1
|
Li SMH, Liang YC, Jiang TX, Jea WC, Chih-Kuan Chen, Lu J, Núñez-León D, Yu Z, Lai YC, Widelitz RB, Andersson L, Wu P, Chuong CM. Skin regional specification and higher-order HoxC regulation. SCIENCE ADVANCES 2025; 11:eado2223. [PMID: 40117347 PMCID: PMC11927629 DOI: 10.1126/sciadv.ado2223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025]
Abstract
The integument plays a critical role in functional adaptation, with macro-regional specification forming structures like beaks, combs, feathers, and scales, while micro-regional specification modifies skin appendage shapes. However, the molecular mechanisms remain largely unknown. Craniofacial integument displays dramatic diversity, exemplified by the Polish chicken (PC) with a homeotic transformation of comb-to-crest feathers, caused by a 195-base pair (bp) duplication in HoxC10 intron. Micro-C analyses show that HoxC-containing topologically associating domain (TAD) is normally closed in the scalp but open in the dorsal and tail regions, allowing multiple long-distance contacts. In the PC scalp, the TAD is open, resulting in high HoxC expression. CRISPR-Cas9 deletion of the 195-bp duplication reduces crest feather formation, and HoxC misexpression alters feather shapes. The 195-bp sequence is found only in Archelosauria (crocodilians and birds) and not in mammals. These findings suggest that higher-order regulation of the HoxC cluster modulates gene expression, driving the evolution of adaptive integumentary appendages in birds.
Collapse
Affiliation(s)
- Shu-Man Hsieh Li
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
- Institute of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wen Chien Jea
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Jiayi Lu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Núñez-León
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yung-Chih Lai
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Randall B. Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Arriagada C, Lin E, Schonning M, Astrof S. Mesodermal fibronectin controls cell shape, polarity, and mechanotransduction in the second heart field during cardiac outflow tract development. Dev Cell 2025; 60:62-84.e7. [PMID: 39413783 PMCID: PMC11706711 DOI: 10.1016/j.devcel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Failure in the elongation of the cardiac outflow tract (OFT) results in congenital heart disease due to the misalignment of the great arteries with the left and right ventricles. The OFT lengthens via the accretion of progenitors from the second heart field (SHF). SHF cells are exquisitely regionalized and organized into an epithelial-like layer, forming the dorsal pericardial wall (DPW). Tissue tension, cell polarity, and proliferation within the DPW are important for the addition of SHF-derived cells to the heart and OFT elongation. However, the genes controlling these processes are not completely characterized. Using conditional mutagenesis in the mouse, we show that fibronectin (FN1) synthesized by the mesoderm coordinates multiple cellular behaviors in the anterior DPW. FN1 is enriched in the anterior DPW and plays a role in OFT elongation by maintaining a balance between pro- and anti-adhesive cell-extracellular matrix (ECM) interactions and controlling DPW cell shape, polarity, cohesion, proliferation, and mechanotransduction.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Evan Lin
- Princeton Day School, Princeton, NJ, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
3
|
Altmaier S, Le Harzic R, Stracke F, Speicher AM, Uhl D, Ehrlich J, Gerlach T, Schmidt K, Lemmer K, Lautenschläger F, Böse H, Neubauer JC, Zimmermann H, Meiser I. Cytoskeleton adaptation to stretchable surface relaxation improves adherent cryopreservation of human mesenchymal stem cells. Cryobiology 2024; 117:104958. [PMID: 39243925 DOI: 10.1016/j.cryobiol.2024.104958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Adherent cell systems are usually dissociated before being cryopreserved, as standard protocols are established for cells in suspension. The application of standard procedures to more complex systems, sensitive to dissociation, such as adherent monolayers, especially comprising mature cell types or tissues remains unsatisfactory. Uncontrolled cell detachment due to intracellular tensile stress, membrane ruptures and damages of adhesion proteins are common during freezing and thawing of cell monolayers. However, many therapeutically relevant cell systems grow adherently to develop their native morphology and functionality, but lose their integrity after dissociation. The hypothesis is that cells on stretchable substrates have a more adaptable cytoskeleton and membrane, reducing cryopreservation-induced stress. Our studies investigate the influence of stretchable surfaces on the cryopreservation of adherent cells to avoid harmful dissociation and expedite post-thawing cultivation of functional cells. A stretching apparatus for defined radial stretching, consisting of silicone vessels and films with specific surface textures for cell culture, was developed. Adherent human umbilical cord mesenchymal stem cells (hUC-MSCs) were cultivated on a stretched silicone film within the vessel, forming a monolayer that was compressed by relaxation, while remaining attached to the relaxed film. Compressed hUC-MSCs, which were cryopreserved adherently showed higher viability and less detachment after thawing compared to control cells without compression. Within three to seven days post-thawing, the hUC-MSCs recovered, and the monolayer reformed. These experiments support the hypothesis that cryopreservation success of adherent cell systems is enhanced by improved adaptability of the cytoskeleton and cell membrane, opening up new approaches in cryobiotechnology.
Collapse
Affiliation(s)
- Saskia Altmaier
- Department of Molecular and Cellular Biotechnology, Saarland University, 66123, Saarbrücken, Germany; Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Ronan Le Harzic
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Frank Stracke
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Anna Martina Speicher
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Detlev Uhl
- Center Smart Materials and Adaptive Systems (CeSMA), Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Johannes Ehrlich
- Center Smart Materials and Adaptive Systems (CeSMA), Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Thomas Gerlach
- Center Smart Materials and Adaptive Systems (CeSMA), Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Katharina Schmidt
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Katja Lemmer
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | | | - Holger Böse
- Center Smart Materials and Adaptive Systems (CeSMA), Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Julia C Neubauer
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany
| | - Heiko Zimmermann
- Department of Molecular and Cellular Biotechnology, Saarland University, 66123, Saarbrücken, Germany; Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany; Facultad de Ciencias del Mar, Universidad Católica del Norte, 1780000, Coquimbo, Chile
| | - Ina Meiser
- Department of Cryosensor Technology, Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66820, Sulzbach, Germany.
| |
Collapse
|
4
|
Zhu M, Gu B, Thomas EC, Huang Y, Kim YK, Tao H, Yung TM, Chen X, Zhang K, Woolaver EK, Nevin MR, Huang X, Winklbauer R, Rossant J, Sun Y, Hopyan S. A fibronectin gradient remodels mixed-phase mesoderm. SCIENCE ADVANCES 2024; 10:eadl6366. [PMID: 39028807 PMCID: PMC11259159 DOI: 10.1126/sciadv.adl6366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Physical processes ultimately shape tissue during development. Two emerging proposals are that cells migrate toward stiffer tissue (durotaxis) and that the extent of cell rearrangements reflects tissue phase, but it is unclear whether and how these concepts are related. Here, we identify fibronectin-dependent tissue stiffness as a control variable that underlies and unifies these phenomena in vivo. In murine limb bud mesoderm, cells are either caged, move directionally, or intercalate as a function of their location along a stiffness gradient. A modified Landau phase equation that incorporates tissue stiffness accurately predicts cell diffusivity upon loss or gain of fibronectin. Fibronectin is regulated by WNT5A-YAP feedback that controls cell movements, tissue shape, and skeletal pattern. The results identify a key determinant of phase transition and show how fibronectin-dependent directional cell movement emerges in a mixed-phase environment in vivo.
Collapse
Affiliation(s)
- Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Bin Gu
- Department of Obstetrics Gynecology and Reproductive Biology, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Evan C. Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Yunyun Huang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Yun-Kyo Kim
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Theodora M. Yung
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaiwen Zhang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Elizabeth K. Woolaver
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mikaela R. Nevin
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rudolph Winklbauer
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yu Sun
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
5
|
Daulagala AC, Cetin M, Nair-Menon J, Jimenez DW, Bridges MC, Bradshaw AD, Sahin O, Kourtidis A. The epithelial adherens junction component PLEKHA7 regulates ECM remodeling and cell behavior through miRNA-mediated regulation of MMP1 and LOX. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596237. [PMID: 38853930 PMCID: PMC11160653 DOI: 10.1101/2024.05.28.596237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epithelial adherens junctions (AJs) are cell-cell adhesion complexes that are influenced by tissue mechanics, such as those emanating from the extracellular matrix (ECM). Here, we introduce a mechanism whereby epithelial AJs can also regulate the ECM. We show that the AJ component PLEKHA7 regulates levels and activity of the key ECM remodeling components MMP1 and LOX in well-differentiated colon epithelial cells, through the miR-24 and miR-30c miRNAs. PLEKHA7 depletion in epithelial cells results in LOX-dependent ECM remodeling in culture and in the colonic mucosal lamina propria in mice. Furthermore, PLEKHA7-depleted cells exhibit increased migration and invasion rates that are MMP1- and LOX- dependent, and form colonies in 3D cultures that are larger in size and acquire aberrant morphologies in stiffer matrices. These results reveal an AJ-mediated mechanism, through which epithelial cells drive ECM remodeling to modulate their behavior, including acquisition of phenotypes that are hallmarks of conditions such as fibrosis and tumorigenesis.
