1
|
Tambaro F, Gigante A, Gallicchio C, Pellicano C, Ramaccini C, Belli R, Gasperini-Zacco ML, Rosato E, Muscaritoli M. Differential modulations of miRNAs in patients with systemic sclerosis-associated skeletal muscle loss. Eur J Intern Med 2025; 135:98-107. [PMID: 40175271 DOI: 10.1016/j.ejim.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Systemic sclerosis (SSc) is an autoimmune disease characterized by sustained vascular inflammation and progressive skin and internal organs fibrosis. Up to 22 % of SSc patients may manifest skeletal muscle impairment, which predicts worse clinical outcomes, including increased mortality, however, pathogenesis is still largely unclear and could be associated with modulation of circulating microRNAs (miRNAs). Aims of the present study were to evaluate differentially modulated miRNAs in SSc patients and to evaluate their association with changes in body composition(s) and with the clinical course and type of the disease. METHODS Circulating levels of miRNAs were detected by RT-qPCR. ELISA assay was performed to measure the TGF-β1 protein. Muscularity (FFMI kg/m2) and phase angle (PhA, °) were estimated by Bioelectrical Impedance Analysis. RESULTS We enrolled 47 SSc patients and 21 controls (C). We observed downregulation of miR-15b (p = 0.024), -21 (p < 0.001), -29a (p < 0.001), -29b (p = 0.007) and -133a (p < 0.001), whereas miR-206 (p < 0.001) and -486 (p < 0.001) were upregulated in SSc vs C. In SSc, miR-29b negatively correlates with TGF-β1 (r = -0.303, p = 0.046). MiR-206 was downregulated vs high FFMI (p = 0.040) in SSc with low FFMI, and miR-15b positively correlates with PhA (r = 0.356, p = 0.014). MiR-15b and -486 were modulated in early vs late nailfold capillaroscopy stage (p = 0.028 and p = 0.045, respectively). MiR-133a was higher in SSc with Scl70 v ACA subset of autoantibodies (p = 0.002). CONCLUSIONS In SSc patients, differential modulations of miRNAs involved in muscularity occur. The data obtained suggest that mechanisms other than disease-related malnutrition might be responsible for SSc-associated skeletal muscle loss.
Collapse
Affiliation(s)
- Federica Tambaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonietta Gigante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmen Gallicchio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Pellicano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cesarina Ramaccini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberta Belli
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | | | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
2
|
Kim S, Gu B, So CY, Mantik KEK, Jung SH, Moon S, Park DH, Kwak HB, Cho J, Cho EJ, Lee JS, Kang JH. Cdkn1a silencing restores myoblast differentiation by inducing selective apoptosis in senescent cells. Cell Mol Biol Lett 2025; 30:53. [PMID: 40307745 PMCID: PMC12042464 DOI: 10.1186/s11658-025-00731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Sarcopenia, characterized by a progressive loss of skeletal muscle mass and function, is associated with the accumulation of senescent muscle stem cells, which impair muscle regeneration and contributes to the decline in muscle health. Cdkn1a, which encodes p21, is a well-known marker of cellular senescence. However, it remains unclear whether p21 inhibition eliminates senescent myoblasts and restores the differentiation capacity. METHODS We performed transcriptomic analysis to identify genes related to aging-induced sarcopenia using 21 month-old Sprague-Dawley rats. To investigate the specific role of Cdkn1a gene in muscle aging, we used an in vitro model of ceramide-induced senescence in myoblasts, which was verified by the upregulation of p21 and increased senescence-associated beta-galactosidase (SA-β-gal) staining. To inhibit p21, we treated myoblasts with small interfering RNA (siRNA) targeting Cdkn1a. Using fluorescence-activated cell sorting, we separated subpopulations of cells with high or low caspase 3/7 activity. Protein expression related to myogenesis, muscle atrophy, protein synthesis, and apoptosis were quantified by western blotting. RESULTS In our transcriptomic analysis, we identified Cdkn1a as an upregulated gene in both the soleus and white gastrocnemius muscles of aged rats, among 36 commonly upregulated genes. The upregulation of Cdkn1a appears to be linked to mitochondrial dysfunction and cellular senescence, underscoring its significance in sarcopenia pathogenesis. C2-ceramide treatment effectively induced senescence, as evidenced by increased p21 expression, enhanced SA-β-gal staining, decreased myogenesis, and increased apoptosis. Knockdown of p21 in ceramide-treated myoblasts significantly reduced SA-β-gal-positive cells, restored cell proliferation, reduced the expression of senescence-associated cytokines (i.e., interleukin (IL)-6 and tumor necrosis factor (TNF)-α), and selectively induced apoptosis in the senescent cell population, demonstrating a senolytic effect. Notably, p21 inhibition also improved differentiation of myoblasts into myotubes, as indicated by increased myosin heavy chain expression and improvements in myotube diameter and fusion index. CONCLUSIONS Our data suggest that p21 inhibition selectively eliminates senescent cells while simultaneously enhancing the regenerative capacity of healthy myoblasts, which may combine to improve muscle regeneration and promote myogenesis, ultimately improving muscle health and function in aged individuals.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Pharmacology, Inha University College of Medicine, 100, Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Bonsang Gu
- Department of Pharmacology, Inha University College of Medicine, 100, Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon, 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| | - Chan-Young So
- Department of Pharmacology, Inha University College of Medicine, 100, Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon, 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| | - Keren Esther Kristina Mantik
- Department of Pharmacology, Inha University College of Medicine, 100, Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon, 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Integrated Research Center for Genomic Polymorphism, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, Inha University College of Medicine, 100, Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
- Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eun-Jeong Cho
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon, 22212, Republic of Korea.
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea.
- Department of Molecular Medicine, Inha University College of Medicine, 100, Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea.
| | - Ju-Hee Kang
- Department of Pharmacology, Inha University College of Medicine, 100, Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea.
- Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon, 22212, Republic of Korea.
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea.
| |
Collapse
|
3
|
Ding W, Gong W, Bou T, Shi L, Lin Y, Wu H, Dugarjaviin M, Bai D. Pilot Study on the Profiling and Functional Analysis of mRNA, miRNA, and lncRNA in the Skeletal Muscle of Mongolian Horses, Xilingol Horses, and Grassland-Thoroughbreds. Animals (Basel) 2025; 15:1123. [PMID: 40281957 PMCID: PMC12024394 DOI: 10.3390/ani15081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Muscle fibers, as the fundamental units of muscle tissue, play a crucial role in determining skeletal muscle function through their growth, development, and composition. To investigate changes in muscle fiber types and their regulatory mechanisms in Mongolian horses (MG), Xilingol horses (XL), and Grassland-Thoroughbreds (CY), we conducted histological and bioinformatic analyses on the gluteus medius muscle of these three horse breeds. Immunofluorescence analysis revealed that Grassland-Thoroughbreds had the highest proportion of fast-twitch muscle fibers at 78.63%, while Mongolian horses had the lowest proportion at 57.54%. Whole-transcriptome analysis identified 105 differentially expressed genes (DEGs) in the CY vs. MG comparison and 104 DEGs in the CY vs. XL comparison. Time-series expression profiling grouped the DEGs into eight gene sets, with three sets showing significantly up-regulated or down-regulated expression patterns (p < 0.05). Additionally, 280 differentially expressed long non-coding RNAs (DELs) were identified in CY vs. MG, and 213 DELs were identified in CY vs. XL. A total of 32 differentially expressed microRNAs (DEMIRs) were identified in CY vs. MG, while 44 DEMIRs were found in CY vs. XL. Functional enrichment analysis indicated that the DEGs were significantly enriched in essential biological processes, such as actin filament organization, muscle contraction, and protein phosphorylation. KEGG pathway analysis showed their involvement in key signaling pathways, including the mTOR signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. Furthermore, functional variation-based analyses revealed associations between non-coding RNAs and mRNAs, with some non-coding RNAs targeting genes potentially related to muscle function regulation. These findings provide valuable insights into the molecular basis for the environmental adaptability, athletic performance, and muscle characteristics in horses, offering new perspectives for the breeding of Grassland-Thoroughbreds.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Shi
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Lin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huize Wu
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (W.D.); (W.G.); (T.B.); (L.S.); (Y.L.); (H.W.); (M.D.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
4
|
Bahbahani H, Mohammad Z, Alfoudari A, Al Abri M. Genomic insights into racing camels: inbreeding levels and positive selection linked to athletic traits. Animal 2025; 19:101467. [PMID: 40073590 DOI: 10.1016/j.animal.2025.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Racing dromedary camels are widely distributed across the Arabian Peninsula, predominantly concentrating in its northern and southeastern regions. Phenotypically, they are differentiated from other dromedary types, characterised by their smaller body size, longer limbs, reduced hump size, and thinner chest girth. In this study, the whole genome sequences of 34 racing camels were analysed to assess their genetic relationship with non-racing populations, estimate levels of inbreeding, calculate Wier and Cockerham's fixation index (Fst), assess effective population size (Ne), and identify candidate regions with signatures of positive selection. Both racing and non-racing camels exhibited comparable levels of genomic inbreeding (FROH = 0.21), with no significant genetic differentiation detected between them. The estimated Fst value between the two camel groups also revealed minimal genetic differentiation. A declining trend was observed in Ne estimations of both groups over the past 5 000 years, with slightly lower recent Ne in racing camels compared to their non-racing counterparts. Signatures of positive selection in the genomes of racing camels were identified through the application of two haplotype-based statistics, namely the integrated haplotype homozygosity score (iHS) and extended haplotype homozygosity between-populations (Rsb), along with runs of homozygosity (ROH) analysis. A total of 33 regions under selection were detected via iHS, 19 via Rsb, and 24 through ROH. Candidate regions under selection were found to overlap with genes involved in diverse biological pathways potentially linked to athletic performance, e.g., musculoskeletal development, lipid metabolism, stress response, bone integrity, as well as endurance and power. These findings provide a foundation for further exploration of the racing dromedary genome, with the goal of defining variants and haplotypes that might be associated with athletic traits. Such insights could assist the development of genetically informed breeding programmes aimed at developing specialised racing dromedary lines, contributing to the broader understanding and preservation of animal athletic performance and selection in domesticated species worldwide.
