1
|
Mok CH, Hu D, Losa M, Risolino M, Selleri L, Marcucio RS. PBX1 and PBX3 transcription factors regulate SHH expression in the Frontonasal Ectodermal Zone through complementary mechanisms. PLoS Genet 2025; 21:e1011315. [PMID: 40397886 DOI: 10.1371/journal.pgen.1011315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
Sonic hedgehog (SHH) signaling from the frontonasal ectodermal zone (FEZ) is a key regulator of craniofacial morphogenesis. Along with SHH, pre-B-cell leukemia homeobox (PBX) transcription factors regulate midfacial development. PBXs act in the epithelium during fusion of facial primordia, but their specific interactions with SHH have not been investigated. We hypothesized that PBX1/3 regulate SHH expression in the FEZ by activating or repressing transcription. The hypothesis was tested by manipulating PBX1/3 expression in chick embryos and profiling epigenomic landscapes at early developmental stages. PBX1/3 expression was perturbed in the chick face beginning at stage 10 (HH10) using RCAS viruses, and the resulting SHH expression was assessed at HH22. Overexpressing PBX1 expanded the SHH domain, while overexpressing PBX3 resulted in an opposite effect. Conversely, reducing PBX1 expression decreased SHH expression, but reducing PBX3 induced ectopic SHH expression. We performed ATAC-seq and mapped binding of PBX1 and PBX3 to DNA with ChIP-seq on the FEZ at HH22 to assess direct interactions of PBX1/3 with the SHH locus. These multi-omics approaches uncovered a 400 bp PBX1-enriched element within intron 1 of SHH (chr2:8,173,222-8,173,621). Enhancer activity of this element was demonstrated by electroporation of reporter constructs in ovo and luciferase reporter assays in vitro. When bound by PBX1, this element upregulates transcription, while it downregulates transcription when bound by PBX3. The present study identifies a cis-regulatory element, named SFE1, that interacts with PBX1/3 either directly or within a complex with cofactors to modulate SHH expression in the FEZ. This research establishes that PBX1 and PBX3 play complementary roles in SHH regulation during embryonic development.
Collapse
Affiliation(s)
- Chan Hee Mok
- Department of Orthopaedic Surgery, Zuckerberg San Francisco General Hospital, Orthopaedic Trauma Institute, University of California, San Francisco, United States of America
| | - Diane Hu
- Department of Orthopaedic Surgery, Zuckerberg San Francisco General Hospital, Orthopaedic Trauma Institute, University of California, San Francisco, United States of America
| | - Marta Losa
- Department of Orofacial Sciences and Department of Anatomy, Institute of Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, United States of America
| | - Maurizio Risolino
- Department of Orofacial Sciences and Department of Anatomy, Institute of Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, United States of America
| | - Licia Selleri
- Department of Orofacial Sciences and Department of Anatomy, Institute of Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, United States of America
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, Zuckerberg San Francisco General Hospital, Orthopaedic Trauma Institute, University of California, San Francisco, United States of America
| |
Collapse
|
2
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
3
|
Mok CH, Hu D, Losa M, Risolino M, Selleri L, Marcucio RS. PBX1 and PBX3 transcription factors regulate SHH expression in the Frontonasal Ectodermal Zone through complementary mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597450. [PMID: 38895322 PMCID: PMC11185640 DOI: 10.1101/2024.06.04.597450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Sonic hedgehog (SHH) signaling from the frontonasal ectodermal zone (FEZ) is a key regulator of craniofacial morphogenesis. Along with SHH, pre-B-cell leukemia homeobox (PBX) transcription factors regulate midfacial development. PBXs act in the epithelium during fusion of facial primordia, but their specific interactions with SHH have not been fully investigated. We hypothesized that PBX1/3 regulate SHH expression in the FEZ by activating or repressing transcription. The hypothesis was tested by manipulating PBX1/3 expression in chick embryos and profiling epigenomic landscapes at early developmental stages. PBX1/3 expression was perturbed in the chick face beginning at stage 10 (HH10) using RCAS viruses, and the resulting SHH expression was assessed at HH22. Overexpressing PBX1 expanded SHH expression, while overexpressing PBX3 decreased SHH expression. Conversely, reducing PBX1 expression decreased SHH expression, but reducing PBX3 induced ectopic SHH expression. We performed ATAC-seq and mapped binding of PBX1 and PBX3 with ChIP-seq on the FEZ at HH22 to assess direct interactions of PBX1/3 with the SHH locus. These multi-omics approaches uncovered a 400 bp PBX1-enriched element within intron 1 of SHH (chr2:8,173,222-8,173,621). Enhancer activity of this element was demonstrated by electroporation of reporter constructs in ovo and luciferase reporter assays in vitro . When bound by PBX1, this element upregulates transcription, while it downregulates transcription when bound by PBX3. The present study identifies a cis- regulatory element, named SFE1, that interacts with PBX1/3 to modulate SHH expression in the FEZ and establishes that PBX1 and PBX3 play complementary roles in SHH regulation during embryonic development.
Collapse
|
4
|
Losa M, Barozzi I, Osterwalder M, Hermosilla-Aguayo V, Morabito A, Chacón BH, Zarrineh P, Girdziusaite A, Benazet JD, Zhu J, Mackem S, Capellini TD, Dickel D, Bobola N, Zuniga A, Visel A, Zeller R, Selleri L. A spatio-temporally constrained gene regulatory network directed by PBX1/2 acquires limb patterning specificity via HAND2. Nat Commun 2023; 14:3993. [PMID: 37414772 PMCID: PMC10325989 DOI: 10.1038/s41467-023-39443-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
A lingering question in developmental biology has centered on how transcription factors with widespread distribution in vertebrate embryos can perform tissue-specific functions. Here, using the murine hindlimb as a model, we investigate the elusive mechanisms whereby PBX TALE homeoproteins, viewed primarily as HOX cofactors, attain context-specific developmental roles despite ubiquitous presence in the embryo. We first demonstrate that mesenchymal-specific loss of PBX1/2 or the transcriptional regulator HAND2 generates similar limb phenotypes. By combining tissue-specific and temporally controlled mutagenesis with multi-omics approaches, we reconstruct a gene regulatory network (GRN) at organismal-level resolution that is collaboratively directed by PBX1/2 and HAND2 interactions in subsets of posterior hindlimb mesenchymal cells. Genome-wide profiling of PBX1 binding across multiple embryonic tissues further reveals that HAND2 interacts with subsets of PBX-bound regions to regulate limb-specific GRNs. Our research elucidates fundamental principles by which promiscuous transcription factors cooperate with cofactors that display domain-restricted localization to instruct tissue-specific developmental programs.
Collapse
Affiliation(s)
- Marta Losa
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Viviana Hermosilla-Aguayo
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Angela Morabito
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Brandon H Chacón
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Peyman Zarrineh
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Ausra Girdziusaite
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Jean Denis Benazet
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diane Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Aimée Zuniga
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Rolf Zeller
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Liu Y, Qu M, Jiang H, Schneider R, Qin G, Luo W, Yu H, Zhang B, Wang X, Zhang Y, Zhang H, Zhang Z, Wu Y, Zhang Y, Yin J, Zhang S, Venkatesh B, Roth O, Meyer A, Lin Q. Immunogenetic losses co-occurred with seahorse male pregnancy and mutation in tlx1 accompanied functional asplenia. Nat Commun 2022; 13:7610. [PMID: 36494371 PMCID: PMC9734139 DOI: 10.1038/s41467-022-35338-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
In the highly derived syngnathid fishes (pipefishes, seadragons & seahorses), the evolution of sex-role reversed brooding behavior culminated in the seahorse lineage's male pregnancy, whose males feature a specialized brood pouch into which females deposit eggs during mating. Then, eggs are intimately engulfed by a placenta-like tissue that facilitates gas and nutrient exchange. As fathers immunologically tolerate allogenic embryos, it was suggested that male pregnancy co-evolved with specific immunological adaptations. Indeed, here we show that a specific amino-acid replacement in the tlx1 transcription factor is associated with seahorses' asplenia (loss of spleen, an organ central in the immune system), as confirmed by a CRISPR-Cas9 experiment using zebrafish. Comparative genomics across the syngnathid phylogeny revealed that the complexity of the immune system gene repertoire decreases as parental care intensity increases. The synchronous evolution of immunogenetic alterations and male pregnancy supports the notion that male pregnancy co-evolved with the immunological tolerance of the embryo.
Collapse
Affiliation(s)
- Yali Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Meng Qu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Han Jiang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Ralf Schneider
- grid.9764.c0000 0001 2153 9986Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Geng Qin
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Wei Luo
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Haiyan Yu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Bo Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Xin Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Yanhong Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Huixian Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Zhixin Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.412785.d0000 0001 0695 6482Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo, Japan
| | - Yongli Wu
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Yingyi Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Jianping Yin
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Si Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China
| | - Byrappa Venkatesh
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, 138673 Singapore, Singapore
| | - Olivia Roth
- grid.9764.c0000 0001 2153 9986Marine Evolutionary Ecology, Zoological Institute, Kiel University, 24118 Kiel, Germany
| | - Axel Meyer
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Qiang Lin
- grid.9227.e0000000119573309CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China ,grid.9227.e0000000119573309Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
6
|
Butel-Simoes GI, Jones P, Wood EM, Spelman D, Woolley IJ, Ojaimi S. Congenital asplenia study: clinical and laboratory characterisation of adults with congenital asplenia. Ann Hematol 2022; 101:1421-1434. [PMID: 35451619 DOI: 10.1007/s00277-022-04765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Congenital asplenia is a rare disorder commonly associated with other visceral and cardiac congenital anomalies. Isolated congenital asplenia is even less common than syndromic forms. The risk of severe bacterial infections associated with asplenia is the most concerning clinical implication and carries a significant mortality risk. Prophylactic measures against the clinical syndrome known as overwhelming postsplenectomy infections (OPSI) include vaccination, prophylactic and emergency antibiotics and health education including fever management and travel advice. This case series describes fourteen adults with congenital asplenia and polysplenia syndrome, most of whom were diagnosed incidentally as adults, and outlines the nature of their diagnosis, clinical phenotype, family history and key pathology findings.
