1
|
Blanchard GB, Scarpa E, Muresan L, Sanson B. Mechanical stress combines with planar polarised patterning during metaphase to orient embryonic epithelial cell divisions. Development 2024; 151:dev202862. [PMID: 38639390 PMCID: PMC11165716 DOI: 10.1242/dev.202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
The planar orientation of cell division (OCD) is important for epithelial morphogenesis and homeostasis. Here, we ask how mechanics and antero-posterior (AP) patterning combine to influence the first divisions after gastrulation in the Drosophila embryonic epithelium. We analyse hundreds of cell divisions and show that stress anisotropy, notably from compressive forces, can reorient division directly in metaphase. Stress anisotropy influences the OCD by imposing metaphase cell elongation, despite mitotic rounding, and overrides interphase cell elongation. In strongly elongated cells, the mitotic spindle adapts its length to, and hence its orientation is constrained by, the cell long axis. Alongside mechanical cues, we find a tissue-wide bias of the mitotic spindle orientation towards AP-patterned planar polarised Myosin-II. This spindle bias is lost in an AP-patterning mutant. Thus, a patterning-induced mitotic spindle orientation bias overrides mechanical cues in mildly elongated cells, whereas in strongly elongated cells the spindle is constrained close to the high stress axis.
Collapse
Affiliation(s)
- Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
2
|
Hsu CR, Sangha G, Fan W, Zheng J, Sugioka K. Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis. Nat Commun 2023; 14:8138. [PMID: 38065974 PMCID: PMC10709429 DOI: 10.1038/s41467-023-43996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokinesis plays crucial roles in morphogenesis. Previous studies have examined how tissue mechanics influences the position and closure direction of the contractile ring. However, the mechanisms by which the ring senses tissue mechanics remain largely elusive. Here, we show the mechanism of contractile ring mechanosensation and its tuning during asymmetric ring closure of Caenorhabditis elegans embryos. Integrative analysis of ring closure and cell cortex dynamics revealed that mechanical suppression of the ring-directed cortical flow is associated with asymmetric ring closure. Consistently, artificial obstruction of ring-directed cortical flow induces asymmetric ring closure in otherwise symmetrically dividing cells. Anillin is vital for mechanosensation. Our genetic analysis suggests that the positive feedback loop among ring-directed cortical flow, myosin enrichment, and ring constriction constitutes a mechanosensitive pathway driving asymmetric ring closure. These findings and developed tools should advance the 4D mechanobiology of cytokinesis in more complex tissues.
Collapse
Affiliation(s)
- Christina Rou Hsu
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Gaganpreet Sangha
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Wayne Fan
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Joey Zheng
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
3
|
Sugioka K. Symmetry-breaking of animal cytokinesis. Semin Cell Dev Biol 2021; 127:100-109. [PMID: 34955355 DOI: 10.1016/j.semcdb.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Cytokinesis is a mechanism that separates dividing cells via constriction of a supramolecular structure, the contractile ring. In animal cells, three modes of symmetry-breaking of cytokinesis result in unilateral cytokinesis, asymmetric cell division, and oriented cell division. Each mode of cytokinesis plays a significant role in tissue patterning and morphogenesis by the mechanisms that control the orientation and position of the contractile ring relative to the body axis. Despite its significance, the mechanisms involved in the symmetry-breaking of cytokinesis remain unclear in many cell types. Classical embryologists have identified that the geometric relationship between the mitotic spindle and cell cortex induces cytokinesis asymmetry; however, emerging evidence suggests that a concerted flow of compressional cell-cortex materials (cortical flow) is a spindle-independent driving force in spatial cytokinesis control. This review provides an overview of both classical and emerging mechanisms of cytokinesis asymmetry and their roles in animal development.
Collapse
Affiliation(s)
- Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T1Z3, Canada; Department of Zoology, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
4
|
Estermann MA, Hirst CE, Major AT, Smith CA. The homeobox gene TGIF1 is required for chicken ovarian cortical development and generation of the juxtacortical medulla. Development 2021; 148:dev199646. [PMID: 34387307 PMCID: PMC8406534 DOI: 10.1242/dev.199646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells: Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the homeobox transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations: the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in estrogen-mediated sex reversal experiments. Targeted misexpression and gene knockdown indicate that TGIF1 is required, but not sufficient, for proper ovarian cortex formation. In addition, TGIF1 is identified as the first known regulator of juxtacortical medulla development. These findings provide new insights into chicken ovarian differentiation and development, specifically cortical and juxtacortical medulla formation.
Collapse
Affiliation(s)
| | | | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
5
|
Moruzzi M, Nestor-Bergmann A, Goddard GK, Tarannum N, Brennan K, Woolner S. Generation of anisotropic strain dysregulates wild-type cell division at the interface between host and oncogenic tissue. Curr Biol 2021; 31:3409-3418.e6. [PMID: 34111402 PMCID: PMC8360906 DOI: 10.1016/j.cub.2021.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/19/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Epithelial tissues are highly sensitive to anisotropies in mechanical force, with cells altering fundamental behaviors, such as cell adhesion, migration, and cell division.1-5 It is well known that, in the later stages of carcinoma (epithelial cancer), the presence of tumors alters the mechanical properties of a host tissue and that these changes contribute to disease progression.6-9 However, in the earliest stages of carcinoma, when a clonal cluster of oncogene-expressing cells first establishes in the epithelium, the extent to which mechanical changes alter cell behavior in the tissue as a whole remains unclear. This is despite knowledge that many common oncogenes, such as oncogenic Ras, alter cell stiffness and contractility.10-13 Here, we investigate how mechanical changes at the cellular level of an oncogenic cluster can translate into the generation of anisotropic strain across an epithelium, altering cell behavior in neighboring host tissue. We generated clusters of oncogene-expressing cells within otherwise normal in vivo epithelium, using Xenopus laevis embryos. We find that cells in kRasV12, but not cMYC, clusters have increased contractility, which introduces radial stress in the tissue and deforms surrounding host cells. The strain imposed by kRasV12 clusters leads to increased cell division and altered division orientation in neighboring host tissue, effects that can be rescued by reducing actomyosin contractility specifically in the kRasV12 cells. Our findings indicate that some oncogenes can alter the mechanical and proliferative properties of host tissue from the earliest stages of cancer development, changes that have the potential to contribute to tumorigenesis.