Collapse
Affiliation(s)
- H Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait.
| | - Z Mohammad
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait
| | - A Alfoudari
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait
| | - M Al Abri
- Department of Animal and Veterinary Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
5
|
Kura B, Kindernay L, Singla D, Dulova U, Bartekova M. Mechanistic insight into the role of cardiac-enriched microRNAs in diabetic heart injury. Am J Physiol Heart Circ Physiol 2025; 328:H865-H884. [PMID: 40033927 PMCID: PMC12069993 DOI: 10.1152/ajpheart.00736.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Cardiovascular complications, particularly diabetic cardiomyopathy (DCM), are the primary causes of morbidity and mortality among individuals with diabetes. Hyperglycemia associated with diabetes leads to cardiomyocyte hypertrophy, apoptosis, and myocardial fibrosis, culminating in heart failure (HF). Patients with diabetes face a 2-4 times greater risk of developing HF compared with those without diabetes. Consequently, there is a growing interest in exploring the molecular mechanisms that contribute to the development of DCM. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNA molecules that participate in the maintenance of physiological homeostasis through the regulation of essential processes such as metabolism, cell proliferation, and apoptosis. At the posttranscriptional level, miRNAs modulate gene expression by binding directly to genes' mRNAs. Multiple cardiac-enriched miRNAs were reported to be dysregulated under diabetic conditions. Different studies revealed the role of specific miRNAs in the pathogenesis of diabetes and related cardiovascular complications, including cardiomyocyte hypertrophy and fibrosis, mitochondrial dysfunction, metabolic impairment, inflammatory response, or cardiomyocyte death. Circulating miRNAs have been shown to represent the potential biomarkers for early detection of diabetic heart injury. A deeper understanding of miRNAs and their role in diabetes-related pathophysiological processes could lead to new therapeutic strategies for addressing cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dinender Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, USA
| | - Ulrika Dulova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
Jia H, Kaster N, Khan R, Ayari-Akkari A. The Roles of myomiRs in the Pathogenesis of Sarcopenia: From Literature to In Silico Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01373-0. [PMID: 40025274 DOI: 10.1007/s12033-025-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
Senile sarcopenia is a condition of age-associated muscular disorder and is a significant health issue around the world. In the current review, we curated the information from the NCBI, PubMed, and Google Scholar literature and explored the non-genetic and genetic causes of senile sarcopenia. Interestingly, the myomiRs such as miR-1, miR-206, miR-133a, miR-133b, miR-208b, and miR-499 are skeletal muscle's critical structural and functional regulators. However, very scattered information is available regarding the roles of myomiRs in different skeletal muscle phenotypes through a diverse list of known target genes. Therefore, these pieces of information must be organized to focus on the conserved target genes and comparable effects of the myomiRs in regulating senile sarcopenia. Hence, in the present review, the roles of pathogenetic factors in regulating senile sarcopenia were highlighted. The literature was further curated for the roles of myomiRs such as hsa-miR-1-3p/206, hsa-miR-27-3p, hsa-miR-146-5p, and hsa-miR-499-5p and their target genes. Additionally, we used different bioinformatics tools and predicted target genes of the myomiRs and found the most critical target genes, shared pathways, and their standard functions in regulating muscle structure and functions. The information gathered in the current review will help the researchers to explore their possible therapeutic potential, especially the use of the myomiRs for the treatment of senile sarcopenia.
Collapse
Affiliation(s)
- Huanxia Jia
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang, 461000, Henan, People's Republic of China
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana, Kazakhstan.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
7
|
Rohm TV, Cunha E Rocha K, Olefsky JM. Metabolic Messengers: small extracellular vesicles. Nat Metab 2025; 7:253-262. [PMID: 39920357 DOI: 10.1038/s42255-024-01214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/19/2024] [Indexed: 02/09/2025]
Abstract
Small extracellular vesicles (sEVs) are signalling molecules and biomarkers of cell status that govern a complex intraorgan and interorgan communication system through their cargo. Initially recognized as a waste disposal mechanism, they have emerged as important metabolic regulators. They transfer biological signals to recipient cells through their cargo content, and microRNAs (miRNAs) often mediate their metabolic effects. This review provides a concise overview of sEVs, specifically in the context of obesity-associated chronic inflammation and related metabolic disorders, describing their role as metabolic messengers, identifying their key sites of action and elucidating their mechanisms. We highlight studies that have shaped our understanding of sEV metabolism, address critical questions for future exploration, discuss the use of miRNAs as disease biomarkers and provide insights into the therapeutic potential of sEVs or specific miRNAs for treating metabolic diseases and related disorders in the future.
Collapse
Affiliation(s)
- Theresa V Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Chumakova OS, Mershina EA. Circulating microRNA as promising biomarkers in hypertrophic cardiomyopathy: can advanced cardiac magnetic resonance unlock new insights in research? Exp Biol Med (Maywood) 2024; 249:10334. [PMID: 39744621 PMCID: PMC11688189 DOI: 10.3389/ebm.2024.10334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disorder associated with an increased risk of arrhythmias, heart failure, and sudden cardiac death. Current imaging and clinical markers are not fully sufficient in accurate diagnosis and patient risk stratification. Although known cardiac biomarkers in blood are used, they lack specificity for HCM and primarily stratify for death due to heart failure in overt cases. Non-coding RNAs, particularly microRNAs, have emerged as promising biomarkers due to their role in regulating gene expression in both healthy and pathological hearts. Circulating microRNA signatures may dynamically reflect the progression of HCM, offering potential utility in diagnosis and disease monitoring as well as inform biologic pathways for innovative therapeutic strategies. However, studying microRNAs in cardiovascular diseases is still in its early stages and poses many challenges. This review focuses on emerging research perspectives using advanced cardiac magnetic resonance techniques. We presume, that the search for circulating miR signatures associated with specific adverse myocardial features observed on cardiac magnetic resonance imaging - such as fibrosis, disarray, and microvascular disease - represents a promising direction in HCM research.
Collapse
Affiliation(s)
- Olga S. Chumakova
- National Medical Research Center of Cardiology Named After E. I. Chazov, Moscow, Russia
| | - Elena A. Mershina
- Medical Research and Education Center Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
D’Amato A, Prosperi S, Severino P, Myftari V, Correale M, Perrone Filardi P, Badagliacca R, Fedele F, Vizza CD, Palazzuoli A. MicroRNA and Heart Failure: A Novel Promising Diagnostic and Therapeutic Tool. J Clin Med 2024; 13:7560. [PMID: 39768484 PMCID: PMC11728316 DOI: 10.3390/jcm13247560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
Heart failure (HF) has a multifaceted and complex pathophysiology. Beyond neurohormonal, renin-angiotensin-aldosterone system, and adrenergic hyperactivation, a role for other pathophysiological determinants is emerging. Genetic and epigenetic factors are involved in this syndrome. In many maladaptive processes, the role of microRNAs (miRNAs) has been recently demonstrated. MiRNAs are small endogenous non-coding molecules of RNA involved in gene expression regulation, and they play a pivotal role in intercellular communication, being involved in different biological and pathophysiological processes. MiRNAs can modulate infarct area size, cardiomyocytes restoration, collagen deposition, and macrophage polarization. MiRNAs may be considered as specific biomarkers of hypertrophy and fibrosis. MiRNAs have been proposed as a therapeutical tool because their administration can contrast with myocardial pathophysiological remodeling leading to HF. Antimir and miRNA mimics are small oligonucleotides which may be administered in several manners and may be able to regulate the expression of specific and circulating miRNAs. Studies on animal models and on healthy humans demonstrate that these molecules are well tolerated and effective, opening the possibility of a therapeutic use of miRNAs in cases of HF. The application of miRNAs for diagnosis, prognostic stratification, and therapy fits in with the new concept of a personalized and tailored approach to HF.
Collapse
Affiliation(s)
- Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Michele Correale
- Cardiothoracic Department, ‘Policlinico Riuniti’ University Hospital, 71100 Foggia, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, 80131 Naples, Italy;
| | - Roberto Badagliacca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | | | - Carmine Dario Vizza
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, ‘Sapienza’ University of Rome, Policlinico ‘Umberto I’ of Rome, 00161 Rome, Italy; (A.D.); (S.P.); (P.S.); (V.M.); (R.B.); (C.D.V.)
| | - Alberto Palazzuoli
- Cardio Thoracic and Vascular Department, ‘S. Maria alle Scotte Hospital’, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
10
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
11
|
Ka Y, Lee I, Ji K. Thyroid and growth hormone endocrine disruption and mechanisms of homosalate and octisalate using wild-type, thrαa -/-, and dre-miR-499 -/- zebrafish embryo/larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117170. [PMID: 39413646 DOI: 10.1016/j.ecoenv.2024.117170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Homosalate (HS) and octisalate (OS), which are used in sunscreen for the purpose of blocking ultraviolet rays, are frequently detected in water environment. Although effects on estrogens and androgens have been reported, studies on thyroid and growth hormone endocrine disruption are limited. In the present study, larval mortality was compared in wild-type and two knockout fish (thyroid hormone receptor alpha a knockout (thrαa-/-) and dre-miR-499 knockout (dre-miR-499-/-)) after 96 h of exposure to HS and OS (0, 0.003, 0.03, 0.3, 3, 30 and 300 µg/L). To investigate the mechanisms of thyroid and growth hormone endocrine disruption, we measured the levels of triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH), growth hormone (GH), and insulin-like growth factor-1 (IGF-1), and the regulation of representative genes related to the hypothalamus-pituitary-thyroid (HPT) and GH/IGF axis in wild-type zebrafish exposed to target chemicals. The significantly lower larval survival rate of thrαa-/- and dre-miR-499-/- fish exposed to 300 μg/L of HS and OS suggest that thyroid hormone receptors and dre-miR-499 play a crucial role in the toxic effects of HS and OS. The finding of a significant increase in T3 and T4 in zebrafish larvae exposed to HS and OS supports a significant decrease in the crh gene. The reduction of GH and IGF-1 in fish exposed to HS and OS is well supported by the regulation of genes involved in the GH/IGF axis. Our observations suggest that exposure to HS and OS affects not only thyroid hormone receptors and their associated miRNAs, but also the feedback routes of HPT and GH/IGF axes, ultimately leading to growth reduction.