Collapse
Affiliation(s)
- Amanda C. Daulagala
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Medical University South Carolina, Charleston, SC
| | - Joyce Nair-Menon
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| | - Douglas W. Jimenez
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| | - Mary Catherine Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| | - Amy D. Bradshaw
- Department of Medicine, Medical University South Carolina, Charleston, SC
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University South Carolina, Charleston, SC
| | - Antonis Kourtidis
- Department of Regenerative Medicine and Cell Biology, Medical University South Carolina, Charleston, SC
| |
Collapse
|
6
|
Zhou F, Sun J, Ye L, Jiang T, Li W, Su C, Ren S, Wu F, Zhou C, Gao G. Fibronectin promotes tumor angiogenesis and progression of non-small-cell lung cancer by elevating WISP3 expression via FAK/MAPK/ HIF-1α axis and activating wnt signaling pathway. Exp Hematol Oncol 2023; 12:61. [PMID: 37468964 DOI: 10.1186/s40164-023-00419-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Fibronectin, an extracellular matrix protein, has been reported to be associated with heterogeneous cancer stemness, angiogenesis and progression in multiple cancer types. However, the roles and the underlying mechanism of fibronectin on the progression NSCLC need to be further elucidated. METHODS Public dataset such as Kaplan-Meier Plotter was used to determine the prognostic significance of genes. The correlation of different protein expression in clinical and xenograft tissues was tested by immunohistochemistry experiment. Both in vitro and in vivo experiments were performed to determine the role of fibronectin on the tumor growth, metastasis, and angiogenesis in NSCLC. The activation of key signaling pathway under fibronectin was examined by WB assay. RNA-seq was applicated to screening the target gene of fibronectin. Rescue experiment was performed to confirm the role of target gene in fibronectin-mediated function in NSCLC. Finally, luciferase and CHIP assays were used to elucidate the mechanism by which fibronectin regulated the target gene. RESULTS Our results revealed that fibronectin was up-regulated in cancer tissues compared with the normal ones in NSCLC patients. Dish- coated fibronectin enhanced the tumor growth, metastasis, and angiogenesis of NSCLC in vitro and in vivo by promoting EMT and maintaining stemness of NSCLC cells. As expected, fibronectin activated FAK and its downstream MAPK/ERK signaling pathway. WISP3 was screened as a potential target gene of fibronectin. Interestingly, WISP3 effectively activated Wnt signaling pathway, and knockdown of WISP3 effectively blocked the influence of fibronectin on the migration, invasion and vascular structure formation potential of NSCLC cells. Our data also manifested that fibronectin elevated the transcription of WISP3 gene by promoting the binding of HIF-1α to the promoter region of WISP3 in NSCLC cells. CONCLUSIONS Our findings sketched the outline of the route for fibronectin exert its role in NSCLC, in which fibronectin activated downstream FAK and MAPK/ERK signaling pathways, and mediated the accumulation of HIF-1α. Then, HIF-1α enabled the transcription of WISP3, and subsequently promoted the activation of Wnt signaling pathway, and finally enhanced the tumor growth, metastasis, and angiogenesis in NSCLC.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jianguo Sun
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P R China
| | - Lingyun Ye
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fengying Wu
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Guanghui Gao
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Melamed S, Zaffryar-Eilot S, Nadjar-Boger E, Aviram R, Zhao H, Yaseen-Badarne W, Kalev-Altman R, Sela-Donenfeld D, Lewinson O, Astrof S, Hasson P, Wolfenson H. Initiation of fibronectin fibrillogenesis is an enzyme-dependent process. Cell Rep 2023; 42:112473. [PMID: 37148241 DOI: 10.1016/j.celrep.2023.112473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023] Open
Abstract
Fibronectin fibrillogenesis and mechanosensing both depend on integrin-mediated force transmission to the extracellular matrix. However, force transmission is in itself dependent on fibrillogenesis, and fibronectin fibrils are found in soft embryos where high forces cannot be applied, suggesting that force cannot be the sole initiator of fibrillogenesis. Here, we identify a nucleation step prior to force transmission, driven by fibronectin oxidation mediated by lysyl oxidase enzyme family members. This oxidation induces fibronectin clustering, which promotes early adhesion, alters cellular response to soft matrices, and enhances force transmission to the matrix. In contrast, absence of fibronectin oxidation abrogates fibrillogenesis, perturbs cell-matrix adhesion, and compromises mechanosensation. Moreover, fibronectin oxidation promotes cancer cell colony formation in soft agar as well as collective and single-cell migration. These results reveal a force-independent enzyme-dependent mechanism that initiates fibronectin fibrillogenesis, establishing a critical step in cell adhesion and mechanosensing.
Collapse
Affiliation(s)
- Shay Melamed
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Shelly Zaffryar-Eilot
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Elisabeth Nadjar-Boger
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Rohtem Aviram
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Wesal Yaseen-Badarne
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Rotem Kalev-Altman
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Oded Lewinson
- Department of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Peleg Hasson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
8
|
Liao X, Li X, Liu R. Extracellular-matrix mechanics regulate cellular metabolism: A ninja warrior behind mechano-chemo signaling crosstalk. Rev Endocr Metab Disord 2023; 24:207-220. [PMID: 36385696 DOI: 10.1007/s11154-022-09768-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
Abstract
Mechanical forces are the indispensable constituent of environmental cues, such as gravity, barometric pressure, vibration, and contact with bodies, which are involved in pattern and organogenesis, providing mechanical input to tissues and determining the ultimate fate of cells. Extracellular matrix (ECM) stiffness, the slow elastic force, carries the external physical force load onto the cell or outputs the internal force exerted by the cell and its neighbors into the environment. Accumulating evidence illustrates the pivotal role of ECM stiffness in the regulation of organogenesis, maintenance of tissue homeostasis, and the development of multiple diseases, which is largely fulfilled through its systematical impact on cellular metabolism. This review summarizes the establishment and regulation of ECM stiffness, the mechanisms underlying how ECM stiffness is sensed by cells and signals to modulate diverse cell metabolic pathways, and the physiological and pathological significance of the ECM stiffness-cell metabolism axis.
Collapse
Affiliation(s)
- Xiaoyu Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, 14, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Huljev K, Shamipour S, Pinheiro D, Preusser F, Steccari I, Sommer CM, Naik S, Heisenberg CP. A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Dev Cell 2023; 58:582-596.e7. [PMID: 36931269 DOI: 10.1016/j.devcel.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/31/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization.
Collapse
Affiliation(s)
- Karla Huljev
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Shayan Shamipour
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Diana Pinheiro
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Friedrich Preusser
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Irene Steccari
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Suyash Naik
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | |
Collapse
|
10
|
Li X, McLain C, Samuel MS, Olson MF, Radice GL. Actomyosin-mediated cellular tension promotes Yap nuclear translocation and myocardial proliferation through α5 integrin signaling. Development 2023; 150:dev201013. [PMID: 36621002 PMCID: PMC10110499 DOI: 10.1242/dev.201013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state results in the loss of regenerative potential of the mammalian heart shortly after birth. Nonmuscle myosin IIB (NM IIB)-mediated actomyosin contractility regulates cardiomyocyte cytokinesis in the embryonic heart, and NM IIB levels decline after birth, suggesting a role for cellular tension in the regulation of cardiomyocyte cell cycle activity in the postnatal heart. To investigate the role of actomyosin contractility in cardiomyocyte cell cycle arrest, we conditionally activated ROCK2 kinase domain (ROCK2:ER) in the murine postnatal heart. Here, we show that α5/β1 integrin and fibronectin matrix increase in response to actomyosin-mediated tension. Moreover, activation of ROCK2:ER promotes nuclear translocation of Yap, a mechanosensitive transcriptional co-activator, and enhances cardiomyocyte proliferation. Finally, we show that reduction of myocardial α5 integrin rescues the myocardial proliferation phenotype in ROCK2:ER hearts. These data demonstrate that cardiomyocytes respond to increased intracellular tension by altering their intercellular contacts in favor of cell-matrix interactions, leading to Yap nuclear translocation, thus uncovering a function for nonmuscle myosin contractility in promoting cardiomyocyte proliferation in the postnatal heart.
Collapse
Affiliation(s)
- Xiaofei Li
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Callie McLain
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Michael S. Samuel
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Michael F. Olson
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3 Canada
| | - Glenn L. Radice
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
11
|
Eibach S, Pang D. Junctional Neural Tube Defect (JNTD): A Rare and Relatively New Spinal Dysraphic Malformation. Adv Tech Stand Neurosurg 2023; 47:129-143. [PMID: 37640874 DOI: 10.1007/978-3-031-34981-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Junctional neurulation completes the sequential embryological processes of primary and secondary neurulation as the intermediary step linking the end of primary neurulation and the beginning of secondary neurulation. Its exact molecular process is a matter of ongoing scientific debate. Abnormality of junctional neurulation-junctional neural tube defect (JNTD)-was first described in 2017 based on a series of three patients who displayed a well-formed secondary neural tube, the conus, that is physically separated by a fair distance from its companion primary neural tube and functionally disconnected from rostral corticospinal control. Several other cases conforming to this bizarre neural tube arrangement have since appeared in the literature, reinforcing the validity of this entity. The clinical, neuroimaging, and electrophysiological features of JNTD, as well as the hypothesis of its embryogenetic mechanism, will be described in this chapter.
Collapse
Affiliation(s)
- Sebastian Eibach
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Paediatric Neurosurgery, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Dachling Pang
- Great Ormond Street Hospital for Children, NHS Trust, London, UK
- Department of Paediatric Neurosurgery, University of California, Davis, USA
| |
Collapse
|
12
|
Jalilian I, Muppala S, Ali M, Anderson JD, Phinney B, Salemi M, Wilmarth PA, Murphy CJ, Thomasy SM, Raghunathan V. Cell derived matrices from bovine corneal endothelial cells as a model to study cellular dysfunction. Exp Eye Res 2023; 226:109303. [PMID: 36343671 PMCID: PMC11349083 DOI: 10.1016/j.exer.2022.109303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease that impacts the structure and stiffness of the Descemet's membrane (DM), the substratum for corneal endothelial cells (CECs). These structural alterations of the DM could contribute to the loss of the CECs resulting in corneal edema and blindness. Oxidative stress and transforming growth factor-β (TGF-β) pathways have been implicated in endothelial cell loss and endothelial to mesenchymal transition of CECs in FECD. Ascorbic acid (AA) is found at high concentrations in FECD and its impact on CEC survival has been investigated. However, how TGF-β and AA effect the composition and rigidity of the CEC's matrix remains unknown. METHODS In this study, we investigated the effect of AA, TGF-β1 and TGF-β3 on the deposition, ultrastructure, stiffness, and composition of the extracellular matrix (ECM) secreted by primary bovine corneal endothelial cells (BCECs). RESULTS Immunofluorescence and electron microscopy post-decellularization demonstrated a robust deposition and distinct structure of ECM in response to treatments. AFM measurements showed that the modulus of the matrix in BCECs treated with TGF-β1 and TGF-β3 was significantly lower than the controls. There was no difference in the stiffness of the matrix between the AA-treated cell and controls. Gene Ontology analysis of the proteomics results revealed that AA modulates the oxidative stress pathway in the matrix while TGF-β induces the expression of matrix proteins collagen IV, laminin, and lysyl oxidase homolog 1. CONCLUSIONS Molecular pathways identified in this study demonstrate the differential role of soluble factors in the pathogenesis of FECD.