Collapse
Affiliation(s)
- Megan Moruzzi
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alexander Nestor-Bergmann
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK; School of Mathematics, University of Manchester, Manchester M13 9PL, UK
| | - Georgina K Goddard
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nawseen Tarannum
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Keith Brennan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
6
|
Crozet F, Da Silva C, Verlhac MH, Terret ME. Myosin-X is dispensable for spindle morphogenesis and positioning in the mouse oocyte. Development 2021; 148:dev.199364. [PMID: 33722900 PMCID: PMC8077531 DOI: 10.1242/dev.199364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 01/08/2023]
Abstract
Off-center spindle positioning in mammalian oocytes enables asymmetric divisions in size, which are important for subsequent embryogenesis. The migration of the meiosis I spindle from the oocyte center to its cortex is mediated by F-actin. Specifically, an F-actin cage surrounds the microtubule spindle and applies forces to it. To better understand how F-actin transmits forces to the spindle, we studied a potential direct link between F-actin and microtubules. For this, we tested the implication of myosin-X, a known F-actin and microtubule binder involved in spindle morphogenesis and/or positioning in somatic cells, amphibian oocytes and embryos. Using a mouse strain conditionally invalidated for myosin-X in oocytes and by live-cell imaging, we show that myosin-X is not localized on the spindle, and is dispensable for spindle and F-actin assembly. It is not required for force transmission as spindle migration and chromosome alignment occur normally. More broadly, myosin-X is dispensable for oocyte developmental potential and female fertility. We therefore exclude a role for myosin-X in transmitting F-actin-mediated forces to the spindle, opening new perspectives regarding this mechanism in mouse oocytes, which differ from most mitotic cells. Summary: Cortical spindle positioning in mammalian oocytes relies on the interplay between actin and the microtubule spindle. Myosin-X, an obvious candidate for linking these two cytoskeletal elements, is dispensable in mouse oocytes.
Collapse
Affiliation(s)
- Flora Crozet
- CIRB, Collège de France, UMR7241/U1050, 75005 Paris, France
| | | | | | | |
Collapse
|
7
|
Fujii Y, Koizumi WC, Imai T, Yokobori M, Matsuo T, Oka K, Hotta K, Okajima T. Spatiotemporal dynamics of single cell stiffness in the early developing ascidian chordate embryo. Commun Biol 2021; 4:341. [PMID: 33727646 PMCID: PMC7966737 DOI: 10.1038/s42003-021-01869-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/18/2021] [Indexed: 12/30/2022] Open
Abstract
During the developmental processes of embryos, cells undergo massive deformation and division that are regulated by mechanical cues. However, little is known about how embryonic cells change their mechanical properties during different cleavage stages. Here, using atomic force microscopy, we investigated the stiffness of cells in ascidian embryos from the fertilised egg to the stage before gastrulation. In both animal and vegetal hemispheres, we observed a Rho kinase (ROCK)-independent cell stiffening that the cell stiffness exhibited a remarkable increase at the timing of cell division where cortical actin filaments were organized. Furthermore, in the vegetal hemisphere, we observed another mechanical behaviour, i.e., a ROCK-associated cell stiffening, which was retained even after cell division or occurred without division and propagated sequentially toward adjacent cells, displaying a characteristic cell-to-cell mechanical variation. The results indicate that the mechanical properties of embryonic cells are regulated at the single cell level in different germ layers. Fujii et al. investigate the stiffness of cells in ascidian embryos from the fertilised egg to the stage before gastrulation. They find two types of cell stiffening, occurring during cell division and in the interphase, the latter of which is associated with the Rho kinase pathway. They conclude that the mechanical properties of early embryonic cells are regulated specifically at the single cell level.
Collapse
Affiliation(s)
- Yuki Fujii
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Wataru C Koizumi
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Taichi Imai
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Megumi Yokobori
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Tomohiro Matsuo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kotaro Oka
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kohji Hotta
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan.
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
8
|
Hatte G, Prigent C, Tassan JP. Adherens junctions are involved in polarized contractile ring formation in dividing epithelial cells of Xenopus laevis embryos. Exp Cell Res 2021; 402:112525. [PMID: 33662366 DOI: 10.1016/j.yexcr.2021.112525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Cells dividing in the plane of epithelial tissues proceed by polarized constriction of the actomyosin contractile ring, leading to asymmetric ingression of the plasma mem brane. Asymmetric cytokinesis results in the apical positioning of the actomyosin contractile ring and ultimately of the midbody. Studies have indicated that the contractile ring is associated with adherens junctions, whose role is to maintain epithelial tissue cohesion. However, it is yet unknown when the contractile ring becomes associated with adherens junctions in epithelial cells. Here, we examined contractile ring formation and activation in the epithelium of Xenopus embryos and explored the implication of adherens junctions in the contractile ring formation. We show that accumulation of proteins involved in contractile ring formation and activation is polarized, starting at apical cell-cell contacts at the presumptive division site and spreading within seconds towards the cell basal side. We also show that adherens junctions are involved in the kinetics of contractile ring formation. Our study reveals that the link between the adherens junctions and the contractile ring is established from the onset of cytokinesis.
Collapse
Affiliation(s)
- Guillaume Hatte
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France
| | - Claude Prigent
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France; Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, 34293, Montpellier, France
| | - Jean-Pierre Tassan
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France.
| |
Collapse
|
9
|
Decoupling the Roles of Cell Shape and Mechanical Stress in Orienting and Cueing Epithelial Mitosis. Cell Rep 2020; 26:2088-2100.e4. [PMID: 30784591 PMCID: PMC6381790 DOI: 10.1016/j.celrep.2019.01.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/11/2018] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Distinct mechanisms involving cell shape and mechanical force are known to influence the rate and orientation of division in cultured cells. However, uncoupling the impact of shape and force in tissues remains challenging. Combining stretching of Xenopus tissue with mathematical methods of inferring relative mechanical stress, we find separate roles for cell shape and mechanical stress in orienting and cueing division. We demonstrate that division orientation is best predicted by an axis of cell shape defined by the position of tricellular junctions (TCJs), which align with local cell stress rather than tissue-level stress. The alignment of division to cell shape requires functional cadherin and the localization of the spindle orientation protein, LGN, to TCJs but is not sensitive to relative cell stress magnitude. In contrast, proliferation rate is more directly regulated by mechanical stress, being correlated with relative isotropic stress and decoupled from cell shape when myosin II is depleted. Tissue stretching increases division rate and reorients divisions with stretch Division orientation is regulated by cell shape defined by tricellular junctions Cadherin and LGN localize to tricellular junctions aligning division to cell shape Division rate is linked to mechanical stress and can be decoupled from cell shape
Collapse
|
10
|
Abstract
Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern.
Collapse
|
11
|
Dutta P, Odedra D, Pohl C. Planar Asymmetries in the C. elegans Embryo Emerge by Differential Retention of aPARs at Cell-Cell Contacts. Front Cell Dev Biol 2019; 7:209. [PMID: 31612135 PMCID: PMC6776615 DOI: 10.3389/fcell.2019.00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Formation of the anteroposterior and dorsoventral body axis in Caenorhabditis elegans depends on cortical flows and advection of polarity determinants. The role of this patterning mechanism in tissue polarization after formation of cell-cell contacts is not fully understood. Here, we demonstrate that planar asymmetries are established during left-right symmetry breaking: Centripetal cortical flows asymmetrically and differentially advect anterior polarity determinants (aPARs) from contacts to the medial cortex, resulting in their unmixing from apical myosin. Contact localization and advection of PAR-6 requires balanced CDC-42 activation, while asymmetric retention and advection of PAR-3 can occur independently of PAR-6. Concurrent asymmetric retention of PAR-3, E-cadherin/HMR-1 and opposing retention of antagonistic CDC-42 and Wnt pathway components leads to planar asymmetries. The most obvious mark of planar asymmetry, retention of PAR-3 at a single cell-cell contact, is required for proper cytokinetic cell intercalation. Hence, our data uncover how planar polarity is established in a system without the canonical planar cell polarity pathway through planar asymmetric retention of aPARs.