Collapse
Affiliation(s)
- Yujin Ka
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea
| | - Inhye Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Natural Sciences, Yongin University, Yongin 17092, Republic of Korea
| | - Kyunghee Ji
- Department of Environmental Health, Graduate School at Yongin University, Yongin 17092, Republic of Korea.
| |
Collapse
|
12
|
Qiu D, Zhang Y, Ni P, Wang Z, Yang L, Li F. Muscle-enriched microRNA-486-mediated regulation of muscular atrophy and exercise. J Physiol Biochem 2024; 80:795-809. [PMID: 39222208 DOI: 10.1007/s13105-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The objectives of this review were to understand the impact of microRNA-486 on myogenesis and muscle atrophy, and the change of microRNA-486 following exercise, and provide valuable information for improving muscle atrophy based on exercise intervention targeting microRNA-486. Muscle-enriched microRNAs (miRNAs), also referred to as myomiRs, control various processes in skeletal muscles, from myogenesis and muscle homeostasis to different responses to environmental stimuli such as exercise. MicroRNA-486 is a miRNA in which a stem-loop sequence is embedded within the ANKYRIN1 (ANK1) locus and is strictly conserved across mammals. MicroRNA-486 is involved in the development of muscle atrophy caused by aging, immobility, prolonged exposure to microgravity, or muscular and neuromuscular disorders. PI3K/AKT signaling is a positive pathway, as it increases muscle mass by increasing protein synthesis and decreasing protein degradation. MicroRNA-486 can activate this pathway by inhibiting phosphatase and tensin homolog (PTEN), it may also indirectly inhibit the HIPPO signaling pathway to promote cell growth. Exercises regulate microRNA-486 expression both in blood and muscle. This review focused on the recent elucidation of sarcopenia regulation by microRNA-486 and its effects on pathological states, including primary muscular disease, secondary muscular disorders, and age-related sarcopenia. Additionally, the role of exercise in regulating skeletal muscle-enriched microRNA-486 was highlighted, along with its physiological significance. Growing evidence indicates that microRNA-486 significantly impacts the development of muscle atrophy. MicroRNA-486 has great potential to become a therapeutic target for improving muscle atrophy through exercise intervention.
Collapse
Affiliation(s)
- Dayong Qiu
- School of Physical and Health Education, Nanjing Normal University Taizhou College, No. 96, Jichuan East Road, Hailing District, Taizhou, 225300, P.R. China
| | - Yan Zhang
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, P.R. China
| | - Pinshi Ni
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, P.R. China
| | - Zhuangzhi Wang
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, P.R. China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, 510006, P.R. China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Fanghui Li
- Zhaoqing University, 526061, Guangdong, Zhaoqing, P.R. China.
| |
Collapse
|
13
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
14
|
Lee EJ, Jeong M, Lee H, Je MA, Park K, Lee DG, Xuan X, Kim S, Park S, Kim J. MiR-122, miR-133a, and miR-206 as potential biomarkers for post-mortem interval estimation. Genes Genomics 2024; 46:1175-1182. [PMID: 39207675 DOI: 10.1007/s13258-024-01559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUD Accurate estimation of post-mortem interval (PMI) is crucial in forensic investigations. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that remain relatively stable within the cell nucleus despite post-mortem changes. OBJECTIVE We assessed three target genes (miR-122, miR-133a, and miR-206) for PMI estimation using 72 healthy adult male BALB/c mice exposed to two different temperatures (4 and 21℃) at nine different time points over 10 days. METHODS Initially, the stability of the two reference genes (RNU6B and 5 srRNA) was evaluated using gene stability analysis tools (Delta Ct, Best Keeper, and Genorm) to select the optimal reference gene. RNU6B was found to be the most stable endogenous control. Subsequently, the expression patterns of miR-122, miR-133a, and miR-206 were analyzed within a 10-day PMI period using the heart, skeletal muscle, liver, and brain tissues. RESULTS At 4℃, miR-122 levels significantly decreased on days 8 and 10 in all tissues, with only the liver showing significant changes at 21℃. MiR-133a decreased over time in the heart, muscles, and brain, showing a dramatic decrease on days 8 and 10 in the heart and muscles at both temperatures. Although miR-206 levels decreased over time in muscles and liver at 4 ℃, these increased in the brain at 21 ℃, with no expression changes in other organs. CONCLUSION In summary, miR-122, miR-133a, and miR-206 are potential PMI markers in heart and skeletal muscle tissues.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Department of Research and Development, Korea Mycobacterium Resource Center (KMRC), The Korean Institute of Tuberculosis, Osong, 28158, Republic of Korea
| | - Mingyoung Jeong
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Haneul Lee
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Min-A Je
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Kwangmin Park
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Dong Geon Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Xianglan Xuan
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Sunghyun Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea
| | - Sunyoung Park
- School of Mechanical Engineering, Yonsei University, Seoul, 03772, Republic of Korea.
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea.
- Department of Forensic Science, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea.
- Next-Generation Industrial Field-Based Specialist Program for Molecular Diagnostics, Brain Busan 21 Plus Project, Graduate School, Catholic University of Pusan, Busan, 46252, Republic of Korea.
| |
Collapse
|
15
|
He H, Hao D, Tian L, Zhu C, Guo L, Zhang K, Zhu S. Research on the expression of Mir-218-2 in the serum of patients with papillary thyroid cancer and its clinical significance. Eur J Transl Myol 2024; 34:12678. [PMID: 39221591 PMCID: PMC11487670 DOI: 10.4081/ejtm.2024.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Papillary thyroid carcinoma is an epithelial malignancy with follicular cell differentiation and sets of defined nuclear features and appearance of an irregular solid mass. The main objective of our study is to research on the expression of miR-218-2 in the serum of patients with papillary thyroid cancer and its clinical significance. Our study involved patients with thyroid nodules were divided into a capitate cancer group (N = 100) and a benign nodule group (N =100). Lastly, 50 cases of healthy individuals were used as controls. The total sample size was 250. All cases were clinically diagnosed and underwent histopathological examinations at the Tonglu County Hospital of Traditional Chinese Medicine between January 2023 and January 2024. Quantitative RT-PCR was used to assess the expression levels of miR-218-2 and its host gene SLIT3 in normal and cancer thyroid tissues. We found that 45% of tumour sizes were less than 1 cm with 90% of tumours did not infiltrate the glandular capsule, implying a favourable prognosis. Lastly, 85% of tumours were well differentiated with about 75% showing no metastasis while 60% of TNM stage were classified as stage I. Also, miR-218-2 and its host gene SLIT3 are significantly down-regulated in papillary thyroid carcinoma. The inhibitory effects of miR-218-2 act in synergy with its host gene SLIT3 to alter the rates of cell invasion, cell migration and cell proliferation. Our findings have clinical significance on the involvement of miR-218-2 and SLIT3. There exists a functional relationship between host genes and intronic miRNAs in the tumorigenesis of thyroid cancers.
Collapse
Affiliation(s)
- Haoting He
- Department of Oncology, Tonglu County Hospital of Traditional Chinese Medicine, Tonglu County, Hangzhou City, Zhejiang Province.
| | - Dingji Hao
- Department of Oncology, Tonglu County Hospital of Traditional Chinese Medicine, Tonglu County, Hangzhou City, Zhejiang Province.
| | - Linxiao Tian
- Department of Oncology, Tonglu County Hospital of Traditional Chinese Medicine, Tonglu County, Hangzhou City, Zhejiang Province.
| | - Congru Zhu
- Department of Oncology, Tonglu County Hospital of Traditional Chinese Medicine, Tonglu County, Hangzhou City, Zhejiang Province.
| | - Lili Guo
- Department of Oncology, Tonglu County Hospital of Traditional Chinese Medicine, Tonglu County, Hangzhou City, Zhejiang Province.
| | - Keao Zhang
- Department of Oncology, Tonglu County Hospital of Traditional Chinese Medicine, Tonglu County, Hangzhou City, Zhejiang Province.
| | - Siyao Zhu
- Department of Oncology, Tonglu County Hospital of Traditional Chinese Medicine, Tonglu County, Hangzhou City, Zhejiang Province.
| |
Collapse
|
16
|
Zhang J, Tian Z, Qin C, Momeni MR. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Hum Cell 2024; 37:887-903. [PMID: 38587596 DOI: 10.1007/s13577-024-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Physical activity on a regular basis has been shown to bolster the overall wellness of an individual; research is now revealing that these changes are accompanied by epigenetic modifications. Regular exercise has been proven to make intervention plans more successful and prolong adherence to them. When it comes to epigenetic changes, there are four primary components. This includes changes to the DNA, histones, expression of particular non-coding RNAs and DNA methylation. External triggers, such as physical activity, can lead to modifications in the epigenetic components, resulting in changes in the transcription process. This report pays attention to the current knowledge that pertains to the epigenetic alterations that occur after exercise, the genes affected and the resulting characteristics.
Collapse
Affiliation(s)
- Junxiong Zhang
- Xiamen Academy of Art and Design, Fuzhou University, Xiamen, 361024, Fujian, China.
| | - Zhongxin Tian
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Chao Qin
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | | |
Collapse
|
17
|
Goldberg JF, Spinner JA, Soslow JH. Myocarditis in children 2024, new themes and continued questions. Curr Opin Cardiol 2024; 39:315-322. [PMID: 38661130 DOI: 10.1097/hco.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW While pediatric myocarditis incidence has increased since the coronavirus disease 2019 (COVID-19) pandemic, there remain questions regarding diagnosis, risk stratification, and optimal therapy. This review highlights recent publications and continued unanswered questions related to myocarditis in children. RECENT FINDINGS Emergence from the COVID-19 era has allowed more accurate description of the incidence and prognosis of myocarditis adjacent to COVID-19 infection and vaccine administration as well that of multi-system inflammatory disease in children (MIS-C). As cardiac magnetic resonance technology has shown increased availability and evidence in pediatric myocarditis, it is important to understand conclusions from adult imaging studies and define the use of this imaging biomarker in children. Precision medicine has begun to allow real-time molecular evaluations to help diagnose and risk-stratify cardiovascular diseases, with emerging evidence of these modalities in myocarditis. SUMMARY Recent information regarding COVID-19 associated myocarditis, cardiac magnetic resonance, and molecular biomarkers may help clinicians caring for children with myocarditis and identify needs for future investigations.