Collapse
Affiliation(s)
- Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Santoshi Muppala
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Maryam Ali
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Johnathon D Anderson
- Department of Otolaryngology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Brett Phinney
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Michelle Salemi
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resources, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, 77204, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
13
|
Shi DL. Wnt/planar cell polarity signaling controls morphogenetic movements of gastrulation and neural tube closure. Cell Mol Life Sci 2022; 79:586. [PMID: 36369349 PMCID: PMC11803072 DOI: 10.1007/s00018-022-04620-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Gastrulation and neurulation are successive morphogenetic processes that play key roles in shaping the basic embryonic body plan. Importantly, they operate through common cellular and molecular mechanisms to set up the three spatially organized germ layers and to close the neural tube. During gastrulation and neurulation, convergent extension movements driven by cell intercalation and oriented cell division generate major forces to narrow the germ layers along the mediolateral axis and elongate the embryo in the anteroposterior direction. Apical constriction also makes an important contribution to promote the formation of the blastopore and the bending of the neural plate. Planar cell polarity proteins are major regulators of asymmetric cell behaviors and critically involved in a wide variety of developmental processes, from gastrulation and neurulation to organogenesis. Mutations of planar cell polarity genes can lead to general defects in the morphogenesis of different organs and the co-existence of distinct congenital diseases, such as spina bifida, hearing deficits, kidney diseases, and limb elongation defects. This review outlines our current understanding of non-canonical Wnt signaling, commonly known as Wnt/planar cell polarity signaling, in regulating morphogenetic movements of gastrulation and neural tube closure during development and disease. It also attempts to identify unanswered questions that deserve further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Institute of Medical Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, Paris, France.
| |
Collapse
|
14
|
Si H, Zhao N, Pedroza A, Zaske AM, Rosen JM, Creighton CJ, Roarty K. Noncanonical Wnt/Ror2 signaling regulates cell-matrix adhesion to prompt directional tumor cell invasion in breast cancer. Mol Biol Cell 2022; 33:ar103. [PMID: 36001375 PMCID: PMC9582800 DOI: 10.1091/mbc.e22-02-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cell-extracellular matrix (ECM) interactions represent fundamental exchanges during tumor progression, yet how particular signal-transduction factors prompt the conversion of tumor cells into migratory populations capable of systemic spread during metastasis remains elusive. We demonstrate that the noncanonical Wnt receptor, Ror2, regulates tumor cell-driven matrix remodeling and invasion in breast cancer. Ror2 loss-of-function (LOF) triggers the disruption of E-cadherin within tumor cells, accompanied by an increase in tumor cell invasion and collagen realignment in three-dimensional cultures. RNA sequencing of Ror2-deficient organoids further uncovered alterations in actin cytoskeleton, cell adhesion, and collagen cross-linking gene expression programs. Spatially, we pinpoint the up-regulation and redistribution of α5 and β3 integrins together with the production of fibronectin in areas of invasion downstream of Ror2 loss. Wnt/β-catenin-dependent and Wnt/Ror2 alternative Wnt signaling appear to regulate distinct functions for tumor cells regarding their ability to modify cell-ECM exchanges during invasion. Furthermore, blocking either integrin or focal adhesion kinase (FAK), a downstream mediator of integrin-mediated signal transduction, abrogates the enhanced migration observed upon Ror2 loss. These results reveal a critical function for the alternative Wnt receptor, Ror2, as a determinant of tumor cell-driven ECM exchanges during cancer invasion and metastasis.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Andrea Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ana-Maria Zaske
- University of Texas Health Science Center at Houston, Houston, TX 77054
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Breast Cancer Program, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Chad J. Creighton
- Breast Cancer Program, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Breast Cancer Program, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
15
|
Houston DW, Elliott KL, Coppenrath K, Wlizla M, Horb ME. Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants. Development 2022; 149:dev200552. [PMID: 35946588 PMCID: PMC9515810 DOI: 10.1242/dev.200552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Asymmetric signalling centres in the early embryo are essential for axis formation in vertebrates. These regions (e.g. amphibian dorsal morula, mammalian anterior visceral endoderm) require stabilised nuclear β-catenin, but the role of localised Wnt ligand signalling activity in their establishment remains unclear. In Xenopus, dorsal β-catenin is initiated by vegetal microtubule-mediated symmetry breaking in the fertilised egg, known as 'cortical rotation'. Localised wnt11b mRNA and ligand-independent activators of β-catenin have been implicated in dorsal β-catenin activation, but the extent to which each contributes to axis formation in this paradigm remains unclear. Here, we describe a CRISPR-mediated maternal-effect mutation in Xenopus laevis wnt11b.L. We find that wnt11b is maternally required for robust dorsal axis formation and for timely gastrulation, and zygotically for left-right asymmetry. Importantly, we show that vegetal microtubule assembly and cortical rotation are reduced in wnt11b mutant eggs. In addition, we show that activated Wnt coreceptor Lrp6 and Dishevelled lack behaviour consistent with roles in early β-catenin stabilisation, and that neither is regulated by Wnt11b. This work thus implicates Wnt11b in the distribution of putative dorsal determinants rather than in comprising the determinants themselves. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Douglas W. Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA 52242-1324, USA
| | - Karen L. Elliott
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA 52242-1324, USA
| | - Kelsey Coppenrath
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Marcin Wlizla
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Marko E. Horb
- National Xenopus Resource and Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
16
|
Adherens junctions stimulate and spatially guide integrin activation and extracellular matrix deposition. Cell Rep 2022; 40:111091. [PMID: 35858563 DOI: 10.1016/j.celrep.2022.111091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
Cadherins and integrins are intrinsically linked through the actin cytoskeleton and are largely responsible for the mechanical integrity and organization of tissues. We show that cadherin clustering stimulates and spatially guides integrin activation. Adherens junction (AJ)-associated integrin activation depends on locally generated tension and does not require extracellular matrix ligands. It leads to the creation of primed integrin clusters, which spatially determine where focal adhesions will form if ligands are present and where ligands will be deposited. AJs that display integrin activation are targeted by microtubules facilitating their disassembly via caveolin-based endocytosis, showing that integrin activation impacts the stability of the core cadherin complex. Thus, the interplay between cadherins and integrins is more intimate than what was once believed and is rooted in the capacity of active integrins to be stabilized via AJ-generated tension. Altogether, our data establish a mechanism of cross-regulation between cadherins and integrins.
Collapse
|
17
|
Shook DR, Wen JWH, Rolo A, O'Hanlon M, Francica B, Dobbins D, Skoglund P, DeSimone DW, Winklbauer R, Keller RE. Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians. eLife 2022; 11:e57642. [PMID: 35404236 PMCID: PMC9064293 DOI: 10.7554/elife.57642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/10/2022] [Indexed: 01/09/2023] Open
Abstract
The morphogenic process of convergent thickening (CT) was originally described as the mediolateral convergence and radial thickening of the explanted ventral involuting marginal zone (IMZ) of Xenopus gastrulae (Keller and Danilchik, 1988). Here, we show that CT is expressed in all sectors of the pre-involution IMZ, which transitions to expressing convergent extension (CE) after involution. CT occurs without CE and drives symmetric blastopore closure in ventralized embryos. Assays of tissue affinity and tissue surface tension measurements suggest CT is driven by increased interfacial tension between the deep IMZ and the overlying epithelium. The resulting minimization of deep IMZ surface area drives a tendency to shorten the mediolateral (circumblastoporal) aspect of the IMZ, thereby generating tensile force contributing to blastopore closure (Shook et al., 2018). These results establish CT as an independent force-generating process of evolutionary significance and provide the first clear example of an oriented, tensile force generated by an isotropic, Holtfreterian/Steinbergian tissue affinity change.
Collapse
Affiliation(s)
- David R Shook
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Jason WH Wen
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Ana Rolo
- Centre for Craniofacial and Regenerative Biology, King's College LondonLondonUnited Kingdom
| | - Michael O'Hanlon
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | | | | | - Paul Skoglund
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Douglas W DeSimone
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Ray E Keller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of Virginia, School of MedicineCharlottesvilleUnited States
| |
Collapse
|
18
|
Abstract
The molecular complexes underlying planar cell polarity (PCP) were first identified in Drosophila through analysis of mutant phenotypes in the adult cuticle and the orientation of associated polarized protrusions such as wing hairs and sensory bristles. The same molecules are conserved in vertebrates and are required for the localization of polarized protrusions such as primary or sensory cilia and the orientation of hair follicles. Not only is PCP signaling required to align cellular structures across a tissue, it is also required to coordinate movement during embryonic development and adult homeostasis. PCP signaling allows cells to interpret positional cues within a tissue to move in the appropriate direction and to coordinate this movement with their neighbors. In this review we outline the molecular basis of the core Wnt-Frizzled/PCP pathway, and describe how this signaling orchestrates collective motility in Drosophila and vertebrates. Here we cover the paradigms of ommatidial rotation and border cell migration in Drosophila, and convergent extension in vertebrates. The downstream cell biological processes that underlie polarized motility include cytoskeletal reorganization, and adherens junctional and extracellular matrix remodeling. We discuss the contributions of these processes in the respective cell motility contexts. Finally, we address examples of individual cell motility guided by PCP factors during nervous system development and in cancer disease contexts.