Collapse
Affiliation(s)
| | - Penelope Jones
- Spleen Australia, Alfred Health, Victoria, Australia
- Department of Infectious Diseases, Alfred Health, Victoria, Australia
| | - Erica M Wood
- School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
- Department of Haematology, Monash Health, Victoria, Australia
| | - Denis Spelman
- Spleen Australia, Alfred Health, Victoria, Australia
- Department of Infectious Diseases, Alfred Health, Victoria, Australia
| | - Ian J Woolley
- Monash Infectious Diseases, Monash Health, Victoria, Australia
- Spleen Australia, Alfred Health, Victoria, Australia
- Department of Infectious Diseases, Alfred Health, Victoria, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Victoria, Australia
| | - Samar Ojaimi
- Monash Infectious Diseases, Monash Health, Victoria, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Victoria, Australia
- Immunology Laboratory, Monash Pathology, Monash Health, Victoria, Australia
| |
Collapse
|
7
|
Borsani O, Asano T, Boisson B, Fraticelli S, Braschi‐Amirfarzan M, Pietra D, Casetti IC, Vanni D, Trotti C, Borghesi A, Casanova J, Arcaini L, Rumi E. Isolated congenital asplenia: An overlooked cause of thrombocytosis. Am J Hematol 2022; 97:1110-1115. [PMID: 35266186 PMCID: PMC9541836 DOI: 10.1002/ajh.26522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Oscar Borsani
- Department of Molecular Medicine University of Pavia Pavia Italy
- Division of Hematology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch The Rockefeller University New York New York USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch The Rockefeller University New York New York USA
- Paris Cité University Imagine Institute Paris France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch INSERM U1163 Paris France
| | - Sara Fraticelli
- Unit of Anatomic Pathology Department of Molecular Medicine, University of Pavia Pavia Italy
| | - Marta Braschi‐Amirfarzan
- Beth Israel Lahey Health, Lahey Health Medical Center Tufts University School of Medicine Boston Massachusetts USA
| | - Daniela Pietra
- Division of Hematology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | | | - Daniele Vanni
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Chiara Trotti
- Department of Molecular Medicine University of Pavia Pavia Italy
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Jean‐Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch The Rockefeller University New York New York USA
- Paris Cité University Imagine Institute Paris France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch INSERM U1163 Paris France
- Department of Pediatrics Necker Hospital for Sick Children Paris France
- Howard Hughes Medical Institute New York New York USA
| | - Luca Arcaini
- Department of Molecular Medicine University of Pavia Pavia Italy
- Division of Hematology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Elisa Rumi
- Department of Molecular Medicine University of Pavia Pavia Italy
- Division of Hematology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| |
Collapse
|
8
|
Muggeo S, Crisafulli L, Uva P, Fontana E, Ubezio M, Morenghi E, Colombo FS, Rigoni R, Peano C, Vezzoni P, Della Porta MG, Villa A, Ficara F. PBX1-directed stem cell transcriptional program drives tumor progression in myeloproliferative neoplasm. Stem Cell Reports 2021; 16:2607-2616. [PMID: 34678207 PMCID: PMC8581051 DOI: 10.1016/j.stemcr.2021.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023] Open
Abstract
PBX1 regulates the balance between self-renewal and differentiation of hematopoietic stem cells and maintains proto-oncogenic transcriptional pathways in early progenitors. Its increased expression was found in myeloproliferative neoplasm (MPN) patients bearing the JAK2V617F mutation. To investigate if PBX1 contributes to MPN, and to explore its potential as therapeutic target, we generated the JP mouse strain, in which the human JAK2 mutation is induced in the absence of PBX1. Typical MPN features, such as thrombocythemia and granulocytosis, did not develop without PBX1, while erythrocytosis, initially displayed by JP mice, gradually resolved over time; splenic myeloid metaplasia and in vitro cytokine independent growth were absent upon PBX1 inactivation. The aberrant transcriptome in stem/progenitor cells from the MPN model was reverted by the absence of PBX1, demonstrating that PBX1 controls part of the molecular pathways deregulated by the JAK2V617F mutation. Modulation of the PBX1-driven transcriptional program might represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Sharon Muggeo
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy; Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy; Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula (CA), Italy
| | - Elena Fontana
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy; Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Marta Ubezio
- Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Emanuela Morenghi
- Biostatistics Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, Italy
| | - Federico Simone Colombo
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Rosita Rigoni
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy; Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Clelia Peano
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy; Genomic Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paolo Vezzoni
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy; Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Matteo Giovanni Della Porta
- Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Anna Villa
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy; San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy; Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
9
|
Hsieh YW, Xiong R, Chuang CF. Synergistic roles of homeodomain proteins UNC-62 homothorax and MLS-2 HMX/NKX in the specification of olfactory neurons in Caenorhabditis elegans. Genetics 2021; 219:6350488. [PMID: 34849889 DOI: 10.1093/genetics/iyab133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
General identity of the Caenorhabditis elegans AWC olfactory neuron pair is specified by the OTX/OTD transcription factor CEH-36 and the HMG-box transcription factor SOX-2, followed by asymmetrical differentiation of the pair into two distinct subtypes, default AWCOFF and induced AWCON, through a stochastic signaling event. The HMX/NKX transcription factor MLS-2 regulates the expression of ceh-36 to specify general AWC identity. However, general AWC identity is lost in only one of the two AWC cells in the majority of mls-2 null mutants displaying defective general AWC identity, suggesting that additional transcription factors have a partially overlapping role with MLS-2 in the specification of general AWC identity. Here, we identify a role of unc-62, encoding a homothorax/Meis/TALE homeodomain protein, in the specification of general AWC identity. As in mls-2 null mutants, unc-62 null mutants showed an incomplete penetrance in loss of general AWC identity. However, unc-62; mls-2 double mutants display a nearly complete penetrance of identity loss in both AWC cells. Thus, unc-62 and mls-2 have a partially overlapping function in the specification of general AWC identity. Furthermore, our genetic results suggest that mls-2 and unc-62 act cell autonomously in promoting the AWCON subtype. Together, our findings reveal the sequential roles of the unc-62 and mls-2 pair in AWC development, specification of general AWC identity in early embryogenesis, and asymmetric differentiation of AWC subtypes in late embryogenesis.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Rui Xiong
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
10
|
A TALE/HOX code unlocks WNT signalling response towards paraxial mesoderm. Nat Commun 2021; 12:5136. [PMID: 34446717 PMCID: PMC8390530 DOI: 10.1038/s41467-021-25370-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
One fundamental yet unresolved question in biology remains how cells interpret the same signalling cues in a context-dependent manner resulting in lineage specification. A key step for decoding signalling cues is the establishment of a permissive chromatin environment at lineage-specific genes triggering transcriptional responses to inductive signals. For instance, bipotent neuromesodermal progenitors (NMPs) are equipped with a WNT-decoding module, which relies on TCFs/LEF activity to sustain both NMP expansion and paraxial mesoderm differentiation. However, how WNT signalling activates lineage specific genes in a temporal manner remains unclear. Here, we demonstrate that paraxial mesoderm induction relies on the TALE/HOX combinatorial activity that simultaneously represses NMP genes and activates the differentiation program. We identify the BRACHYURY-TALE/HOX code that destabilizes the nucleosomes at WNT-responsive regions and establishes the permissive chromatin landscape for de novo recruitment of the WNT-effector LEF1, unlocking the WNT-mediated transcriptional program that drives NMPs towards the paraxial mesodermal fate. Cells in the developing embryo interpret WNT signalling with context-dependence, but the mechanism decoding these cues is unclear. Here, the authors show that combinatorial TALE/HOX activity destabilizes nucleosomes at WNT-responsive regions to activate paraxial mesodermal genes.
Collapse
|
11
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functional analysis of novel genetic variants of NKX2-5 associated with nonsyndromic congenital heart disease. Am J Med Genet A 2021; 185:3644-3663. [PMID: 34214246 DOI: 10.1002/ajmg.a.62413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
NKX2-5, a master cardiac regulatory transcription factor was the first known genetic cause of congenital heart diseases (CHDs). To further investigate its role in CHD pathogenesis, we performed mutational screening of 285 CHD probands and 200 healthy controls. Five coding sequence variants were identified in six CHD cases (2.1%), including three in the N-terminal region (p.A61G, p.R95L, and p.E131K) and one each in homeodomain (HD) (p.A148E) and tyrosine-rich domain (p.P247A). Variant-p.A148E showed tertiary structure changes and differential DNA binding affinity of mutant compared to wild type. Two N-terminal variants-p.A61G and p.E131K along with HD variant p.A148E demonstrated significantly reduced transcriptional activity of Nppa and Actc1 promoters in dual luciferase promoter assay supported by their reduced expression in qRT-PCR. Nonetheless, variant p.R95L affected the synergy of NKX2-5 with serum response factor and TBX5 leading to significantly decreased Actc1 promoter activity depicting a distinctive role of this region. The aberrant expression of other target genes-Irx4, Mef2c, Bmp10, Myh6, Myh7, and Myocd is also observed in response to NKX2-5 variants, possibly due to the defective gene regulatory network. Severely impaired downstream promoter activities and abnormal expression of target genes due to N-terminal variants supports the emerging role of this region during cardiac-developmental pathways.
Collapse
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, India
| | - Vijayalakshmi I Balekundri
- Super Speciality Hospital, Pradhan Mantri Swasthya Suraksha Yojana (PMSSY), Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Damyanti Agrawal
- Department of Cardiothoracic and Vascular Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Cozzitorto C, Mueller L, Ruzittu S, Mah N, Willnow D, Darrigrand JF, Wilson H, Khosravinia D, Mahmoud AA, Risolino M, Selleri L, Spagnoli FM. A Specialized Niche in the Pancreatic Microenvironment Promotes Endocrine Differentiation. Dev Cell 2020; 55:150-162.e6. [PMID: 32857951 PMCID: PMC7720791 DOI: 10.1016/j.devcel.2020.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/11/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
The interplay between pancreatic epithelium and the surrounding microenvironment is pivotal for pancreas formation and differentiation as well as adult organ homeostasis. The mesenchyme is the main component of the embryonic pancreatic microenvironment, yet its cellular identity is broadly defined, and whether it comprises functionally distinct cell subsets is not known. Using genetic lineage tracing, transcriptome, and functional studies, we identified mesenchymal populations with different roles during pancreatic development. Moreover, we showed that Pbx transcription factors act within the mouse pancreatic mesenchyme to define a pro-endocrine specialized niche. Pbx directs differentiation of endocrine progenitors into insulin- and glucagon-positive cells through non-cell-autonomous regulation of ECM-integrin interactions and soluble molecules. Next, we measured functional conservation between mouse and human pancreatic mesenchyme by testing identified mesenchymal factors in an iPSC-based differentiation model. Our findings provide insights into how lineage-specific crosstalk between epithelium and neighboring mesenchymal cells underpin the generation of different pancreatic cell types.
