1
|
Song X, Liu J, Chen T, Zheng T, Wang X, Guo X. Gene therapy and gene editing strategies in inherited blood disorders. J Genet Genomics 2024; 51:1162-1172. [PMID: 38986807 DOI: 10.1016/j.jgg.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Gene therapy has shown significant potential in treating various diseases, particularly inherited blood disorders such as hemophilia, sickle cell disease, and thalassemia. Advances in understanding the regulatory network of disease-associated genes have led to the identification of additional therapeutic targets for treatment, especially for β-hemoglobinopathies. Erythroid regulatory factor BCL11A offers the most promising therapeutic target for β-hemoglobinopathies, and reduction of its expression using the commercialized gene therapy product Casgevy has been approved for use in the UK and USA in 2023. Notably, the emergence of innovative gene editing technologies has further broadened the gene therapy landscape, presenting possibilities for treatment. Intensive studies indicate that base editing and prime editing, built upon CRISPR technology, enable precise single-base modification in hematopoietic stem cells for addressing inherited blood disorders ex vivo and in vivo. In this review, we present an overview of the current landscape of gene therapies, focusing on clinical research and gene therapy products for inherited blood disorders, evaluation of potential gene targets, and the gene editing tools employed in current gene therapy practices, which provides an insight for the establishment of safer and more effective gene therapy methods for a wider range of diseases in the future.
Collapse
Affiliation(s)
- Xuemei Song
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - JinLei Liu
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Tangcong Chen
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Tingfeng Zheng
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Xiaolong Wang
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Xiang Guo
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China.
| |
Collapse
|
2
|
Gui X, Huang J, Ruan L, Wu Y, Guo X, Cao R, Zhou S, Tan F, Zhu H, Li M, Zhang G, Zhou H, Zhan L, Liu X, Tu S, Shao Z. zMAP toolset: model-based analysis of large-scale proteomic data via a variance stabilizing z-transformation. Genome Biol 2024; 25:267. [PMID: 39402594 PMCID: PMC11472442 DOI: 10.1186/s13059-024-03382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Isobaric labeling-based mass spectrometry (ILMS) has been widely used to quantify, on a proteome-wide scale, the relative protein abundance in different biological conditions. However, large-scale ILMS data sets typically involve multiple runs of mass spectrometry, bringing great computational difficulty to the integration of ILMS samples. We present zMAP, a toolset that makes ILMS intensities comparable across mass spectrometry runs by modeling the associated mean-variance dependence and accordingly applying a variance stabilizing z-transformation. The practical utility of zMAP is demonstrated in several case studies involving the dynamics of cell differentiation and the heterogeneity across cancer patients.
Collapse
Affiliation(s)
- Xiuqi Gui
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Linjie Ruan
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuan Guo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruifang Cao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhan Zhou
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fengxiang Tan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongwen Zhu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guoqing Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xin Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Shiqi Tu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
3
|
Jiang J, Liu S, Xu Z, Yu S, Wang L, Long S, Ye S, Yan Y, Xu H, Zhang J, Wei W, Zhao Q, Li X. Transcriptome-Wide Profiling of Nascent RNA in Neurons with Enriched H3K27ac Signal Elevates eRNA Identification Efficiency. ACS Chem Neurosci 2024; 15:3626-3639. [PMID: 39377285 PMCID: PMC11487572 DOI: 10.1021/acschemneuro.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Growing evidence suggests that activity-dependent gene expression is crucial for neuronal plasticity and behavioral experience. Enhancer RNAs (eRNAs), a class of long noncoding RNAs, play a key role in these processes. However, eRNAs are highly dynamic and are often present at lower levels than their corresponding mRNAs, making them difficult to detect using total RNA-seq techniques. Nascent RNA sequencing, which separates nascent RNAs from the steady-state RNA population, has been shown to increase the ability to detect activity-induced eRNAs with a higher signal-to-noise ratio. However, there is a lack of bioinformatic tools or pipelines for detecting eRNAs utilizing nascent RNA-seq and other multiomics data sets. In this study, we addressed this gap by developing a novel bioinformatic framework, e-finder, for finding eRNAs and have made it available to the scientific community. Additionally, we reanalyzed our previous nascent RNA sequencing data and compared them with total RNA-seq data to identify activity-regulated RNAs in neuronal cell populations. Using H3K27 acetylome data, we characterized activity-dependent eRNAs that drive the transcriptional activity of the target genes. Our analysis identified a subset of eRNAs involved in mediating synapse organization, which showed increased activity-dependent transcription after the potassium chloride stimulation. Notably, our data suggest that nascent RNA-seq with an enriched H3K27ac signal exhibits high resolution to identify potential eRNAs in response to membrane depolarization. Our findings uncover the role of the eRNA-mediated gene activation network in neuronal systems, providing new insights into the molecular processes characterizing neurological diseases.
Collapse
Affiliation(s)
- Jiazhi Jiang
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Sha Liu
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of General Practice, Zhongnan Hospital of
Wuhan University, Wuhan 430071, China
| | - Ziyue Xu
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Shuangqi Yu
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Lesheng Wang
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Shengrong Long
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Shengda Ye
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Yu Yan
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Hongyu Xu
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
| | - Jianjian Zhang
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Wei Wei
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
| | - Qiongyi Zhao
- Cognitive
Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiang Li
- Brain
Research Center, Zhongnan Hosptial of Wuhan
University, Wuhan 430071, China
- Department
of Neurosurgery, Zhongnan Hospital of Wuhan
University, Wuhan 430071, China
- Frontier
Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical
Research
Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian
Ascula Brain Science Joint Laboratory, Zhongnan
Hosptial of Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Cha HJ. Erythropoiesis: insights from a genomic perspective. Exp Mol Med 2024; 56:2099-2104. [PMID: 39349824 PMCID: PMC11542026 DOI: 10.1038/s12276-024-01311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 11/08/2024] Open
Abstract
Erythropoiesis, the process underlying the production of red blood cells, which are essential for oxygen transport, involves the development of hematopoietic stem cells into mature red blood cells. This review focuses on the critical roles of transcription factors and epigenetic mechanisms in modulating gene expression critical for erythroid differentiation. It emphasizes the significance of chromatin remodeling in ensuring gene accessibility, a key factor for the orderly progression of erythropoiesis. This review also discusses how dysregulation of these processes can lead to erythroid disorders and examines the promise of genome editing and gene therapy as innovative therapeutic approaches. By shedding light on the genomic regulation of erythropoiesis, this review suggests avenues for novel treatments for hematological conditions, underscoring the need for continued molecular studies to improve human health.
Collapse
Affiliation(s)
- Hye Ji Cha
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, South Korea.