Collapse
Affiliation(s)
| | | | - Christian Pohl
- Medical Faculty, Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| |
Collapse
|
12
|
Investigating the Cellular and Molecular Mechanisms of Wound Healing in Xenopus Oocytes and Embryos. Cold Spring Harb Protoc 2019; 2019:pdb.prot100982. [PMID: 29895564 DOI: 10.1101/pdb.prot100982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The African clawed frog Xenopus has remarkable capacities to heal wounds rapidly and to regenerate complex tissues. Because of its experimental tractability, studies using Xenopus oocytes, embryos, and larvae have contributed extensively to our understanding of the molecular and cellular mechanisms underpinning wound healing and tissue regeneration. In this protocol, we describe wound-healing assays following mechanical or laser injuries of oocytes and multicellular epithelia in Xenopus laevis embryos. We also explain how to perform assays aimed at investigating the cellular and molecular events during wound healing, including gene knockdown and overexpression experiments. In the latter assays, we explore the use of biochemical pull-down assays to investigate the activity of Rho GTPases, as well as the injection of mRNAs encoding fluorescent proteins or probes, followed by quantitative confocal image analyses to assay the dynamics of cytoskeletal components and their regulators.
Collapse
|
13
|
Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev Cell 2019; 47:3-19. [PMID: 30300588 DOI: 10.1016/j.devcel.2018.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs' composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France.
| |
Collapse
|
14
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
15
|
|
16
|
Hsu WH, Wang WJ, Lin WY, Huang YM, Lai CC, Liao JC, Chen HC. Adducin-1 is essential for spindle pole integrity through its interaction with TPX2. EMBO Rep 2018; 19:embr.201745607. [PMID: 29925526 PMCID: PMC6073210 DOI: 10.15252/embr.201745607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 11/25/2022] Open
Abstract
Bipolar spindle assembly is necessary to ensure the proper progression of cell division. Loss of spindle pole integrity leads to multipolar spindles and aberrant chromosomal segregation. However, the mechanism underlying the maintenance of spindle pole integrity remains unclear. In this study, we show that the actin‐binding protein adducin‐1 (ADD1) is phosphorylated at S726 during mitosis. S726‐phosphorylated ADD1 localizes to centrosomes, wherein it organizes into a rosette‐like structure at the pericentriolar material. ADD1 depletion causes centriole splitting and therefore results in multipolar spindles during mitosis, which can be restored by re‐expression of ADD1 and the phosphomimetic S726D mutant but not by the S726A mutant. Moreover, the phosphorylation of ADD1 at S726 is crucial for its interaction with TPX2, which is essential for spindle pole integrity. Together, our findings unveil a novel function of ADD1 in maintaining spindle pole integrity through its interaction with TPX2.
Collapse
Affiliation(s)
- Wen-Hsin Hsu
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Min Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Hong-Chen Chen
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
17
|
Varjabedian A, Kita A, Bement W. Living Xenopus oocytes, eggs, and embryos as models for cell division. Methods Cell Biol 2018; 144:259-285. [PMID: 29804672 PMCID: PMC6050073 DOI: 10.1016/bs.mcb.2018.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenopus laevis has long been a popular model for studies of development and, based on the use of cell-free extracts derived from its eggs, as a model for reconstitution of cell cycle regulation and other basic cellular processes. However, work over the last several years has shown that intact Xenopus eggs and embryos are also powerful models for visualization and characterization of cell cycle-regulated cytoskeletal dynamics. These findings were something of a surprise, given that the relatively low opacity of Xenopus eggs and embryos was assumed to make them poor subjects for live-cell imaging. In fact, however, the high tolerance for light exposure, the development of new imaging approaches, new probes for cytoskeletal components and cytoskeletal regulators, and the ease of microinjection make the Xenopus oocytes, eggs, and embryos one of the most useful live-cell imaging models among the vertebrates. In this review, we describe the basics of using X. laevis as a model organism for studying cell division and outline experimental approaches for imaging cytoskeletal components in vivo in X. laevis embryos and eggs.
Collapse
Affiliation(s)
- Ani Varjabedian
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Angela Kita
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - William Bement
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
18
|
Sandquist JC, Larson ME, Woolner S, Ding Z, Bement WM. An interaction between myosin-10 and the cell cycle regulator Wee1 links spindle dynamics to mitotic progression in epithelia. J Cell Biol 2018; 217:849-859. [PMID: 29321170 PMCID: PMC5839792 DOI: 10.1083/jcb.201708072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
Proper spindle orientation must be achieved before anaphase onset, but whether and how cells link spindle position to anaphase onset is unknown. Sandquist, Larson, et al. identify a novel interaction between the motor protein myosin-10 and the cell cycle regulator wee1 that is proposed to help coordinate preanaphase spindle dynamics and positioning with mitotic exit. Anaphase in epithelia typically does not ensue until after spindles have achieved a characteristic position and orientation, but how or even if cells link spindle position to anaphase onset is unknown. Here, we show that myosin-10 (Myo10), a motor protein involved in epithelial spindle dynamics, binds to Wee1, a conserved regulator of cyclin-dependent kinase 1 (Cdk1). Wee1 inhibition accelerates progression through metaphase and disrupts normal spindle dynamics, whereas perturbing Myo10 function delays anaphase onset in a Wee1-dependent manner. Moreover, Myo10 perturbation increases Wee1-mediated inhibitory phosphorylation on Cdk1, which, unexpectedly, concentrates at cell–cell junctions. Based on these and other results, we propose a model in which the Myo10–Wee1 interaction coordinates attainment of spindle position and orientation with anaphase onset.