Collapse
Affiliation(s)
- Corinna Cozzitorto
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Department of Ophthalmology & Department of Anatomy, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura Mueller
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Silvia Ruzittu
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Nancy Mah
- Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - David Willnow
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Jean-Francois Darrigrand
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Heather Wilson
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Daniel Khosravinia
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Amir-Ala Mahmoud
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Department of Orofacial Sciences & Department of Anatomy, University of California, San Francisco, 513 Parnassus Ave, HSW 710, San Francisco, CA 94143, USA
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Department of Orofacial Sciences & Department of Anatomy, University of California, San Francisco, 513 Parnassus Ave, HSW 710, San Francisco, CA 94143, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Department of Orofacial Sciences & Department of Anatomy, University of California, San Francisco, 513 Parnassus Ave, HSW 710, San Francisco, CA 94143, USA
| | - Francesca M Spagnoli
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
13
|
Kolomenski JE, Delea M, Simonetti L, Fabbro MC, Espeche LD, Taboas M, Nadra AD, Bruque CD, Dain L. An update on genetic variants of the NKX2-5. Hum Mutat 2020; 41:1187-1208. [PMID: 32369864 DOI: 10.1002/humu.24030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
NKX2-5 is a homeodomain transcription factor that plays a crucial role in heart development. It is the first gene where a single genetic variant (GV) was found to be associated with congenital heart diseases in humans. In this study, we carried out a comprehensive survey of NKX2-5 GVs to build a unified, curated, and updated compilation of all available GVs. We retrieved a total of 1,380 unique GVs. From these, 970 had information on their frequency in the general population and 143 have been linked to pathogenic phenotypes in humans. In vitro effect was ascertained for 38 GVs. The homeodomain had the biggest cluster of pathogenic variants in the protein: 49 GVs in 60 residues, 23 in its third α-helix, where 11 missense variants may affect protein-DNA interaction or the hydrophobic core. We also pinpointed the likely location of pathogenic GVs in four linear motifs. These analyses allowed us to assign a putative explanation for the effect of 90 GVs. This study pointed to reliable pathogenicity for GVs in helix 3 of the homeodomain and may broaden the scope of functional and structural studies that can be done to better understand the effect of GVs in NKX2-5 function.
Collapse
Affiliation(s)
- Jorge E Kolomenski
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisol Delea
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Leandro Simonetti
- Department of Chemistry-Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | - Lucía D Espeche
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Melisa Taboas
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Alejandro D Nadra
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos D Bruque
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| | - Liliana Dain
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina.,Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Arts P, Garland J, Byrne AB, Hardy TS, Babic M, Feng J, Wang P, Ha T, King‐Smith SL, Schreiber AW, Crawford A, Manton N, Moore L, Barnett CP, Scott HS. Paternal mosaicism for a novel PBX1 mutation associated with recurrent perinatal death: Phenotypic expansion of the PBX1-related syndrome. Am J Med Genet A 2020; 182:1273-1277. [PMID: 32141698 PMCID: PMC7217179 DOI: 10.1002/ajmg.a.61541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 11/11/2022]
Abstract
Autosomal dominant (de novo) mutations in PBX1 are known to cause congenital abnormalities of the kidney and urinary tract (CAKUT), with or without extra-renal abnormalities. Using trio exome sequencing, we identified a PBX1 p.(Arg107Trp) mutation in a deceased one-day-old neonate presenting with CAKUT, asplenia, and severe bilateral diaphragmatic thinning and eventration. Further investigation by droplet digital PCR revealed that the mutation had occurred post-zygotically in the father, with different variant allele frequencies of the mosaic PBX1 mutation in blood (10%) and sperm (20%). Interestingly, the father had subclinical hydronephrosis in childhood. With an expected recurrence risk of one in five, chorionic villus sampling and prenatal diagnosis for the PBX1 mutation identified recurrence in a subsequent pregnancy. The family opted to continue the pregnancy and the second affected sibling was stillborn at 35 weeks, presenting with similar severe bilateral diaphragmatic eventration, microsplenia, and complete sex reversal (46, XY female). This study highlights the importance of follow-up studies for presumed de novo and low-level mosaic variants and broadens the phenotypic spectrum of developmental abnormalities caused by PBX1 mutations.
Collapse
Affiliation(s)
- Peer Arts
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jessica Garland
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Alicia B. Byrne
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Australian Genomics Health AllianceMelbourneVictoriaAustralia
| | - Tristan S.E. Hardy
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- RepromedDulwichAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Milena Babic
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jinghua Feng
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Paul Wang
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Thuong Ha
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Sarah L. King‐Smith
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- Australian Genomics Health AllianceMelbourneVictoriaAustralia
| | - Andreas W. Schreiber
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - April Crawford
- Department of Anatomical PathologySA Pathology, Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Nick Manton
- Department of Anatomical PathologySA Pathology, Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Lynette Moore
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Anatomical PathologySA Pathology, Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Christopher P. Barnett
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Hamish S. Scott
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- Australian Genomics Health AllianceMelbourneVictoriaAustralia
| |
Collapse
|
15
|
Remesal L, Roger-Baynat I, Chirivella L, Maicas M, Brocal-Ruiz R, Pérez-Villalba A, Cucarella C, Casado M, Flames N. PBX1 acts as terminal selector for olfactory bulb dopaminergic neurons. Development 2020; 147:dev.186841. [PMID: 32156753 DOI: 10.1242/dev.186841] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 02/03/2023]
Abstract
Neuronal specification is a protracted process that begins with the commitment of progenitor cells and culminates with the generation of mature neurons. Many transcription factors are continuously expressed during this process but it is presently unclear how these factors modify their targets as cells transition through different stages of specification. In olfactory bulb adult neurogenesis, the transcription factor PBX1 controls neurogenesis in progenitor cells and the survival of migrating neuroblasts. Here, we show that, at later differentiation stages, PBX1 also acts as a terminal selector for the dopaminergic neuron fate. PBX1 is also required for the morphological maturation of dopaminergic neurons and to repress alternative interneuron fates, findings that expand the known repertoire of terminal-selector actions. Finally, we reveal that the temporal diversification of PBX1 functions in neuronal specification is achieved, at least in part, through the dynamic regulation of alternative splicing. In Caenorhabditis elegans, PBX/CEH-20 also acts as a dopaminergic neuron terminal selector, which suggests an ancient role for PBX factors in the regulation of terminal differentiation of dopaminergic neurons.
Collapse
Affiliation(s)
- Laura Remesal
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Isabel Roger-Baynat
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Laura Chirivella
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Miren Maicas
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Rebeca Brocal-Ruiz
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Ana Pérez-Villalba
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), and Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Carme Cucarella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Metabolic Experimental Pathology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Metabolic Experimental Pathology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| |
Collapse
|
16
|
Transcription factor Tlx1 marks a subset of lymphoid tissue organizer-like mesenchymal progenitor cells in the neonatal spleen. Sci Rep 2019; 9:20408. [PMID: 31892733 PMCID: PMC6938487 DOI: 10.1038/s41598-019-56984-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The spleen is comprised of spatially distinct compartments whose functions, such as immune responses and removal of aged red blood cells, are tightly controlled by the non-hematopoietic stromal cells that provide regionally-restricted signals to properly activate hematopoietic cells residing in each area. However, information regarding the ontogeny and relationships of the different stromal cell types remains limited. Here we have used in vivo lineage tracing analysis and in vitro mesenchymal stromal cell assays and found that Tlx1, a transcription factor essential for embryonic spleen organogenesis, marks neonatal stromal cells that are selectively localized in the spleen and retain mesenchymal progenitor potential to differentiate into mature follicular dendritic cells, fibroblastic reticular cells and marginal reticular cells. Furthermore, by establishing a novel three-dimensional cell culture system that enables maintenance of Tlx1-expressing cells in vitro, we discovered that signals from the lymphotoxin β receptor and TNF receptor promote differentiation of these cells to express MAdCAM-1, CCL19 and CXCL13, representative functional molecules expressed by different subsets of mature stromal cells in the spleen. Taken together, these findings indicate that mesenchymal progenitor cells expressing Tlx1 are a subset of lymphoid tissue organizer-like cells selectively found in the neonatal spleen.
Collapse
|
17
|
Deregulated NKL Homeobox Genes in B-Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11121874. [PMID: 31779217 PMCID: PMC6966443 DOI: 10.3390/cancers11121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Recently, we have described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis. We identified nine genes which constitute the so-called NKL-code. Aberrant overexpression of code-members or ectopically activated non-code NKL homeobox genes are described in T-cell leukemia and in T- and B-cell lymphoma, highlighting their oncogenic role in lymphoid malignancies. Here, we introduce the NKL-code in normal hematopoiesis and focus on deregulated NKL homeobox genes in B-cell lymphoma, including HLX, MSX1 and NKX2-2 in Hodgkin lymphoma; HLX, NKX2-1 and NKX6-3 in diffuse large B-cell lymphoma; and NKX2-3 in splenic marginal zone lymphoma. Thus, the roles of various members of the NKL homeobox gene subclass are considered in normal and pathological hematopoiesis in detail.
Collapse
|
18
|
Kalayinia S, Ghasemi S, Mahdieh N. A comprehensive in silico analysis, distribution and frequency of human Nkx2-5 mutations; A critical gene in congenital heart disease. J Cardiovasc Thorac Res 2019; 11:287-299. [PMID: 31824610 PMCID: PMC6891041 DOI: 10.15171/jcvtr.2019.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: Congenital heart disease (CHD) affects 1% to 2 % of live births. The Nkx2-5 gene, is known as the significant heart marker during embryonic evolution and it is also necessary for the survival of cardiomyocytes and homeostasis in adulthood. In this study, Nkx2-5 mutations are investigated to identify the frequency, distribution, functional consequences of mutations by using computational tools.
Methods: A complete literature search was conducted to find Nkx2-5 mutations using the following key words: Nkx2-5 and/or CHD and mutations. The mutations were in silico analyzed using tools which predict the pathogenicity of the variants. A picture of Nkx2-5 protein and functional or structural effects of its variants were also figured using I-TASSER and STRING.
Results: A total number of 105 mutations from 18 countries were introduced. The most (24.1%) and the least (1.49%) frequency of Nkx2-5 mutations were observed in Europe and Africa, respectively. The c.73C>T and c.533C>T mutations are distributed worldwide. c.325G>T (62.5%) and c.896A>G (52.9%) had the most frequency. The most numbers of Nkx2-5 mutations were reported from Germany. The c.541C>T had the highest CADD score (Phred score = 38) and the least was for c.380C>A (Phred score=0.002). 41.9% of mutations were predicted as potentially pathogenic by all prediction tools.
Conclusion: This is the first report of the Nkx2-5 mutations evaluation in the worldwide. Given that the high frequency of mutation in Germany, and also some mutations were seen only in this country, therefore, presumably the main origin of Nkx2-5 mutations arise from Germany.