| |
Collapse
|
5
|
Khandros E, Blobel GA. Elevating fetal hemoglobin: recently discovered regulators and mechanisms. Blood 2024; 144:845-852. [PMID: 38728575 PMCID: PMC11830979 DOI: 10.1182/blood.2023022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and β-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult β-globin genes, such as sickle cell disease and β-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Xiang G, He X, Giardine BM, Isaac KJ, Taylor DJ, McCoy RC, Jansen C, Keller CA, Wixom AQ, Cockburn A, Miller A, Qi Q, He Y, Li Y, Lichtenberg J, Heuston EF, Anderson SM, Luan J, Vermunt MW, Yue F, Sauria MEG, Schatz MC, Taylor J, Göttgens B, Hughes JR, Higgs DR, Weiss MJ, Cheng Y, Blobel GA, Bodine DM, Zhang Y, Li Q, Mahony S, Hardison RC. Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes. Genome Res 2024; 34:1089-1105. [PMID: 38951027 PMCID: PMC11368181 DOI: 10.1101/gr.277950.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor binding motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Collapse
Affiliation(s)
- Guanjue Xiang
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Xi He
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kathryn J Isaac
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Camden Jansen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alexander Q Wixom
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - April Cockburn
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Amber Miller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Qian Qi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yanghua He
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaìi at Mānoa, Honolulu, Hawaii 96822, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jens Lichtenberg
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Elisabeth F Heuston
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Stacie M Anderson
- Flow Cytometry Core, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Jing Luan
- Department of Pediatrics, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marit W Vermunt
- Department of Pediatrics, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60611, USA
| | - Michael E G Sauria
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Jim R Hughes
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Gerd A Blobel
- Department of Pediatrics, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David M Bodine
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Yu Zhang
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Qunhua Li
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Computational Biology and Bioinformatics, Genome Sciences Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Computational Biology and Bioinformatics, Genome Sciences Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Center for Computational Biology and Bioinformatics, Genome Sciences Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
7
|
Zheng Z, Yang S, Gou F, Tang C, Zhang Z, Gu Q, Sun G, Jiang P, Wang N, Zhao X, Kang J, Wang Y, He Y, Yang M, Lu T, Lu S, Qian P, Zhu P, Cheng H, Cheng T. The ATF4-RPS19BP1 axis modulates ribosome biogenesis to promote erythropoiesis. Blood 2024; 144:742-756. [PMID: 38657191 DOI: 10.1182/blood.2023021901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Hematopoietic differentiation is controlled by intrinsic regulators and the extrinsic hematopoietic niche. Activating transcription factor 4 (ATF4) plays a crucial role in the function of fetal and adult hematopoietic stem cell maintenance. However, the precise function of ATF4 in the bone marrow (BM) niche and the mechanism by which ATF4 regulates adult hematopoiesis remain largely unknown. Here, we used 4 cell-type-specific mouse Cre lines to achieve conditional knockout of Atf4 in Cdh5+ endothelial cells, Prx1+ BM stromal cells, Osx+ osteoprogenitor cells, and Mx1+ hematopoietic cells and uncovered the role of Atf4 in niche cells and hematopoiesis. Intriguingly, depletion of Atf4 in niche cells did not affect hematopoiesis; however, Atf4-deficient hematopoietic cells exhibited erythroid differentiation defects, leading to hypoplastic anemia. Mechanistically, ATF4 mediated direct regulation of Rps19bp1 transcription, which is, in turn, involved in 40 S ribosomal subunit assembly to coordinate ribosome biogenesis and promote erythropoiesis. Finally, we demonstrate that under conditions of 5-fluorouracil-induced stress, Atf4 depletion impedes the recovery of hematopoietic lineages, which requires efficient ribosome biogenesis. Taken together, our findings highlight the indispensable role of the ATF4-RPS19BP1 axis in the regulation of erythropoiesis.
Collapse
Affiliation(s)
- Zhaofeng Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Fanglin Gou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Chao Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Zhaoru Zhang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University Medical Center, Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University Medical Center, Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Nini Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Junnan Kang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yifei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Yicheng He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Meng Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Shihong Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Zhejiang University Medical Center, Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Chinese Academy of Medical Sciences Center for Stem Cell Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
8
|
Garg S, Ni W, Chowdhury B, Weisberg EL, Sattler M, Griffin JD. BRD9 regulates normal human hematopoietic stem cell function and lineage differentiation. Cell Death Differ 2024; 31:868-880. [PMID: 38816579 PMCID: PMC11239944 DOI: 10.1038/s41418-024-01306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
Bromodomain containing protein 9 (BRD9), a member of the non-canonical BRG1/BRM-associated factor (ncBAF) chromatin remodeling complex, has been implicated as a synthetic lethal target in AML but its function in normal human hematopoiesis is unknown. In hematopoietic stem and progenitor cells (HSPC) genomic or chemical inhibition of BRD9 led to a proliferative disadvantage and loss of stem cells in vitro. Human HSPCs with reduced BRD9 protein levels produced lower numbers of immature mixed multipotent GEMM colonies in semi-solid media. In lineage-promoting culture conditions, cells with reduced BRD9 levels failed to differentiate into the megakaryocytic lineage and showed delayed differentiation into erythroid cells but enhanced terminal myeloid differentiation. HSPCs with BRD9 knock down (KD) had reduced long-term multilineage engraftment in a xenotransplantation assay. An increased number of downregulated genes in RNAseq analysis after BRD9 KD coupled with a gain in chromatin accessibility at the promoters of several repressive transcription factors (TF) suggest that BRD9 functions in the maintenance of active transcription during HSC differentiation. In particular, the hematopoietic master regulator GATA1 was identified as one of the core TFs regulating the gene networks modulated by BRD9 loss in HSPCs. BRD9 inhibition reduced a GATA1-luciferase reporter signal, further suggesting a role for BRD9 in regulating GATA1 activity. BRD9 is therefore an additional example of epigenetic regulation of human hematopoiesis.
Collapse
Affiliation(s)
- Swati Garg
- Dana-Farber Cancer Institute, Dept. of Medical Oncology, Boston, MA, 02215, USA
- Harvard Medical School, Dept. of Medicine, Boston, MA, 02215, USA
| | - Wei Ni
- Dana-Farber Cancer Institute, Dept. of Medical Oncology, Boston, MA, 02215, USA
- Harvard Medical School, Dept. of Medicine, Boston, MA, 02215, USA
| | - Basudev Chowdhury
- Dana-Farber Cancer Institute, Dept. of Medical Oncology, Boston, MA, 02215, USA
- Harvard Medical School, Dept. of Medicine, Boston, MA, 02215, USA
| | - Ellen L Weisberg
- Dana-Farber Cancer Institute, Dept. of Medical Oncology, Boston, MA, 02215, USA
- Harvard Medical School, Dept. of Medicine, Boston, MA, 02215, USA
| | - Martin Sattler
- Dana-Farber Cancer Institute, Dept. of Medical Oncology, Boston, MA, 02215, USA
- Harvard Medical School, Dept. of Medicine, Boston, MA, 02215, USA
| | - James D Griffin
- Dana-Farber Cancer Institute, Dept. of Medical Oncology, Boston, MA, 02215, USA.
- Harvard Medical School, Dept. of Medicine, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Sato T, Yoshida K, Toki T, Kanezaki R, Terui K, Saiki R, Ojima M, Ochi Y, Mizuno S, Yoshihara M, Uechi T, Kenmochi N, Tanaka S, Matsubayashi J, Kisai K, Kudo K, Yuzawa K, Takahashi Y, Tanaka T, Yamamoto Y, Kobayashi A, Kamio T, Sasaki S, Shiraishi Y, Chiba K, Tanaka H, Muramatsu H, Hama A, Hasegawa D, Sato A, Koh K, Karakawa S, Kobayashi M, Hara J, Taneyama Y, Imai C, Hasegawa D, Fujita N, Yoshitomi M, Iwamoto S, Yamato G, Saida S, Kiyokawa N, Deguchi T, Ito M, Matsuo H, Adachi S, Hayashi Y, Taga T, Saito AM, Horibe K, Watanabe K, Tomizawa D, Miyano S, Takahashi S, Ogawa S, Ito E. Landscape of driver mutations and their clinical effects on Down syndrome-related myeloid neoplasms. Blood 2024; 143:2627-2643. [PMID: 38513239 DOI: 10.1182/blood.2023022247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Transient abnormal myelopoiesis (TAM) is a common complication in newborns with Down syndrome (DS). It commonly progresses to myeloid leukemia (ML-DS) after spontaneous regression. In contrast to the favorable prognosis of primary ML-DS, patients with refractory/relapsed ML-DS have poor outcomes. However, the molecular basis for refractoriness and relapse and the full spectrum of driver mutations in ML-DS remain largely unknown. We conducted a genomic profiling study of 143 TAM, 204 ML-DS, and 34 non-DS acute megakaryoblastic leukemia cases, including 39 ML-DS cases analyzed by exome sequencing. Sixteen novel mutational targets were identified in ML-DS samples. Of these, inactivations of IRX1 (16.2%) and ZBTB7A (13.2%) were commonly implicated in the upregulation of the MYC pathway and were potential targets for ML-DS treatment with bromodomain-containing protein 4 inhibitors. Partial tandem duplications of RUNX1 on chromosome 21 were also found, specifically in ML-DS samples (13.7%), presenting its essential role in DS leukemia progression. Finally, in 177 patients with ML-DS treated following the same ML-DS protocol (the Japanese Pediatric Leukemia and Lymphoma Study Group acute myeloid leukemia -D05/D11), CDKN2A, TP53, ZBTB7A, and JAK2 alterations were associated with a poor prognosis. Patients with CDKN2A deletions (n = 7) or TP53 mutations (n = 4) had substantially lower 3-year event-free survival (28.6% vs 90.5%; P < .001; 25.0% vs 89.5%; P < .001) than those without these mutations. These findings considerably change the mutational landscape of ML-DS, provide new insights into the mechanisms of progression from TAM to ML-DS, and help identify new therapeutic targets and strategies for ML-DS.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsutomu Toki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rika Kanezaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Masaharu Yoshihara