Collapse
|
18
|
Porcu C, Dobrowolny G, Scicchitano BM. Exploring the Role of Extracellular Vesicles in Skeletal Muscle Regeneration. Int J Mol Sci 2024; 25:5811. [PMID: 38892005 PMCID: PMC11171935 DOI: 10.3390/ijms25115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Skeletal muscle regeneration entails a multifaceted process marked by distinct phases, encompassing inflammation, regeneration, and remodeling. The coordination of these phases hinges upon precise intercellular communication orchestrated by diverse cell types and signaling molecules. Recent focus has turned towards extracellular vesicles (EVs), particularly small EVs, as pivotal mediators facilitating intercellular communication throughout muscle regeneration. Notably, injured muscle provokes the release of EVs originating from myofibers and various cell types, including mesenchymal stem cells, satellite cells, and immune cells such as M2 macrophages, which exhibit anti-inflammatory and promyogenic properties. EVs harbor a specific cargo comprising functional proteins, lipids, and nucleic acids, including microRNAs (miRNAs), which intricately regulate gene expression in target cells and activate downstream pathways crucial for skeletal muscle homeostasis and repair. Furthermore, EVs foster angiogenesis, muscle reinnervation, and extracellular matrix remodeling, thereby modulating the tissue microenvironment and promoting effective tissue regeneration. This review consolidates the current understanding on EVs released by cells and damaged tissues throughout various phases of muscle regeneration with a focus on EV cargo, providing new insights on potential therapeutic interventions to mitigate muscle-related pathologies.
Collapse
Affiliation(s)
- Cristiana Porcu
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy;
| | - Gabriella Dobrowolny
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy;
| | - Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| |
Collapse
|
19
|
Ma T, Ren R, Lv J, Yang R, Zheng X, Hu Y, Zhu G, Wang H. Transdifferentiation of fibroblasts into muscle cells to constitute cultured meat with tunable intramuscular fat deposition. eLife 2024; 13:RP93220. [PMID: 38771186 PMCID: PMC11108645 DOI: 10.7554/elife.93220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Ruimin Ren
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
- College of Animal Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Jianqi Lv
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Ruipeng Yang
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Xinyi Zheng
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Guiyu Zhu
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Heng Wang
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| |
Collapse
|
20
|
Zuo JY, Chen HX, Yang Q, He GW. Variants of the promoter of MYH6 gene in congenital isolated and sporadic patent ductus arteriosus: case-control study and cellular functional analyses. Hum Mol Genet 2024; 33:884-893. [PMID: 38340456 DOI: 10.1093/hmg/ddae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Patent ductus arteriosus (PDA) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development, but the effect of variants in the MYH6 gene promoter on ductus arteriosus is unknown. DNA was extracted from blood samples of 721 subjects (428 patients with isolated and sporadic PDA and 293 healthy controls) and analyzed by sequencing for MYH6 gene promoter region variants. Cellular function experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analyses were performed to verify their effects on gene expression. In the MYH6 gene promoter, 11 variants were identified. Four variants were found only in patients with PDA and 2 of them (g.3434G>C and g.4524C>T) were novel. Electrophoretic mobility shift assay showed that the transcription factors bound by the promoter variants were significantly altered in comparison to the wild-type in all three cell lines. Dual luciferase reporter showed that all the 4 variants reduced the transcriptional activity of the MYH6 gene promoter (P < 0.05). Prediction of transcription factors bound by the variants indicated that these variants alter the transcription factor binding sites. These pathological alterations most likely affect the contraction of the smooth muscle of ductus arteriosus, leading to PDA. This study is the first to focus on variants at the promoter region of the MYH6 gene in PDA patients with cellular function tests. Therefore, this study provides new insights to understand the genetic basis and facilitates further studies on the mechanism of PDA formation.
Collapse
Affiliation(s)
- Ji-Yang Zuo
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| |
Collapse
|
21
|
Sergeeva XV, Lvova ID, Sharlo KA. Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int J Mol Sci 2024; 25:4984. [PMID: 38732203 PMCID: PMC11084575 DOI: 10.3390/ijms25094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, "oxidative" "slow" phenotype to a "fast" "glycolytic" one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue.
Collapse
Affiliation(s)
| | | | - Kristina A. Sharlo
- Institute of Biomedical Problems, RAS, Khorosevskoye Shosse, 76a, 123007 Moscow, Russia; (X.V.S.); (I.D.L.)
| |
Collapse
|
22
|
Mably JD, Wang DZ. Long non-coding RNAs in cardiac hypertrophy and heart failure: functions, mechanisms and clinical prospects. Nat Rev Cardiol 2024; 21:326-345. [PMID: 37985696 PMCID: PMC11031336 DOI: 10.1038/s41569-023-00952-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
The surge in reports describing non-coding RNAs (ncRNAs) has focused attention on their possible biological roles and effects on development and disease. ncRNAs have been touted as previously uncharacterized regulators of gene expression and cellular processes, possibly working to fine-tune these functions. The sheer number of ncRNAs identified has outpaced the capacity to characterize each molecule thoroughly and to reliably establish its clinical relevance; it has, nonetheless, created excitement about their potential as molecular targets for novel therapeutic approaches to treat human disease. In this Review, we focus on one category of ncRNAs - long non-coding RNAs - and their expression, functions and molecular mechanisms in cardiac hypertrophy and heart failure. We further discuss the prospects for this specific class of ncRNAs as novel targets for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- John D Mably
- Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
23
|
Boen HM, Cherubin M, Franssen C, Gevaert AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts M, Van Craenenbroeck EM. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:183-199. [PMID: 38774014 PMCID: PMC11103047 DOI: 10.1016/j.jaccao.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/24/2024] Open
Abstract
Close monitoring for cardiotoxicity during anthracycline chemotherapy is crucial for early diagnosis and therapy guidance. Currently, monitoring relies on cardiac imaging and serial measurement of cardiac biomarkers like cardiac troponin and natriuretic peptides. However, these conventional biomarkers are nonspecific indicators of cardiac damage. Exploring new, more specific biomarkers with a clear link to the underlying pathomechanism of cardiotoxicity holds promise for increased specificity and sensitivity in detecting early anthracycline-induced cardiotoxicity. miRNAs (microRNAs), small single-stranded, noncoding RNA sequences involved in epigenetic regulation, influence various physiological and pathological processes by targeting expression and translation. Emerging as new biomarker candidates, circulating miRNAs exhibit resistance to degradation and offer a direct pathomechanistic link. This review comprehensively outlines their potential as early biomarkers for cardiotoxicity and their pathomechanistic link.
Collapse
Affiliation(s)
- Hanne M. Boen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Martina Cherubin
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Maaike Alaerts
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
24
|
García-Pérez I, Duran BOS, Dal-Pai-Silva M, Garcia de la serrana D. Exploring the Integrated Role of miRNAs and lncRNAs in Regulating the Transcriptional Response to Amino Acids and Insulin-like Growth Factor 1 in Gilthead Sea Bream ( Sparus aurata) Myoblasts. Int J Mol Sci 2024; 25:3894. [PMID: 38612703 PMCID: PMC11011856 DOI: 10.3390/ijms25073894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.
Collapse
Affiliation(s)
- Isabel García-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| |
Collapse
|
25
|
Improta-Caria AC, Rodrigues LF, Joaquim VHA, De Sousa RAL, Fernandes T, Oliveira EM. MicroRNAs regulating signaling pathways in cardiac fibrosis: potential role of the exercise training. Am J Physiol Heart Circ Physiol 2024; 326:H497-H510. [PMID: 38063810 PMCID: PMC11219062 DOI: 10.1152/ajpheart.00410.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 02/09/2024]
Abstract
Cardiovascular and metabolic diseases such as hypertension, type 2 diabetes, and obesity develop long-term fibrotic processes in the heart, promoting pathological cardiac remodeling, including after myocardial infarction, reparative fibrotic processes also occur. These processes are regulated by many intracellular signaling pathways that have not yet been completely elucidated, including those associated with microRNA (miRNA) expression. miRNAs are small RNA transcripts (18-25 nucleotides in length) that act as posttranscriptionally regulators of gene expression, inhibiting or degrading one or more target messenger RNAs (mRNAs), and proven to be involved in many biological processes such as cell cycle, differentiation, proliferation, migration, and apoptosis, directly affecting the pathophysiology of several diseases, including cardiac fibrosis. Exercise training can modulate the expression of miRNAs and it is known to be beneficial in various cardiovascular diseases, attenuating cardiac fibrosis processes. However, the signaling pathways modulated by the exercise associated with miRNAs in cardiac fibrosis were not fully understood. Thus, this review aims to analyze the expression of miRNAs that modulate signaling pathways in cardiac fibrosis processes that can be regulated by exercise training.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | - Luis Felipe Rodrigues
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | - Victor Hugo Antonio Joaquim
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | | | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of São Paulo, São Paulo, Brazil
- Departments of Internal Medicine, Center for Regenerative Medicine, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
26
|
Huang C, Feng F, Dai R, Ren W, Li X, Zhaxi T, Ma X, Wu X, Chu M, La Y, Bao P, Guo X, Pei J, Yan P, Liang C. Whole-transcriptome analysis of longissimus dorsi muscle in cattle-yaks reveals the regulatory functions of ADAMTS6 gene in myoblasts. Int J Biol Macromol 2024; 262:129985. [PMID: 38342263 DOI: 10.1016/j.ijbiomac.2024.129985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Cattle-yak, which is the hybrid F1 generation of cattle and yak, demonstrates better production performance compared to yak. However, there is limited research on the molecular mechanisms responsible for the muscle development of cattle-yak. To address this knowledge gap, a comprehensive transcriptomic survey of the longissimus dorsi muscle in cattle-yak was conducted. Three transcript types, namely lncRNAs, miRNAs, and circRNAs, along with protein-coding genes were characterized at two developmental stages (6 m, 18 m) of cattle-yak. The results revealed significant enrichment of these transcripts into pathways related to myoblast differentiation and muscle development signaling. Additionally, the study identified the TCONS00024465/circHIPK3-bta-miR-499-ADAMTS6 regulatory network, which may play a crucial role in the muscle development of cattle-yak by combining the transcriptome data of yak and constructing the ceRNA co-expression network. HEK 293 T cells were used to validate that TCONS00024465 and circHIPK3 are located upstream of bta-miR-499, and can competitively bind to bta-miR-499 as ceRNA. The study also verified that ADAMTS6 regulates skeletal muscle development by inhibiting myoblast proliferation, promoting myoblast differentiation, and positively regulating the apoptosis of myoblasts. Taken together, this study provides new insights into the advantages of cattle-yak production performance and offers a molecular basis for further research on muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Fen Feng
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xinyi Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ta Zhaxi
- Animal Husbandry and Veterinary Workstation in Qilian County, Qilian 810400, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
27
|
Chen SL, Wu CC, Li N, Weng TH. Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis. J Muscle Res Cell Motil 2024; 45:21-39. [PMID: 38206489 DOI: 10.1007/s10974-023-09663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.
