nine kinases. Caspase-9 phosphorylation by the non-receptor tyrosine kinase c-Abl at Tyr-153 reportedly leads to caspase-9 activation. All other phosphorylation events on caspases have been shown to block proteolytic function by a number of mechanisms, so we sought to unravel the molecular mechanism of the putative caspase-9 activation by phosphorylation. Surprisingly, we observed no evidence for Tyr-153 phosphorylation of caspase-9 in vitro or in cells, suggesting that Tyr-153 is not phosphorylated by c-Abl. Instead, we identified a new site for c-Abl-mediated phosphorylation, Tyr-397. This residue is adjacent to the caspase-9 active site but, as a member of the second shell, not a residue that directly contacts substrate. Our results further indicate that Tyr-397 is the dominant site of c-Abl phosphorylation both in vitro and upon c-Abl activation in cells. Of note, phosphorylation at this site inhibits caspase-9 activity, and the bulk of the added phosphate moiety appeared to directly block substrate binding. c-Abl plays both proapoptotic and prosurvival roles, and our findings suggest that c-Abl's effects on caspase-9 activity promote the prosurvival mode.
Collapse
Affiliation(s)
| | - Hannah S Szydlo
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Dominique Alfandari
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
42
|
Abstract
Fell et al. deleted KIF1Bβ in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. They discovered that KIF1Bβ is required for NGF-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA. We recently identified pathogenic KIF1Bβ mutations in sympathetic nervous system malignancies that are defective in developmental apoptosis. Here we deleted KIF1Bβ in the mouse sympathetic nervous system and observed impaired sympathetic nervous function and misexpression of genes required for sympathoadrenal lineage differentiation. We discovered that KIF1Bβ is required for nerve growth factor (NGF)-dependent neuronal differentiation through anterograde transport of the NGF receptor TRKA. Moreover, pathogenic KIF1Bβ mutations identified in neuroblastoma impair TRKA transport. Expression of neuronal differentiation markers is ablated in both KIF1Bβ-deficient mouse neuroblasts and human neuroblastomas that lack KIF1Bβ. Transcriptomic analyses show that unfavorable neuroblastomas resemble mouse sympathetic neuroblasts lacking KIF1Bβ independent of MYCN amplification and the loss of genes neighboring KIF1B on chromosome 1p36. Thus, defective precursor cell differentiation, a common trait of aggressive childhood malignancies, is a pathogenic effect of KIF1Bβ loss in neuroblastomas. Furthermore, neuropathy-associated KIF1Bβ mutations impede cargo transport, providing a direct link between neuroblastomas and neurodegeneration.
Collapse
|
43
|
Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q. Caspase-9: structure, mechanisms and clinical application. Oncotarget 2017; 8:23996-24008. [PMID: 28177918 PMCID: PMC5410359 DOI: 10.18632/oncotarget.15098] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/22/2017] [Indexed: 12/27/2022] Open
Abstract
As the most intensively studied initiator caspase, caspase-9 is a key player in the intrinsic or mitochondrial pathway which is involved in various stimuli, including chemotherapies, stress agents and radiation. Caspase-9 is activated on the apoptosome complex to remain catalytic status and is thought of involving homo-dimerization monomeric zymogens. Failing to activate caspase-9 has profound physiological and pathophysiological outcomes, leading to degenerative and developmental disorders even cancer. To govern the apoptotic commitment process appropriately, plenty of proteins and small molecules involved in regulating caspase-9. Therefore, this review is to summarize recent pertinent literature on the comprehensive description of the molecular events implicated in caspase-9 activation and inhibition, as well as the clinical trials in progress to give deep insight into caspase-9 for suppressing cancer. We hope that our concerns will be helpful for further clinical studies addressing the roles of caspase-9 and its regulators demanded to identify more effective solutions to overcome intrinsic apoptosis-related diseases especially cancer.