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Tamayo Uechi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoya Kenmochi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kenta Kisai
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ko Kudo
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kentaro Yuzawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuka Takahashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuhiko Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yohei Yamamoto
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akie Kobayashi
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuya Kamio
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Sasaki
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Tanaka
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Daisuke Hasegawa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Atsushi Sato
- Department of Hematology and Oncology, Miyagi Children's Hospital, Sendai, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Junichi Hara
- Department of Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Yuichi Taneyama
- Department of Hematology/Oncology, Chiba Children's Hospital, Chiba, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School Medical and Dental Sciences, Niigata, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Naoto Fujita
- Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Genki Yamato
- Department of pediatrics, Gunma University Graduate School of Medicine, Maebashi City, Japan
| | - Satoshi Saida
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takao Deguchi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Japan
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nagoya, Japan
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Hematology and Oncology, Gunma Children's Medical Center, Gunma, Japan
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Miyano
- M and D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
10
|
Wu PC, McGowan EC, Lee YQ, Ghosh S, Hansson J, Olsson ML. Epigenetic dissection of human blood group genes reveals regulatory elements and detailed characteristics of KEL and four other loci. Transfusion 2024; 64:1083-1096. [PMID: 38644556 DOI: 10.1111/trf.17840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Blood typing is essential for safe transfusions and is performed serologically or genetically. Genotyping predominantly focuses on coding regions, but non-coding variants may affect gene regulation, as demonstrated in the ABO, FY and XG systems. To uncover regulatory loci, we expanded a recently developed bioinformatics pipeline for discovery of non-coding variants by including additional epigenetic datasets. METHODS Multiple datasets including ChIP-seq with erythroid transcription factors (TFs), histone modifications (H3K27ac, H3K4me1), and chromatin accessibility (ATAC-seq) were analyzed. Candidate regulatory regions were investigated for activity (luciferase assays) and TF binding (electrophoretic mobility shift assay, EMSA, and mass spectrometry, MS). RESULTS In total, 814 potential regulatory sites in 47 blood-group-related genes were identified where one or more erythroid TFs bound. Enhancer candidates in CR1, EMP3, ABCB6, and ABCC4 indicated by ATAC-seq, histone markers, and co-occupancy of 4 TFs (GATA1/KLF1/RUNX1/NFE2) were investigated but only CR1 and ABCC4 showed increased transcription. Co-occupancy of GATA1 and KLF1 was observed in the KEL promoter, previously reported to contain GATA1 and Sp1 sites. TF binding energy scores decreased when three naturally occurring variants were introduced into GATA1 and KLF1 motifs. Two of three GATA1 sites and the KLF1 site were confirmed functionally. EMSA and MS demonstrated increased GATA1 and KLF1 binding to the wild-type compared to variant motifs. DISCUSSION This combined bioinformatics and experimental approach revealed multiple candidate regulatory regions and predicted TF co-occupancy sites. The KEL promoter was characterized in detail, indicating that two adjacent GATA1 and KLF1 motifs are most crucial for transcription.
Collapse
Affiliation(s)
- Ping Chun Wu
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Eunike C McGowan
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Yan Quan Lee
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sudip Ghosh
- Department of Experimental Medical Science and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jenny Hansson
- Department of Experimental Medical Science and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martin L Olsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
| |
Collapse
|
11
|
Xiang G, He X, Giardine BM, Isaac KJ, Taylor DJ, McCoy RC, Jansen C, Keller CA, Wixom AQ, Cockburn A, Miller A, Qi Q, He Y, Li Y, Lichtenberg J, Heuston EF, Anderson SM, Luan J, Vermunt MW, Yue F, Sauria MEG, Schatz MC, Taylor J, Gottgens B, Hughes JR, Higgs DR, Weiss MJ, Cheng Y, Blobel GA, Bodine DM, Zhang Y, Li Q, Mahony S, Hardison RC. Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535219. [PMID: 37066352 PMCID: PMC10103973 DOI: 10.1101/2023.04.02.535219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Collapse
|
12
|
Huang P, Peslak SA, Shehu V, Keller CA, Giardine B, Shi J, Hardison RC, Blobel GA, Khandros E. let-7 miRNAs repress HIC2 to regulate BCL11A transcription and hemoglobin switching. Blood 2024; 143:1980-1991. [PMID: 38364109 PMCID: PMC11103181 DOI: 10.1182/blood.2023023399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT The switch from fetal hemoglobin (γ-globin, HBG) to adult hemoglobin (β-globin, HBB) gene transcription in erythroid cells serves as a paradigm for a complex and clinically relevant developmental gene regulatory program. We previously identified HIC2 as a regulator of the switch by inhibiting the transcription of BCL11A, a key repressor of HBG production. HIC2 is highly expressed in fetal cells, but the mechanism of its regulation is unclear. Here we report that HIC2 developmental expression is controlled by microRNAs (miRNAs), as loss of global miRNA biogenesis through DICER1 depletion leads to upregulation of HIC2 and HBG messenger RNA. We identified the adult-expressed let-7 miRNA family as a direct posttranscriptional regulator of HIC2. Ectopic expression of let-7 in fetal cells lowered HIC2 levels, whereas inhibition of let-7 in adult erythroblasts increased HIC2 production, culminating in decommissioning of a BCL11A erythroid enhancer and reduced BCL11A transcription. HIC2 depletion in let-7-inhibited cells restored BCL11A-mediated repression of HBG. Together, these data establish that fetal hemoglobin silencing in adult erythroid cells is under the control of a miRNA-mediated inhibitory pathway (let-7 ⊣ HIC2 ⊣ BCL11A ⊣ HBG).
Collapse
Affiliation(s)
- Peng Huang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Scott A. Peslak
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Vanessa Shehu
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Genomics Research Incubator, Pennsylvania State University, University Park, PA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
| | - Junwei Shi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Eugene Khandros
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
13
|
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
14
|
Chen X, Pillay S, Lohmann F, Bieker JJ. Association of DDX5/p68 protein with the upstream erythroid enhancer element (EHS1) of the gene encoding the KLF1 transcription factor. J Biol Chem 2023; 299:105489. [PMID: 38000658 PMCID: PMC10750184 DOI: 10.1016/j.jbc.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
EKLF/KLF1 is an essential transcription factor that plays a global role in erythroid transcriptional activation. Regulation of KLF1 is of interest, as it displays a highly restricted expression pattern, limited to erythroid cells and its progenitors. Here we use biochemical affinity purification to identify the DDX5/p68 protein as an activator of KLF1 by virtue of its interaction with the erythroid-specific DNAse hypersensitive site upstream enhancer element (EHS1). We further show that this protein associates with DEK and CTCF. We postulate that the range of interactions of DDX5/p68 with these and other proteins known to interact with this element render it part of the enhanseosome complex critical for optimal expression of KLF1 and enables the formation of a proper chromatin configuration at the Klf1 locus. These individual interactions provide quantitative contributions that, in sum, establish the high-level activity of the Klf1 promoter and suggest they can be selectively manipulated for clinical benefit.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Sanjana Pillay
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Felix Lohmann
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA; Black Familly Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA; Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA; Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
15
|
Pulver C, Grun D, Duc J, Sheppard S, Planet E, Coudray A, de Fondeville R, Pontis J, Trono D. Statistical learning quantifies transposable element-mediated cis-regulation. Genome Biol 2023; 24:258. [PMID: 37950299 PMCID: PMC10637000 DOI: 10.1186/s13059-023-03085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) have colonized the genomes of most metazoans, and many TE-embedded sequences function as cis-regulatory elements (CREs) for genes involved in a wide range of biological processes from early embryogenesis to innate immune responses. Because of their repetitive nature, TEs have the potential to form CRE platforms enabling the coordinated and genome-wide regulation of protein-coding genes by only a handful of trans-acting transcription factors (TFs). RESULTS Here, we directly test this hypothesis through mathematical modeling and demonstrate that differences in expression at protein-coding genes alone are sufficient to estimate the magnitude and significance of TE-contributed cis-regulatory activities, even in contexts where TE-derived transcription fails to do so. We leverage hundreds of overexpression experiments and estimate that, overall, gene expression is influenced by TE-embedded CREs situated within approximately 500 kb of promoters. Focusing on the cis-regulatory potential of TEs within the gene regulatory network of human embryonic stem cells, we find that pluripotency-specific and evolutionarily young TE subfamilies can be reactivated by TFs involved in post-implantation embryogenesis. Finally, we show that TE subfamilies can be split into truly regulatorily active versus inactive fractions based on additional information such as matched epigenomic data, observing that TF binding may better predict TE cis-regulatory activity than differences in histone marks. CONCLUSION Our results suggest that TE-embedded CREs contribute to gene regulation during and beyond gastrulation. On a methodological level, we provide a statistical tool that infers TE-dependent cis-regulation from RNA-seq data alone, thus facilitating the study of TEs in the next-generation sequencing era.