Collapse
Affiliation(s)
- Shen-Liang Chen
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan.
| | - Chuan-Che Wu
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Ning Li
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Tzu-Han Weng
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| |
Collapse
|
28
|
Bou T, Ding W, Ren X, Liu H, Gong W, Jia Z, Zhang X, Dugarjaviin M, Bai D. Muscle fibre transition and transcriptional changes of horse skeletal muscles during traditional Mongolian endurance training. Equine Vet J 2024; 56:178-192. [PMID: 37345447 DOI: 10.1111/evj.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/23/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Traditional Mongolian endurance training is an effective way to improve the athletic ability of the horse for endurance events and is widely used. This incorporates aerobic exercise and intermittent fasting and these altered physiologic conditions are associated with switches between muscle fibre types. OBJECTIVES To better understand the adaption of horse skeletal muscle to traditional Mongolian endurance training from muscle fibre characteristics and transcriptional levels and to explore possible molecular mechanisms associated with the endurance performance of horses. STUDY DESIGN Before-after study. METHODS Muscle fibre type switches and muscle transcriptome changes in six Mongolian horses were assessed during 4 weeks of training. Transcriptomic and histochemical analyses were performed. The activities of oxidative and glycolytic metabolic enzymes were analysed and we generated deep RNA-sequencing data relating to skeletal muscles. RESULTS A fast-to-slow muscle fibre transition occurred in horse skeletal muscles, with a concomitant increase of oxidative enzyme activity and decreased glycolytic enzyme activity. Numerous differentially expressed genes were involved in the control of muscle protein balance and degradation. Differential alternative splicing events were also found during training which included exon-skipping events in Ttn that were associated with muscle atrophy. Differentially expressed noncoding RNAs showed connections with muscle protein balance-related pathways and fibre type specification via the post-transcriptional regulation of miRNA. MAIN LIMITATIONS The study focuses on horse athletic ability only from the aspect of muscular adaptation. CONCLUSION Traditional Mongolian endurance training-induced muscle fibre transition and metabolic and transcriptional changes. Muscle-specific non-coding RNAs could contribute to these transcriptomic changes during training.
Collapse
Affiliation(s)
- Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Ren
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiying Liu
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zijie Jia
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xinzhuang Zhang
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction; Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
29
|
Wang W, Zhang T, Du L, Li K, Zhang L, Li H, Gao X, Xu L, Li J, Gao H. Transcriptomic analysis reveals diverse expression patterns underlying the fiber diameter of oxidative and glycolytic skeletal muscles in steers. Meat Sci 2024; 207:109350. [PMID: 37844514 DOI: 10.1016/j.meatsci.2023.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Skeletal muscles consist of heterogeneous fibers with various contractile and metabolic properties that affect meat quality. The size of muscle fibers contributes to muscle mass and myopathy. Thus, improved understanding of the expression patterns underlying fiber size might open possibilities to change them using genetic methods. The aim of this study was to reveal transcriptomic landscapes of one oxidative (Psoas major) and three glycolytic (Longissimus lumborum, Triceps brachii, and Semimembranosus) muscles. Principal component analysis (PCA) showed significant differences in gene expression among the four muscles. Specifically, 2777 differentially expressed genes (DEGs) were detected between six pairwise comparisons of the four muscles. Weighted gene co-expression network analysis (WGCNA) identified six modules, which were significantly associated with muscle fiber diameter. We also identified 23 candidate genes, and enrichment analysis showed that biosynthesis of amino acids (bta01230), sarcomere (GO:0030017), and regulation of actin cytoskeleton (bta04810) overlapped in DEGs and WGCNA. Nineteen of these genes (e.g., EEF1A2, FARSB, and PINK1) have been reported to promote or inhibit muscle growth and development. Our findings contribute to the understanding of fiber size differences among oxidative and glycolytic muscles, which may provide a basis for breeding to improve meat yield.
Collapse
Affiliation(s)
- Wenxiang Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lili Du
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Keanning Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Haipeng Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
30
|
Bhaskara M, Anjorin O, Wang M. Mesenchymal Stem Cell-Derived Exosomal microRNAs in Cardiac Regeneration. Cells 2023; 12:2815. [PMID: 38132135 PMCID: PMC10742005 DOI: 10.3390/cells12242815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy is one of the most promising modalities for cardiac repair. Accumulated evidence suggests that the therapeutic value of MSCs is mainly attributable to exosomes. MSC-derived exosomes (MSC-Exos) replicate the beneficial effects of MSCs by regulating various cellular responses and signaling pathways implicated in cardiac regeneration and repair. miRNAs constitute an important fraction of exosome content and are key contributors to the biological function of MSC-Exo. MSC-Exo carrying specific miRNAs provides anti-apoptotic, anti-inflammatory, anti-fibrotic, and angiogenic effects within the infarcted heart. Studying exosomal miRNAs will provide an important insight into the molecular mechanisms of MSC-Exo in cardiac regeneration and repair. This significant information can help optimize cell-free treatment and overcome the challenges associated with MSC-Exo therapeutic application. In this review, we summarize the characteristics and the potential mechanisms of MSC-derived exosomal miRNAs in cardiac repair and regeneration.
Collapse
Affiliation(s)
| | | | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
31
|
Sharlo KA, Vilchinskaya NA, Tyganov SA, Turtikova OV, Lvova ID, Sergeeva KV, Rukavishnikov IV, Shenkman BS, Tomilovskaya ES, Orlov OI. Six-day dry immersion leads to downregulation of slow-fiber type and mitochondria-related genes expression. Am J Physiol Endocrinol Metab 2023; 325:E734-E743. [PMID: 37938180 DOI: 10.1152/ajpendo.00284.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
The soleus muscle in humans is responsible for maintaining an upright posture and participating in walking and running. Under muscle disuse, it undergoes molecular signaling changes that result in altered force and work capacity. The triggering mechanisms and pathways of these changes are not yet fully understood. In this article, we aimed to detect the molecular pathways that are involved in the unloading-induced alterations in the human soleus muscle under 6-days of dry immersion. A 6-day dry immersion led to the downregulation of mitochondrial biogenesis and dynamics markers, upregulation of calcium-dependent CaMK II phosphorylation, enhanced PGC1α promoter region methylation, and altered muscle micro-RNA expression, without affecting p-AMPK content or fiber-type transformation.NEW & NOTEWORTHY Dry immersion dysregulates mitochondrial genes expression, affects mi-RNA expression and PGC1 promoter methylation.
Collapse
Affiliation(s)
- Kristina A Sharlo
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey A Tyganov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Olga V Turtikova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Irina D Lvova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Ksenia V Sergeeva
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya V Rukavishnikov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Boris S Shenkman
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Elena S Tomilovskaya
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg I Orlov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Turić I, Velat I, Bušić Ž, Čulić V. Circulating thyroid hormones and clinical parameters of heart failure in men. Sci Rep 2023; 13:20319. [PMID: 37985786 PMCID: PMC10662258 DOI: 10.1038/s41598-023-47391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Heart failure (HF) is a multiple hormonal deficiency syndrome which includes alterations in the serum concentration of thyroid hormones (TH). This cross-sectional study enrolled 215 male patients hospitalised for acute HF. Data on cardiovascular risk factors, chronic medications, cardiac function assessed by echocardiography, and clinical parameters of HF were prospectively collected. The independent predictive association of TH with all investigated parameters of the HF severity were assessed. The patient's mean age was 74.4 years, 57.2% had arterial hypertension, 54.0% were consuming alcohol, and 42.3% were diabetics. Multivariate analysis revealed that total triiodothyronine (TT3) was an independent predictor of greater left ventricular ejection fraction (LVEF; β = 0.223, p = 0.008), less progressed left ventricular diastolic dysfunction (LVDD; β = - 0.271, p = 0.001) and lower N-terminal pro-brain natriuretic peptide (NT-proBNP; β = - 0.365, p < 0.001). None of the TH other than TT3 was associated with LVDD or NT-proBNP, whereas free triiodothyronine (β = - 0.197, p = 0.004), free thyroxine (β = - 0.223, p = 0.001) and total thyroxine (β = - 0.140, p = 0.041) were inversely associated with LVEF. The present study suggests that, among TH, serum TT3 level is most closely associated with echocardiographic, laboratory and clinical parameters of the severity of HF in men.
Collapse
Affiliation(s)
- Iva Turić
- Department of Cardiology and Angiology, University Hospital Centre Split, 21000, Split, Croatia
| | - Ivan Velat
- Department of Urology, University Hospital Centre Split, Split, Croatia
| | - Željko Bušić
- Department of Neurosurgery, University Hospital Centre Split, Split, Croatia
| | - Viktor Čulić
- Department of Cardiology and Angiology, University Hospital Centre Split, 21000, Split, Croatia.