Collapse
|
19
|
Risha MA, Ali A, Siengdee P, Trakooljul N, Haack F, Dannenberger D, Wimmers K, Ponsuksili S. Wnt signaling related transcripts and their relationship to energy metabolism in C2C12 myoblasts under temperature stress. PeerJ 2021; 9:e11625. [PMID: 34178477 PMCID: PMC8210811 DOI: 10.7717/peerj.11625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Temperature stress is one of the main environmental stressors affecting the welfare, health and productivity of livestock. Temperature changes can modify cell membrane components, disrupting the crosstalk between the cell and its surroundings by affecting signaling pathways including Wnt signaling pathway, which subsequently disrupts cell energy metabolism. The present study aims to understand the effect of temperature stress on the expression of genes involved in Wnt signaling pathways, and their interaction with energy metabolism in C2C12 myoblasts cells. The C2C12 cells were exposed to cold stress (35 °C), mild heat stress (39 °C) and severe heat stress (41 °C), whereas 37 °C was used as control temperature. Transcript levels of important genes involved in Wnt signaling including Axin2, Tnks2, Sfrp1, Dkk1, Dact1, Cby1, Wnt5a, Wnt7a, Wnt11, Porcn, Ror2, Daam1, and Ppp3ca were significantly altered under severe heat stress (41 °C), whereas eight Wnt signaling-related transcripts (Daam1, Ppp3ca, Fzd7, Wnt5a, Porcn, Tnks2, Lrp6, and Aes) were significantly altered under cold stress (35 °C) compared to control. Under heat stress transcripts of the Wnt/β-catenin inhibitors (Sfrp1, Dkk1, and Cby1) and negative regulators (Dact1 and Axin2) are activated. A positive correlation between oxidative phosphorylation and Wnt-related transcripts was found under high temperatures. Transcripts of the cell membrane receptors, including Lrp6 and Fzd7, and the members of Wnt/Ca+2 signaling pathway, including Ppp3ca and Porcn were downregulated under cold stress. Many Wnt signaling-related transcripts were positively correlated with glycolysis under cold stress. These findings indicate a cross-talk between Wnt signaling and energy metabolism under thermal stress.
Collapse
Affiliation(s)
- Marua Abu Risha
- Institute of Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Asghar Ali
- Institute of Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Puntita Siengdee
- Institute of Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Fiete Haack
- Institute of Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Dirk Dannenberger
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.,Faculty of Agriculture and Environmental Science, University Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
20
|
McEvoy CM, Clotet-Freixas S, Tokar T, Pastrello C, Reid S, Batruch I, RaoPeters AAE, Kaths JM, Urbanellis P, Farkona S, Van JAD, Urquhart BL, John R, Jurisica I, Robinson LA, Selzner M, Konvalinka A. Normothermic Ex-vivo Kidney Perfusion in a Porcine Auto-Transplantation Model Preserves the Expression of Key Mitochondrial Proteins: An Unbiased Proteomics Analysis. Mol Cell Proteomics 2021; 20:100101. [PMID: 34033948 PMCID: PMC8253910 DOI: 10.1016/j.mcpro.2021.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Normothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of donation after circulatory death injury compared with static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at three time points from pig kidneys subjected to 30 min of warm ischemia, followed by 8 h of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (false discovery rate < 0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the tricarboxylic acid cycle, and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (electron transfer flavoprotein subunit beta and carnitine O-palmitoyltransferase 2, mitochondrial) by immunoblotting. Transcription factor databases identified members of the peroxisome proliferator-activated receptors (PPAR) family of transcription factors as the upstream regulators of our dataset, and we confirmed increased expression of PPARA, PPARD, and RXRA in NEVKP with reverse transcription polymerase chain reaction. The proteome-level changes observed in NEVKP mediate critical metabolic pathways. These effects may be coordinated by PPAR-family transcription factors and may represent novel therapeutic targets in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tomas Tokar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shelby Reid
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adrien A E RaoPeters
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - J Moritz Kaths
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, University Essen-Duisburg, Essen, Germany
| | - Peter Urbanellis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lisa A Robinson
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Nephrology, The Hospital for Sick Children, Toronto, Ontario, Canada; Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Markus Selzner
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada; Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Mechano-chemical enforcement of tendon apical ECM into nano-filaments during Drosophila flight muscle development. Curr Biol 2021; 31:1366-1378.e7. [PMID: 33545042 DOI: 10.1016/j.cub.2021.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
Contractile tension is critical for musculoskeletal system development and maintenance. In insects, the muscular force is transmitted to the exoskeleton through the tendon cells and tendon apical extracellular matrix (ECM). In Drosophila, we found tendon cells secrete Dumpy (Dpy), a zona pellucida domain (ZPD) protein, to form the force-resistant filaments in the exuvial space, anchoring the tendon cells to the pupal cuticle. We showed that Dpy undergoes filamentous conversion in response to the tension increment during indirect flight muscle development. We also found another ZPD protein Quasimodo (Qsm) protects the notum epidermis from collapsing under the muscle tension by enhancing the tensile strength of Dpy filaments. Qsm is co-transported with Dpy in the intracellular vesicles and diffuses into the exuvial space after secretion. Tissue-specific qsm expression rescued the qsm mutant phenotypes in distant tissues, suggesting Qsm can function in a long-range, non-cell-autonomous manner. In the cell culture assay, Qsm interacts with Dpy-ZPD and promotes secretion and polymerization of Dpy-ZPD. The roles of Qsm underlies the positive feedback mechanism of force-dependent organization of Dpy filaments, providing new insights into apical ECM remodeling through the unconventional interaction of ZPD proteins.
Collapse
|
22
|
Barcelona‐Estaje E, Dalby MJ, Cantini M, Salmeron‐Sanchez M. You Talking to Me? Cadherin and Integrin Crosstalk in Biomaterial Design. Adv Healthc Mater 2021; 10:e2002048. [PMID: 33586353 DOI: 10.1002/adhm.202002048] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Indexed: 12/21/2022]
Abstract
While much work has been done in the design of biomaterials to control integrin-mediated adhesion, less emphasis has been put on functionalization of materials with cadherin ligands. Yet, cell-cell contacts in combination with cell-matrix interactions are key in driving embryonic development, collective cell migration, epithelial to mesenchymal transition, and cancer metastatic processes, among others. This review focuses on the incorporation of both cadherin and integrin ligands in biomaterial design, to promote what is called the "adhesive crosstalk." First, the structure and function of cadherins and their role in eliciting mechanotransductive processes, by themselves or in combination with integrin mechanosensing, are introduced. Then, biomaterials that mimic cell-cell interactions, and recent applications to get insights in fundamental biology and tissue engineering, are critically discussed.
Collapse
Affiliation(s)
- Eva Barcelona‐Estaje
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Matthew J. Dalby
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
23
|
Kilinc AN, Han S, Barrett LA, Anandasivam N, Nelson CM. Integrin-linked kinase tunes cell-cell and cell-matrix adhesions to regulate the switch between apoptosis and EMT downstream of TGFβ1. Mol Biol Cell 2021; 32:402-412. [PMID: 33405954 PMCID: PMC8098849 DOI: 10.1091/mbc.e20-02-0092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a morphogenetic process that endows epithelial cells with migratory and invasive potential. Mechanical and chemical signals from the tumor microenvironment can activate the EMT program, thereby permitting cancer cells to invade the surrounding stroma and disseminate to distant organs. Transforming growth factor β1 (TGFβ1) is a potent inducer of EMT that can also induce apoptosis depending on the microenvironmental context. In particular, stiff microenvironments promote EMT while softer ones promote apoptosis. Here, we investigated the molecular signaling downstream of matrix stiffness that regulates the phenotypic switch in response to TGFβ1 and uncovered a critical role for integrin-linked kinase (ILK). Specifically, depleting ILK from mammary epithelial cells precludes their ability to sense the stiffness of their microenvironment. In response to treatment with TGFβ1, ILK-depleted cells undergo apoptosis on both soft and stiff substrata. We found that knockdown of ILK decreases focal adhesions and increases cell–cell adhesions, thus shifting the balance from cell–matrix to cell–cell adhesion. High cell–matrix adhesion promotes EMT whereas high cell–cell adhesion promotes apoptosis downstream of TGFβ1. These results highlight an important role for ILK in controlling cell phenotype by regulating adhesive connections to the local microenvironment.
Collapse
Affiliation(s)
- Ayse Nihan Kilinc
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Siyang Han
- Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Lena A Barrett
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Niroshan Anandasivam
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Celeste M Nelson
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544.,Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
24
|
Guo SS, Au TYK, Wynn S, Aszodi A, Chan D, Fässler R, Cheah KSE. β1 Integrin regulates convergent extension in mouse notogenesis, ensures notochord integrity and the morphogenesis of vertebrae and intervertebral discs. Development 2020; 147:dev192724. [PMID: 33051257 DOI: 10.1242/dev.192724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
The notochord drives longitudinal growth of the body axis by convergent extension, a highly conserved developmental process that depends on non-canonical Wnt/planar cell polarity (PCP) signaling. However, the role of cell-matrix interactions mediated by integrins in the development of the notochord is unclear. We developed transgenic Cre mice, in which the β1 integrin gene (Itgb1) is ablated at E8.0 in the notochord only or in the notochord and tail bud. These Itgb1 conditional mutants display misaligned, malformed vertebral bodies, hemi-vertebrae and truncated tails. From early somite stages, the notochord was interrupted and displaced in these mutants. Convergent extension of the notochord was impaired with defective cell movement. Treatment of E7.25 wild-type embryos with anti-β1 integrin blocking antibodies, to target node pit cells, disrupted asymmetric localization of VANGL2. Our study implicates pivotal roles of β1 integrin for the establishment of PCP and convergent extension of the developing notochord, its structural integrity and positioning, thereby ensuring development of the nucleus pulposus and the proper alignment of vertebral bodies and intervertebral discs. Failure of this control may contribute to human congenital spine malformations.