Collapse
Affiliation(s)
- Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Libin Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, People's Republic of China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, People's Republic of China
| |
Collapse
|
44
|
Rahnel H, Viht K, Lavogina D, Mazina O, Haljasorg T, Enkvist E, Uri A. A Selective Biligand Inhibitor of CK2 Increases Caspase-3 Activity in Cancer Cells and Inhibits Platelet Aggregation. ChemMedChem 2017; 12:1723-1736. [PMID: 28837260 DOI: 10.1002/cmdc.201700457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 11/08/2022]
Abstract
Cancer cells express high levels of CK2, and its inhibition leads to apoptosis. CK2 has therefore emerged as a new drug target for cancer therapy. A biligand inhibitor ARC-772 was constructed by conjugating 4-(2-amino-1,3-thiazol-5-yl)benzoic acid and a carboxylate-rich peptoid. ARC-772 was found to bind CK2 with a Kd value of 0.3 nm and showed remarkable CK2 inhibitory selectivity in a panel of 140 protein kinases (Gini coefficient: 0.75 at c=100 nm). ARC-775, the acetoxymethyl ester prodrug of ARC-772, was efficiently taken up by cells. Once internalized, the inhibitor is activated by cellular esterase activity. In HeLa cancer cells ARC-775 was found to activate caspase-3 (an apoptosis marker) at sub-micromolar concentrations (EC50 =0.3 μm), a 20-fold lower extracellular concentration than CX-4945, the only CK2 inhibitor under clinical trials. At micromolar concentrations, ARC-775 was also found to inhibit ADP-induced aggregation of human platelets. The overall results of this study demonstrate that oligo-anionic biligand inhibitors have good potential for drug development.
Collapse
Affiliation(s)
- Hedi Rahnel
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Darja Lavogina
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Olga Mazina
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Tõiv Haljasorg
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411, Tartu, Estonia
| |
Collapse
|
45
|
Nakano-Kobayashi A, Awaya T, Kii I, Sumida Y, Okuno Y, Yoshida S, Sumida T, Inoue H, Hosoya T, Hagiwara M. Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice. Proc Natl Acad Sci U S A 2017; 114:10268-10273. [PMID: 28874550 PMCID: PMC5617268 DOI: 10.1073/pnas.1704143114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Down syndrome (DS) caused by trisomy of chromosome 21 is the most common genetic cause of intellectual disability. Although the prenatal diagnosis of DS has become feasible, there are no therapies available for the rescue of DS-related neurocognitive impairment. A growth inducer newly identified in our screen of neural stem cells (NSCs) has potent inhibitory activity against dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) and was found to rescue proliferative deficits in Ts65Dn-derived neurospheres and human NSCs derived from individuals with DS. The oral administration of this compound, named ALGERNON (altered generation of neurons), restored NSC proliferation in murine models of DS and increased the number of newborn neurons. Moreover, administration of ALGERNON to pregnant dams rescued aberrant cortical formation in DS mouse embryos and prevented the development of abnormal behaviors in DS offspring. These data suggest that the neurogenic phenotype of DS can be prevented by ALGERNON prenatal therapy.
Collapse
Affiliation(s)
- Akiko Nakano-Kobayashi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tomonari Awaya
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Isao Kii
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuto Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Yukiko Okuno
- Medical Research Support Center, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Tomoe Sumida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Drug-Discovery Cellular Basis Development Team, RIKEN BioResource Center, Kyoto 606-8507, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan;
| |
Collapse
|
46
|
Lu J, Xu Q, Ji M, Guo X, Xu X, Fargo DC, Li X. The phosphorylation status of T522 modulates tissue-specific functions of SIRT1 in energy metabolism in mice. EMBO Rep 2017; 18:841-857. [PMID: 28364022 PMCID: PMC5412809 DOI: 10.15252/embr.201643803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/31/2022] Open
Abstract
SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, is an important metabolic regulator. However, the mechanisms by which SIRT1 is regulated in vivo remain unclear. Here, we report that phosphorylation modification of T522 on SIRT1 is crucial for tissue-specific regulation of SIRT1 activity in mice. Dephosphorylation of T522 is critical for repression of its activity during adipogenesis. The phospho-T522 level is reduced during adipogenesis. Knocking-in a constitutive T522 phosphorylation mimic activates the β-catenin/GATA3 pathway, repressing PPARγ signaling, impairing differentiation of white adipocytes, and ameliorating high-fat diet-induced dyslipidemia in mice. In contrast, phosphorylation of T522 is crucial for activation of hepatic SIRT1 in response to over-nutrition. Hepatic SIRT1 is hyperphosphorylated at T522 upon high-fat diet feeding. Knocking-in a SIRT1 mutant defective in T522 phosphorylation disrupts hepatic fatty acid oxidation, resulting in hepatic steatosis after high-fat diet feeding. In addition, the T522 dephosphorylation mimic impairs systemic energy metabolism. Our findings unveil an important link between environmental cues, SIRT1 phosphorylation, and energy homeostasis and demonstrate that the phosphorylation of T522 is a critical element in tissue-specific regulation of SIRT1 activity in vivo.