- University of Split School of Medicine, Split, Croatia.
| |
Collapse
|
33
|
Koopmans PJ, Ismaeel A, Goljanek-Whysall K, Murach KA. The roles of miRNAs in adult skeletal muscle satellite cells. Free Radic Biol Med 2023; 209:228-238. [PMID: 37879420 PMCID: PMC10911817 DOI: 10.1016/j.freeradbiomed.2023.10.403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Satellite cells are bona fide muscle stem cells that are indispensable for successful post-natal muscle growth and regeneration after severe injury. These cells also participate in adult muscle adaptation in several capacities. MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA that are implicated in several aspects of stem cell function. There is evidence to suggest that miRNAs affect satellite cell behavior in vivo during development and myogenic progenitor behavior in vitro, but the role of miRNAs in adult skeletal muscle satellite cells is less studied. In this review, we provide evidence for how miRNAs control satellite cell function with emphasis on satellite cells of adult skeletal muscle in vivo. We first outline how miRNAs are indispensable for satellite cell viability and control the phases of myogenesis. Next, we discuss the interplay between miRNAs and myogenic cell redox status, senescence, and communication to other muscle-resident cells during muscle adaptation. Results from recent satellite cell miRNA profiling studies are also summarized. In vitro experiments in primary myogenic cells and cell lines have been invaluable for exploring the influence of miRNAs, but we identify a need for novel genetic tools to further interrogate how miRNAs control satellite cell behavior in adult skeletal muscle in vivo.
Collapse
Affiliation(s)
- Pieter Jan Koopmans
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Katarzyna Goljanek-Whysall
- School of Medicine, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
34
|
Yun Y, Wu R, He X, Qin X, Chen L, Sha L, Yun X, Nishiumi T, Borjigin G. Integrated Transcriptome Analysis of miRNAs and mRNAs in the Skeletal Muscle of Wuranke Sheep. Genes (Basel) 2023; 14:2034. [PMID: 38002977 PMCID: PMC10671749 DOI: 10.3390/genes14112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are regarded as important regulators in skeletal muscle development. To reveal the regulatory roles of miRNAs and their target mRNAs underlying the skeletal muscle development of Wuranke sheep, we investigated the miRNA and mRNA expression profiles in the biceps femoris of these sheep at the fetal (3 months of gestation) and 3- and 15-month-old postnatal stages. Consequently, a total of 1195 miRNAs and 24,959 genes were identified. Furthermore, 474, 461, and 54 differentially expressed miRNAs (DEMs) and 6783, 7407, and 78 differentially expressed genes (DEGs) were detected among three comparative groups. Functional analysis demonstrated that the target mRNAs of the DEMs were enriched in multiple pathways related to muscle development. Moreover, the interactions among several predicted miRNA-mRNA pairs (oar-miR-133-HDAC1, oar-miR-1185-5p-MYH1/HADHA/OXCT1, and PC-5p-3703_578-INSR/ACTG1) that potentially affect skeletal muscle development were verified using dual-luciferase reporter assays. In this study, we identified the miRNA and mRNA differences in the skeletal muscle of Wuranke sheep at different developmental stages and revealed that a series of candidate miRNA-mRNA pairs may act as modulators of muscle development. These results will contribute to future studies on the function of miRNAs and their target mRNAs during skeletal muscle development in Wuranke sheep.
Collapse
Affiliation(s)
- Yueying Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Rihan Wu
- College of Biochemistry and Engineering, Hohhot Vocational College, Hohhot 010051, China;
| | - Xige He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Xia Qin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Lu Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Lina Sha
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| | - Tadayuki Nishiumi
- Division of Life and Food Science, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Gerelt Borjigin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Y.); (X.H.); (X.Q.); (L.C.); (L.S.); (X.Y.)
| |
Collapse
|
35
|
Yang Y, Wu J, Liu W, Zhao Y, Chen H. The Function and Regulation Mechanism of Non-Coding RNAs in Muscle Development. Int J Mol Sci 2023; 24:14534. [PMID: 37833983 PMCID: PMC10572267 DOI: 10.3390/ijms241914534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Animal skeletal muscle growth is regulated by a complex molecular network including some non-coding RNAs (ncRNAs). In this paper, we review the non-coding RNAs related to the growth and development of common animal skeletal muscles, aiming to provide a reference for the in-depth study of the role of ncRNAs in the development of animal skeletal muscles, and to provide new ideas for the improvement of animal production performance.
Collapse
Affiliation(s)
- Yaling Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Jian Wu
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Yumin Zhao
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| |
Collapse
|
36
|
Burgon PG, Weldrick JJ, Talab OMSA, Nadeer M, Nomikos M, Megeney LA. Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes. Cells 2023; 12:2324. [PMID: 37759546 PMCID: PMC10528641 DOI: 10.3390/cells12182324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.
Collapse
Affiliation(s)
- Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jonathan J. Weldrick
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
| | | | - Muhammad Nadeer
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Lynn A. Megeney
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
37
|
Yang Y, GuangXuan H, GenMeng W, MengHuan L, Bo C, XueJie Y. Idiopathic inflammatory myopathy and non-coding RNA. Front Immunol 2023; 14:1227945. [PMID: 37744337 PMCID: PMC10512060 DOI: 10.3389/fimmu.2023.1227945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/11/2023] [Indexed: 09/26/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are common autoimmune diseases that affect skeletal muscle quality and function. The lack of an early diagnosis and treatment can lead to irreversible muscle damage. Non-coding RNAs (ncRNAs) play an important role in inflammatory transfer, muscle regeneration, differentiation, and regulation of specific antibody levels and pain in IIMs. ncRNAs can be detected in blood and hair; therefore, ncRNAs detection has great potential for diagnosing, preventing, and treating IIMs in conjunction with other methods. However, the specific roles and mechanisms underlying the regulation of IIMs and their subtypes remain unclear. Here, we review the mechanisms by which micro RNAs and long non-coding RNA-messenger RNA networks regulate IIMs to provide a basis for ncRNAs use as diagnostic tools and therapeutic targets for IIMs.
Collapse
Affiliation(s)
- Yang Yang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hu GuangXuan
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Wan GenMeng
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Li MengHuan
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Chang Bo
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yi XueJie
- Social Science Research Center, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
38
|
Foote AT, Kelm RJ. Aromatic Residues Dictate the Transcriptional Repressor and Single-Stranded DNA Binding Activities of Purine-Rich Element Binding Protein B. Biochemistry 2023; 62:2597-2610. [PMID: 37556352 DOI: 10.1021/acs.biochem.3c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Purine-rich element binding protein B (Purβ) is a single-stranded DNA (ssDNA) and RNA-binding protein that functions as a transcriptional repressor of genes encoding certain muscle-restricted contractile proteins in the setting of cellular stress or tissue injury. A prior report from our laboratory implicated specific basic amino acid residues in the physical and functional interaction of Purβ with the smooth muscle-α actin gene (Acta2) promoter. Independent structural analysis of fruit fly Purα uncovered a role for several aromatic residues in the binding of this related protein to ssDNA. Herein, we examine the functional importance of a comparable set of hydrophobic residues that are positionally conserved in the repeat I (Y59), II (F155), and III (F256) domains of murine Purβ. Site-directed Y/F to alanine substitutions were engineered, and the resultant Purβ point mutants were tested in various biochemical and cell-based assays. None of the mutations affected the cellular expression, structural stability, or dimerization capacity of Purβ. However, the Y59A and F155A mutants demonstrated weaker Acta2 repressor activity in transfected fibroblasts and reduced binding affinity for the purine-rich strand of an Acta2 cis-regulatory element in vitro. Mutation of Y59 and F155 also altered the multisite binding properties of Purβ for ssDNA and diminished the interaction of Purβ with Y-box binding protein 1, a co-repressor of Acta2. Collectively, these findings suggest that some of the same aromatic residues, which govern the specific and high-affinity binding of Purβ to ssDNA, also mediate certain heterotypic protein interactions underlying the Acta2 repressor function of Purβ.
Collapse
Affiliation(s)
- Andrea T Foote
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont 05405, United States
| | - Robert J Kelm
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont 05405, United States
- Department of Biochemistry, University of Vermont, Larner College of Medicine, Burlington, Vermont 05405, United States
| |
Collapse
|
39
|
Kabłak-Ziembicka A, Badacz R, Okarski M, Wawak M, Przewłocki T, Podolec J. Cardiac microRNAs: diagnostic and therapeutic potential. Arch Med Sci 2023; 19:1360-1381. [PMID: 37732050 PMCID: PMC10507763 DOI: 10.5114/aoms/169775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/18/2023] [Indexed: 09/22/2023] Open
Abstract
MicroRNAs are small non-coding post-translational biomolecules which, when expressed, modify their target genes. It is estimated that microRNAs regulate production of approximately 60% of all human proteins and enzymes that are responsible for major physiological processes. In cardiovascular disease pathophysiology, there are several cells that produce microRNAs, including endothelial cells, vascular smooth muscle cells, macrophages, platelets, and cardiomyocytes. There is a constant crosstalk between microRNAs derived from various cell sources. Atherosclerosis initiation and progression are driven by many pro-inflammatory and pro-thrombotic microRNAs. Atherosclerotic plaque rupture is the leading cause of cardiovascular death resulting from acute coronary syndrome (ACS) and leads to cardiac remodeling and fibrosis following ACS. MicroRNAs are powerful modulators of plaque progression and transformation into a vulnerable state, which can eventually lead to plaque rupture. There is a growing body of evidence which demonstrates that following ACS, microRNAs might inhibit fibroblast proliferation and scarring, as well as harmful apoptosis of cardiomyocytes, and stimulate fibroblast reprogramming into induced cardiac progenitor cells. In this review, we focus on the role of cardiomyocyte-derived and cardiac fibroblast-derived microRNAs that are involved in the regulation of genes associated with cardiomyocyte and fibroblast function and in atherosclerosis-related cardiac ischemia. Understanding their mechanisms may lead to the development of microRNA cocktails that can potentially be used in regenerative cardiology.