Collapse
Affiliation(s)
- Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Department of Biology, School of Basic Sciences, Islamic Azad University Research Tehran Branch, Tehran, Iran
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Kerkhofs C, Stevens SJC, Faust SN, Rae W, Williams AP, Wurm P, Østern R, Fockens P, Würfel C, Laass M, Kokke F, Stegmann APA, Brunner HG. Mutations in RPSA and NKX2-3 link development of the spleen and intestinal vasculature. Hum Mutat 2019; 41:196-202. [PMID: 31498527 PMCID: PMC6972609 DOI: 10.1002/humu.23909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Idiopathic intestinal varicosis is a developmental disorder defined by dilated and convoluted submucosal veins in the colon or small bowel. A limited number of families with idiopathic intestinal varices has been reported, but the genetic cause has not yet been identified. We performed whole‐exome and targeted Sanger sequencing of candidate genes in five intestinal varicosis families. In four families, mutations in the RPSA gene were found, a gene previously linked to congenital asplenia. Individuals in these pedigrees had intestinal varicose veins and angiodysplasia, often in combination with asplenia. In a further four‐generation pedigree that only showed intestinal varicosities, the RPSA gene was normal. Instead, a nonsense mutation in the homeobox gene NKX2‐3 was detected which cosegregated with the disease in this large family with a LOD (logarithm of the odds) score of 3.3. NKX2‐3 is a component of a molecular pathway underlying spleen and gut vasculature development in mice. Our results provide a molecular basis for familial idiopathic intestinal varices. We provide evidence for a relationship between the molecular pathways underlying the development of the spleen and intestinal mucosal vasculature that is conserved between humans and mice. We propose that clinical management of intestinal varices, should include assessment of a functional spleen.
Collapse
Affiliation(s)
- Chantal Kerkhofs
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton, NHS Foundation Trust, Southampton, UK.,Departments of Immunology and Paediatric Immunology and Infectious Diseases, University Hospital Southampton, UK
| | - William Rae
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton, NHS Foundation Trust, Southampton, UK.,Departments of Immunology and Paediatric Immunology and Infectious Diseases, University Hospital Southampton, UK
| | - Anthony P Williams
- NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University of Southampton Faculty of Medicine and University Hospital Southampton, NHS Foundation Trust, Southampton, UK.,Departments of Immunology and Paediatric Immunology and Infectious Diseases, University Hospital Southampton, UK
| | - Peter Wurm
- Department of Gastroenterology, University Hospitals of Leicester, NHS Trust, Leicester, UK
| | - Rune Østern
- Department of Pathology and Medical Genetics, St. Olavs Hospital, Trondheim, Norway
| | - Paul Fockens
- Department of Gastrointestinal diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Christiane Würfel
- Department of Pediatrics, University Hospital Dresden, Dresden, Germany
| | - Martin Laass
- Department of Pediatrics, University Hospital Dresden, Dresden, Germany
| | - Freddy Kokke
- Department of Pediatric Gastroenterology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Selleri L, Zappavigna V, Ferretti E. 'Building a perfect body': control of vertebrate organogenesis by PBX-dependent regulatory networks. Genes Dev 2019; 33:258-275. [PMID: 30824532 PMCID: PMC6411007 DOI: 10.1101/gad.318774.118] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pbx genes encode transcription factors that belong to the TALE (three-amino-acid loop extension) superclass of homeodomain proteins. We have witnessed a surge in information about the roles of this gene family as leading actors in the transcriptional control of development. PBX proteins represent a clear example of how transcription factors can regulate developmental processes by combinatorial properties, acting within multimeric complexes to implement activation or repression of transcription depending on their interaction partners. Here, we revisit long-emphasized functions of PBX transcription factors as cofactors for HOX proteins, major architects of the body plan. We further discuss new knowledge on roles of PBX proteins in different developmental contexts as upstream regulators of Hox genes-as factors that interact with non-HOX proteins and can work independently of HOX-as well as potential pioneer factors. Committed to building a perfect body, PBX proteins govern regulatory networks that direct essential morphogenetic processes and organogenesis in vertebrate development. Perturbations of PBX-dependent networks can cause human congenital disease and cancer.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California 94143, USA
- Institute of Human Genetics, University of California at San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elisabetta Ferretti
- The Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
21
|
Crisafulli L, Muggeo S, Uva P, Wang Y, Iwasaki M, Locatelli S, Anselmo A, Colombo FS, Carlo-Stella C, Cleary ML, Villa A, Gentner B, Ficara F. MicroRNA-127-3p controls murine hematopoietic stem cell maintenance by limiting differentiation. Haematologica 2019; 104:1744-1755. [PMID: 30792210 PMCID: PMC6717575 DOI: 10.3324/haematol.2018.198499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The balance between self-renewal and differentiation is crucial to ensure the homeostasis of the hematopoietic system, and is a hallmark of hematopoietic stem cells. However, the underlying molecular pathways, including the role of micro-RNA, are not completely understood. To assess the contribution of micro-RNA, we performed micro-RNA profiling of hematopoietic stem cells and their immediate downstream progeny multi-potent progenitors from wild-type control and Pbx1-conditional knockout mice, whose stem cells display a profound self-renewal defect. Unsupervised hierarchical cluster analysis separated stem cells from multi-potent progenitors, suggesting that micro-RNA might regulate the first transition step in the adult hematopoietic development. Notably, Pbx1-deficient and wild-type cells clustered separately, linking micro-RNAs to self-renewal impairment. Differential expression analysis of micro-RNA in the physiological stem cell-to-multi-potent progenitor transition and in Pbx1-deficient stem cells compared to control stem cells revealed miR-127-3p as the most differentially expressed. Furthermore, miR-127-3p was strongly stem cell-specific, being quickly down-regulated upon differentiation and not re-expressed further downstream in the bone marrow hematopoietic hierarchy. Inhibition of miR-127-3p function in Lineage-negative cells, achieved through a lentiviral-sponge vector, led to severe stem cell depletion, as assessed with serial transplantation assays. miR-127-3p-sponged stem cells displayed accelerated differentiation, which was uncoupled from proliferation, accounting for the observed stem cell reduction. miR-127-3p overexpression in Lineage-negative cells did not alter stem cell pool size, but gave rise to lymphopenia, likely due to lack of miR-127-3p physiological downregulation beyond the stem cell stage. Thus, tight regulation of miR-127-3p is crucial to preserve the self-renewing stem cell pool and homeostasis of the hematopoietic system.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Sharon Muggeo
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Yulei Wang
- Genentech Inc., South San Francisco, CA, USA
| | - Masayuki Iwasaki
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Silvia Locatelli
- Department of Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Federico S Colombo
- Flow Cytometry Core, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Humanitas Huniversity, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - Michael L Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna Villa
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy.,San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Milan, Italy .,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
22
|
Young M, Selleri L, Capellini TD. Genetics of scapula and pelvis development: An evolutionary perspective. Curr Top Dev Biol 2019; 132:311-349. [PMID: 30797513 PMCID: PMC6430119 DOI: 10.1016/bs.ctdb.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In tetrapods, the scapular and pelvic girdles perform the important function of anchoring the limbs to the trunk of the body and facilitating the movement of each appendage. This shared function, however, is one of relatively few similarities between the scapula and pelvis, which have significantly different morphologies, evolutionary histories, embryonic origins, and underlying genetic pathways. The scapula evolved in jawless fish prior to the pelvis, and its embryonic development is unique among bones in that it is derived from multiple progenitor cell populations, including the dermomyotome, somatopleure, and neural crest. Conversely, the pelvis evolved several million years later in jawed fish, and it develops from an embryonic somatopleuric cell population. The genetic networks controlling the formation of the pelvis and scapula also share similarities and differences, with a number of genes shaping only one or the other, while other gene products such as PBX transcription factors act as hierarchical developmental regulators of both girdle structures. Here, we provide a detailed review of the cellular processes and genetic networks underlying pelvis and scapula formation in tetrapods, while also highlighting unanswered questions about girdle evolution and development.
Collapse
Affiliation(s)
- Mariel Young
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States; Program in Craniofacial Biology, Department of Anatomy, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States.
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States.
| |
Collapse
|
23
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Bastidas Torres AN, Cats D, Mei H, Szuhai K, Willemze R, Vermeer MH, Tensen CP. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides. Genes Chromosomes Cancer 2018; 57:653-664. [PMID: 30144205 PMCID: PMC6282857 DOI: 10.1002/gcc.22679] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/31/2023] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). Causative genetic alterations in MF are unknown. The low recurrence of pathogenic small-scale mutations (ie, nucleotide substitutions, indels) in the disease, calls for the study of additional aspects of MF genetics. Here, we investigated structural genomic alterations in tumor-stage MF by integrating whole-genome sequencing and RNA-sequencing. Multiple genes with roles in cell physiology (n = 113) and metabolism (n = 92) were found to be impacted by genomic rearrangements, including 47 genes currently implicated in cancer. Fusion transcripts involving genes of interest such as DOT1L, KDM6A, LIFR, TP53, and TP63 were also observed. Additionally, we identified recurrent deletions of genes involved in cell cycle control, chromatin regulation, the JAK-STAT pathway, and the PI-3-K pathway. Remarkably, many of these deletions result from genomic rearrangements. Deletion of tumor suppressors HNRNPK and SOCS1 were the most frequent genetic alterations in MF after deletion of CDKN2A. Notably, SOCS1 deletion could be detected in early-stage MF. In agreement with the observed genomic alterations, transcriptome analysis revealed up-regulation of the cell cycle, JAK-STAT, PI-3-K and developmental pathways. Our results position inactivation of HNRNPK and SOCS1 as potential driver events in MF development.
Collapse
Affiliation(s)
| | - Davy Cats
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis P Tensen
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Griffin JN, Sondalle SB, Robson A, Mis EK, Griffin G, Kulkarni SS, Deniz E, Baserga SJ, Khokha MK. RPSA, a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in Xenopus. Development 2018; 145:145/20/dev166181. [PMID: 30337486 DOI: 10.1242/dev.166181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022]
Abstract
A growing number of tissue-specific inherited disorders are associated with impaired ribosome production, despite the universal requirement for ribosome function. Recently, mutations in RPSA, a protein component of the small ribosomal subunit, were discovered to underlie approximately half of all isolated congenital asplenia cases. However, the mechanisms by which mutations in this ribosome biogenesis factor lead specifically to spleen agenesis remain unknown, in part due to the lack of a suitable animal model for study. Here we reveal that RPSA is required for normal spleen development in the frog, Xenopus tropicalis Depletion of Rpsa in early embryonic development disrupts pre-rRNA processing and ribosome biogenesis, and impairs expression of the key spleen patterning genes nkx2-5, bapx1 and pod1 in the spleen anlage. Importantly, we also show that whereas injection of human RPSA mRNA can rescue both pre-rRNA processing and spleen patterning, injection of human mRNA bearing a common disease-associated mutation cannot. Together, we present the first animal model of RPSA-mediated asplenia and reveal a crucial requirement for RPSA in pre-rRNA processing and molecular patterning during early Xenopus development.