Collapse
Affiliation(s)
- Jing Lu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ming Ji
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xiumei Guo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
47
|
Carvalho A, Chu J, Meinguet C, Kiss R, Vandenbussche G, Masereel B, Wouters J, Kornienko A, Pelletier J, Mathieu V. A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. Eur J Pharmacol 2017; 805:25-35. [PMID: 28322844 DOI: 10.1016/j.ejphar.2017.03.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/17/2022]
Abstract
Growing evidence indicates that protein synthesis is deregulated in cancer onset and progression and targeting this process might be a selective way to combat cancers. While harmine is known to inhibit DYRK1A and intercalate into the DNA, tri-substitution was shown previously to modify its activity profile in favor of protein synthesis inhibition. In this study, we thus evaluated the optimized derivative CM16 in vitro anti-cancer effects unfolding its protein synthesis inhibition activity. Indeed, the growth inhibitory profile of CM16 in the NCI 60-cancer-cell-line-panel correlated with those of other compounds described as protein synthesis inhibitors. Accordingly, CM16 decreased in a time- and concentration-dependent manner the translation of neosynthesized proteins in vitro while it did not affect mRNA transcription. CM16 rapidly penetrated into the cell in the perinuclear region of the endoplasmic reticulum where it appears to target translation initiation as highlighted by ribosomal disorganization. More precisely, we found that the mRNA expression levels of the initiation factors EIF1AX, EIF3E and EIF3H differ when comparing resistant or sensitive cell models to CM16. Additionally, CM16 induced eIF2α phosphorylation. Those effects could explain, at least partly, the CM16 cytostatic anti-cancer effects observed in vitro while neither cell cycle arrest nor DNA intercalation could be demonstrated. Therefore, targeting protein synthesis initiation with CM16 could represent a new promising alternative to current cancer therapies due to the specific alterations of the translation machinery in cancer cells as recently evidenced with respect to EIF1AX and eIF3 complex, the potential targets identified in this present study.
Collapse
Affiliation(s)
- Annelise Carvalho
- Laboratoire de Cancérologie et Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Québec, Canada
| | - Céline Meinguet
- Namur Medicine and Drug Innovation Center (NAMEDIC-NARILIS), Université de Namur, Namur, Belgium
| | - Robert Kiss
- Laboratoire de Cancérologie et Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Vandenbussche
- Laboratory for the Structure and Function of Biological Membranes, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Bernard Masereel
- Namur Medicine and Drug Innovation Center (NAMEDIC-NARILIS), Université de Namur, Namur, Belgium
| | - Johan Wouters
- Namur Medicine and Drug Innovation Center (NAMEDIC-NARILIS), Université de Namur, Namur, Belgium
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Québec, Canada
| | - Véronique Mathieu
- Laboratoire de Cancérologie et Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
48
|
Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends Cell Biol 2017; 27:322-339. [PMID: 28188028 DOI: 10.1016/j.tcb.2017.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Apoptosis is a crucial program of cell death that controls development and homeostasis of multicellular organisms. The main initiators and executors of this process are the Cysteine-dependent ASPartate proteASES - caspases. A number of regulatory circuits tightly control caspase processing and activity. One of the most important, yet, at the same time still poorly understood control mechanisms of activation of caspases involves their post-translational modifications. The addition and/or removal of chemical groups drastically alters the catalytic activity of caspases or stimulates their nonapoptotic functions. In this review, we will describe and discuss the roles of key caspase modifications such as phosphorylation, ubiquitination, nitrosylation, glutathionylation, SUMOylation, and acetylation in the regulation of apoptotic cell death and cell survival.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeniia A Prokhorova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
49
|