Collapse
Affiliation(s)
- Joshua C Sandquist
- Biology Department, Grinnell College, Grinnell, IA .,Department of Zoology, University of Wisconsin-Madison, Madison, WI
| | - Matthew E Larson
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI
| | - Sarah Woolner
- Department of Zoology, University of Wisconsin-Madison, Madison, WI.,Wellcome Trust Centre for Cell-Matrix Research, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Zhiwei Ding
- Biology Department, Grinnell College, Grinnell, IA
| | - William M Bement
- Department of Zoology, University of Wisconsin-Madison, Madison, WI .,Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
19
|
The Molecular Basis of Radial Intercalation during Tissue Spreading in Early Development. Dev Cell 2017; 37:213-25. [PMID: 27165554 PMCID: PMC4865533 DOI: 10.1016/j.devcel.2016.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/18/2016] [Accepted: 04/08/2016] [Indexed: 02/08/2023]
Abstract
Radial intercalation is a fundamental process responsible for the thinning of multilayered tissues during large-scale morphogenesis; however, its molecular mechanism has remained elusive. Using amphibian epiboly, the thinning and spreading of the animal hemisphere during gastrulation, here we provide evidence that radial intercalation is driven by chemotaxis of cells toward the external layer of the tissue. This role of chemotaxis in tissue spreading and thinning is unlike its typical role associated with large-distance directional movement of cells. We identify the chemoattractant as the complement component C3a, a factor normally linked with the immune system. The mechanism is explored by computational modeling and tested in vivo, ex vivo, and in vitro. This mechanism is robust against fluctuations of chemoattractant levels and expression patterns and explains expansion during epiboly. This study provides insight into the fundamental process of radial intercalation and could be applied to a wide range of morphogenetic events.
Collapse
|
20
|
|
21
|
Stooke-Vaughan GA, Davidson LA, Woolner S. Xenopus as a model for studies in mechanical stress and cell division. Genesis 2017; 55. [PMID: 28095623 DOI: 10.1002/dvg.23004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/03/2023]
Abstract
We exist in a physical world, and cells within biological tissues must respond appropriately to both environmental forces and forces generated within the tissue to ensure normal development and homeostasis. Cell division is required for normal tissue growth and maintenance, but both the direction and rate of cell division must be tightly controlled to avoid diseases of over-proliferation such as cancer. Recent studies have shown that mechanical cues can cause mitotic entry and orient the mitotic spindle, suggesting that physical force could play a role in patterning tissue growth. However, to fully understand how mechanics guides cells in vivo, it is necessary to assess the interaction of mechanical strain and cell division in a whole tissue context. In this mini-review we first summarise the body of work linking mechanics and cell division, before looking at the advantages that the Xenopus embryo can offer as a model organism for understanding: (1) the mechanical environment during embryogenesis, and (2) factors important for cell division. Finally, we introduce a novel method for applying a reproducible strain to Xenopus embryonic tissue and assessing subsequent cell divisions.
Collapse
Affiliation(s)
- Georgina A Stooke-Vaughan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Sarah Woolner
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
22
|
Larson ME, Bement WM. Automated mitotic spindle tracking suggests a link between spindle dynamics, spindle orientation, and anaphase onset in epithelial cells. Mol Biol Cell 2017; 28:746-759. [PMID: 28100633 PMCID: PMC5349782 DOI: 10.1091/mbc.e16-06-0355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/28/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Proper spindle positioning at anaphase onset is essential for normal tissue organization and function. Here we develop automated spindle-tracking software and apply it to characterize mitotic spindle dynamics in the Xenopus laevis embryonic epithelium. We find that metaphase spindles first undergo a sustained rotation that brings them on-axis with their final orientation. This sustained rotation is followed by a set of striking stereotyped rotational oscillations that bring the spindle into near contact with the cortex and then move it rapidly away from the cortex. These oscillations begin to subside soon before anaphase onset. Metrics extracted from the automatically tracked spindles indicate that final spindle position is determined largely by cell morphology and that spindles consistently center themselves in the XY-plane before anaphase onset. Finally, analysis of the relationship between spindle oscillations and spindle position relative to the cortex reveals an association between cortical contact and anaphase onset. We conclude that metaphase spindles in epithelia engage in a stereotyped "dance," that this dance culminates in proper spindle positioning and orientation, and that completion of the dance is linked to anaphase onset.
Collapse
Affiliation(s)
- Matthew E Larson
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53706 .,Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - William M Bement
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI 53706 .,Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI 53706.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706.,Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
23
|
Dudka D, Meraldi P. Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division. Results Probl Cell Differ 2017; 61:301-321. [PMID: 28409311 DOI: 10.1007/978-3-319-53150-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mitosis cells can divide symmetrically to proliferate or asymmetrically to generate tissue diversity. While the mechanisms that ensure asymmetric cell division have been extensively studied, it is often assumed that a symmetric cell division is the default outcome of mitosis. Recent studies, however, imply that the symmetric nature of cell division is actively controlled, as they reveal numerous mechanisms that ensure the formation of equal-sized daughter cells as cells progress through cell division. Here we review our current knowledge of these mechanisms and highlight possible key questions in the field.
Collapse
Affiliation(s)
- Damian Dudka
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Patrick Meraldi
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
24
|
Negishi T, Miyazaki N, Murata K, Yasuo H, Ueno N. Physical association between a novel plasma-membrane structure and centrosome orients cell division. eLife 2016; 5:e16550. [PMID: 27502556 PMCID: PMC4978527 DOI: 10.7554/elife.16550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
In the last mitotic division of the epidermal lineage in the ascidian embryo, the cells divide stereotypically along the anterior-posterior axis. During interphase, we found that a unique membrane structure invaginates from the posterior to the centre of the cell, in a microtubule-dependent manner. The invagination projects toward centrioles on the apical side of the nucleus and associates with one of them. Further, a cilium forms on the posterior side of the cell and its basal body remains associated with the invagination. A laser ablation experiment suggests that the invagination is under tensile force and promotes the posterior positioning of the centrosome. Finally, we showed that the orientation of the invaginations is coupled with the polarized dynamics of centrosome movements and the orientation of cell division. Based on these findings, we propose a model whereby this novel membrane structure orchestrates centrosome positioning and thus the orientation of cell division axis.
Collapse
Affiliation(s)
- Takefumi Negishi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Laboratoire de Biologie du Développement de Villefranche-sur-mer UMR7009, Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, France
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-mer UMR7009, Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, France
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
25
|
Abstract
Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell-substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance.
Collapse
|
26
|
Sandquist JC, Larson ME, Hine KJ. Myosin-10 independently influences mitotic spindle structure and mitotic progression. Cytoskeleton (Hoboken) 2016; 73:351-64. [PMID: 27220038 DOI: 10.1002/cm.21311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022]
Abstract
The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The MyTH4 domain is known to mediate binding to microtubules and we verify the suspicion that this domain contributes to myosin-10's close association with the spindle. More surprisingly, our data demonstrate that some but not all of myosin-10's spindle functions require microtubule binding. In particular, myosin-10's contribution to spindle pole integrity requires microtubule binding, whereas its contribution to normal mitotic progression does not. This is demonstrated by the observation that dominant negative expression of the wild-type MyTH4 domain produces multipolar spindles and an increased mitotic index, whereas overexpression of a version of the MyTH4 domain harboring point mutations that abrogate microtubule binding results in only the mitotic index phenotype. Our data suggest that myosin-10 helps to control the metaphase to anaphase transition in cells independent of microtubule binding. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joshua C Sandquist
- Biology Department, Grinnell College, Grinnell, Iowa.,Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew E Larson
- Program in Cellular and Molecular Biology and the Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ken J Hine
- Biology Department, Grinnell College, Grinnell, Iowa
| |
Collapse
|
27
|
Abstract
Vertebrate neural tube formation is a complex morphogenetic process, which involves hundreds of genes dynamically coordinating various behaviors in different cell populations of neural tissue. The challenge remains to determine the relative contributions of physical forces and biochemical signaling events to neural tube closure and accompanying cell fate specification. Planar cell polarity (PCP) molecules are prime candidate factors for the production of actomyosin-dependent mechanical signals necessary for morphogenesis. Conversely, physical forces may contribute to the polarized distribution of PCP proteins. Understanding mechanosensory and mechanotransducing properties of diverse molecules should help define the direction and amplitude of physical stresses that are critical for neurulation.