Collapse
Affiliation(s)
- Anna Kabłak-Ziembicka
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
| | - Rafał Badacz
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Michał Okarski
- Student Scientific Group of Modern Cardiac Therapy at the Department of Interventional Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Wawak
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| | - Tadeusz Przewłocki
- Noninvasive Cardiovascular Laboratory, the John Paul II Hospital, Krakow, Poland
- Department of Cardiac and Vascular Diseases Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Podolec
- Department of Interventional Cardiology, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Department of Interventional Cardiology, the John Paul II Hospital, Krakow, Poland
| |
Collapse
|
40
|
Chumakova OS, Baulina NM. Advanced searching for hypertrophic cardiomyopathy heritability in real practice tomorrow. Front Cardiovasc Med 2023; 10:1236539. [PMID: 37583586 PMCID: PMC10425241 DOI: 10.3389/fcvm.2023.1236539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease associated with morbidity and mortality at any age. As studies in recent decades have shown, the genetic architecture of HCM is quite complex both in the entire population and in each patient. In the rapidly advancing era of gene therapy, we have to provide a detailed molecular diagnosis to our patients to give them the chance for better and more personalized treatment. In addition to emphasizing the importance of genetic testing in routine practice, this review aims to discuss the possibility to go a step further and create an expanded genetic panel that contains not only variants in core genes but also new candidate genes, including those located in deep intron regions, as well as structural variations. It also highlights the benefits of calculating polygenic risk scores based on a combination of rare and common genetic variants for each patient and of using non-genetic HCM markers, such as microRNAs that can enhance stratification of risk for HCM in unselected populations alongside rare genetic variants and clinical factors. While this review is focusing on HCM, the discussed issues are relevant to other cardiomyopathies.
Collapse
Affiliation(s)
- Olga S. Chumakova
- Laboratory of Functional Genomics of Cardiovascular Diseases, National Medical Research Centre of Cardiology Named After E.I. Chazov, Moscow, Russia
| | | |
Collapse
|
41
|
Fahrner A, Alchus Laiferová N, Ukropcová B, Ukropec J, Krützfeldt J. Activation of PDGF Signaling in the Adult Muscle Stem Cell Niche in Patients With Type 2 Diabetes Mellitus. J Clin Endocrinol Metab 2023; 108:2052-2064. [PMID: 36702759 PMCID: PMC10348470 DOI: 10.1210/clinem/dgad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
CONTEXT Type 2 diabetes mellitus (T2D) negatively affects muscle mass and function throughout life. Whether adult muscle stem cells contribute to the decrease in muscle health is not clear and insights into the stem cell niche are difficult to obtain. OBJECTIVE To establish the upstream signaling pathway of microRNA (miR)-501, a marker of activated myogenic progenitor cells, and interrogate this pathway in muscle biopsies from patients with T2D. METHODS Analysis of primary muscle cell cultures from mice and 4 normoglycemic humans and muscle biopsies from 7 patients with T2D and 7 normoglycemic controls using gene expression, information on histone methylation, peptide screening, and promoter assays. RESULTS miR-501 shares the promoter of its host gene, isoform 2 of chloride voltage-gated channel 5 (CLCN5-2), and miR-501 expression increases during muscle cell differentiation. We identify platelet-derived growth factor (PDGF) as an upstream regulator of CLCN5-2 and miR-501 via Janus kinase/signal transducer and activator of transcription. Skeletal muscle biopsies from patients with T2D revealed upregulation of PDGF (1.62-fold, P = .002), CLCN5-2 (2.85-fold, P = .03), and miR-501 (1.73-fold, P = .02) compared with normoglycemic controls. In addition, we observed a positive correlation of PDGF and miR-501 in human skeletal muscle (r = 0.542, P = .045, n = 14). CONCLUSIONS We conclude that paracrine signaling in the adult muscle stem cells niche is activated in T2D. Expression analysis of the PDGF-miR-501 signaling pathway could represent a powerful tool to classify patients in clinical trials that aim to improve muscle health and glucose homeostasis in patients with diabetes.
Collapse
Affiliation(s)
- Alexandra Fahrner
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091 Zurich, Switzerland
- Life Science Zurich Graduate School, Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Nikoleta Alchus Laiferová
- Department of Metabolic Disease Research, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Barbara Ukropcová
- Department of Metabolic Disease Research, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| | - Jozef Ukropec
- Department of Metabolic Disease Research, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091 Zurich, Switzerland
- Life Science Zurich Graduate School, Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
42
|
Chimenti C, Magnocavallo M, Vetta G, Alfarano M, Manguso G, Ajmone F, Ballatore F, Costantino J, Ciaramella P, Severino P, Miraldi F, Lavalle C, Vizza CD. The Role of MicroRNA in the Myocarditis: a Small Actor for a Great Role. Curr Cardiol Rep 2023:10.1007/s11886-023-01888-5. [PMID: 37269474 DOI: 10.1007/s11886-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Myocarditis is an inflammation of the myocardium secondary to a variety of agents such as infectious pathogens, toxins, drugs, and autoimmune disorders. In our review, we provide an overview of miRNA biogenesis and their role in the etiology and pathogenesis of myocarditis, evaluating future directions for myocarditis management. RECENT FINDINGS Advances in genetic manipulation techniques allowed to demonstrate the important role of RNA fragments, especially microRNAs (miRNAs), in cardiovascular pathogenesis. miRNAs are small non-coding RNA molecules that regulate the post-transcriptional gene expression. Advances in molecular techniques allowed to identify miRNA's role in pathogenesis of myocarditis. miRNAs are related to viral infection, inflammation, fibrosis, and apoptosis of cardiomyocytes, making them not only promising diagnostic markers but also prognostics and therapeutic targets in myocarditis. Of course, further real-world studies will be needed to assess the diagnostic accuracy and applicability of miRNA in the myocarditis diagnosis.
Collapse
Affiliation(s)
- Cristina Chimenti
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy.
| | - Michele Magnocavallo
- Cardiology Division, Arrhythmology Unit, S. Giovanni Calibita Hospital, Isola Tiberina, Rome, Italy
| | - Giampaolo Vetta
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Messina, Mesina, Italy
| | - Maria Alfarano
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Giulia Manguso
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Francesco Ajmone
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Federico Ballatore
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Jacopo Costantino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Piera Ciaramella
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Paolo Severino
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Fabio Miraldi
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carlo Lavalle
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Carmine Dario Vizza
- Clinical, Anestesiologic and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Grieb A, Schmitt A, Fragasso A, Widmann M, Mattioni Maturana F, Burgstahler C, Erz G, Schellhorn P, Nieß AM, Munz B. Skeletal Muscle MicroRNA Patterns in Response to a Single Bout of Exercise in Females: Biomarkers for Subsequent Training Adaptation? Biomolecules 2023; 13:884. [PMID: 37371465 DOI: 10.3390/biom13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
microRNAs (miRs) have been proposed as a promising new class of biomarkers in the context of training adaptation. Using microarray analysis, we studied skeletal muscle miR patterns in sedentary young healthy females (n = 6) before and after a single submaximal bout of endurance exercise ('reference training'). Subsequently, participants were subjected to a structured training program, consisting of six weeks of moderate-intensity continuous endurance training (MICT) and six weeks of high-intensity interval training (HIIT) in randomized order. In vastus lateralis muscle, we found significant downregulation of myomiRs, specifically miR-1, 133a-3p, and -5p, -133b, and -499a-5p. Similarly, exercise-associated miRs-23a-3p, -378a-5p, -128-3p, -21-5p, -107, -27a-3p, -126-3p, and -152-3p were significantly downregulated, whereas miR-23a-5p was upregulated. Furthermore, in an untargeted approach for differential expression in response to acute exercise, we identified n = 35 miRs that were downregulated and n = 20 miRs that were upregulated by factor 4.5 or more. Remarkably, KEGG pathway analysis indicated central involvement of this set of miRs in fatty acid metabolism. To reproduce these data in a larger cohort of all-female subjects (n = 29), qPCR analysis was carried out on n = 15 miRs selected from the microarray, which confirmed their differential expression. Furthermore, the acute response, i.e., the difference between miR concentrations before and after the reference training, was correlated with changes in maximum oxygen uptake (V̇O2max) in response to the training program. Here, we found that miRs-199a-3p and -19b-3p might be suitable acute-response candidates that correlate with individual degrees of training adaptation in females.
Collapse
Affiliation(s)
- Alexandra Grieb
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Angelika Schmitt
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Annunziata Fragasso
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Manuel Widmann
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Felipe Mattioni Maturana
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Christof Burgstahler
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Gunnar Erz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Philipp Schellhorn
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Andreas M Nieß
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Barbara Munz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| |
Collapse
|
44
|
Sharlo KA, Lvova ID, Sidorenko DA, Tyganov SA, Sharlo DT, Shenkman BS. Β-GPA administration activates slow oxidative muscle signaling pathways and protects soleus muscle against the increased fatigue under 7-days of rat hindlimb suspension. Arch Biochem Biophys 2023; 743:109647. [PMID: 37230367 DOI: 10.1016/j.abb.2023.109647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Unloading of slow-twitch muscles results in increased muscle fatigue and the mechanisms of this effect are poorly studied. We aimed to analyze the role of high-energy phosphates accumulation during the first week of rat hindlimb suspension plays in a fiber-type phenotype shift towards fast-type fatigable muscle fibers. Male Wistar rats were divided into 3 groups (n = 8): C - vivarium control; 7HS - 7-day hindlimb suspension; 7HB - 7-day hindlimb suspension with intraperitoneal injection of beta-guanidine propionic acid (β-GPA, 400 mg/kg b w). β-GPA is a competitive inhibitor of creatine kinase and it reduces concentrations of ATP and phosphocreatine. In the 7HB group, β-GPA treatment protected a slow-type signaling network in an unloaded soleus muscle, including MOTS-C, AMPK, PGC1 α and micro-RNA-499. These signaling effects resulted in a preserved soleus muscle fatigue resistance, slow-type muscle fibers percentage and mitochondrial DNA copy number under muscle unloading.
Collapse
Affiliation(s)
- K A Sharlo
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| | - I D Lvova
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| | - D A Sidorenko
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| | - S A Tyganov
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| | - D T Sharlo
- Federal State Budgetary Educational Institution of Higher Education, Bauman Moscow State Technical University, Russia.
| | - B S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow, Russia.
| |
Collapse
|
45
|
Sadaki S, Fujita R, Hayashi T, Nakamura A, Okamura Y, Fuseya S, Hamada M, Warabi E, Kuno A, Ishii A, Muratani M, Okada R, Shiba D, Kudo T, Takeda S, Takahashi S. Large Maf transcription factor family is a major regulator of fast type IIb myofiber determination. Cell Rep 2023; 42:112289. [PMID: 36952339 DOI: 10.1016/j.celrep.2023.112289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.