Collapse
Affiliation(s)
- Shiny Shengzhen Guo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Tiffany Y K Au
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sarah Wynn
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Attila Aszodi
- Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, Fraunhoferstraβe 20, 82152 Planegg-Martinsried, Germany
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Reinhard Fässler
- Max Planck Institute of Biochemistry, Department of Molecular Medicine, 82152 Martinsried, Germany
| | - Kathryn S E Cheah
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
25
|
Weir E, McLinden G, Alfandari D, Cousin H. Trim-Away mediated knock down uncovers a new function for Lbh during gastrulation of Xenopus laevis. Dev Biol 2020; 470:74-83. [PMID: 33159936 DOI: 10.1016/j.ydbio.2020.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
We previously identified the protein Lbh as necessary for cranial neural crest (CNC) cell migration in Xenopus through the use of morpholinos. However, Lbh is a maternally deposited protein and morpholinos achieve knockdowns through prevention of translation. In order to investigate the role of Lbh in earlier embryonic events, we employed the new technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody and was developed in mammalian systems. Our results show that Xenopus is amenable to the Trim-Away technique. We also show that early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increased in mesodermal cell migration and decrease in endodermal cell cohesion. We further show that the technique is also effective on a second abundant maternal protein PACSIN2. We discuss potential advantages and limit of the technique in Xenopus embryos as well as the mechanism of gastrulation inhibition.
Collapse
Affiliation(s)
- Emma Weir
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Gretchen McLinden
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA.
| |
Collapse
|
26
|
Qiu J, Wang Y, Guo W, Xu L, Mou Y, Cui L, Han F, Sun Y. Role of TGF-β1-mediated epithelial-mesenchymal transition in the pathogenesis of tympanosclerosis. Exp Ther Med 2020; 21:6. [PMID: 33235615 PMCID: PMC7678609 DOI: 10.3892/etm.2020.9438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to explore the role of TGF-β1-mediated epithelial-mesenchymal transition (EMT) in the pathogenesis of tympanosclerosis. Sprague Dawley rats were injected with inactivated Streptococcus pneumoniae suspension to establish a rat model of tympanosclerosis. The rats were sacrificed 8 weeks after the model was established. H&E and von Kossa staining was used to observe the morphological changes of middle ear mucosa. Western blotting was used to detect the expression of TGF-β1 and EMT-associated proteins in the mucosa samples. Middle ear mucosal epithelial cells of rats were collected to establish a primary culture. The cultured cells were stimulated with TGF-β1 and the expression of EMT-associated proteins was detected by western blotting and immunofluorescence. In addition, the cells were treated with TGF-β receptor type I/II inhibitor and the expression level of EMT-associated proteins was detected by western blotting. Sclerotic lesions appeared on 72.4% of tympanic membranes, and marked inflammation, inflammatory cell infiltration and fibrosis were found in the middle ear mucosa of rat models of tympanosclerosis. In middle ear mucosa of rats with tympanosclerosis, the expression of mesenchymal cell markers increased and that of epithelial cell markers decreased compared with the control group. TGF-β1 stimulated the activation of the EMT pathway in middle ear mucosal epithelial cells, resulting in an increased expression of fibronectin and N-cadherin. In addition, a decreased expression level of EMT-associated proteins was observed when TGF-β1 was inhibited. In conclusion, the present study indicated that TGF-β1-mediated EMT may play an important role in the pathogenesis of tympanosclerosis.
Collapse
Affiliation(s)
- Jingjing Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yanmei Wang
- Department of Blood Purification, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wentao Guo
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ling Xu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yakui Mou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Limei Cui
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yan Sun
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
27
|
Eibach S, Pang D. Junctional Neural Tube Defect. J Korean Neurosurg Soc 2020; 63:327-337. [PMID: 32336064 PMCID: PMC7218194 DOI: 10.3340/jkns.2020.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Junctional neurulation represents the most recent adjunct to the well-known sequential embryological processes of primary and secondary neurulation. While its exact molecular processes, occurring at the end of primary and the beginning of secondary neurulation, are still being actively investigated, its pathological counterpart -junctional neural tube defect (JNTD)- had been described in 2017 based on three patients whose well-formed secondary neural tube, the conus, is widely separated from its corresponding primary neural tube and functionally disconnected from corticospinal control from above. Several other cases conforming to this bizarre neural tube arrangement have since appeared in the literature, reinforcing the validity of this entity. The cardinal clinical, neuroimaging, and electrophysiological features of JNTD, and the hypothesis of its embryogenetic mechanism, form part of this review.
Collapse
Affiliation(s)
- Sebastian Eibach
- Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.,Department of Neurosurgery, Macquarie University Hospital, Sydney, Australia.,Department of Paediatric Neurosurgery, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Dachling Pang
- Department of Paediatric Neurosurgery, Great Ormond Street Hospital for Children, NHS Trust, London, UK.,Department of Paediatric Neurosurgery, University of California, Davis, CA, USA
| |
Collapse
|
28
|
Guillon E, Das D, Jülich D, Hassan AR, Geller H, Holley S. Fibronectin is a smart adhesive that both influences and responds to the mechanics of early spinal column development. eLife 2020; 9:48964. [PMID: 32228864 PMCID: PMC7108867 DOI: 10.7554/elife.48964] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/18/2020] [Indexed: 01/22/2023] Open
Abstract
An extracellular matrix of Fibronectin adheres the neural tube to the two flanking columns of paraxial mesoderm and is required for normal vertebrate development. Here, we find that the bilaterally symmetric interfaces between the zebrafish neural tube and paraxial mesoderm function as optimally engineered adhesive lap joints with rounded edges, graded Fibronectin ‘adhesive’ and an arced adhesive spew filet. Fibronectin is a ‘smart adhesive’ that remodels to the lateral edges of the neural tube-paraxial mesoderm interfaces where shear stress is highest. Fibronectin remodeling is mechanically responsive to contralateral variation morphogenesis, and Fibronectin-mediated inter-tissue adhesion is required for bilaterally symmetric morphogenesis of the paraxial mesoderm. Strikingly, however, perturbation of the Fibronectin matrix rescues the neural tube convergence defect of cadherin 2 mutants. Therefore, Fibronectin-mediated inter-tissue adhesion dynamically coordinates bilaterally symmetric morphogenesis of the vertebrate trunk but predisposes the neural tube to convergence defects that lead to spina bifida. In embryos, the spinal cord starts out as a flat sheet of cells that curls up to form a closed cylinder called the neural tube. The folding tube is attached to the surrounding tissues through an extracellular matrix of proteins and sugars. Overlapping strands of a protein from the extracellular matrix called Fibronectin connect the neural tube to adjacent tissues, like a kind of biological glue. However, it remained unclear what effect this attachment had on the embryonic development of the spinal cord. Connecting two overlapping objects with glue to form what is known as an ‘adhesive lap joint’ is common in fields such as woodworking and aeronautical engineering. The glue in these joints comes under shearing stress whenever the two objects it connects try to pull apart. But, thanks to work in engineering, it is possible to predict how different joints will perform under tension. Now, Guillon et al. have deployed these engineering principles to shed light on neural tube development. Using zebrafish embryos and computational models, Guillon et al. investigated what happens when the strength of the adhesive lap joints in the developing spine changes. This revealed that Fibronectin works like a smart adhesive: rather than staying in one place like a conventional glue, it moves around. As the neural tube closes, cells remodel the Fibronectin, concentrating it on the areas under the highest stress. This seemed to both help and hinder neural tube development. On the one hand, by anchoring the tube equally to the left and right sides of the embryo, the Fibronectin glue helped the spine to develop symmetrically. On the other hand, the strength of the adhesive lap joints made it harder for the neural tube to curl up and close. If the neural tube fails to close properly, it can lead to birth defects like spina bifida. One of the best-known causes of these birth defects in humans is a lack of a vitamin known as folic acid. Cell culture experiments suggest that this might have something to do with the mechanics of the cells during development. It may be that faulty neural tubes could close more easily if they were able to unglue themselves from the surrounding tissues. Further use of engineering principles could shed more light on this idea in the future.
Collapse
Affiliation(s)
- Emilie Guillon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Dipjyoti Das
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Abdel-Rahman Hassan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Hannah Geller
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Scott Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
29
|
Chan CJ, Hiiragi T. Integration of luminal pressure and signalling in tissue self-organization. Development 2020; 147:147/5/dev181297. [DOI: 10.1242/dev.181297] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Many developmental processes involve the emergence of intercellular fluid-filled lumina. This process of luminogenesis results in a build up of hydrostatic pressure and signalling molecules in the lumen. However, the potential roles of lumina in cellular functions, tissue morphogenesis and patterning have yet to be fully explored. In this Review, we discuss recent findings that describe how pressurized fluid expansion can provide both mechanical and biochemical cues to influence cell proliferation, migration and differentiation. We also review emerging techniques that allow for precise quantification of fluid pressure in vivo and in situ. Finally, we discuss the intricate interplay between luminogenesis, tissue mechanics and signalling, which provide a new dimension for understanding the principles governing tissue self-organization in embryonic development.