Collapse
Affiliation(s)
- Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
28
|
Ossipova O, Chu CW, Fillatre J, Brott BK, Itoh K, Sokol SY. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev Biol 2015; 408:316-27. [PMID: 26079437 PMCID: PMC4810801 DOI: 10.1016/j.ydbio.2015.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
Abstract
The planar cell polarity (PCP) pathway orients cells in diverse epithelial tissues in Drosophila and vertebrate embryos and has been implicated in many human congenital defects and diseases, such as ciliopathies, polycystic kidney disease and malignant cancers. During vertebrate gastrulation and neurulation, PCP signaling is required for convergent extension movements, which are primarily driven by mediolateral cell intercalations, whereas the role for PCP signaling in radial cell intercalations has been unclear. In this study, we examine the function of the core PCP proteins Vangl2, Prickle3 (Pk3) and Disheveled in the ectodermal cells, which undergo radial intercalations during Xenopus gastrulation and neurulation. In the epidermis, multiciliated cell (MCC) progenitors originate in the inner layer, but subsequently migrate to the embryo surface during neurulation. We find that the Vangl2/Pk protein complexes are enriched at the apical domain of intercalating MCCs and are essential for the MCC intercalatory behavior. Addressing the underlying mechanism, we identified KIF13B, as a motor protein that binds Disheveled. KIF13B is required for MCC intercalation and acts synergistically with Vangl2 and Disheveled, indicating that it may mediate microtubule-dependent trafficking of PCP proteins necessary for cell shape regulation. In the neural plate, the Vangl2/Pk complexes were also concentrated near the outermost surface of deep layer cells, suggesting a general role for PCP in radial intercalation. Consistent with this hypothesis, the ectodermal tissues deficient in Vangl2 or Disheveled functions contained more cell layers than normal tissues. We propose that PCP signaling is essential for both mediolateral and radial cell intercalations during vertebrate morphogenesis. These expanded roles underscore the significance of vertebrate PCP proteins as factors contributing to a number of diseases, including neural tube defects, tumor metastases, and various genetic syndromes characterized by abnormal migratory cell behaviors.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Fillatre
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara K Brott
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
29
|
Shahbazi MN, Perez-Moreno M. Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 2015; 3:e1045684. [PMID: 26451345 DOI: 10.1080/21688370.2015.1045684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/25/2022] Open
Abstract
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development, and Neuroscience; University of Cambridge ; Cambridge, UK
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group; Cancer Cell Biology Program; Spanish National Cancer Research Centre ; Madrid, Spain
| |
Collapse
|
30
|
Eagleson G, Pfister K, Knowlton AL, Skoglund P, Keller R, Stukenberg PT. Kif2a depletion generates chromosome segregation and pole coalescence defects in animal caps and inhibits gastrulation of the Xenopus embryo. Mol Biol Cell 2015; 26:924-37. [PMID: 25568341 PMCID: PMC4342028 DOI: 10.1091/mbc.e13-12-0721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Characterization of Kif2a in Xenopus embryos identifies new roles for the Kif2a microtubule depolymerase in coordinating cytokinesis and centrosome coalescence. In addition, defects in mitosis can inhibit large-scale developmental movements in vertebrate tissues. Kif2a is a member of the kinesin-13 microtubule depolymerases, which tightly regulate microtubule dynamics for many cellular processes. We characterized Kif2a depletion in Xenopus animal caps and embryos. Kif2a depletion generates defects in blastopore closure. These defects are rescued by removing the animal cap, suggesting that Kif2a-depleted animal caps are not compliant enough to allow gastrulation movements. Gastrulation defects are not rescued by a Kif2a mutated in an Aurora kinase phosphorylation site, suggesting that the phenotypes are caused by problems in mitosis. During animal cap mitoses, Kif2a localizes to the spindle poles and centromeres. Depletion of Kif2a generated multipolar spindles in stage 12 embryos. Kif2a-depleted animal caps have anaphase lagging chromosomes in stage 9 and 10 embryos and subsequent cytokinesis failure. Later divisions have greater than two centrosomes, generating extra spindle poles. Kif2a-depleted embryos are also defective at coalescing extra spindle poles into a bipolar spindle. The gastrulation and mitotic phenotypes can be rescued by either human Kif2a or Kif2b, which suggests that the two homologues redundantly regulate mitosis in mammals. These studies demonstrate that defects in mitosis can inhibit large-scale developmental movements in vertebrate tissues.
Collapse
Affiliation(s)
- Gerald Eagleson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Katherine Pfister
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Anne L Knowlton
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Paul Skoglund
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
31
|
Abstract
Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis.