Collapse
Affiliation(s)
- Cyril Pulver
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Delphine Grun
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Shaoline Sheppard
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alexandre Coudray
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Raphaël de Fondeville
- Swiss Data Science Center, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Julien Pontis
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- SOPHiA GENETICS SA, La Pièce 12, CH-1180, Rolle, Switzerland.
| | - Didier Trono
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
16
|
Subramanian S, Thoms JAI, Huang Y, Cornejo-Páramo P, Koch FC, Jacquelin S, Shen S, Song E, Joshi S, Brownlee C, Woll PS, Chacon-Fajardo D, Beck D, Curtis DJ, Yehson K, Antonenas V, O'Brien T, Trickett A, Powell JA, Lewis ID, Pitson SM, Gandhi MK, Lane SW, Vafaee F, Wong ES, Göttgens B, Alinejad-Rokny H, Wong JWH, Pimanda JE. Genome-wide transcription factor-binding maps reveal cell-specific changes in the regulatory architecture of human HSPCs. Blood 2023; 142:1448-1462. [PMID: 37595278 PMCID: PMC10651876 DOI: 10.1182/blood.2023021120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay among transcription factors (TFs) to regulate differentiation into mature blood cells. A heptad of TFs (FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2) bind regulatory elements in bulk CD34+ HSPCs. However, whether specific heptad-TF combinations have distinct roles in regulating hematopoietic differentiation remains unknown. We mapped genome-wide chromatin contacts (HiC, H3K27ac, HiChIP), chromatin modifications (H3K4me3, H3K27ac, H3K27me3) and 10 TF binding profiles (heptad, PU.1, CTCF, STAG2) in HSPC subsets (stem/multipotent progenitors plus common myeloid, granulocyte macrophage, and megakaryocyte erythrocyte progenitors) and found TF occupancy and enhancer-promoter interactions varied significantly across cell types and were associated with cell-type-specific gene expression. Distinct regulatory elements were enriched with specific heptad-TF combinations, including stem-cell-specific elements with ERG, and myeloid- and erythroid-specific elements with combinations of FLI1, RUNX1, GATA2, TAL1, LYL1, and LMO2. Furthermore, heptad-occupied regions in HSPCs were subsequently bound by lineage-defining TFs, including PU.1 and GATA1, suggesting that heptad factors may prime regulatory elements for use in mature cell types. We also found that enhancers with cell-type-specific heptad occupancy shared a common grammar with respect to TF binding motifs, suggesting that combinatorial binding of TF complexes was at least partially regulated by features encoded in DNA sequence motifs. Taken together, this study comprehensively characterizes the gene regulatory landscape in rare subpopulations of human HSPCs. The accompanying data sets should serve as a valuable resource for understanding adult hematopoiesis and a framework for analyzing aberrant regulatory networks in leukemic cells.
Collapse
Affiliation(s)
- Shruthi Subramanian
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Julie A. I. Thoms
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Yizhou Huang
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | | | - Forrest C. Koch
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | | | - Sylvie Shen
- Bone Marrow Transplant Laboratory, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Emma Song
- Bone Marrow Transplant Laboratory, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Swapna Joshi
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Chris Brownlee
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Petter S. Woll
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Diego Chacon-Fajardo
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - David J. Curtis
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Kenneth Yehson
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology, Westmead, NSW, Australia
| | - Vicki Antonenas
- Blood Transplant and Cell Therapies Laboratory, NSW Health Pathology, Westmead, NSW, Australia
| | | | - Annette Trickett
- Bone Marrow Transplant Laboratory, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Jason A. Powell
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Ian D. Lewis
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, Australia
| | - Maher K. Gandhi
- Blood Cancer Research Group, Mater Research, The University of Queensland, Brisbane, QLD, Australia
| | - Steven W. Lane
- Cancer Program, QIMR Berghofer Medical Research, Brisbane, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, Australia
| | - Emily S. Wong
- Victor Chang Cardiac Research Institute, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, Australia
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Jason W. H. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John E. Pimanda
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
- Haematology Department, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
17
|
Chaand M, Fiore C, Johnston B, D'Ippolito A, Moon DH, Carulli JP, Shearstone JR. Erythroid lineage chromatin accessibility maps facilitate identification and validation of NFIX as a fetal hemoglobin repressor. Commun Biol 2023; 6:640. [PMID: 37316562 DOI: 10.1038/s42003-023-05025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Human genetics has validated de-repression of fetal gamma globin (HBG) in adult erythroblasts as a powerful therapeutic paradigm in diseases involving defective adult beta globin (HBB)1. To identify factors involved in the switch from HBG to HBB expression, we performed Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)2 on sorted erythroid lineage cells derived from bone marrow (BM) or cord blood (CB), representing adult and fetal states, respectively. BM to CB cell ATAC-seq profile comparisons revealed genome-wide enrichment of NFI DNA binding motifs and increased NFIX promoter chromatin accessibility, suggesting that NFIX may repress HBG. NFIX knockdown in BM cells increased HBG mRNA and fetal hemoglobin (HbF) protein levels, coincident with increased chromatin accessibility and decreased DNA methylation at the HBG promoter. Conversely, overexpression of NFIX in CB cells reduced HbF levels. Identification and validation of NFIX as a new target for HbF activation has implications in the development of therapeutics for hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeffrey R Shearstone
- Syros Pharmaceuticals, Cambridge, MA, USA
- Scientific and Medical Writing Partners, Cambridge, MA, USA
| |
Collapse
|
18
|
Lee SJ, Jung C, Oh JE, Kim S, Lee S, Lee JY, Yoon YS. Generation of Red Blood Cells from Human Pluripotent Stem Cells-An Update. Cells 2023; 12:1554. [PMID: 37296674 PMCID: PMC10253210 DOI: 10.3390/cells12111554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes.
Collapse
Affiliation(s)
- Shin-Jeong Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Cholomi Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jee Eun Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ji Yoon Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
| | - Young-sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
19
|
Qin K, Lan X, Huang P, Saari MS, Khandros E, Keller CA, Giardine B, Abdulmalik O, Shi J, Hardison RC, Blobel GA. Molecular basis of polycomb group protein-mediated fetal hemoglobin repression. Blood 2023; 141:2756-2770. [PMID: 36893455 PMCID: PMC10273169 DOI: 10.1182/blood.2022019578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA) is a paradigm for developmental gene expression control with relevance to sickle cell disease and β-thalassemia. Polycomb repressive complex (PRC) proteins regulate this switch, and an inhibitor of PRC2 has entered a clinical trial for HbF activation. Yet, how PRC complexes function in this process, their target genes, and relevant subunit composition are unknown. Here, we identified the PRC1 subunit BMI1 as a novel HbF repressor. We uncovered the RNA binding proteins LIN28B, IGF2BP1, and IGF2BP3 genes as direct BMI1 targets, and demonstrate that they account for the entirety of BMI1's effect on HbF regulation. BMI1 functions as part of the canonical PRC1 (cPRC1) subcomplex as revealed by the physical and functional dissection of BMI1 protein partners. Lastly, we demonstrate that BMI1/cPRC1 acts in concert with PRC2 to repress HbF through the same target genes. Our study illuminates how PRC silences HbF, highlighting an epigenetic mechanism involved in hemoglobin switching.