Collapse
Affiliation(s)
- John N Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Samuel B Sondalle
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Andrew Robson
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Gerald Griffin
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Saurabh S Kulkarni
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA .,Departments of Molecular Biophysics and Biochemistry, and Therapeutic Radiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA .,Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| |
Collapse
|
26
|
Xu Y, Zhao W, Olson SD, Prabhakara KS, Zhou X. Alternative splicing links histone modifications to stem cell fate decision. Genome Biol 2018; 19:133. [PMID: 30217220 PMCID: PMC6138936 DOI: 10.1186/s13059-018-1512-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Understanding the embryonic stem cell (ESC) fate decision between self-renewal and proper differentiation is important for developmental biology and regenerative medicine. Attention has focused on mechanisms involving histone modifications, alternative pre-messenger RNA splicing, and cell-cycle progression. However, their intricate interrelations and joint contributions to ESC fate decision remain unclear. RESULTS We analyze the transcriptomes and epigenomes of human ESC and five types of differentiated cells. We identify thousands of alternatively spliced exons and reveal their development and lineage-dependent characterizations. Several histone modifications show dynamic changes in alternatively spliced exons and three are strongly associated with 52.8% of alternative splicing events upon hESC differentiation. The histone modification-associated alternatively spliced genes predominantly function in G2/M phases and ATM/ATR-mediated DNA damage response pathway for cell differentiation, whereas other alternatively spliced genes are enriched in the G1 phase and pathways for self-renewal. These results imply a potential epigenetic mechanism by which some histone modifications contribute to ESC fate decision through the regulation of alternative splicing in specific pathways and cell-cycle genes. Supported by experimental validations and extended datasets from Roadmap/ENCODE projects, we exemplify this mechanism by a cell-cycle-related transcription factor, PBX1, which regulates the pluripotency regulatory network by binding to NANOG. We suggest that the isoform switch from PBX1a to PBX1b links H3K36me3 to hESC fate determination through the PSIP1/SRSF1 adaptor, which results in the exon skipping of PBX1. CONCLUSION We reveal the mechanism by which alternative splicing links histone modifications to stem cell fate decision.
Collapse
Affiliation(s)
- Yungang Xu
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Karthik S. Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- Center for Bioinformatics and Systems Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
27
|
Welsh IC, Hart J, Brown JM, Hansen K, Rocha Marques M, Aho RJ, Grishina I, Hurtado R, Herzlinger D, Ferretti E, Garcia-Garcia MJ, Selleri L. Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface. J Anat 2018; 233:222-242. [PMID: 29797482 PMCID: PMC6036936 DOI: 10.1111/joa.12821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2018] [Indexed: 01/21/2023] Open
Abstract
Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P) is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic cellular behaviors. Within the Pbx family of genes encoding Three Amino-acid Loop Extension (TALE) homeodomain-containing TFs, we previously established that in the mouse, Pbx1 plays a preeminent role in midfacial morphogenesis, and Pbx2 and Pbx3 execute collaborative functions in domains of coexpression. We also reported that Pbx1 loss from cephalic epithelial domains, on a Pbx2- or Pbx3-deficient background, results in CL/P via disruption of a regulatory network that controls apoptosis at the seam of frontonasal and maxillary process fusion. Conversely, Pbx1 loss in cranial neural crest cell (CNCC)-derived mesenchyme on a Pbx2-deficient background results in CPO, a phenotype not yet characterized. In this study, we provide in-depth analysis of PBX1 and PBX2 protein localization from early stages of midfacial morphogenesis throughout development of the secondary palate. We further establish CNCC-specific roles of PBX TFs and describe the developmental abnormalities resulting from their loss in the murine embryonic secondary palate. Additionally, we compare and contrast the phenotypes arising from PBX1 loss in CNCC with those caused by its loss in the epithelium and show that CNCC-specific Pbx1 deletion affects only later secondary palate morphogenesis. Moreover, CNCC mutants exhibit perturbed rostro-caudal organization and broadening of the midfacial complex. Proliferation defects are pronounced in CNCC mutants at gestational day (E)12.5, suggesting altered proliferation of mutant palatal progenitor cells, consistent with roles of PBX factors in maintaining progenitor cell state. Although the craniofacial skeletal abnormalities in CNCC mutants do not result from overt patterning defects, osteogenesis is delayed, underscoring a critical role of PBX factors in CNCC morphogenesis and differentiation. Overall, the characterization of tissue-specific Pbx loss-of-function mouse models with orofacial clefting establishes these strains as unique tools to further dissect the complexities of this congenital craniofacial malformation. This study closely links PBX TALE homeodomain proteins to the variation in maxillary shape and size that occurs in pathological settings and during evolution of midfacial morphology.
Collapse
Affiliation(s)
- Ian C Welsh
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - James Hart
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Joel M Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Karissa Hansen
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Marcelo Rocha Marques
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Robert J Aho
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Romulo Hurtado
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Doris Herzlinger
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | | | - Licia Selleri
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
28
|
Golub R, Tan J, Watanabe T, Brendolan A. Origin and Immunological Functions of Spleen Stromal Cells. Trends Immunol 2018; 39:503-514. [PMID: 29567327 DOI: 10.1016/j.it.2018.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023]
Abstract
The mammalian spleen is a peripheral lymphoid organ that plays a central role in host defense. Consequently, the lack of spleen is often associated with immunodeficiency and increased risk of overwhelming infections. Growing evidence suggests that non-hematopoietic stromal cells are central players in spleen development, organization, and immune functions. In addition to its immunological role, the spleen also provides a site for extramedullary hematopoiesis (EMH) in response to injuries. A deeper understanding of the biology of stromal cells is therefore essential to fully comprehend how these cells modulate the immune system during normal and pathological conditions. Here, we review the specificities of the different mouse spleen stromal cell subsets and complement the murine studies with human data when available.
Collapse
Affiliation(s)
- Rachel Golub
- Unit for Lymphopoiesis, Immunology Department, INSERM U1223, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Institut Pasteur, Paris, France.
| | - Jonathan Tan
- Clem Jones Research Centre for Regenerative Medicine, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Andrea Brendolan
- Unit of Lymphoid Organ Development, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
29
|
Losa M, Risolino M, Li B, Hart J, Quintana L, Grishina I, Yang H, Choi IF, Lewicki P, Khan S, Aho R, Feenstra J, Vincent CT, Brown AMC, Ferretti E, Williams T, Selleri L. Face morphogenesis is promoted by Pbx-dependent EMT via regulation of Snail1 during frontonasal prominence fusion. Development 2018; 145:dev157628. [PMID: 29437830 PMCID: PMC5868993 DOI: 10.1242/dev.157628] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
Human cleft lip with or without cleft palate (CL/P) is a common craniofacial abnormality caused by impaired fusion of the facial prominences. We have previously reported that, in the mouse embryo, epithelial apoptosis mediates fusion at the seam where the prominences coalesce. Here, we show that apoptosis alone is not sufficient to remove the epithelial layers. We observed morphological changes in the seam epithelia, intermingling of cells of epithelial descent into the mesenchyme and molecular signatures of epithelial-mesenchymal transition (EMT). Utilizing mouse lines with cephalic epithelium-specific Pbx loss exhibiting CL/P, we demonstrate that these cellular behaviors are Pbx dependent, as is the transcriptional regulation of the EMT driver Snail1. Furthermore, in the embryo, the majority of epithelial cells expressing high levels of Snail1 do not undergo apoptosis. Pbx1 loss- and gain-of-function in a tractable epithelial culture system revealed that Pbx1 is both necessary and sufficient for EMT induction. This study establishes that Pbx-dependent EMT programs mediate murine upper lip/primary palate morphogenesis and fusion via regulation of Snail1. Of note, the EMT signatures observed in the embryo are mirrored in the epithelial culture system.
Collapse
Affiliation(s)
- Marta Losa
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Bingsi Li
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - James Hart
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Irina Grishina
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Hui Yang
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Irene F Choi
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick Lewicki
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Sameer Khan
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Robert Aho
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
| | - C Theresa Vincent
- Karolinska Institute, Department of Physiology and Pharmacology, Nanna svartz väg 2, 17177 Stockholm, Sweden
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Anthony M C Brown
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| | - Trevor Williams
- Departments of Craniofacial Biology and Cell and Developmental Biology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, W-512, New York, NY 10065, USA
| |
Collapse
|
30
|
McCulley DJ, Wienhold MD, Hines EA, Hacker TA, Rogers A, Pewowaruk RJ, Zewdu R, Chesler NC, Selleri L, Sun X. PBX transcription factors drive pulmonary vascular adaptation to birth. J Clin Invest 2018; 128:655-667. [PMID: 29251627 PMCID: PMC5785269 DOI: 10.1172/jci93395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023] Open
Abstract
A critical event in the adaptation to extrauterine life is relaxation of the pulmonary vasculature at birth, allowing for a rapid increase in pulmonary blood flow that is essential for efficient gas exchange. Failure of this transition leads to pulmonary hypertension (PH), a major cause of newborn mortality associated with preterm birth, infection, hypoxia, and malformations including congenital diaphragmatic hernia (CDH). While individual vasoconstrictor and dilator genes have been identified, the coordination of their expression is not well understood. Here, we found that lung mesenchyme-specific deletion of CDH-implicated genes encoding pre-B cell leukemia transcription factors (Pbx) led to lethal PH in mice shortly after birth. Loss of Pbx genes resulted in the misexpression of both vasoconstrictors and vasodilators in multiple pathways that converge to increase phosphorylation of myosin in vascular smooth muscle (VSM) cells, causing persistent constriction. While targeting endothelin and angiotensin, which are upstream regulators that promote VSM contraction, was not effective, treatment with the Rho-kinase inhibitor Y-27632 reduced vessel constriction and PH in Pbx-mutant mice. These results demonstrate a lung-intrinsic, herniation-independent cause of PH in CDH. More broadly, our findings indicate that neonatal PH can result from perturbation of multiple pathways and suggest that targeting the downstream common effectors may be a more effective treatment for neonatal PH.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryan J. Pewowaruk
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, USA
| | - Naomi C. Chesler
- Department of Pediatrics
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, USA
- Program in Craniofacial Biology, Institute of Human Genetics, Departments of Orofacial Sciences and Anatomy, UCSF, San Francisco, California, USA
| | - Xin Sun
- Laboratory of Genetics
- Department of Pediatrics, UCSD, San Diego, California, USA
| |
Collapse
|
31
|
Slavotinek A, Risolino M, Losa M, Cho MT, Monaghan KG, Schneidman-Duhovny D, Parisotto S, Herkert JC, Stegmann APA, Miller K, Shur N, Chui J, Muller E, DeBrosse S, Szot JO, Chapman G, Pachter NS, Winlaw DS, Mendelsohn BA, Dalton J, Sarafoglou K, Karachunski PI, Lewis JM, Pedro H, Dunwoodie SL, Selleri L, Shieh J. De novo, deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects. Hum Mol Genet 2017; 26:4849-4860. [PMID: 29036646 PMCID: PMC6455034 DOI: 10.1093/hmg/ddx363] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/25/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022] Open
Abstract
We present eight patients with de novo, deleterious sequence variants in the PBX1 gene. PBX1 encodes a three amino acid loop extension (TALE) homeodomain transcription factor that forms multimeric complexes with TALE and HOX proteins to regulate target gene transcription during development. As previously reported, Pbx1 homozygous mutant mice (Pbx1-/-) develop malformations and hypoplasia or aplasia of multiple organs, including the craniofacial skeleton, ear, branchial arches, heart, lungs, diaphragm, gut, kidneys, and gonads. Clinical findings similar to those in Pbx mutant mice were observed in all patients with varying expressivity and severity, including external ear anomalies, abnormal branchial arch derivatives, heart malformations, diaphragmatic hernia, renal hypoplasia and ambiguous genitalia. All patients but one had developmental delays. Previously reported patients with congenital anomalies affecting the kidney and urinary tract exhibited deletions and loss of function variants in PBX1. The sequence variants in our cases included missense substitutions adjacent to the PBX1 homeodomain (p.Arg184Pro, p.Met224Lys, and p.Arg227Pro) or within the homeodomain (p.Arg234Pro, and p.Arg235Gln), whereas p.Ser262Glnfs*2, and p.Arg288* yielded truncated PBX1 proteins. Functional studies on five PBX1 sequence variants revealed perturbation of intrinsic, PBX-dependent transactivation ability and altered nuclear translocation, suggesting abnormal interactions between mutant PBX1 proteins and wild-type TALE or HOX cofactors. It is likely that the mutations directly affect the transcription of PBX1 target genes to impact embryonic development. We conclude that deleterious sequence variants in PBX1 cause intellectual disability and pleiotropic malformations resembling those in Pbx1 mutant mice, arguing for strong conservation of gene function between these two species.