Collapse
Affiliation(s)
- Chii J. Chan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
30
|
Spatial mapping of tissue properties in vivo reveals a 3D stiffness gradient in the mouse limb bud. Proc Natl Acad Sci U S A 2020; 117:4781-4791. [PMID: 32071242 DOI: 10.1073/pnas.1912656117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Numerous hypotheses invoke tissue stiffness as a key parameter that regulates morphogenesis and disease progression. However, current methods are insufficient to test hypotheses that concern physical properties deep in living tissues. Here we introduce, validate, and apply a magnetic device that generates a uniform magnetic field gradient within a space that is sufficient to accommodate an organ-stage mouse embryo under live conditions. The method allows rapid, nontoxic measurement of the three-dimensional (3D) spatial distribution of viscoelastic properties within mesenchyme and epithelia. Using the device, we identify an anteriorly biased mesodermal stiffness gradient along which cells move to shape the early limb bud. The stiffness gradient corresponds to a Wnt5a-dependent domain of fibronectin expression, raising the possibility that durotaxis underlies cell movements. Three-dimensional stiffness mapping enables the generation of hypotheses and potentially the rigorous testing of mechanisms of development and disease.
Collapse
|
31
|
Narayanan V, Schappell LE, Mayer CR, Duke AA, Armiger TJ, Arsenovic PT, Mohan A, Dahl KN, Gleghorn JP, Conway DE. Osmotic Gradients in Epithelial Acini Increase Mechanical Tension across E-cadherin, Drive Morphogenesis, and Maintain Homeostasis. Curr Biol 2020; 30:624-633.e4. [PMID: 31983640 DOI: 10.1016/j.cub.2019.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Epithelial cells spontaneously form acini (also known as cysts or spheroids) with a single, fluid-filled central lumen when grown in 3D matrices. The size of the lumen is dependent on apical secretion of chloride ions, most notably by the CFTR channel, which has been suggested to establish pressure in the lumen due to water influx. To study the cellular biomechanics of acini morphogenesis and homeostasis, we used MDCK-2 cells. Using FRET-force biosensors for E-cadherin, we observed significant increases in the average tension per molecule for each protein in mature 3D acini as compared to 2D monolayers. Increases in CFTR activity resulted in increased E-cadherin forces, indicating that ionic gradients affect cellular tension. Direct measurements of pressure revealed that mature acini experience significant internal hydrostatic pressure (37 ± 10.9 Pa). Changes in CFTR activity resulted in pressure and/or volume changes, both of which affect E-cadherin tension. Increases in CFTR chloride secretion also induced YAP signaling and cellular proliferation. In order to recapitulate disruption of acinar homeostasis, we induced epithelial-to-mesenchymal transition (EMT). During the initial stages of EMT, there was a gradual decrease in E-cadherin force and lumen pressure that correlated with lumen infilling. Strikingly, increasing CFTR activity was sufficient to block EMT. Our results show that ion secretion is an important regulator of morphogenesis and homeostasis in epithelial acini. Furthermore, this work demonstrates that, for closed 3D cellular systems, ion gradients can generate osmotic pressure or volume changes, both of which result in increased cellular tension.
Collapse
Affiliation(s)
- Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Laurel E Schappell
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Carl R Mayer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Ashley A Duke
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Travis J Armiger
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Paul T Arsenovic
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Abhinav Mohan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kris N Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
32
|
Filla MS, Faralli JA, Desikan H, Peotter JL, Wannow AC, Peters DM. Activation of αvβ3 Integrin Alters Fibronectin Fibril Formation in Human Trabecular Meshwork Cells in a ROCK-Independent Manner. Invest Ophthalmol Vis Sci 2020; 60:3897-3913. [PMID: 31529121 PMCID: PMC6750892 DOI: 10.1167/iovs.19-27171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose Fibronectin fibrillogenesis is an integrin-mediated process that may contribute to the pathogenesis of primary open-angle glaucoma (POAG). Here, we examined the effects of αvβ3 integrins on fibrillogenesis in immortalized TM-1 cells and human trabecular meshwork (HTM) cells. Methods TM-1 cells overexpressing wild-type β3 (WTβ3) or constitutively active β3 (CAβ3) integrin subunits were generated. Control cells were transduced with an empty vector (EV). Deoxycholic acid (DOC) extraction of monolayers, immunofluorescence microscopy, and On-cell western analyses were used to determine levels of fibronectin fibrillogenesis and fibronectin fibril composition (EDA+ and EDB+ fibronectins) and conformation. αvβ3 and α5β1 Integrin levels were determined using fluorescence-activated cell sorting (FACS). Cilengitide and an adenovirus vector expressing WTβ3 or CAβ3 integrin subunits were used to examine the role of αvβ3 integrin in HTM cells. The role of the canonical α5β1 integrin–mediated pathway in fibrillogenesis was determined using the fibronectin-binding peptide FUD, the β1 integrin function-blocking antibody 13, and the Rho kinase (ROCK) inhibitor Y27632. Results Activation of αvβ3 integrin enhanced the assembly of fibronectin into DOC-insoluble fibrils in both TM-1 and HTM cells. The formation of fibronectin fibrils was dependent on α5β1 integrin and could be inhibited by FUD. However, fibrillogenesis was unaffected by Y27632. Fibrils assembled by CAβ3 cells also contained high levels of EDA+ and EDB+ fibronectin and fibronectin that was stretched. Conclusions αvβ3 Integrin signaling altered the deposition and structure of fibronectin fibrils using a β1 integrin/ROCK-independent mechanism. Thus, αvβ3 integrins could play a significant role in altering the function of fibronectin matrices in POAG.
Collapse
Affiliation(s)
- Mark S Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jennifer A Faralli
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Harini Desikan
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Jennifer L Peotter
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Abigail C Wannow
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| |
Collapse
|
33
|
Abstract
This review is a comprehensive analysis of the cell biology and biomechanics of Convergent Extension in Xenopus.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA, United States.
| | - Ann Sutherland
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
34
|
Prince DJ, Jessen JR. Dorsal convergence of gastrula cells requires Vangl2 and an adhesion protein-dependent change in protrusive activity. Development 2019; 146:dev.182188. [PMID: 31719041 DOI: 10.1242/dev.182188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/29/2019] [Indexed: 01/23/2023]
Abstract
Lateral zebrafish hypoblast cells initiate dorsal convergence near mid-gastrulation and exhibit non-polarized morphologies, limited cell-cell contact and indirect migration trajectories. By late gastrulation, mesodermal cells become packed as they engage in planar cell polarity (PCP)-dependent movement. Here, we aimed to understand this transition in cell behavior by examining the relationship between protrusion dynamics and establishment of PCP and directed migration. We found that wild-type cells undergo a reduction in bleb protrusions near late gastrulation accompanied by a VANGL planar cell polarity protein 2 (Vangl2)-regulated increase in filopodia number and polarization. Manipulation of blebs is sufficient to interfere with PCP and directed migration. We show that Vangl2, fibronectin and cadherin 2 function to suppress blebbing. Vangl2 maintains ezrin b (Ezrb) protein levels and higher Ezrb activation rescues defective mediolateral cell alignment and migration paths in vangl2 mutant embryos. Transplantation experiments show that loss of vangl2 disrupts protrusion formation cell-autonomously while fibronectin acts non-autonomously. We propose that dorsal convergence requires the coordinated action of Vangl2, Ezrb and cell-adhesion proteins to inhibit blebs and promote polarized actin-rich protrusive activity and PCP.
Collapse
Affiliation(s)
- Dianna J Prince
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| |
Collapse
|
35
|
PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation. Nat Commun 2019; 10:3993. [PMID: 31488837 PMCID: PMC6728366 DOI: 10.1038/s41467-019-12005-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Planar cell polarity (PCP) plays crucial roles in developmental processes such as gastrulation, neural tube closure and hearing. Wnt pathway mutants are often classified as PCP mutants due to similarities between their phenotypes. Here, we show that in the zebrafish lateral line, disruptions of the PCP and Wnt pathways have differential effects on hair cell orientations. While mutations in the PCP genes vangl2 and scrib cause random orientations of hair cells, mutations in wnt11f1, gpc4 and fzd7a/b induce hair cells to adopt a concentric pattern. This concentric pattern is not caused by defects in PCP but is due to misaligned support cells. The molecular basis of the support cell defect is unknown but we demonstrate that the PCP and Wnt pathways work in parallel to establish proper hair cell orientation. Consequently, hair cell orientation defects are not solely explained by defects in PCP signaling, and some hair cell phenotypes warrant re-evaluation. Planar cell polarity (PCP) regulates hair cell orientation in the zebrafish lateral line. Here, the authors show that mutating Wnt pathway genes (wnt11f1, fzd7a/b, and gpc4) causes concentric hair cell patterns not regulated by PCP, thus showing PCP/Wnt pathway genes have different consequences on hair cell orientation.
Collapse
|
36
|
Barriga EH, Mayor R. Adjustable viscoelasticity allows for efficient collective cell migration. Semin Cell Dev Biol 2019; 93:55-68. [PMID: 29859995 PMCID: PMC6854469 DOI: 10.1016/j.semcdb.2018.05.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022]
Abstract
Cell migration is essential for a wide range of biological processes such as embryo morphogenesis, wound healing, regeneration, and also in pathological conditions, such as cancer. In such contexts, cells are required to migrate as individual entities or as highly coordinated collectives, both of which requiring cells to respond to molecular and mechanical cues from their environment. However, whilst the function of chemical cues in cell migration is comparatively well understood, the role of tissue mechanics on cell migration is just starting to be studied. Recent studies suggest that the dynamic tuning of the viscoelasticity within a migratory cluster of cells, and the adequate elastic properties of its surrounding tissues, are essential to allow efficient collective cell migration in vivo. In this review we focus on the role of viscoelasticity in the control of collective cell migration in various cellular systems, mentioning briefly some aspects of single cell migration. We aim to provide details on how viscoelasticity of collectively migrating groups of cells and their surroundings is adjusted to ensure correct morphogenesis, wound healing, and metastasis. Finally, we attempt to show that environmental viscoelasticity triggers molecular changes within migrating clusters and that these new molecular setups modify clusters' viscoelasticity, ultimately allowing them to migrate across the challenging geometries of their microenvironment.