Collapse
Affiliation(s)
- Kunhua Qin
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Xianjiang Lan
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Huang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Megan S. Saari
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Eugene Khandros
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
21
|
Zhang H, Xue F, Zhao H, Chen L, Wang T, Wu X. DNA methylation status of DNAJA4 is essential for human erythropoiesis. Epigenomics 2022; 14:1249-1267. [DOI: 10.2217/epi-2022-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aims: To investigate DNA methylation patterns in early and terminal stages of erythropoiesis, and to explore the function of differentially methylated genes in erythropoiesis and erythroid disorders. Materials & methods: Differential analysis of DNA methylation and gene expression during erythropoiesis, as well as weighted gene coexpression network analysis of acute myeloid leukemia was performed. Results: We identified four candidate genes that possessed differential methylation in the promoter regions. DNAJA4 affected proliferation, apoptosis and enucleation during terminal erythropoiesis and was associated with the prognosis of acute myeloid leukemia. DNAJA4 was specifically highly expressed in erythroleukemia and is associated with DNA methylation. Conclusion: DNAJA4 plays a crucial role for erythropoiesis and is regulated via DNA methylation. Dysregulation of DNAJA4 expression is associated with erythroid disorders.
Collapse
Affiliation(s)
- Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Fumin Xue
- Department of Gastroenterology, Children’s Hospital affiliated of Zhengzhou University, Zhengzhou, 450000, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| |
Collapse
|
22
|
Huang P, Peslak SA, Ren R, Khandros E, Qin K, Keller CA, Giardine B, Bell HW, Lan X, Sharma M, Horton JR, Abdulmalik O, Chou ST, Shi J, Crossley M, Hardison RC, Cheng X, Blobel GA. HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription. Nat Genet 2022; 54:1417-1426. [PMID: 35941187 PMCID: PMC9940634 DOI: 10.1038/s41588-022-01152-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal β-type globin (HBG) genes in adult erythroid cells, is predominantly controlled at the transcriptional level but the underlying mechanism is unclear. We identify HIC2 as a repressor of BCL11A transcription. HIC2 and BCL11A are reciprocally expressed during development. Forced expression of HIC2 in adult erythroid cells inhibits BCL11A transcription and induces HBG expression. HIC2 binds to erythroid BCL11A enhancers to reduce chromatin accessibility and binding of transcription factor GATA1, diminishing enhancer activity and enhancer-promoter contacts. DNA-binding and crystallography studies reveal direct steric hindrance as one mechanism by which HIC2 inhibits GATA1 binding at a critical BCL11A enhancer. Conversely, loss of HIC2 in fetal erythroblasts increases enhancer accessibility, GATA1 binding and BCL11A transcription. HIC2 emerges as an evolutionarily conserved regulator of hemoglobin switching via developmental control of BCL11A.
Collapse
Affiliation(s)
- Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Scott A Peslak
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Genomics Research Incubator, Pennsylvania State University, University Park, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Henry W Bell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Malini Sharma
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Junwei Shi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Sánchez-Arcila JC, Jensen KDC. Forward Genetics in Apicomplexa Biology: The Host Side of the Story. Front Cell Infect Microbiol 2022; 12:878475. [PMID: 35646724 PMCID: PMC9133346 DOI: 10.3389/fcimb.2022.878475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Forward genetic approaches have been widely used in parasitology and have proven their power to reveal the complexities of host-parasite interactions in an unbiased fashion. Many aspects of the parasite's biology, including the identification of virulence factors, replication determinants, antibiotic resistance genes, and other factors required for parasitic life, have been discovered using such strategies. Forward genetic approaches have also been employed to understand host resistance mechanisms to parasitic infection. Here, we will introduce and review all forward genetic approaches that have been used to identify host factors involved with Apicomplexa infections, which include classical genetic screens and QTL mapping, GWAS, ENU mutagenesis, overexpression, RNAi and CRISPR-Cas9 library screens. Collectively, these screens have improved our understanding of host resistance mechanisms, immune regulation, vaccine and drug designs for Apicomplexa parasites. We will also discuss how recent advances in molecular genetics give present opportunities to further explore host-parasite relationships.
Collapse
Affiliation(s)
- Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
- Health Science Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
24
|
Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood 2022; 139:2450-2459. [PMID: 34936695 PMCID: PMC9029096 DOI: 10.1182/blood.2021011044] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
To enable effective oxygen transport, ∼200 billion red blood cells (RBCs) need to be produced every day in the bone marrow through the fine-tuned process of erythropoiesis. Erythropoiesis is regulated at multiple levels to ensure that defective RBC maturation or overproduction can be avoided. Here, we provide an overview of different layers of this control, ranging from cytokine signaling mechanisms that enable extrinsic regulation of RBC production to intrinsic transcriptional pathways necessary for effective erythropoiesis. Recent studies have also elucidated the importance of posttranscriptional regulation and highlighted additional gatekeeping mechanisms necessary for effective erythropoiesis. We additionally discuss the insights gained by studying human genetic variation affecting erythropoiesis and highlight the discovery of BCL11A as a regulator of hemoglobin switching through genetic studies. Finally, we provide an outlook of how our ability to measure multiple facets of this process at single-cell resolution, while accounting for the impact of human variation, will continue to refine our knowledge of erythropoiesis and how this process is perturbed in disease. As we learn more about this intricate and important process, additional opportunities to modulate erythropoiesis for therapeutic purposes will undoubtedly emerge.
Collapse
Affiliation(s)
- Alexis L Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; and
- Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
25
|
Promoter competition in globin gene control. Blood 2022; 139:2089-2091. [PMID: 35389439 DOI: 10.1182/blood.2022015642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
|
26
|
Harada T, Heshmati Y, Kalfon J, Perez MW, Xavier Ferrucio J, Ewers J, Hubbell Engler B, Kossenkov A, Ellegast JM, Yi JS, Bowker A, Zhu Q, Eagle K, Liu T, Kai Y, Dempster JM, Kugener G, Wickramasinghe J, Herbert ZT, Li CH, Vrabič Koren J, Weinstock DM, Paralkar VR, Nabet B, Lin CY, Dharia NV, Stegmaier K, Orkin SH, Pimkin M. A distinct core regulatory module enforces oncogene expression in KMT2A-rearranged leukemia. Genes Dev 2022; 36:368-389. [PMID: 35301220 PMCID: PMC8973843 DOI: 10.1101/gad.349284.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
In this study, Harada et al. identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. This study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes. Acute myeloid leukemia with KMT2A (MLL) rearrangements is characterized by specific patterns of gene expression and enhancer architecture, implying unique core transcriptional regulatory circuitry. Here, we identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. Rapid transcription factor degradation followed by measurements of genome-wide transcription rates and superresolution microscopy revealed that MEF2D and IRF8 form a distinct core regulatory module with a narrow direct transcriptional program that includes activation of the key oncogenes MYC, HOXA9, and BCL2. Our study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes.