Collapse
Affiliation(s)
- Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Maurizio Risolino
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Marta Losa
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biochemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sarah Parisotto
- Division of Genetics, Department of Pediatrics, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Johanna C Herkert
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Genetics, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - Kathryn Miller
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Natasha Shur
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Jacqueline Chui
- Clinical Genetics, Stanford Children’s Health at CPMC, San Francisco, CA, USA
| | - Eric Muller
- Clinical Genetics, Stanford Children’s Health at CPMC, San Francisco, CA, USA
| | - Suzanne DeBrosse
- Center for Human Genetics, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Justin O Szot
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Gavin Chapman
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Nicholas S Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - David S Winlaw
- University of Sydney, Medical School, Sydney, NSW, Australia
- Heart Centre for Children, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Bryce A Mendelsohn
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Joline Dalton
- Paul and Shelia Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, USA
| | - Kyriakie Sarafoglou
- Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | | | - Jane M Lewis
- Department of Urology, University of Minnesota Masonic Children's Hospital, Minneapolis, MN, USA
| | - Helio Pedro
- Division of Genetics, Department of Pediatrics, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Sally L Dunwoodie
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Licia Selleri
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Program in Craniofacial Biology, Departments of Orofacial Sciences and Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Shieh
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Grebbin BM, Schulte D. PBX1 as Pioneer Factor: A Case Still Open. Front Cell Dev Biol 2017; 5:9. [PMID: 28261581 PMCID: PMC5306212 DOI: 10.3389/fcell.2017.00009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Pioneer factors are proteins that can recognize their target sites in barely accessible chromatin and initiate a cascade of events that allows for later transcriptional activation of the respective genes. Pioneer factors are therefore particularly well-suited to initiate cell fate changes. To date, only a small number of pioneer factors have been identified and studied in depth, such as FOXD3/FOXA1, OCT4, or SOX2. Interestingly, several recent studies reported that the PBC transcription factor PBX1 can access transcriptionally inactive genomic loci. Here, we summarize the evidence linking PBX1 with transcriptional pioneer functions, suggest potential mechanisms involved and discuss open questions to be resolved.
Collapse
Affiliation(s)
- Britta M Grebbin
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, J. W. Goethe University Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, J. W. Goethe University Frankfurt, Germany
| |
Collapse
|
33
|
Hanley O, Zewdu R, Cohen LJ, Jung H, Lacombe J, Philippidou P, Lee DH, Selleri L, Dasen JS. Parallel Pbx-Dependent Pathways Govern the Coalescence and Fate of Motor Columns. Neuron 2016; 91:1005-1020. [PMID: 27568519 DOI: 10.1016/j.neuron.2016.07.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/20/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023]
Abstract
The clustering of neurons sharing similar functional properties and connectivity is a common organizational feature of vertebrate nervous systems. Within motor networks, spinal motor neurons (MNs) segregate into longitudinally arrayed subtypes, establishing a central somatotopic map of peripheral target innervation. MN organization and connectivity relies on Hox transcription factors expressed along the rostrocaudal axis; however, the developmental mechanisms governing the orderly arrangement of MNs are largely unknown. We show that Pbx genes, which encode Hox cofactors, are essential for the segregation and clustering of neurons within motor columns. In the absence of Pbx1 and Pbx3 function, Hox-dependent programs are lost and the remaining MN subtypes are unclustered and disordered. Identification of Pbx gene targets revealed an unexpected and apparently Hox-independent role in defining molecular features of dorsally projecting medial motor column (MMC) neurons. These results indicate Pbx genes act in parallel genetic pathways to orchestrate neuronal subtype differentiation, connectivity, and organization.
Collapse
Affiliation(s)
- Olivia Hanley
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lisa J Cohen
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Heekyung Jung
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Julie Lacombe
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Polyxeni Philippidou
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - David H Lee
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jeremy S Dasen
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
34
|
Zewdu R, Risolino M, Barbulescu A, Ramalingam P, Butler JM, Selleri L. Spleen hypoplasia leads to abnormal stress hematopoiesis in mice with loss of Pbx homeoproteins in splenic mesenchyme. J Anat 2016; 229:153-69. [PMID: 27075259 PMCID: PMC5341595 DOI: 10.1111/joa.12479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 01/01/2023] Open
Abstract
The spleen plays critical roles in immunity and also provides a permissive microenvironment for hematopoiesis. Previous studies have reported that the TALE-class homeodomain transcription factor Pbx1 is essential in hematopoietic stem and progenitor cells (HSPCs) for stem cell maintenance and progenitor expansion. However, the role of Pbx1 in the hematopoietic niche has not been investigated. Here we explored the effects that genetic perturbation of the splenic mesenchymal niche has on hematopoiesis upon loss of members of the Pbx family of homeoproteins. Splenic mesenchyme-specific inactivation of Pbx1 (SKO) on a Pbx2- or Pbx3-deficient genetic background (DKO) resulted in abnormal development of the spleen, which is dysmorphic and severely hypoplastic. This phenotype, in turn, affected the number of HSPCs in the fetal and adult spleen at steady state, as well as markedly impairing the kinetics of hematopoietic regeneration in adult mice after sub-lethal and lethal myelosuppressive irradiation. Spleens of mice with compound Pyx deficiency 8 days following sublethal irradiation displayed significant downregulation of multiple cytokine-encoding genes, including KitL/SCF, Cxcl12/SDF-1, IL-3, IL-4, GM-CSF/Csf2 IL-10, and Igf-1, compared with controls. KitL/SCF and Cxcl12/SDF-1 were recently shown to play key roles in the splenic niche in response to various haematopoietic stresses such as myeloablation, blood loss, or pregnancy. Our results demonstrate that, in addition to their intrinsic roles in HSPCs, non-cell autonomous functions of Pbx factors within the splenic niche contribute to the regulation of hematopoiesis, at least in part via the control of KitL/SCF and Cxcl12/SDF-1. Furthermore, our study establishes that abnormal spleen development and hypoplasia have deleterious effects on the efficiency of hematopoietic recovery after bone marrow injury.
Collapse
Affiliation(s)
- Rediet Zewdu
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Present address: Huntsman Cancer Institute University of UtahSalt Lake CityUTUSA
| | - Maurizio Risolino
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Program in Craniofacial BiologyDepartment of Orofacial Sciences & Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | | - Jason M. Butler
- Department of Genetic MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Licia Selleri
- Department of Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
- Program in Craniofacial BiologyDepartment of Orofacial Sciences & Department of AnatomyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
35
|
Grebbin BM, Hau AC, Groß A, Anders-Maurer M, Schramm J, Koss M, Wille C, Mittelbronn M, Selleri L, Schulte D. Pbx1 is required for adult subventricular zone neurogenesis. Development 2016; 143:2281-91. [PMID: 27226325 DOI: 10.1242/dev.128033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 05/15/2016] [Indexed: 12/22/2022]
Abstract
TALE-homeodomain proteins function as components of heteromeric complexes that contain one member each of the PBC and MEIS/PREP subclasses. We recently showed that MEIS2 cooperates with the neurogenic transcription factor PAX6 in the control of adult subventricular zone (SVZ) neurogenesis in rodents. Expression of the PBC protein PBX1 in the SVZ has been reported, but its functional role(s) has not been investigated. Using a genetic loss-of-function mouse model, we now show that Pbx1 is an early regulator of SVZ neurogenesis. Targeted deletion of Pbx1 by retroviral transduction of Cre recombinase into Pbx2-deficient SVZ stem and progenitor cells carrying floxed alleles of Pbx1 significantly reduced the production of neurons and increased the generation of oligodendrocytes. Loss of Pbx1 expression in neuronally committed neuroblasts in the rostral migratory stream in a Pbx2 null background, by contrast, severely compromised cell survival. By chromatin immunoprecipitation from endogenous tissues or isolated cells, we further detected PBX1 binding to known regulatory regions of the neuron-specific genes Dcx and Th days or even weeks before the respective genes are expressed during the normal program of SVZ neurogenesis, suggesting that PBX1 might act as a priming factor to mark these genes for subsequent activation. Collectively, our results establish that PBX1 regulates adult neural cell fate determination in a manner beyond that of its heterodimerization partner MEIS2.