Collapse
Affiliation(s)
- Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayano Nakamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yui Okamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Warabi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akiko Ishii
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
46
|
Gholipour A, Zahedmehr A, Shakerian F, Irani S, Oveisee M, Mowla SJ, Malakootian M. Significance of microRNA-targeted ErbB signaling pathway genes in cardiomyocyte differentiation. Mol Cell Probes 2023; 69:101912. [PMID: 37019292 DOI: 10.1016/j.mcp.2023.101912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE(S) Cardiomyocyte differentiation is a complex process that follows the progression of gene expression alterations. The ErbB signaling pathway is necessary for various stages of cardiac development. We aimed to identify potential microRNAs targeting the ErbB signaling pathway genes by in silico approaches. METHODS Small RNA-sequencing data were obtained from GSE108021 for cardiomyocyte differentiation. Differentially expressed miRNAs were acquired via the DESeq2 package. Signaling pathways and gene ontology processes for the identified miRNAs were determined and the targeted genes of those miRNAs affecting the ErbB signaling pathway were determined. RESULTS Results revealed highly differentially expressed miRNAs were common between the differentiation stages and they targeted the genes involved in the ErbB signaling pathway as follows: let-7g-5p targets both CDKN1A and NRAS, while let-7c-5p and let-7d-5p hit CDKN1A and NRAS exclusively. let-7 family members targeted MAPK8 and ABL2. GSK3B was targeted by miR-199a-5p and miR-214-3p, and ERBB4 was targeted by miR-199b-3p and miR-653-5p. miR-214-3p, miR-199b-3p, miR-1277-5p, miR-21-5p, and miR-21-3p targeted CBL, mTOR, Jun, JNKK, and GRB1, respectively. MAPK8 was targeted by miR-214-3p, and ABL2 was targeted by miR-125b-5p and miR-1277-5p, too. CONCLUSION We determined miRNAs and their target genes in the ErbB signaling pathway in cardiomyocyte development and consequently heart pathophysiology progression.
Collapse
Affiliation(s)
- Akram Gholipour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Kirchner H, Weisner L, Wilms B. When should I run-the role of exercise timing in metabolic health. Acta Physiol (Oxf) 2023; 237:e13953. [PMID: 36815281 DOI: 10.1111/apha.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
The prevalence of type 2 diabetes is reaching epidemic proportions. First line therapy approaches are lifestyle interventions including exercise. Although a vast amount of studies reports on beneficial effects of exercise on metabolism in humans per se, overall data are contradictory which makes it difficult to optimize interventions. Innovative exercise strategies and its underlying mechanism are needed to elucidate in order to close this therapeutic gap. The skeletal muscle produces and secretes myokines and microRNAs in response to exercise and both are discussed as mechanisms linking exercise and metabolic adaptation. Aspects of chronophysiology such as diurnal variation in insulin sensitivity or exercise as a signal to reset dysregulated peripheral clocks are of growing interest in the context of impaired metabolism. Deep insight of how exercise timing determines metabolic adaptations is required to optimize exercise interventions. This review aims to summarize the current state of research on the interaction between timing of exercise and metabolism in humans, providing insights into proposed mechanistic concepts focusing on myokines and microRNAs. First evidence points to an impact of timing of exercise on health outcome, although data are inconclusive. Underlying mechanisms remain elusive. It is currently unknown if the timed release of mykokines depends on time of day when exercise is performed. microRNAs have been found as an important mediator of processes associated with exercise adaptation. Further research is needed to evaluate their full relevance. In conclusion, it seems to be too early to provide concrete recommendations on timing of exercise to maximize beneficial effects.
Collapse
Affiliation(s)
- Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Leon Weisner
- Institute of Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| | - Britta Wilms
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Endocrinology and Diabetes, University of Luebeck, Luebeck, Germany
| |
Collapse
|
48
|
Jacobs N, Mos D, Bloemers FW, van der Laarse WJ, Jaspers RT, van der Zwaard S. Low myoglobin concentration in skeletal muscle of elite cyclists is associated with low mRNA expression levels. Eur J Appl Physiol 2023:10.1007/s00421-023-05161-z. [PMID: 36877252 DOI: 10.1007/s00421-023-05161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Myoglobin is essential for oxygen transport to the muscle fibers. However, measurements of myoglobin (Mb) protein concentrations within individual human muscle fibers are scarce. Recent observations have revealed surprisingly low Mb concentrations in elite cyclists, however it remains unclear whether this relates to Mb translation, transcription and/or myonuclear content. The aim was to compare Mb concentration, Mb messenger RNA (mRNA) expression levels and myonuclear content within muscle fibers of these elite cyclists with those of physically-active controls. Muscle biopsies were obtained from m. vastus lateralis in 29 cyclists and 20 physically-active subjects. Mb concentration was determined by peroxidase staining for both type I and type II fibers, Mb mRNA expression level was determined by quantitative PCR and myonuclear domain size (MDS) was obtained by immunofluorescence staining. Average Mb concentrations (mean ± SD: 0.38 ± 0.04 mM vs. 0.48 ± 0.19 mM; P = 0.014) and Mb mRNA expression levels (0.067 ± 0.019 vs. 0.088 ± 0.027; P = 0.002) were lower in cyclists compared to controls. In contrast, MDS and total RNA per mg muscle were not different between groups. Interestingly, in cyclists compared to controls, Mb concentration was only lower for type I fibers (P < 0.001), but not for type II fibers (P > 0.05). In conclusion, the lower Mb concentration in muscle fibers of elite cyclists is partly explained by lower Mb mRNA expression levels per myonucleus and not by a lower myonuclear content. It remains to be determined whether cyclists may benefit from strategies that upregulate Mb mRNA expression levels, particularly in type I fibers, to enhance their oxygen supply.
Collapse
Affiliation(s)
- Nina Jacobs
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniek Mos
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank W Bloemers
- Department for Trauma Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Richard T Jaspers
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephan van der Zwaard
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Zhelankin AV, Iulmetova LN, Ahmetov II, Generozov EV, Sharova EI. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition. Life (Basel) 2023; 13:659. [PMID: 36983815 PMCID: PMC10056610 DOI: 10.3390/life13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ratio of fast- and slow-twitch fibers in human skeletal muscle is variable and largely determined by genetic factors. In this study, we investigated the contribution of microRNA (miRNA) in skeletal muscle fiber type composition. The study involved biopsy samples of the vastus lateralis muscle from 24 male participants with distinct fiber type ratios. The miRNA study included samples from five endurance athletes and five power athletes with the predominance of slow-twitch (61.6-72.8%) and fast-twitch (69.3-80.7%) fibers, respectively. Total and small RNA were extracted from tissue samples. Total RNA sequencing (N = 24) revealed 352 differentially expressed genes between the groups with the predominance of fast- and slow-twitch muscle fibers. Small RNA sequencing showed upregulation of miR-206, miR-501-3p and miR-185-5p, and downregulation of miR-499a-5p and miR-208-5p in the group of power athletes with fast-twitch fiber predominance. Two miRtronic miRNAs, miR-208b-3p and miR-499a-5p, had strong correlations in expression with their host genes (MYH7 and MYH7B, respectively). Correlations between the expression of miRNAs and their experimentally validated messenger RNA (mRNA) targets were calculated, and 11 miRNA-mRNA interactions with strong negative correlations were identified. Two of them belonged to miR-208b-3p and miR-499a-5p, indicating their regulatory links with the expression of CDKN1A and FOXO4, respectively.
Collapse
Affiliation(s)
- Andrey V. Zhelankin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Liliia N. Iulmetova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Eduard V. Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Elena I. Sharova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
50
|
Maggio S, Canonico B, Ceccaroli P, Polidori E, Cioccoloni A, Giacomelli L, Ferri Marini C, Annibalini G, Gervasi M, Benelli P, Fabbri F, Del Coco L, Fanizzi FP, Giudetti AM, Lucertini F, Guescini M. Modulation of the Circulating Extracellular Vesicles in Response to Different Exercise Regimens and Study of Their Inflammatory Effects. Int J Mol Sci 2023; 24:ijms24033039. [PMID: 36769362 PMCID: PMC9917742 DOI: 10.3390/ijms24033039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Exercise-released extracellular vesicles (EVs) are emerging as a novel class of exerkines that promotes systemic beneficial effects. However, slight differences in the applied exercise protocols in terms of mode, intensity and duration, as well as the need for standardized protocols for EV isolation, make the comparison of the studies in the literature extremely difficult. This work aims to investigate the EV amount and EV-associated miRNAs released in circulation in response to different physical exercise regimens. Healthy individuals were subjected to different exercise protocols: acute aerobic exercise (AAE) and training (AT), acute maximal aerobic exercise (AMAE) and altitude aerobic training (AAT). We found a tendency for total EVs to increase in the sedentary condition compared to trained participants following AAE. Moreover, the cytofluorimetric analysis showed an increase in CD81+/SGCA+/CD45- EVs in response to AAE. Although a single bout of moderate/maximal exercise did not impact the total EV number, EV-miRNA levels were affected as a result. In detail, EV-associated miR-206, miR-133b and miR-146a were upregulated following AAE, and this trend appeared intensity-dependent. Finally, THP-1 macrophage treatment with exercise-derived EVs induced an increase of the mRNAs encoding for IL-1β, IL-6 and CD163 using baseline and immediately post-exercise EVs. Still, 1 h post-exercise EVs failed to stimulate a pro-inflammatory program. In conclusion, the reported data provide a better understanding of the release of circulating EVs and their role as mediators of the inflammatory processes associated with exercise.
Collapse
Affiliation(s)
- Serena Maggio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Paola Ceccaroli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Emanuela Polidori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Andrea Cioccoloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Luca Giacomelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Carlo Ferri Marini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Piero Benelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Laura Del Coco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Centro Ecotekne, Monteroni, 73047 Lecce, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Centro Ecotekne, Monteroni, 73047 Lecce, Italy
| | - Anna Maria Giudetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Centro Ecotekne, Monteroni, 73047 Lecce, Italy
| | - Francesco Lucertini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| |
Collapse
|