Collapse
Affiliation(s)
- Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yaser Heshmati
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jérémie Kalfon
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Monika W Perez
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Juliana Xavier Ferrucio
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jazmin Ewers
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Benjamin Hubbell Engler
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | - Jana M Ellegast
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Joanna S Yi
- Baylor College of Medicine, Houston, Texas 77030, USA
| | - Allyson Bowker
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Qian Zhu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kenneth Eagle
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Ken Eagle Consulting, Houston, Texas 77494, USA
| | - Tianxin Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yan Kai
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Joshua M Dempster
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Guillaume Kugener
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | | | - Zachary T Herbert
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | - David M Weinstock
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Vikram R Paralkar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Charles Y Lin
- Baylor College of Medicine, Houston, Texas 77030, USA
| | - Neekesh V Dharia
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kimberly Stegmaier
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02215, USA
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
27
|
Han Y, Huang L, Zhou M, Tan X, Gong S, Zhang Z, Jin T, Fang X, Jia Y, Huang SW. Comparison of transcriptome profiles of nucleated red blood cells in cord blood between preterm and full-term neonates. Hematology 2022; 27:263-273. [PMID: 35192776 DOI: 10.1080/16078454.2022.2029255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The reactivation of fetal γ-globin expression is an effective strategy for ameliorating the clinical symptoms of β-hemoglobinopathies. However, the mechanism of globin switching, especially the roles of long non-coding RNAs (lncRNAs) in this process, remains elusive. METHODS We compared the in vivo transcriptome profiles of nucleated red blood cells (NRBCs) isolated from the umbilical cord blood of preterm and full-term newborns. We collected 75 umbilical cord blood samples and performed qPCR of the candidate genes. RESULTS In this study, we identified 7,166 differentially expressed protein-coding genes, 3,243 differentially expressed lncRNAs, and 79 differentially expressed microRNAs. Our data show that the Fanconi anemia pathway and the H19/let-7/LIN28B axis may be involved in γ- to β-globin gene switching. Moreover, we constructed the hub gene network of the differentially expressed transcription factors. Based on qPCR, we found that BCL11A was differentially expressed based on biological sex. We also confirmed that H19 is differentially expressed and established the H19-related network to reveal the potential regulatory mechanisms. CONCLUSION We present the profiles of the in vivo transcriptome differences of NRBCs between preterm and full-term neonates for the first time, and provide novel research targets for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Yuanyuan Han
- School of Medicine, Guizhou University, Guiyang, People's Republic of China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Ling Huang
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Man Zhou
- Obstetrical Department, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Xiaoyu Tan
- CAS Key Laboratory of Genome Science & Information, Chinese Academy of Sciences/ China National Center for Bioinformation, Beijing Institute of Genomics, Beijing, People's Republic of China
| | - Shangjin Gong
- CAS Key Laboratory of Genome Science & Information, Chinese Academy of Sciences/ China National Center for Bioinformation, Beijing Institute of Genomics, Beijing, People's Republic of China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Science & Information, Chinese Academy of Sciences/ China National Center for Bioinformation, Beijing Institute of Genomics, Beijing, People's Republic of China
| | - Tingting Jin
- School of Medicine, Guizhou University, Guiyang, People's Republic of China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Science & Information, Chinese Academy of Sciences/ China National Center for Bioinformation, Beijing Institute of Genomics, Beijing, People's Republic of China
| | - Yankai Jia
- GENEWIZ Suzhou, Suzhou, People's Republic of China
| | - S W Huang
- School of Medicine, Guizhou University, Guiyang, People's Republic of China.,Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China.,NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| |
Collapse
|
28
|
Nath A, Rayabaram J, Ijee S, Bagchi A, Chaudhury AD, Roy D, Chambayil K, Singh J, Nakamura Y, Velayudhan SR. Comprehensive Analysis of microRNAs in Human Adult Erythropoiesis. Cells 2021; 10:3018. [PMID: 34831239 PMCID: PMC8616439 DOI: 10.3390/cells10113018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which play an important role in various cellular and developmental processes. The study of miRNAs in erythropoiesis is crucial to uncover the cellular pathways that are modulated during the different stages of erythroid differentiation. Using erythroid cells derived from human CD34+ hematopoietic stem and progenitor cells (HSPCs)and small RNA sequencing, our study unravels the various miRNAs involved in critical cellular pathways in erythroid maturation. We analyzed the occupancy of erythroid transcription factors and chromatin accessibility in the promoter and enhancer regions of the differentially expressed miRNAs to integrate miRNAs in the transcriptional circuitry of erythropoiesis. Analysis of the targets of the differentially expressed miRNAs revealed novel pathways in erythroid differentiation. Finally, we described the application of Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) based editing of miRNAs to study their function in human erythropoiesis.
Collapse
Affiliation(s)
- Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Janakiram Rayabaram
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Anurag Dutta Chaudhury
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Debanjan Roy
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
- Manipal Academy of Higher Education, Manipal 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Jyoti Singh
- National Centre for Cell Science, University of Pune Campus, Pune 411007, India;
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan;
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| |
Collapse
|
29
|
NKL Homeobox Genes NKX2-3 and NKX2-4 Deregulate Megakaryocytic-Erythroid Cell Differentiation in AML. Int J Mol Sci 2021; 22:ijms222111434. [PMID: 34768865 PMCID: PMC8583893 DOI: 10.3390/ijms222111434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
NKL homeobox genes encode transcription factors that impact normal development and hematopoietic malignancies if deregulated. Recently, we established an NKL-code that describes the physiological expression pattern of eleven NKL homeobox genes in the course of hematopoiesis, allowing evaluation of aberrantly activated NKL genes in leukemia/lymphoma. Here, we identify ectopic expression of NKL homeobox gene NKX2-4 in an erythroblastic acute myeloid leukemia (AML) cell line OCI-M2 and describe investigation of its activating factors and target genes. Comparative expression profiling data of AML cell lines revealed in OCI-M2 an aberrantly activated program for endothelial development including master factor ETV2 and the additional endothelial signature genes HEY1, IRF6, and SOX7. Corresponding siRNA-mediated knockdown experiments showed their role in activating NKX2-4 expression. Furthermore, the ETV2 locus at 19p13 was genomically amplified, possibly underlying its aberrant expression. Target gene analyses of NKX2-4 revealed activated ETV2, HEY1, and SIX5 and suppressed FLI1. Comparative expression profiling analysis of public datasets for AML patients and primary megakaryocyte–erythroid progenitor cells showed conspicuous similarities to NKX2-4 activating factors and the target genes we identified, supporting the clinical relevance of our findings and developmental disturbance by NKX2-4. Finally, identification and target gene analysis of aberrantly expressed NKX2-3 in AML patients and a megakaryoblastic AML cell line ELF-153 showed activation of FLI1, contrasting with OCI-M2. FLI1 encodes a master factor for myelopoiesis, driving megakaryocytic differentiation and suppressing erythroid differentiation, thus representing a basic developmental target of these homeo-oncogenes. Taken together, we have identified aberrantly activated NKL homeobox genes NKX2-3 and NKX2-4 in AML, deregulating genes involved in megakaryocytic and erythroid differentiation processes, and thereby contributing to the formation of specific AML subtypes.
Collapse
|
30
|
Maurya SS. Role of Enhancers in Development and Diseases. EPIGENOMES 2021; 5:epigenomes5040021. [PMID: 34968246 PMCID: PMC8715447 DOI: 10.3390/epigenomes5040021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are cis-regulatory elements containing short DNA sequences that serve as binding sites for pioneer/regulatory transcription factors, thus orchestrating the regulation of genes critical for lineage determination. The activity of enhancer elements is believed to be determined by transcription factor binding, thus determining the cell state identity during development. Precise spatio-temporal control of the transcriptome during lineage specification requires the coordinated binding of lineage-specific transcription factors to enhancers. Thus, enhancers are the primary determinants of cell identity. Numerous studies have explored the role and mechanism of enhancers during development and disease, and various basic questions related to the functions and mechanisms of enhancers have not yet been fully answered. In this review, we discuss the recently published literature regarding the roles of enhancers, which are critical for various biological processes governing development. Furthermore, we also highlight that altered enhancer landscapes provide an essential context to understand the etiologies and mechanisms behind numerous complex human diseases, providing new avenues for effective enhancer-based therapeutic interventions.
Collapse
Affiliation(s)
- Shailendra S Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Department of Developmental Biology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
32
|
Deen D, Butter F, Daniels DE, Ferrer-Vicens I, Ferguson DCJ, Holland ML, Samara V, Sloane-Stanley JA, Ayyub H, Mann M, Frayne J, Garrick D, Vernimmen D. Identification of the transcription factor MAZ as a regulator of erythropoiesis. Blood Adv 2021; 5:3002-3015. [PMID: 34351390 PMCID: PMC8361462 DOI: 10.1182/bloodadvances.2021004609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/11/2021] [Indexed: 12/28/2022] Open
Abstract
Erythropoiesis requires a combination of ubiquitous and tissue-specific transcription factors (TFs). Here, through DNA affinity purification followed by mass spectrometry, we have identified the widely expressed protein MAZ (Myc-associated zinc finger) as a TF that binds to the promoter of the erythroid-specific human α-globin gene. Genome-wide mapping in primary human erythroid cells revealed that MAZ also occupies active promoters as well as GATA1-bound enhancer elements of key erythroid genes. Consistent with an important role during erythropoiesis, knockdown of MAZ reduces α-globin expression in K562 cells and impairs differentiation in primary human erythroid cells. Genetic variants in the MAZ locus are associated with changes in clinically important human erythroid traits. Taken together, these findings reveal the zinc-finger TF MAZ to be a previously unrecognized regulator of the erythroid differentiation program.