Collapse
Affiliation(s)
- Britta Moyo Grebbin
- Institute of Neurology (Edinger Institute), J. W. Goethe University Medical School, German Cancer Consortium (DKTK), Heinrich-Hoffmann Str. 7, Frankfurt D-60528, Germany
| | - Ann-Christin Hau
- Institute of Neurology (Edinger Institute), J. W. Goethe University Medical School, German Cancer Consortium (DKTK), Heinrich-Hoffmann Str. 7, Frankfurt D-60528, Germany
| | - Anja Groß
- Institute of Neurology (Edinger Institute), J. W. Goethe University Medical School, German Cancer Consortium (DKTK), Heinrich-Hoffmann Str. 7, Frankfurt D-60528, Germany
| | - Marie Anders-Maurer
- Institute of Neurology (Edinger Institute), J. W. Goethe University Medical School, German Cancer Consortium (DKTK), Heinrich-Hoffmann Str. 7, Frankfurt D-60528, Germany
| | - Jasmine Schramm
- Institute of Neurology (Edinger Institute), J. W. Goethe University Medical School, German Cancer Consortium (DKTK), Heinrich-Hoffmann Str. 7, Frankfurt D-60528, Germany
| | - Matthew Koss
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Christoph Wille
- Institute of Neurology (Edinger Institute), J. W. Goethe University Medical School, German Cancer Consortium (DKTK), Heinrich-Hoffmann Str. 7, Frankfurt D-60528, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), J. W. Goethe University Medical School, German Cancer Consortium (DKTK), Heinrich-Hoffmann Str. 7, Frankfurt D-60528, Germany
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 710, San Francisco, CA 94143, USA
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), J. W. Goethe University Medical School, German Cancer Consortium (DKTK), Heinrich-Hoffmann Str. 7, Frankfurt D-60528, Germany
| |
Collapse
|
36
|
Lenti E, Farinello D, Yokoyama KK, Penkov D, Castagnaro L, Lavorgna G, Wuputra K, Sandell LL, Tjaden NEB, Bernassola F, Caridi N, De Antoni A, Wagner M, Kozinc K, Niederreither K, Blasi F, Pasini D, Majdic G, Tonon G, Trainor PA, Brendolan A. Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development. J Clin Invest 2016; 126:2452-64. [PMID: 27214556 DOI: 10.1172/jci82956] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome P450 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insights into the molecular determinants of human congenital asplenia.
Collapse
|
37
|
Golonzhka O, Nord A, Tang PLF, Lindtner S, Ypsilanti AR, Ferretti E, Visel A, Selleri L, Rubenstein JLR. Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons. Neuron 2015; 88:1192-1207. [PMID: 26671461 DOI: 10.1016/j.neuron.2015.10.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/13/2015] [Accepted: 10/13/2015] [Indexed: 11/27/2022]
Abstract
We demonstrate using conditional mutagenesis that Pbx1, with and without Pbx2(+/-) sensitization, regulates regional identity and laminar patterning of the developing mouse neocortex in cortical progenitors (Emx1-Cre) and in newly generated neurons (Nex1-Cre). Pbx1/2 mutants have three salient molecular phenotypes of cortical regional and laminar organization: hypoplasia of the frontal cortex, ventral expansion of the dorsomedial cortex, and ventral expansion of Reelin expression in the cortical plate of the frontal cortex, concomitant with an inversion of cortical layering in the rostral cortex. Molecular analyses, including PBX ChIP-seq, provide evidence that PBX promotes frontal cortex identity by repressing genes that promote dorsocaudal fate.
Collapse
Affiliation(s)
- Olga Golonzhka
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA; Acetylon Pharmaceuticals, 70 Fargo Street, Suite 205, Boston, MA 02210, USA.
| | - Alex Nord
- Departments of Neurobiology, Physiology, and Behavior and Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California Davis, Davis, CA 95618, USA
| | - Paul L F Tang
- Institute for Human Genetics, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Athena R Ypsilanti
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA; The Danish Stem Cell Center, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Axel Visel
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Abstract
Proper control of the temporal onset of cellular differentiation is critical for regulating cell lineage decisions and morphogenesis during development. Pbx homeodomain transcription factors have emerged as important regulators of cellular differentiation. We previously showed, by using antisense morpholino knockdown, that Pbx factors are needed for the timely activation of myocardial differentiation in zebrafish. In order to gain further insight into the roles of Pbx factors in heart development, we show here that zebrafish pbx4 mutant embryos exhibit delayed onset of myocardial differentiation, such as delayed activation of tnnt2a expression in early cardiomyocytes in the anterior lateral plate mesoderm. We also observe delayed myocardial morphogenesis and dysmorphic patterning of the ventricle and atrium, consistent with our previous Pbx knock-down studies. In addition, we find that pbx4 mutant larvae have aberrant outflow tracts and defective expression of the proepicardial marker tbx18. Finally, we present evidence for Pbx expression in cardiomyocyte precursors as well as heterogeneous Pbx expression among the pan-cytokeratin-expressing proepicardial cells near the developing ventricle. In summary, our data show that Pbx4 is required for the proper temporal activation of myocardial differentiation and establish a basis for studying additional roles of Pbx factors in heart development.
Collapse
|
39
|
Hurtado R, Zewdu R, Mtui J, Liang C, Aho R, Kurylo C, Selleri L, Herzlinger D. Pbx1-dependent control of VMC differentiation kinetics underlies gross renal vascular patterning. Development 2015; 142:2653-64. [PMID: 26138478 DOI: 10.1242/dev.124776] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022]
Abstract
The architecture of an organ's vascular bed subserves its physiological function and metabolic demands. However, the mechanisms underlying gross vascular patterning remain elusive. Using intravital dye labeling and 3D imaging, we discovered that systems-level vascular patterning in the kidney is dependent on the kinetics of vascular mural cell (VMC) differentiation. Conditional ablation of the TALE transcription factor Pbx1 in renal VMC progenitors in the mouse led to the premature upregulation of PDGFRβ, a master initiator of VMC-blood vessel association. This precocious VMC differentiation resulted in nonproductive angiogenesis, abnormal renal arterial tree patterning and neonatal death consistent with kidney dysfunction. Notably, we establish that Pbx1 directly represses Pdgfrb, and demonstrate that decreased Pdgfrb dosage in conditional Pbx1 mutants substantially rescues vascular patterning defects and neonatal survival. These findings identify, for the first time, an in vivo transcriptional regulator of PDGFRβ, and reveal a previously unappreciated role for VMCs in systems-level vascular patterning.
Collapse
Affiliation(s)
- Romulo Hurtado
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - James Mtui
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Cindy Liang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Robert Aho
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chad Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Doris Herzlinger
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
40
|
Chatterjee S, Sivakamasundari V, Yap SP, Kraus P, Kumar V, Xing X, Lim SL, Sng J, Prabhakar S, Lufkin T. In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column. BMC Genomics 2014; 15:1072. [PMID: 25480362 PMCID: PMC4302147 DOI: 10.1186/1471-2164-15-1072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/27/2014] [Indexed: 12/30/2022] Open
Abstract
Background Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages. Results Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors. Conclusions The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1072) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Thomas Lufkin
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA.
| |
Collapse
|
41
|
Endo A, Ueno S, Yamada S, Uwabe C, Takakuwa T. Morphogenesis of the spleen during the human embryonic period. Anat Rec (Hoboken) 2014; 298:820-6. [PMID: 25403423 DOI: 10.1002/ar.23099] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 12/12/2022]
Abstract
We aimed to observe morphological changes in the spleen from the emergence of the primordium to the end of the embryonic period using histological serial sections of 228 samples. Between Carnegie stages (CSs) 14 and 17, the spleen was usually recognized as a bulge in the dorsal mesogastrium (DM), and after CS 20, the spleen became apparent. Intrasplenic folds were observed later. A high-density area was first recognized in 6 of the 58 cases at CS 16 and in all cases examined after CS 18. The spleen was recognized neither as a bulge nor as a high-density area at CS 13. The mesothelium was pseudostratified until CS 16 and was replaced with high columnar cells and then with low columnar cells. The basement membrane was obvious after CS 17. The mesenchymal cells differentiated from cells in the DM, and sinus formation started at CS 20. Hematopoietic cells were detected after CS 18. The vessels were observed at CS 14 in the DM. Hilus formation was observed after CS 20. The parallel entries of the arteries and veins were observed at CS 23. The rate of increase in spleen length in relation to that of stomach length along the cranial-caudal direction was 0.51 ± 0.11, which remained constant during CSs 19 and 23, indicating that their growths were similar. These data may help to better understand the development of normal human embryos and to detect abnormal embryos in the early stages of development.
Collapse
Affiliation(s)
- Aya Endo
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
42
|
Nakahara R, Kawai Y, Oda A, Nishimura M, Murakami A, Azuma T, Kaifu T, Goitsuka R. Generation of a Tlx1(CreER-Venus) knock-in mouse strain for the study of spleen development. Genesis 2014; 52:916-23. [PMID: 25283275 DOI: 10.1002/dvg.22829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022]
Abstract
The spleen is a lymphoid organ that serves as a unique niche for immune reactions, extramedullary hematopoiesis, and the removal of aged erythrocytes from the circulation. While much is known about the immunological functions of the spleen, the mechanisms governing the development and organization of its stromal microenvironment remain poorly understood. Here we report the generation and analysis of a Tlx1(Cre) (ER) (-Venus) knock-in mouse strain engineered to simultaneously express tamoxifen-inducible CreER(T2) and Venus fluorescent protein under the control of regulatory elements of the Tlx1 gene, which encodes a transcription factor essential for spleen development. We demonstrated that Venus as well as CreER expression recapitulates endogenous Tlx1 transcription within the spleen microenvironment. When Tlx1(Cre) (ER) (-Venus) mice were crossed with the Cre-inducible reporter strain, Tlx1-expressing cells as well as their descendants were specifically labeled following tamoxifen administration. We also showed by cell lineage tracing that asplenia caused by Tlx1 deficiency is attributable to altered contribution of mesenchymal cells in the spleen anlage to the pancreatic mesenchyme. Thus, Tlx1(Cre) (ER) (-Venus) mice represent a new tool for lineage tracing and conditional gene manipulation of spleen mesenchymal cells, essential approaches for understanding the molecular mechanisms of spleen development.
Collapse
Affiliation(s)
- Ryo Nakahara
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Handschuh K, Feenstra J, Koss M, Ferretti E, Risolino M, Zewdu R, Sahai MA, Bénazet JD, Peng XP, Depew MJ, Quintana L, Sharpe J, Wang B, Alcorn H, Rivi R, Butcher S, Manak JR, Vaccari T, Weinstein H, Anderson KV, Lacy E, Selleri L. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling. Cell Rep 2014; 9:674-87. [PMID: 25373905 DOI: 10.1016/j.celrep.2014.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/06/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022] Open
Abstract
Sorting and degradation of receptors and associated signaling molecules maintain homeostasis of conserved signaling pathways during cell specification and tissue development. Yet, whether machineries that sort signaling proteins act preferentially on different receptors and ligands in different contexts remains mysterious. Here, we show that Vacuolar protein sorting 25, Vps25, a component of ESCRT-II (Endosomal Sorting Complex Required for Transport II), directs preferential endosome-mediated modulation of FGF signaling in limbs. By ENU-induced mutagenesis, we isolated a polydactylous mouse line carrying a hypomorphic mutation of Vps25 (Vps25(ENU)). Unlike Vps25-null embryos we generated, Vps25(ENU/ENU) mutants survive until late gestation. Their limbs display FGF signaling enhancement and consequent hyperactivation of the FGF-SHH feedback loop causing polydactyly, whereas WNT and BMP signaling remain unperturbed. Notably, Vps25(ENU/ENU) Mouse Embryonic Fibroblasts exhibit aberrant FGFR trafficking and degradation; however, SHH signaling is unperturbed. These studies establish that the ESCRT-II machinery selectively limits FGF signaling in vertebrate skeletal patterning.