Collapse
Affiliation(s)
- Elias H Barriga
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, WC1E 6BT, London, UK.
| |
Collapse
|
37
|
Abstract
Extracellular matrices (ECMs) are structurally and compositionally diverse networks of collagenous and noncollagenous glycoproteins, glycosaminoglycans, proteoglycans, and associated molecules that together comprise the metazoan matrisome. Proper deposition and assembly of ECM is of profound importance to cell proliferation, survival, and differentiation, and the morphogenesis of tissues and organ systems that define sequential steps in the development of all animals. Importantly, it is now clear that the instructive influence of a particular ECM at various points in development reflects more than a simple summing of component parts; cellular responses also reflect the dynamic assembly and changing topology of embryonic ECM, which in turn affect its biomechanical properties. This review highlights recent advances in understanding how biophysical features attributed to ECM, such as stiffness and viscoelasticity, play important roles in the sculpting of embryonic tissues and the regulation of cell fates. Forces generated within cells and tissues are transmitted both through integrin-based adhesions to ECM, and through cadherin-dependent cell-cell adhesions; the resulting short- and long-range deformations of embryonic tissues drive morphogenesis. This coordinate regulation of cell-ECM and cell-cell adhesive machinery has emerged as a common theme in a variety of developmental processes. In this review we consider select examples in the embryo where ECM is implicated in setting up tissue barriers and boundaries, in resisting pushing or pulling forces, or in constraining or promoting cell and tissue movement. We reflect on how each of these processes contribute to morphogenesis.
Collapse
|
38
|
Scott LE, Weinberg SH, Lemmon CA. Mechanochemical Signaling of the Extracellular Matrix in Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2019; 7:135. [PMID: 31380370 PMCID: PMC6658819 DOI: 10.3389/fcell.2019.00135] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) is a critical process in embryonic development in which epithelial cells undergo a transdifferentiation into mesenchymal cells. This process is essential for tissue patterning and organization, and it has also been implicated in a wide array of pathologies. While the intracellular signaling pathways that regulate EMT are well-understood, there is increasing evidence that the mechanical properties and composition of the extracellular matrix (ECM) also play a key role in regulating EMT. In turn, EMT drives changes in the mechanics and composition of the ECM, creating a feedback loop that is tightly regulated in healthy tissues, but is often dysregulated in disease. Here we present a review that summarizes our understanding of how ECM mechanics and composition regulate EMT, and how in turn EMT alters ECM mechanics and composition.
Collapse
Affiliation(s)
| | | | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
39
|
Petridou NI, Grigolon S, Salbreux G, Hannezo E, Heisenberg CP. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nat Cell Biol 2019; 21:169-178. [PMID: 30559456 DOI: 10.1038/s41556-018-0247-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/02/2018] [Indexed: 11/09/2022]
Abstract
Tissue morphogenesis is driven by mechanical forces that elicit changes in cell size, shape and motion. The extent by which forces deform tissues critically depends on the rheological properties of the recipient tissue. Yet, whether and how dynamic changes in tissue rheology affect tissue morphogenesis and how they are regulated within the developing organism remain unclear. Here, we show that blastoderm spreading at the onset of zebrafish morphogenesis relies on a rapid, pronounced and spatially patterned tissue fluidization. Blastoderm fluidization is temporally controlled by mitotic cell rounding-dependent cell-cell contact disassembly during the last rounds of cell cleavages. Moreover, fluidization is spatially restricted to the central blastoderm by local activation of non-canonical Wnt signalling within the blastoderm margin, increasing cell cohesion and thereby counteracting the effect of mitotic rounding on contact disassembly. Overall, our results identify a fluidity transition mediated by loss of cell cohesion as a critical regulator of embryo morphogenesis.
Collapse
Affiliation(s)
| | | | | | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | |
Collapse
|
40
|
Llinares-Benadero C, Borrell V. Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat Rev Neurosci 2019; 20:161-176. [DOI: 10.1038/s41583-018-0112-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Bredov D, Volodyaev I. Increasing complexity: Mechanical guidance and feedback loops as a basis for self-organization in morphogenesis. Biosystems 2018; 173:133-156. [PMID: 30292533 DOI: 10.1016/j.biosystems.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
The article is devoted to physical views on embryo development as a combination of structurally stable dynamics and symmetry-breaking events in the general process of self-organization. The first corresponds to the deterministic aspect of embryo development. The second type of processes is associated with sudden increase of variability in the periods of symmetry-breaking, which manifests unstable dynamics. The biological basis under these considerations includes chemokinetics (a system of inductors, repressors, and interaction with their next surrounding) and morphomechanics (i.e. mechanotransduction, mechanosensing, and related feedback loops). Although the latter research area is evolving rapidly, up to this time the role of mechanical properties of embryonic tissues and mechano-dependent processes in them are integrated in the general picture of embryo development to a lesser extent than biochemical signaling. For this reason, the present article is mostly devoted to experimental data on morphomechanics in the process of embryo development, also including analysis of its limitations and possible contradictions. The general system of feedback-loops and system dynamics delineated in this review is in large part a repetition of the views of Lev Beloussov, who was one of the founders of the whole areas of morphomechanics and morphodynamics, and to whose memory this article is dedicated.
Collapse
Affiliation(s)
- Denis Bredov
- Laboratory of Developmental biophysics, Department of Embryology, Faculty of Biology, Moscow State University, Moscow, 119234, Russia
| | - Ilya Volodyaev
- Laboratory of Developmental biophysics, Department of Embryology, Faculty of Biology, Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
42
|
Azimian-Zavareh V, Hossein G, Ebrahimi M, Dehghani-Ghobadi Z. Wnt11 alters integrin and cadherin expression by ovarian cancer spheroids and inhibits tumorigenesis and metastasis. Exp Cell Res 2018; 369:90-104. [PMID: 29753625 DOI: 10.1016/j.yexcr.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
The present study investigated the role of Wnt11 in multicellular tumor spheroid-like structures (MCTS) ovarian cancer cell proliferation, migration and invasion in vitro and in vivo tumorigenesis and metastasis in xenograft nude mice model. Moreover, samples from human serous ovarian cancer (SOC) were used to assess the association of Wnt11 with integrins and cadherins. The data showed that Wnt11 overexpressing SKOV-3 cells became more compact accompanied by increased expression of E-and N-cadherin and lower expression of EpCAM and CD44. The α5, β2, β3 and β6 integrin subunits expression levels were significantly reduced in Wnt11 overexpressing cells accompanied with significantly reduced disaggregation of Wnt11 overexpressing SKOV-3 MCTS on ECM components. Moreover, Wnt11 overexpressing SKOV-3 MCTS showed decreased migration, invasion as well as no tumor growth and metastasis in vivo. We found that Wnt11 significantly and negatively correlated with ITGB2, ITGB6, and EpCAM and positively with CDH-1 in high-grade SOC specimens. Our results suggest that Wnt11 impedes MCTS attachment to ECM components and therefore can affect ovarian cancer progression.
Collapse
Affiliation(s)
- Vajihe Azimian-Zavareh
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ghamartaj Hossein
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
43
|
Collins MM, Maischein HM, Dufourcq P, Charpentier M, Blader P, Stainier DY. Pitx2c orchestrates embryonic axis extension via mesendodermal cell migration. eLife 2018; 7:34880. [PMID: 29952749 PMCID: PMC6023614 DOI: 10.7554/elife.34880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
Pitx2c, a homeodomain transcription factor, is classically known for its left-right patterning role. However, an early wave of pitx2 expression occurs at the onset of gastrulation in several species, indicating a possible earlier role that remains relatively unexplored. Here we show that in zebrafish, maternal-zygotic (MZ) pitx2c mutants exhibit a shortened body axis indicative of convergence and extension (CE) defects. Live imaging reveals that MZpitx2c mutants display less persistent mesendodermal migration during late stages of gastrulation. Transplant data indicate that Pitx2c functions cell non-autonomously to regulate this cell behavior by modulating cell shape and protrusive activity. Using transcriptomic analyses and candidate gene approaches, we identify transcriptional changes in components of the chemokine-ECM-integrin dependent mesendodermal migration network. Together, our results define pathways downstream of Pitx2c that are required during early embryogenesis and reveal novel functions for Pitx2c as a regulator of morphogenesis.
Collapse
Affiliation(s)
- Michelle M Collins
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pascale Dufourcq
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Toulouse III - Paul Sabatier, CNRS, Toulouse, France
| | | | - Patrick Blader
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Toulouse III - Paul Sabatier, CNRS, Toulouse, France
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
44
|
Huang Y, Winklbauer R. Cell migration in the Xenopus gastrula. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e325. [PMID: 29944210 DOI: 10.1002/wdev.325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
Xenopus gastrulation movements are in large part based on the rearrangement of cells by differential cell-on-cell migration within multilayered tissues. Different patterns of migration-based cell intercalation drive endoderm and mesoderm internalization and their positioning along their prospective body axes. C-cadherin, fibronectin, integrins, and focal contact components are expressed in all gastrula cells and play putative roles in cell-on-cell migration, but their actual functions in this respect are not yet understood. The gastrula can be subdivided into two motility domains, and in the vegetal, migratory domain, two modes of cell migration are discerned. Vegetal endoderm cells show ingression-type migration, a variant of amoeboid migration characterized by the lack of locomotory protrusions and by macropinocytosis as a mechanism of trailing edge resorption. Mesendoderm and prechordal mesoderm cells use lamellipodia in a mesenchymal mode of migration. Gastrula cell motility can be dissected into traits, such as cell polarity, adhesion, mobility, or protrusive activity, which are controlled separately yet in complex, combinatorial ways. Cells can instantaneously switch between different combinations of traits, showing plasticity as they respond to substratum properties. This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 2018; 554:523-527. [PMID: 29443958 PMCID: PMC6013044 DOI: 10.1038/nature25742] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023]
Abstract
Collective cell migration (CCM) is essential for morphogenesis, tissue remodelling, and cancer invasion1,2. In vivo, groups of cells move in an orchestrated way through tissues. This movement requires forces and involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in CCM is comparatively well understood1,2, how tissue mechanics influence CCM in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion3. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiated an epithelial-to-mesenchymal transition (EMT) in neural crest cells and triggered their collective migration. To detect changes in their mechanical environment, neural crest use integrin/vinculin/talin-mediated mechanosensing. By performing mechanical and molecular manipulations, we showed that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrated that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results unveil a novel role for mesodermal convergent extension as a mechanical coordinator of morphogenesis, and thus reveal a new link between two apparently unconnected processes, gastrulation and neural crest migration, via changes in tissue mechanics. Overall, we provide the first demonstration that changes in substrate stiffness can trigger CCM by promoting EMT in vivo. More broadly, our results raise the exciting idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis4.