Collapse
Affiliation(s)
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO 64110 Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160
| |
Collapse
|
32
|
Ng MR, Besser A, Brugge JS, Danuser G. Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters. eLife 2014; 3:e03282. [PMID: 25479385 PMCID: PMC4300730 DOI: 10.7554/elife.03282] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/04/2014] [Indexed: 12/15/2022] Open
Abstract
Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both sub-cellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions. DOI:http://dx.doi.org/10.7554/eLife.03282.001 The intestines, liver, and skin are all examples of organs that perform specific functions. Organs are comprised of tissues, which are themselves made up of cells. Epithelial tissue is one of the four basic types of tissue found in animals, and it occurs in almost every organ in the body. For example, epithelial tissue makes up the outermost layer of the skin, and the lining of the lungs and the intestines; the cells in epithelial tissues are attached to one another via ‘adhesion molecules’. Organs and tissues need to be maintained throughout life in order for them to work properly. Epithelial cells in particular are very short-lived and must be constantly replaced. If epithelial tissue is cut or damaged in any way, the surrounding healthy epithelial cells must work together to repair the wound and restore the tissue's integrity. These processes require individual epithelial cells to communicate with one another. While chemical signals provide one means of cell-to-cell communication, cells also sense and respond to the physical presence of surrounding cells. In adults, organs and tissues generally do not change shape or size; as such there is a tightly balanced exchange of mechanical forces between the individual cells. Damage to the tissue causes a detectable change in these mechanical forces, which is sensed by nearby healthy epithelial cells and causes them to work towards healing the wound. While the importance of mechanical forces in maintaining tissue integrity is widely recognized, there were few tools to study these forces; this meant that mechanical communication through cell–cell adhesion sites was not well understood. Now Ng, Besser et al. describe the development and use of a new method for measuring and mapping the exchange of mechanical forces at cell–cell adhesion sites. Changes in the strength of the forces exchanged between cells could be measured across clusters of multiple cells or for specific parts of individual cells. Ng, Besser et al. found that when an epithelial cell in a cluster started to divide to form two new cells, the cell exerted less mechanical force on its neighboring cells. Ng, Besser et al. found that the forces exerted between cells were strongest when there was more of an adhesion molecule called E-cadherin in the cell surface membrane at the cell–cell adhesion sites. The opposite was also true, as these forces were weakest at cell–cell adhesion sites with fewer E-cadherin molecules. The new method and findings will now help to guide future studies into how mechanical forces are transmitted between living cells. DOI:http://dx.doi.org/10.7554/eLife.03282.002
Collapse
Affiliation(s)
- Mei Rosa Ng
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Achim Besser
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
33
|
Petridou NI, Skourides PA. FAK transduces extracellular forces that orient the mitotic spindle and control tissue morphogenesis. Nat Commun 2014; 5:5240. [PMID: 25341507 DOI: 10.1038/ncomms6240] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
Spindle orientation is critical for proper morphogenesis of organs and tissues as well as for the maintenance of tissue morphology. Although significant progress has been made in understanding the mechanisms linking the cell cortex to the spindle and the well-documented role that extracellular forces play in spindle orientation, how such forces are transduced to the cortex remains poorly understood. Here we report that focal adhesion kinase (FAK) is necessary for correct spindle orientation and as a result, indispensable for proper epithelial morphogenesis in the vertebrate embryo. We show that FAK's role in spindle orientation is dependent on its ability to localize at focal adhesions and its interaction with paxillin, but is kinase activity independent. Finally, we present evidence that FAK is required for external force-induced spindle reorientation, suggesting that FAK's involvement in this process stems from a role in the transduction of external forces to the cell cortex.
Collapse
Affiliation(s)
- Nicoletta I Petridou
- Laboratory of Developmental Biology and BioImaging, Department of Biological Sciences, University of Cyprus, University Ave 1, Nicosia 2109, Cyprus
| | - Paris A Skourides
- Laboratory of Developmental Biology and BioImaging, Department of Biological Sciences, University of Cyprus, University Ave 1, Nicosia 2109, Cyprus
| |
Collapse
|
34
|
Moorhouse KS, Burgess DR. How to be at the right place at the right time: the importance of spindle positioning in embryos. Mol Reprod Dev 2014; 81:884-95. [PMID: 25258000 DOI: 10.1002/mrd.22418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
Abstract
Spindle positioning is an imperative cellular process that regulates a number of different developmental events throughout embryogenesis. The spindle must be properly positioned in embryos not only for the segregation of chromosomes, but also to segregate developmental determinants into different daughter blastomeres. In this review, the role of spindle positioning is explored in several different developmental model systems, which have revealed the diversity of factors that regulate spindle positioning. The C. elegans embryo, the Drosophila neuroblast, and ascidian embryos have all been utilized for the study of polarity-dependent spindle positioning, and exploration of the proteins that are required for asymmetric cell division. Work in the sea urchin embryo has examined the influence of cell shape and factors that affect secondary furrow formation. The issue of size scaling in extremely large cells, as well as the requirement for spindle positioning in developmental fate decisions in vertebrates, has been addressed by work in the Xenopus embryo. Further work in mouse oocytes has examined the roles of actin and myosin in spindle positioning. The data generated from these model organisms have made unique contributions to our knowledge of spindle positioning. Future work will address how all of these different factors work together to regulate the position of the spindle.
Collapse
|
35
|
Okuda S, Inoue Y, Eiraku M, Adachi T, Sasai Y. Vertex dynamics simulations of viscosity-dependent deformation during tissue morphogenesis. Biomech Model Mechanobiol 2014; 14:413-25. [PMID: 25227116 DOI: 10.1007/s10237-014-0613-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022]
Abstract
In biological development, multiple cells cooperate to form tissue morphologies based on their mechanical interactions; namely active force generation and passive viscoelastic response. In particular, the dynamic processes of tissue deformations are governed by the viscous properties of the tissues. These properties are spatially inhomogeneous because they depend on the tissue constituents, such as cytoplasm, cytoskeleton, basement membrane and extracellular matrix. The multicellular mechanics of tissue morphogenesis have been investigated in vertex dynamics models. However, conventional models are applicable only to quasi-static deformation processes, which do not account for tissue viscosities. We propose a vertex dynamics model that simulates the viscosity-dependent dynamic deformation processes during tissue morphogenesis. By incorporating local velocity fields into the governing equation of vertex movements, the model turns Galilean invariant. In addition, the viscous properties of tissue components are newly expressed by formulating friction forces on vertices as functions of the relative velocities among the vertices. The advantages of the proposed model are examined by epithelial growth simulations under the employed condition for quasi-static processes. As a result, the epithelial vesicle simulated by the proposed model is linearly elongated with nearly free stress, while that simulated by the conventional model is undulated with compressive residual stress. Therefore, the proposed model is able to reflect the timescale of deformations by satisfying Galilean invariance. Next, the applicability of the proposed model is assessed in epithelial growth simulations of viscous extracellular materials. In this test, the epithelial vesicles are deformed into tubular shapes by oriented cell divisions, and their morphologies are extremely sensitive to extracellular viscosity. Therefore, the dynamic deformations in the proposed model depend on the viscous properties of tissue components. The proposed model will be useful for simulating dynamic deformation processes of tissue morphogenesis depending on viscous properties of various tissue components.
Collapse
Affiliation(s)
- Satoru Okuda
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan,
| | | | | | | | | |
Collapse
|
36
|
Elric J, Etienne-Manneville S. Centrosome positioning in polarized cells: common themes and variations. Exp Cell Res 2014; 328:240-8. [PMID: 25218948 DOI: 10.1016/j.yexcr.2014.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
Abstract
The centrosome position is tightly regulated during the cell cycle and during differentiated cellular functions. Because centrosome organizes the microtubule network to coordinate both intracellular organization and cell signaling, centrosome positioning is crucial to determine either the axis of cell division, the direction of cell migration or the polarized immune response of lymphocytes. Since alteration of centrosome positioning seems to promote cell transformation and tumor spreading, the molecular mechanisms controlling centrosome movement in response to extracellular and intracellular cues are under intense investigation. Evolutionary conserved pathways involving polarity proteins and cytoskeletal rearrangements are emerging as common regulators of centrosome positioning in a wide variety of cellular contexts.