Demyanenko SV, Panchenko SN, Uzdensky AB. Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. BIOCHEMISTRY (MOSCOW) 2016; 80:790-9. [PMID: 26531025 DOI: 10.1134/s0006297915060152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic impact on animal cerebral cortex using water-soluble Bengal Rose as a photosensitizer, which does not cross the blood-brain barrier and remains in blood vessels, induces platelet aggregation, vessel occlusion, and brain tissue infarction. This reproduces ischemic stroke. Irreversible cell damage within the infarction core propagates to adjacent tissue and forms a transition zone - the penumbra. Tissue necrosis in the infarction core is too fast (minutes) to be prevented, but much slower penumbral injury (hours) can be limited. We studied the changes in morphology and protein expression profile in penumbra 1 h after local photothrombotic infarction induced by laser irradiation of the cerebral cortex after Bengal Rose administration. Morphological study using standard hematoxylin/eosin staining showed a 3-mm infarct core surrounded by 1.5-2.0 mm penumbra. Morphological changes in the penumbra were lesser and decreased towards its periphery. Antibody microarrays against 224 neuronal and signaling proteins were used for proteomic study. The observed upregulation of penumbra proteins involved in maintaining neurite integrity and guidance (NAV3, MAP1, CRMP2, PMP22); intercellular interactions (N-cadherin); synaptic transmission (glutamate decarboxylase, tryptophan hydroxylase, Munc-18-1, Munc-18-3, and synphilin-1); mitochondria quality control and mitophagy (PINK1 and Parkin); ubiquitin-mediated proteolysis and tissue clearance (UCHL1, PINK1, Parkin, synphilin-1); and signaling proteins (PKBα and ERK5) could be associated with tissue recovery. Downregulation of PKC, PKCβ1/2, and TDP-43 could also reduce tissue injury. These changes in expression of some neuronal proteins were directed mainly to protection and tissue recovery in the penumbra. Some upregulated proteins might serve as markers of protection processes in a penumbra.
Collapse
Affiliation(s)
- S V Demyanenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | | | | |
Collapse
|
50
|
Yan H, Hu K, Wu W, Li Y, Tian H, Chu Z, Koeffler HP, Yin D. Low Expression of DYRK2 (Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2) Correlates with Poor Prognosis in Colorectal Cancer. PLoS One 2016; 11:e0159954. [PMID: 27532268 PMCID: PMC4988784 DOI: 10.1371/journal.pone.0159954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023] Open
Abstract
Dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2) is a member of dual-specificity kinase family, which could phosphorylate both Ser/Thr and Tyr substrates. The role of DYRK2 in human cancer remains controversial. For example, overexpression of DYRK2 predicts a better survival in human non-small cell lung cancer. In contrast, amplification of DYRK2 gene occurs in esophageal/lung adenocarcinoma, implying the role of DYRK2 as a potential oncogene. However, its clinical role in colorectal cancer (CRC) has not been explored. In this study, we analyzed the expression of DYRK2 from Oncomine database and found that DYRK2 level is lower in primary or metastatic CRC compared to adjacent normal colon tissue or non-metastatic CRC, respectively, in 6 colorectal carcinoma data sets. The correlation between DYRK2 expression and clinical outcome in 181 CRC patients was also investigated by real-time PCR and IHC. DYRK2 expression was significantly down-regulated in colorectal cancer tissues compared with adjacent non-tumorous tissues. Functional studies confirmed that DYRK2 inhibited cell invasion and migration in both HCT116 and SW480 cells and functioned as a tumor suppressor in CRC cells. Furthermore, the lower DYRK2 levels were correlated with tumor sites (P = 0.023), advanced clinical stages (P = 0.006) and shorter survival in the advanced clinical stages. Univariate and multivariate analyses indicated that DYRK2 expression was an independent prognostic factor (P < 0.001). Taking all, we concluded that DYRK2 a novel prognostic biomarker of human colorectal cancer.
Collapse
Affiliation(s)
- Haiyan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Huan Tian
- Department of Breast Oncology, Guangdong Hospital of Traditional Chinese Medicine, Traditional Chinese Medicine University of Guangzhou, Guangzhou, 510120, China
| | - Zhonghua Chu
- Department of Gastrointestinal Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - H. Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California Los Angeles (UCLA) School of Medicine, Los Angeles, California, United States of America
- National University of Singapore (CSI, NCIS), Singapore, Singapore
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|