Collapse
|
46
|
Forecki J, Van Antwerp DJ, Lujan SM, Merzdorf CS. Roles for Xenopus aquaporin-3b (aqp3.L) during gastrulation: Fibrillar fibronectin and tissue boundary establishment in the dorsal margin. Dev Biol 2018; 433:3-16. [PMID: 29113748 DOI: 10.1016/j.ydbio.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/02/2023]
Abstract
Aquaporins and aquaglyceroporins are a large family of membrane channel proteins that allow rapid movement of water and small, uncharged solutes into and out of cells along concentration gradients. Recently, aquaporins have been gaining recognition for more complex biological roles than the regulation of cellular osmotic homeostasis. We have identified a specific expression pattern for Xenopus aqp3b (also called aqp3.L) during gastrulation, where it is localized to the sensorial (deep) layer of the blastocoel roof and dorsal margin. Interference with aqp3b expression resulted in loss of fibrillar fibronectin matrix in Brachet's cleft at the dorsal marginal zone, but not on the free surface of the blastocoel. Detailed observation showed that the absence of fibronectin matrix correlated with compromised border integrities between involuted mesendoderm and noninvoluted ectoderm in the marginal zone. Knockdown of aqp3b also led to delayed closure of the blastopore, suggesting defects in gastrulation movements. Radial intercalation was not affected in aqp3b morphants, while the data presented are consistent with impeded convergent extension movements of the dorsal mesoderm in response to loss of aqp3b. Our emerging model suggests that aqp3b is part of a mechanism that promotes proper interaction between cells and the extracellular matrix, thereby playing a critical role in gastrulation.
Collapse
Affiliation(s)
- Jennifer Forecki
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.
| | - Daniel J Van Antwerp
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.
| | - Sean M Lujan
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.
| | - Christa S Merzdorf
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
47
|
Goodyear RJ, Lu X, Deans MR, Richardson GP. A tectorin-based matrix and planar cell polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane. Development 2017; 144:3978-3989. [PMID: 28935705 PMCID: PMC5702074 DOI: 10.1242/dev.151696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
The tectorial membrane is an extracellular structure of the cochlea. It develops on the surface of the auditory epithelium and contains collagen fibrils embedded in a tectorin-based matrix. The collagen fibrils are oriented radially with an apically directed slant - a feature considered crucial for hearing. To determine how this pattern is generated, collagen-fibril formation was examined in mice lacking a tectorin-based matrix, epithelial cilia or the planar cell polarity genes Vangl2 and Ptk7 In wild-type mice, collagen-fibril bundles appear within a tectorin-based matrix at E15.5 and, as fibril number rapidly increases, become co-aligned and correctly oriented. Epithelial width measurements and data from Kif3acKO mice suggest, respectively, that radial stretch and cilia play little, if any, role in determining normal collagen-fibril orientation; however, evidence from tectorin-knockout mice indicates that confinement is important. PRICKLE2 distribution reveals the planar cell polarity axis in the underlying epithelium is organised along the length of the cochlea and, in mice in which this polarity is disrupted, the apically directed collagen offset is no longer observed. These results highlight the importance of the tectorin-based matrix and epithelial signals for precise collagen organisation in the tectorial membrane.
Collapse
Affiliation(s)
- Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22098, USA
| | - Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
48
|
Eibach S, Moes G, Hou YJ, Zovickian J, Pang D. Unjoined primary and secondary neural tubes: junctional neural tube defect, a new form of spinal dysraphism caused by disturbance of junctional neurulation. Childs Nerv Syst 2017; 33:1633-1647. [PMID: 27796548 DOI: 10.1007/s00381-016-3288-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/20/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Primary and secondary neurulation are the two known processes that form the central neuraxis of vertebrates. Human phenotypes of neural tube defects (NTDs) mostly fall into two corresponding categories consistent with the two types of developmental sequence: primary NTD features an open skin defect, an exposed, unclosed neural plate (hence an open neural tube defect, or ONTD), and an unformed or poorly formed secondary neural tube, and secondary NTD with no skin abnormality (hence a closed NTD) and a malformed conus caudal to a well-developed primary neural tube. METHODS AND RESULTS We encountered three cases of a previously unrecorded form of spinal dysraphism in which the primary and secondary neural tubes are individually formed but are physically separated far apart and functionally disconnected from each other. One patient was operated on, in whom both the lumbosacral spinal cord from primary neurulation and the conus from secondary neurulation are each anatomically complete and endowed with functioning segmental motor roots tested by intraoperative triggered electromyography and direct spinal cord stimulation. The remarkable feature is that the two neural tubes are unjoined except by a functionally inert, probably non-neural band. CONCLUSION The developmental error of this peculiar malformation probably occurs during the critical transition between the end of primary and the beginning of secondary neurulation, in a stage aptly called junctional neurulation. We describe the current knowledge concerning junctional neurulation and speculate on the embryogenesis of this new class of spinal dysraphism, which we call junctional neural tube defect.
Collapse
Affiliation(s)
- Sebastian Eibach
- Paediatric Neurosurgery, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
- Paediatric Neurosurgery, Altona Children's Hospital, Hamburg, Germany
| | - Greg Moes
- Neuropathology, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
- Adjunct Faculty of Neuropathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yong Jin Hou
- Intraoperative Neurophysiology, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
| | - John Zovickian
- Paediatric Neurosurgery, Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA
| | - Dachling Pang
- Regional Centre of Paediatric Neurosurgery, Kaiser Foundation Hospitals of Northern California, Oakland, CA, USA.
- Paediatric Neurosurgery, University of California, Davis, CA, USA.
- Great Ormond Street Hospital for Children, NHS Trust, London, UK.
- Department of Paediatric Neurosurgery, Kaiser Permanente Medical Centre, Third Floor, Suite 39, 3600 Broadway, Oakland, CA, 94611, USA.
| |
Collapse
|
49
|
Sato Y, Nagatoshi K, Hamano A, Imamura Y, Huss D, Uchida S, Lansford R. Basal filopodia and vascular mechanical stress organize fibronectin into pillars bridging the mesoderm-endoderm gap. Development 2017; 144:281-291. [PMID: 28096216 DOI: 10.1242/dev.141259] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/29/2016] [Indexed: 12/23/2022]
Abstract
Cells may exchange information with other cells and tissues by exerting forces on the extracellular matrix (ECM). Fibronectin (FN) is an important ECM component that forms fibrils through cell contacts and creates directionally biased geometry. Here, we demonstrate that FN is deposited as pillars between widely separated germ layers, namely the somitic mesoderm and the endoderm, in quail embryos. Alongside the FN pillars, long filopodia protrude from the basal surfaces of somite epithelial cells. Loss-of-function of Ena/VASP, α5β1-integrins or talin in the somitic cells abolished the FN pillars, indicating that FN pillar formation is dependent on the basal filopodia through these molecules. The basal filopodia and FN pillars are also necessary for proper somite morphogenesis. We identified a new mechanism contributing to FN pillar formation by focusing on cyclic expansion of adjacent dorsal aorta. Maintenance of the directional alignment of the FN pillars depends on pulsatile blood flow through the dorsal aortae. These results suggest that the FN pillars are specifically established through filopodia-mediated and pulsating force-related mechanisms.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan .,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kei Nagatoshi
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayumi Hamano
- Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
| | - Yuko Imamura
- Graduate School of Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - David Huss
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Seiichi Uchida
- Department of Advanced Information Technology, Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
50
|
Zhang Q, Deng S, Sun K, Lin S, Lin Y, Zhu B, Cai X. MMP-2 and Notch signal pathway regulate migration of adipose-derived stem cells and chondrocytes in co-culture systems. Cell Prolif 2017; 50. [PMID: 28925018 DOI: 10.1111/cpr.12385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The crosstalk between chondrocytes and adipose-derived stem cells (ADSCs) could regulate the secretion of multiple growth factors. However, it is not clear how the paracrine action in co-culture systems affect cell migration. This study focused on the changes of cell migration of ADSCs and chondrocytes in co-culture conditions. MATERIALS AND METHODS Primary ADSCs and chondrocytes were isolated from Sprague-Dawley rat. Transwell co-culture systems, inoculated with ADSCs and chondrocytes, were established in vitro. The morphology of the cells was observed 7 days post-seeding by inverted phase-contrast microscope. Additionally, the cytoskeleton changes were investigated by immunofluorescence staining. To detect the abundance of Vinculin, we used immunofluorescence and Western blotting. Additionally, the expression level of MMP-2, Hey1 and Hes1 was examined to determine the mechanisms of co-culture-induced cell migration changes. RESULTS The migration of ADSCs and chondrocytes in co-culture conditions significantly decreased compared with that in mono-culture groups, accompanied by the decrease of filopodia and the expression level of MMP-2. CONCLUSIONS The overall study showed that the migration of ADSCs and chondrocytes differs significantly depending on culture conditions. Moreover, the Notch signalling pathway may be involved in this process. Accordingly, by studying changes in migration caused by co-culture, we obtained new insight into the crosstalk between ADSCs and chondrocytes.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shuwen Deng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Sun
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Shanxi, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Shanxi, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|