Collapse
Affiliation(s)
- Karen Handschuh
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer Feenstra
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matthew Koss
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Elisabetta Ferretti
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Maurizio Risolino
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michelle A Sahai
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jean-Denis Bénazet
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xiao P Peng
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's Hospital, London Bridge, London SE1 9RT, UK; Department of Othopaedic Surgery, UCSF, San Francisco, CA 94110, USA
| | - Laura Quintana
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA; Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - James Sharpe
- Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institucio Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain
| | - Baolin Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Heather Alcorn
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Roberta Rivi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stephen Butcher
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - J Robert Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas Vaccari
- IFOM-FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
44
|
Izumi K, Noon S, Wilkens A, Krantz ID. NKX2.5 mutation identification on exome sequencing in a patient with heterotaxy. Eur J Med Genet 2014; 57:558-61. [PMID: 25118008 DOI: 10.1016/j.ejmg.2014.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/03/2014] [Indexed: 11/28/2022]
Abstract
Exome sequencing enables us to screen most of the protein coding genes in an unbiased way, this technique represents an ideal tool to identify previously under- or unappreciated phenotypes associated with known disease genes and genetic disorders. Here we present an illustrative case that required exome sequencing to identify a genetic alteration associated with the clinical features. The phenotype of the proband included heterotaxy, double outlet right ventricle, common atrioventricular canal, total anomalous pulmonary venous connection, asplenia, failure to thrive and short stature. Exome sequencing demonstrated a frameshift mutation c.397_400del (p.P133GfsTer 42) in NKX2.5. Although a single previous case of heterotaxy was reported in a large familial case of NKX2.5, heterotaxy is not clinically appreciated to be a part of the phenotypic spectrum associated with NKX2.5 mutations. This case report demonstrates the utility of exome sequencing in expanding a phenotypic spectrum of a known Mendelian disorder. We predict that this type of unexpected identification of mutations in known-disease associated genes in patients with atypical or expanded phenotypes will occur with increasing frequency as the use of exome and genome sequencing become more common tools in diagnosing patients with syndromic and non-syndromic foms of structural birth defects.
Collapse
Affiliation(s)
- Kosuke Izumi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Research Center for Epigenetic Disease, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
| | - Sarah Noon
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alisha Wilkens
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ian D Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Platt C, Geha RS, Chou J. Gene hunting in the genomic era: approaches to diagnostic dilemmas in patients with primary immunodeficiencies. J Allergy Clin Immunol 2014; 134:262-8. [PMID: 24100122 PMCID: PMC3976463 DOI: 10.1016/j.jaci.2013.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/25/2013] [Accepted: 08/26/2013] [Indexed: 12/22/2022]
Abstract
There are more than 180 different genetic causes of primary immunodeficiencies identified to date. Approaches for identifying causative mutations can be broadly classified into 3 strategies: (1) educated guesses based on known signaling pathways essential for immune cell development and function, (2) similarity of clinical phenotypes to mouse models, and (3) unbiased genetic approaches. Next-generation DNA sequencing permits efficient sequencing of whole genomes or exomes but also requires strategies for filtering vast amounts of data. Recent studies have identified ways to solve difficult cases, such as diseases with autosomal dominant inheritance, incomplete penetrance, or mutations in noncoding regions. This review focuses on recently identified primary immunodeficiencies to illustrate the strategies, technologies, and potential pitfalls in finding novel causes of these diseases.
Collapse
Affiliation(s)
- Craig Platt
- Division of Immunology and the Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology and the Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology and the Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW There have been exciting recent advances in identifying new mutations that cause human primary immunodeficiencies which impact innate immune defences. In this review, we will highlight the most important and influential advances published in the last 18 months related to the defects of the innate immune system. We will also provide clinical context to facilitate the incorporation of these discoveries into clinical practice. RECENT FINDINGS We will specifically focus on three areas that have seen recent significant advances: defects in Toll-like receptor signalling that enhance susceptibility to viral infection, particularly herpes simplex encephalitis; defects in innate immunity that impact phagocyte function predisposing to mycobacterial infection; and the discovery of genes responsible for isolated congenital asplenia. SUMMARY The field of innate immunodeficiency has benefited greatly from the recent improvements in genome sequencing technology and has advanced dramatically in the last 18 months. For clinicians confronted with patients with suspected innate immunodeficiency, these new discoveries not only increase the likelihood that a patient will receive a specific molecular diagnosis and tailored therapy, but also add significant complexity to the diagnostic workup. Future challenges will include identifying accurate, cost-effective diagnostic approaches to these novel immunodeficiencies, so these impressive advances in our understanding of innate immunity can be translated into improved health outcomes for our affected patients and their families.
Collapse
|
47
|
Misceo D, Holmgren A, Louch WE, Holme PA, Mizobuchi M, Morales RJ, De Paula AM, Stray-Pedersen A, Lyle R, Dalhus B, Christensen G, Stormorken H, Tjønnfjord GE, Frengen E. A dominant STIM1 mutation causes Stormorken syndrome. Hum Mutat 2014; 35:556-64. [PMID: 24619930 DOI: 10.1002/humu.22544] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/04/2014] [Indexed: 12/11/2022]
Abstract
Stormorken syndrome is a rare autosomal-dominant disease with mild bleeding tendency, thrombocytopathy, thrombocytopenia, mild anemia, asplenia, tubular aggregate myopathy, miosis, headache, and ichthyosis. A heterozygous missense mutation in STIM1 exon 7 (c.910C>T; p.Arg304Trp) (NM_003156.3) was found to segregate with the disease in six Stormorken syndrome patients in four families. Upon sensing Ca(2+) depletion in the endoplasmic reticulum lumen, STIM1 undergoes a conformational change enabling it to interact with and open ORAI1, a Ca(2+) release-activated Ca(2+) channel located in the plasma membrane. The STIM1 mutation found in Stormorken syndrome patients is located in the coiled-coil 1 domain, which might play a role in keeping STIM1 inactive. In agreement with a possible gain-of-function mutation in STIM1, blood platelets from patients were in a preactivated state with high exposure of aminophospholipids on the outer surface of the plasma membrane. Resting Ca(2+) levels were elevated in platelets from the patients compared with controls, and store-operated Ca(2+) entry was markedly attenuated, further supporting constitutive activity of STIM1 and ORAI1. Thus, our data are compatible with a near-maximal activation of STIM1 in Stormorken syndrome patients. We conclude that the heterozygous mutation c.910C>T causes the complex phenotype that defines this syndrome.
Collapse
Affiliation(s)
- Doriana Misceo
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li W, Lin CY, Shang C, Han P, Xiong Y, Lin CJ, Yang J, Selleri L, Chang CP. Pbx1 activates Fgf10 in the mesenchyme of developing lungs. Genesis 2014; 52:399-407. [PMID: 24591256 DOI: 10.1002/dvg.22764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 01/19/2023]
Abstract
Insufficiency of surfactants is a core factor in respiratory distress syndrome, which causes apnea and neonatal death, particularly in preterm infants. Surfactant proteins are secreted by alveolar type II cells in the lung epithelium, the differentiation of which is regulated by Fgf10 elaborated by the adjacent mesenchyme. However, the molecular regulation of mesenchymal Fgf10 during lung development has not been fully understood. Here, we show that Pbx1, a homeodomain transcription factor, is required in the lung mesenchyme for the expression of Fgf10. Mouse embryos lacking Pbx1 in the lung mesenchyme show compact terminal saccules and perinatal lethality with failure of postnatal alveolar expansion. Mutant embryos had severely reduced expression of Fgf10 and surfactant genes (Spa, Spb, Spc, and Spd) that are essential for alveolar expansion for gas exchange at birth. Molecularly, Pbx1 directly binds to the Fgf10 promoter and cooperates with Meis and Hox proteins to transcriptionally activate Fgf10. Our results thus show how Pbx1 controls Fgf10 in the developing lung.
Collapse
Affiliation(s)
- Wei Li
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Routes J, Abinun M, Al-Herz W, Bustamante J, Condino-Neto A, De La Morena MT, Etzioni A, Gambineri E, Haddad E, Kobrynski L, Le Deist F, Nonoyama S, Oliveira JB, Perez E, Picard C, Rezaei N, Sleasman J, Sullivan KE, Torgerson T. ICON: the early diagnosis of congenital immunodeficiencies. J Clin Immunol 2014; 34:398-424. [PMID: 24619621 DOI: 10.1007/s10875-014-0003-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/17/2014] [Indexed: 01/27/2023]
Abstract
Primary immunodeficiencies are intrinsic defects in the immune system that result in a predisposition to infection and are frequently accompanied by a propensity to autoimmunity and/or immunedysregulation. Primary immunodeficiencies can be divided into innate immunodeficiencies, phagocytic deficiencies, complement deficiencies, disorders of T cells and B cells (combined immunodeficiencies), antibody deficiencies and immunodeficiencies associated with syndromes. Diseases of immune dysregulation and autoinflammatory disorder are many times also included although the immunodeficiency in these disorders are often secondary to the autoimmunity or immune dysregulation and/or secondary immunosuppression used to control these disorders. Congenital primary immunodeficiencies typically manifest early in life although delayed onset are increasingly recognized. The early diagnosis of congenital immunodeficiencies is essential for optimal management and improved outcomes. In this International Consensus (ICON) document, we provide the salient features of the most common congenital immunodeficiencies.
Collapse
Affiliation(s)
- John Routes
- Department of Pediatrics, Medical College of Wisconsin, and Children's Research Institute, Milwaukee, WI, 53226-4874, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bolze A. [Connecting isolated congenital asplenia to the ribosome]. Biol Aujourdhui 2014; 208:289-98. [PMID: 25840456 DOI: 10.1051/jbio/2015001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 11/14/2022]
Abstract
Isolated congenital asplenia is characterized by the absence of a spleen at birth without any other developmental defect. Isolated congenital asplenia is a rare and life-threatening disease that predisposes patients to severe bacterial infections. The first and main genetic etiology of isolated congenital asplenia was discovered in 2013. Mutations in the gene RPSA, which encodes ribosomal protein SA, cause more than half of the cases of isolated congenital asplenia. These disease-causing mutations lead to haploinsufficiency of RPSA. Haploinsufficiency of genes encoding other ribosomal proteins have been reported to cause other developmental defects in humans, and in model organisms like the fly or the mouse. About half of the patients with Diamond-Blackfan anemia, which is a well-characterized ribosomopathy, present developmental defects such as craniofacial defects, cardiac defects or thumb abnormalities. The mechanism of pathogenesis linking mutations in ribosomal proteins, which are highly and ubiquitously expressed, to specific developmental defects remains to be elucidated. One hypothesis is that the ribosome, and ribosomal proteins in particular, regulate the expression of specific genes during development.
Collapse
|