Collapse
Affiliation(s)
- Darya Deen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | | | - Michelle L Holland
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Vasiliki Samara
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Jacqueline A Sloane-Stanley
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Helena Ayyub
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - David Garrick
- MRC Molecular Haematology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and
| | - Douglas Vernimmen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
33
|
Activation of γ-globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin. Nat Genet 2021; 53:1177-1186. [PMID: 34341563 PMCID: PMC8610173 DOI: 10.1038/s41588-021-00904-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Hereditary persistence of fetal hemoglobin (HPFH) ameliorates β-hemoglobinopathies by inhibiting the developmental switch from γ-globin (HBG1/HBG2) to β-globin (HBB) gene expression. Some forms of HPFH are associated with γ-globin promoter variants that either disrupt binding motifs for transcriptional repressors or create new motifs for transcriptional activators. How these variants sustain γ-globin gene expression postnatally remains undefined. We mapped γ-globin promoter sequences functionally in erythroid cells harboring different HPFH variants. Those that disrupt a BCL11A repressor binding element induce γ-globin expression by facilitating the recruitment of transcription factors NF-Y to a nearby proximal CCAAT box and GATA1 to an upstream motif. The proximal CCAAT element becomes dispensable for HPFH variants that generate new binding motifs for activators NF-Y or KLF1, but GATA1 recruitment remains essential. Our findings define distinct mechanisms through which transcription factors and their cis-regulatory elements activate γ-globin expression in different forms of HPFH, some of which are being recreated by therapeutic genome editing.
Collapse
|
34
|
Maurya S, Yang W, Tamai M, Zhang Q, Erdmann-Gilmore P, Bystry A, Martins Rodrigues F, Valentine MC, Wong WH, Townsend R, Druley TE. Loss of KMT2C reprograms the epigenomic landscape in hPSCs resulting in NODAL overexpression and a failure of hemogenic endothelium specification. Epigenetics 2021; 17:220-238. [PMID: 34304711 PMCID: PMC8865227 DOI: 10.1080/15592294.2021.1954780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Germline or somatic variation in the family of KMT2 lysine methyltransferases have been associated with a variety of congenital disorders and cancers. Notably, KMT2A-fusions are prevalent in 70% of infant leukaemias but fail to phenocopy short latency leukaemogenesis in mammalian models, suggesting additional factors are necessary for transformation. Given the lack of additional somatic mutation, the role of epigenetic regulation in cell specification, and our prior results of germline KMT2C variation in infant leukaemia patients, we hypothesized that germline dysfunction of KMT2C altered haematopoietic specification. In isogenic KMT2C KO hPSCs, we found genome-wide differences in histone modifications at active and poised enhancers, leading to gene expression profiles akin to mesendoderm rather than mesoderm highlighted by a significant increase in NODAL expression and WNT inhibition, ultimately resulting in a lack of in vitro hemogenic endothelium specification. These unbiased multi-omic results provide new evidence for germline mechanisms increasing risk of early leukaemogenesis.
Collapse
Affiliation(s)
- Shailendra Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wei Yang
- McDonnell Genome Institute, Genome Technology Access Center, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Minori Tamai
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Qiang Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Petra Erdmann-Gilmore
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amelia Bystry
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Mark C Valentine
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Wing H Wong
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| | - Reid Townsend
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Todd E Druley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
35
|
Yu J, Xiong C, Zhuo B, Wen Z, Shen J, Liu C, Chang L, Wang K, Wang M, Wu C, Wu X, Xu X, Ruan H, Li G. Analysis of Local Chromatin States Reveals Gene Transcription Potential during Mouse Neural Progenitor Cell Differentiation. Cell Rep 2021; 32:107953. [PMID: 32726618 DOI: 10.1016/j.celrep.2020.107953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/23/2023] Open
Abstract
Chromatin dynamics play a critical role in cell fate determination and maintenance by regulating the expression of genes essential for development and differentiation. In mouse embryonic stem cells (mESCs), maintenance of pluripotency coincides with a poised chromatin state containing active and repressive histone modifications. However, the structural features of poised chromatin are largely uncharacterized. By adopting mild time-course MNase-seq with computational analysis, the low-compact chromatin in mESCs is featured in two groups: one in more open regions, corresponding to an active state, and the other enriched with bivalent histone modifications, considered the poised state. A parameter called the chromatin opening potential index (COPI) is also devised to quantify the transcription potential based on the dynamic changes of MNase-seq signals at promoter regions. Use of COPI provides effective prediction of gene activation potential and, more importantly, reveals a few developmental factors essential for mouse neural progenitor cell (NPC) differentiation.
Collapse
Affiliation(s)
- Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaoyang Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baowen Zhuo
- Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen 518102, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Shen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyuan Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kehui Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenyi Wu
- Molecular Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xueqing Xu
- Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen 518102, China.
| | - Haihe Ruan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Boontanrart MY, Schröder MS, Stehli GM, Banović M, Wyman SK, Lew RJ, Bordi M, Gowen BG, DeWitt MA, Corn JE. ATF4 Regulates MYB to Increase γ-Globin in Response to Loss of β-Globin. Cell Rep 2021; 32:107993. [PMID: 32755585 DOI: 10.1016/j.celrep.2020.107993] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/20/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
β-Hemoglobinopathies can trigger rapid production of red blood cells in a process known as stress erythropoiesis. Cellular stress prompts differentiating erythroid precursors to express high levels of fetal γ-globin. However, the mechanisms underlying γ-globin production during cellular stress are still poorly defined. Here, we use CRISPR-Cas genome editing to model the stress caused by reduced levels of adult β-globin. We find that decreased β-globin is sufficient to induce robust re-expression of γ-globin, and RNA sequencing (RNA-seq) of differentiating isogenic erythroid precursors implicates ATF4 as a causal regulator of this response. ATF4 binds within the HBS1L-MYB intergenic enhancer and regulates expression of MYB, a known γ-globin regulator. Overall, the reduction of ATF4 upon β-globin knockout decreases the levels of MYB and BCL11A. Identification of ATF4 as a key regulator of globin compensation adds mechanistic insight to the poorly understood phenomenon of stress-induced globin compensation and could inform strategies to treat hemoglobinopathies.
Collapse
Affiliation(s)
- Mandy Y Boontanrart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Marija Banović
- Department of Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Stacia K Wyman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rachel J Lew
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matteo Bordi
- Department of Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark A DeWitt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacob E Corn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zurich, Zurich 8092, Switzerland; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Small amounts of fetal hemoglobin can be expressed in a subset of adult red blood cells called F-cells. This review examines the potential mechanisms and clinical implications of the heterogeneity of fetal hemoglobin expression. RECENT FINDINGS Although the heterocellular nature of fetal hemoglobin expression in adult red blood cells has been noted for over 70 years, the molecular basis of this phenomenon has been unclear. Recent discoveries of novel regulators of fetal hemoglobin as well as technological advances have shed new light on these cells. SUMMARY Fetal hemoglobin reactivation in adult red blood cells through genetic or pharmacological approaches can involve both increasing the number of F-cells and cellular fetal hemoglobin content. New technologies enable the study and eventually the improvement of these parameters in patients with sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
38
|
p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood 2021; 137:89-102. [PMID: 32818241 DOI: 10.1182/blood.2019003439] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The role of ribosome biogenesis in erythroid development is supported by the recognition of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q- syndrome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid development is still unknown. In the present study, a detailed characterization of ribosome biogenesis dynamics during human and murine erythropoiesis showed that ribosome biogenesis is abruptly interrupted by the decline in ribosomal DNA transcription and the collapse of ribosomal protein neosynthesis. Its premature arrest by the RNA Pol I inhibitor CX-5461 targeted the proliferation of immature erythroblasts. p53 was activated spontaneously or in response to CX-5461, concomitant to ribosome biogenesis arrest, and drove a transcriptional program in which genes involved in cell cycle-arrested, negative regulation of apoptosis, and DNA damage response were upregulated. RNA Pol I transcriptional stress resulted in nucleolar disruption and activation of the ATR-CHK1-p53 pathway. Our results imply that the timing of ribosome biogenesis extinction and p53 activation is crucial for erythroid development. In ribosomopathies in which ribosome availability is altered by unbalanced production of ribosomal proteins, the threshold downregulation of ribosome biogenesis could be prematurely reached and, together with pathological p53 activation, prevents a normal expansion of erythroid progenitors.