Collapse
Affiliation(s)
- Julien Elric
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015 Paris, France
| | - Sandrine Etienne-Manneville
- Institut Pasteur - CNRS URA 2582, Cell Polarity, Migration and Cancer Unit, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
37
|
Nestor-Bergmann A, Goddard G, Woolner S. Force and the spindle: mechanical cues in mitotic spindle orientation. Semin Cell Dev Biol 2014; 34:133-9. [PMID: 25080021 PMCID: PMC4169662 DOI: 10.1016/j.semcdb.2014.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mechanical environment of a cell has a profound effect on its behaviour, from dictating cell shape to driving the transcription of specific genes. Recent studies have demonstrated that mechanical forces play a key role in orienting the mitotic spindle, and therefore cell division, in both single cells and tissues. Whilst the molecular machinery that mediates the link between external force and the mitotic spindle remains largely unknown, it is becoming increasingly clear that this is a widely used mechanism which could prove vital for coordinating cell division orientation across tissues in a variety of contexts.
Collapse
Affiliation(s)
| | - Georgina Goddard
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Sarah Woolner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
38
|
Spindle orientation processes in epithelial growth and organisation. Semin Cell Dev Biol 2014; 34:124-32. [PMID: 24997348 DOI: 10.1016/j.semcdb.2014.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 02/08/2023]
Abstract
This review focuses on the role of orientated cell division (OCD) in two aspects of epithelial growth, namely layer formation and growth in the epithelial plane. Epithelial stratification is invariably associated with fate asymmetric cell divisions. We discuss this through the example of epidermal stratification where cell division plane regulation facilitates concomitant thickening and cell differentiation. Embryonic neuroepithelia are considered as a special case of epithelial stratification. We highlight early ectodermal layer specification, which sets the epidermal versus neuronal fates, as well as later neurogenesis in vertebrates and mammals. We also discuss the heart epicardium as an example of coordinating OCDs with delamination and subsequent differentiation. Epithelial planar growth is examined both in the context of uniform growth, such as in Xenopus epiboly, the Drosophila wing disc and the mammalian intestinal crypt as well as in anisotropic growth, or elongation, such as Drosophila and vertebrate axial elongation and the mouse palate. Coupling between growth perpendicular to and within epithelial planes is recognised, but so are exceptions, as is the often passive role of spindle orientation sometimes hitherto considered to be an active driver of directional growth.
Collapse
|
39
|
Lancaster OM, Baum B. Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin Cell Dev Biol 2014; 34:109-15. [PMID: 24607328 DOI: 10.1016/j.semcdb.2014.02.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Cell division requires the wholesale reorganization of cell architecture. At the same time as the microtubule network is remodelled to generate a bipolar spindle, animal cells entering mitosis replace their interphase actin cytoskeleton with a contractile mitotic actomyosin cortex that is tightly coupled to the plasma membrane--driving mitotic cell rounding. Here, we consider how these two processes are coordinated to couple chromosome segregation and cell division. In doing so we explore the relative roles of cell shape and the actin cortex in spindle morphogenesis, orientation and positioning.
Collapse
Affiliation(s)
- Oscar M Lancaster
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
40
|
Guioli S, Nandi S, Zhao D, Burgess-Shannon J, Lovell-Badge R, Clinton M. Gonadal Asymmetry and Sex Determination in Birds. Sex Dev 2014; 8:227-42. [DOI: 10.1159/000358406] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Chan PC, Hsu RYC, Liu CW, Lai CC, Chen HC. Adducin-1 is essential for mitotic spindle assembly through its interaction with myosin-X. ACTA ACUST UNITED AC 2013; 204:19-28. [PMID: 24379415 PMCID: PMC3882790 DOI: 10.1083/jcb.201306083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The actin-binding protein ADD1 associates with mitotic spindles through Myo10 and is crucial for proper spindle assembly and mitotic progression. Mitotic spindles are microtubule-based structures, but increasing evidence indicates that filamentous actin (F-actin) and F-actin–based motors are components of these structures. ADD1 (adducin-1) is an actin-binding protein that has been shown to play important roles in the stabilization of the membrane cortical cytoskeleton and cell–cell adhesions. In this study, we show that ADD1 associates with mitotic spindles and is crucial for proper spindle assembly and mitotic progression. Phosphorylation of ADD1 at Ser12 and Ser355 by cyclin-dependent kinase 1 enables ADD1 to bind to myosin-X (Myo10) and therefore to associate with mitotic spindles. ADD1 depletion resulted in distorted, elongated, and multipolar spindles, accompanied by aberrant chromosomal alignment. Remarkably, the mitotic defects caused by ADD1 depletion were rescued by reexpression of ADD1 but not of an ADD1 mutant defective in Myo10 binding. Together, our findings unveil a novel function for ADD1 in mitotic spindle assembly through its interaction with Myo10.
Collapse
Affiliation(s)
- Po-Chao Chan
- Department of Life Sciences, 2 Graduate Institute of Molecular Biology, 3 Graduate Institute of Biomedical Sciences, 4 Agricultural Biotechnology Center, and 5 Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
43
|
Petridou NI, Stylianou P, Skourides PA. A dominant-negative provides new insights into FAK regulation and function in early embryonic morphogenesis. Development 2013; 140:4266-76. [PMID: 24048589 DOI: 10.1242/dev.096073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FAK is a non-receptor tyrosine kinase involved in a wide variety of biological processes and crucial for embryonic development. In this manuscript, we report the generation of a new FAK dominant negative (FF), composed of the C terminus (FRNK) and the FERM domain of the protein. FF, unlike FRNK and FERM, mimics the localization of active FAK in the embryo, demonstrating that both domains are necessary to target FAK to its complexes in vivo. We show that the FERM domain has a role in the recruitment of FAK on focal adhesions and controls the dynamics of the protein on these complexes. Expression of FF blocks focal adhesion turnover and, unlike FRNK, acts as a dominant negative in vivo. FF expression in Xenopus results in an overall phenotype remarkably similar to the FAK knockout in mice, including loss of mesodermal tissues. Expression of FF in the animal cap revealed a previously unidentified role of FAK in early morphogenesis and specifically epiboly. We show that a fibronectin-derived signal transduced by FAK governs polarity and cell intercalation. Finally, failure of epiboly results in severe gastrulation problems that can be rescued by either mechanical or pharmacological relief of tension within the animal cap, demonstrating that epiboly is permissive for gastrulation. Overall, this work introduces a powerful new tool for the study of FAK, uncovers new roles for FAK in morphogenesis and reveals new mechanisms through which the FERM domain regulates the localization and dynamics of FAK.
Collapse
|
44
|
Ramel MC, Hill CS. The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Dev Biol 2013; 378:170-82. [PMID: 23499658 PMCID: PMC3899928 DOI: 10.1016/j.ydbio.2013.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/26/2022]
Abstract
In the early zebrafish embryo, a ventral to dorsal gradient of bone morphogenetic protein (BMP) activity is established, which is essential for the specification of cell fates along this axis. To visualise and mechanistically determine how this BMP activity gradient forms, we have used a transgenic zebrafish line that expresses monomeric red fluorescent protein (mRFP) under the control of well-characterised BMP responsive elements. We demonstrate that mRFP expression in this line faithfully reports BMP and GDF signalling at both early and late stages of development. Taking advantage of the unstable nature of mRFP transcripts, we use in situ hybridisation to reveal the dynamic spatio-temporal pattern of BMP activity and establish the timing and sequence of events that lead to the formation of the BMP activity gradient. We show that the BMP transcriptional activity gradient is established between 30% and 40% epiboly stages and that it is preceded by graded mRNA expression of the BMP ligands. Both Dharma and FGF signalling contribute to graded bmp transcription during these early stages and it is subsequently maintained through autocrine BMP signalling. We show that BMP2B protein is also expressed in a gradient as early as blastula stages, but do not find any evidence of diffusion of this BMP to generate the BMP transcriptional activity gradient. Thus, in contrast to diffusion/transport-based models of BMP gradient formation in Drosophila, our results indicate that the establishment of the BMP activity gradient in early zebrafish embryos is determined by graded expression of the BMP ligands.
Collapse
Affiliation(s)
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| |
Collapse
|
45
|
Tambe DT, Croutelle U, Trepat X, Park CY, Kim JH, Millet E, Butler JP, Fredberg JJ. Monolayer stress microscopy: limitations, artifacts, and accuracy of recovered intercellular stresses. PLoS One 2013; 8:e55172. [PMID: 23468843 PMCID: PMC3585344 DOI: 10.1371/journal.pone.0055172] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 12/19/2012] [Indexed: 12/18/2022] Open
Abstract
In wound healing, tissue growth, and certain cancers, the epithelial or the endothelial monolayer sheet expands. Within the expanding monolayer sheet, migration of the individual cell is strongly guided by physical forces imposed by adjacent cells. This process is called plithotaxis and was discovered using Monolayer Stress Microscopy (MSM). MSM rests upon certain simplifying assumptions, however, concerning boundary conditions, cell material properties and system dimensionality. To assess the validity of these assumptions and to quantify associated errors, here we report new analytical, numerical, and experimental investigations. For several commonly used experimental monolayer systems, the simplifying assumptions used previously lead to errors that are shown to be quite small. Out-of-plane components of displacement and traction fields can be safely neglected, and characteristic features of intercellular stresses that underlie plithotaxis remain largely unaffected. Taken together, these findings validate Monolayer Stress Microscopy within broad but well-defined limits of applicability.
Collapse
Affiliation(s)
- Dhananjay T Tambe
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Okuda S, Inoue Y, Eiraku M, Sasai Y, Adachi T. Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework. Biomech Model Mechanobiol 2012. [PMID: 23196700 DOI: 10.1007/s10237-012-0458-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissue morphogenesis in multicellular organisms is accompanied by proliferative cell behaviors: cell division (increase in cell number after each cell cycle) and cell growth (increase in cell volume during each cell cycle). These proliferative cell behaviors can be regulated by multicellular dynamics to achieve proper tissue sizes and shapes in three-dimensional (3D) space. To analyze multicellular dynamics, a reversible network reconnection (RNR) model has been suggested, in which each cell shape is expressed by a single polyhedron. In this study, to apply the RNR model to simulate tissue morphogenesis involving proliferative cell behaviors, we model cell proliferation based on a RNR model framework. In this model, cell division was expressed by dividing a polyhedron at a planar surface for which cell division behaviors were characterized by three quantities: timing, intracellular position, and normal direction of the dividing plane. In addition, cell growth was expressed by volume growth as a function of individual cell times within their respective cell cycles. Numerical simulations using the proposed model showed that tissues grew during successive cell divisions with several cell cycle times. During these processes, the cell number in tissues increased while maintaining individual cell size and shape. Furthermore, tissue morphology dramatically changed based on different regulations of cell division directions. Thus, the proposed model successfully provided a basis for expressing proliferative cell behaviors during morphogenesis based on a RNR model framework.
Collapse
Affiliation(s)
- Satoru Okuda
- Department of Biomechanics, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | |
Collapse
|
47
|
Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod. EMBO J 2012; 32:30-44. [PMID: 23202854 PMCID: PMC3545300 DOI: 10.1038/emboj.2012.305] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/30/2012] [Indexed: 02/06/2023] Open
Abstract
By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necessary for the trafficking of proteins required for normal lumen formation, such as partitioning defective 3 and Rab11a to this point. This occurs in advance and is independent of the midline cell division that has been shown to have a powerful role in lumen organisation. To our knowledge, this is the first example of the initiation of apical polarisation part way along the length of a cell, rather than at a cell extremity. Although the midline division is not necessary for apical polarisation, it confers a morphogenetic advantage by efficiently eliminating cellular processes that would otherwise bridge the developing lumen.
Collapse
|
48
|
Stevermann L, Liakopoulos D. Molecular mechanisms in spindle positioning: structures and new concepts. Curr Opin Cell Biol 2012; 24:816-24. [PMID: 23142476 DOI: 10.1016/j.ceb.2012.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Coordination of cell cleavage with respect to cell geometry, cell polarity and neighboring tissues is critical for tissue maintenance, malignant transformation and metastasis. The position of the mitotic spindle within the cell determines where cell cleavage occurs. Spindle positioning is often mediated through capture of astral microtubules by motor proteins at the cell cortex. Recently, the core dynein anchor complex has been structurally resolved. Junctional complexes were shown to provide additional capture sites for astral microtubules in proliferating tissues. Finally, latest studies show that signals from centrosomes control spindle positioning and propose novel concepts for generation of centrosome identity.
Collapse
Affiliation(s)
- Lea Stevermann
- Heidelberg University Biochemistry Center (BZH) INF 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
49
|
Abstract
The development of cell-cell junctions was a fundamental step in metazoan evolution, and human health depends on the formation and function of cell junctions. Although it has long been known that actin and conventional myosin have important roles in cell junctions, research has begun to reveal the specific functions of the different forms of conventional myosin. Exciting new data also reveals that a growing number of unconventional myosins have important roles in cell junctions. Experiments showing that cell junctions act as mechanosensors have also provided new impetus to understand the functions of myosins and the forces they exert. In this review we will summarize recent developments on the roles of myosins in cell junctions.
Collapse
Affiliation(s)
- Katy C Liu
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Richard E Cheney
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
50
|
Muroyama A, Lechler T. Polarity and stratification of the epidermis. Semin Cell Dev Biol 2012; 23:890-6. [PMID: 22960184 DOI: 10.1016/j.semcdb.2012.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/08/2012] [Accepted: 08/24/2012] [Indexed: 02/08/2023]
Abstract
Polarity is a fundamental property of epithelial cells. In this review, we discuss our current knowledge of the polarity of a stratified epithelium, the epidermis, focusing on similarities and differences with simple epithelial models. We highlight how the differences in tissue architecture and physiology result in alterations in some aspects of cell polarity. In addition, we discuss one of the most prominent uses for cell polarity in the epidermis-orienting the mitotic spindle to drive the stratification and differentiation of this tissue during development.
Collapse
Affiliation(s)
- Andrew Muroyama
- Department of Cell Biology, Duke University Medical Center, USA
| | | |
Collapse
|