Collapse
|
39
|
Thomas HF, Kotova E, Jayaram S, Pilz A, Romeike M, Lackner A, Penz T, Bock C, Leeb M, Halbritter F, Wysocka J, Buecker C. Temporal dissection of an enhancer cluster reveals distinct temporal and functional contributions of individual elements. Mol Cell 2021; 81:969-982.e13. [PMID: 33482114 DOI: 10.1016/j.molcel.2020.12.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Many genes are regulated by multiple enhancers that often simultaneously activate their target gene. However, how individual enhancers collaborate to activate transcription is not well understood. Here, we dissect the functions and interdependencies of five enhancer elements that together activate Fgf5 expression during exit from naive murine pluripotency. Four intergenic elements form a super-enhancer, and most of the elements contribute to Fgf5 induction at distinct time points. A fifth, poised enhancer located in the first intron contributes to Fgf5 expression at every time point by amplifying overall Fgf5 expression levels. Despite low individual enhancer activity, together these elements strongly induce Fgf5 expression in a super-additive fashion that involves strong accumulation of RNA polymerase II at the intronic enhancer. Finally, we observe a strong anti-correlation between RNA polymerase II levels at enhancers and their distance to the closest promoter, and we identify candidate elements with properties similar to the intronic enhancer.
Collapse
Affiliation(s)
- Henry F Thomas
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Elena Kotova
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Swathi Jayaram
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Axel Pilz
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Merrit Romeike
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Andreas Lackner
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria
| | | | - Joanna Wysocka
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christa Buecker
- Max Perutz Laboratories Vienna, University of Vienna, Vienna Biocenter, Dr Bohr Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
40
|
The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression. Blood 2021; 135:2121-2132. [PMID: 32299090 DOI: 10.1182/blood.2020005301] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Reactivation of fetal hemoglobin remains a critical goal in the treatment of patients with sickle cell disease and β-thalassemia. Previously, we discovered that silencing of the fetal γ-globin gene requires the erythroid-specific eIF2α kinase heme-regulated inhibitor (HRI), suggesting that HRI might present a pharmacologic target for raising fetal hemoglobin levels. Here, via a CRISPR-Cas9-guided loss-of-function screen in human erythroblasts, we identify transcription factor ATF4, a known HRI-regulated protein, as a novel γ-globin regulator. ATF4 directly stimulates transcription of BCL11A, a repressor of γ-globin transcription, by binding to its enhancer and fostering enhancer-promoter contacts. Notably, HRI-deficient mice display normal Bcl11a levels, suggesting species-selective regulation, which we explain here by demonstrating that the analogous ATF4 motif at the murine Bcl11a enhancer is largely dispensable. Our studies uncover a linear signaling pathway from HRI to ATF4 to BCL11A to γ-globin and illustrate potential limits of murine models of globin gene regulation.
Collapse
|
41
|
Salazar-Silva R, Dantas VLG, Alves LU, Batissoco AC, Oiticica J, Lawrence EA, Kawafi A, Yang Y, Nicastro FS, Novaes BC, Hammond C, Kague E, Mingroni-Netto RC. NCOA3 identified as a new candidate to explain autosomal dominant progressive hearing loss. Hum Mol Genet 2021; 29:3691-3705. [PMID: 33326993 PMCID: PMC7823111 DOI: 10.1093/hmg/ddaa240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/21/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Hearing loss is a frequent sensory impairment in humans and genetic factors account for an elevated fraction of the cases. We have investigated a large family of five generations, with 15 reported individuals presenting non-syndromic, sensorineural, bilateral and progressive hearing loss, segregating as an autosomal dominant condition. Linkage analysis, using SNP-array and selected microsatellites, identified a region of near 13 cM in chromosome 20 as the best candidate to harbour the causative mutation. After exome sequencing and filtering of variants, only one predicted deleterious variant in the NCOA3 gene (NM_181659, c.2810C > G; p.Ser937Cys) fit in with our linkage data. RT-PCR, immunostaining and in situ hybridization showed expression of ncoa3 in the inner ear of mice and zebrafish. We generated a stable homozygous zebrafish mutant line using the CRISPR/Cas9 system. ncoa3-/- did not display any major morphological abnormalities in the ear, however, anterior macular hair cells showed altered orientation. Surprisingly, chondrocytes forming the ear cartilage showed abnormal behaviour in ncoa3-/-, detaching from their location, invading the ear canal and blocking the cristae. Adult mutants displayed accumulation of denser material wrapping the otoliths of ncoa3-/- and increased bone mineral density. Altered zebrafish swimming behaviour corroborates a potential role of ncoa3 in hearing loss. In conclusion, we identified a potential candidate gene to explain hereditary hearing loss, and our functional analyses suggest subtle and abnormal skeletal behaviour as mechanisms involved in the pathogenesis of progressive sensory function impairment.
Collapse
Affiliation(s)
- R Salazar-Silva
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Vitor Lima Goes Dantas
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Leandro Ucela Alves
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| | - Ana Carla Batissoco
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
- Laboratório de Otorrinolaringologia/LIM32 –Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo , 01246-903, São Paulo, Brazil
| | - Jeanne Oiticica
- Laboratório de Otorrinolaringologia/LIM32 –Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo , 01246-903, São Paulo, Brazil
| | - Elizabeth A Lawrence
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Abdelwahab Kawafi
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Yushi Yang
- School of Physics, University of Bristol, Bristol, BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, University of Bristol, Bristol, BS8 1FD, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1FD, United Kingdom
| | - Fernanda Stávale Nicastro
- Divisão de Educação e Reabilitação dos Distúrbios da Comunicação da Pontifícia Universidade Católica de São Paulo, 04022-040, São Paulo, Brazil
| | - Beatriz Caiuby Novaes
- Divisão de Educação e Reabilitação dos Distúrbios da Comunicação da Pontifícia Universidade Católica de São Paulo, 04022-040, São Paulo, Brazil
| | - Chrissy Hammond
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Erika Kague
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
- School of Pharmacology, Physiology and Neuroscience, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - R C Mingroni-Netto
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, Brazil
| |
Collapse
|
42
|
Wang Y, Li J, Li J, Li P, Wang L, Di L. An Enhancer-Based Analysis Revealed a New Function of Androgen Receptor in Tumor Cell Immune Evasion. Front Genet 2020; 11:595550. [PMID: 33343635 PMCID: PMC7738566 DOI: 10.3389/fgene.2020.595550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is characterized by dysregulation at multiple levels, such as gene transcription. Enhancers are well-studied transcription regulators that can enhance target transcripts through DNA loop formation mediated by chromosome folding. The gain or loss of the interaction between an enhancer and its target gene has a critical effect on gene expression. In this study, we analyzed GRO-seq data to identify active enhancers from seven common cancer cell lines and studied the function of these enhancers across multiple cancer types. By constructing an "enhancer effect score" (EES), we found a significant correlation between EES and tumor-infiltrating lymphocytes (TILs) in prostate cancer. Further analysis revealed that androgen receptor (AR) plays an important role in regulating the immune checkpoint gene PVR via its enhancer. These results suggest that AR contributes to prostate cancer aggressiveness by promoting cancer cell immune evasion.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijun Di
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
43
|
Tu S, Li M, Chen H, Tan F, Xu J, Waxman DJ, Zhang Y, Shao Z. MAnorm2 for quantitatively comparing groups of ChIP-seq samples. Genome Res 2020; 31:131-145. [PMID: 33208455 PMCID: PMC7849384 DOI: 10.1101/gr.262675.120] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Eukaryotic gene transcription is regulated by a large cohort of chromatin-associated proteins, and inferring their differential binding sites between cellular contexts requires a rigorous comparison of the corresponding ChIP-seq data. We present MAnorm2, a new computational tool for quantitatively comparing groups of ChIP-seq samples. MAnorm2 uses a hierarchical strategy for normalization of ChIP-seq data and assesses within-group variability of ChIP-seq signals based on an empirical Bayes framework. In this framework, MAnorm2 allows for abundant differential ChIP-seq signals between groups of samples as well as very different global within-group variability between groups. Using a number of real ChIP-seq data sets, we observed that MAnorm2 clearly outperformed existing tools for differential ChIP-seq analysis, especially when the groups of samples being compared had distinct global within-group variability.
Collapse
Affiliation(s)
- Shiqi Tu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mushan Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haojie Chen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengxiang Tan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
44
|
Papayannopoulou T. Control of fetal globin expression in man: new opportunities to challenge past discoveries. Exp Hematol 2020; 92:43-50. [PMID: 32976950 DOI: 10.1016/j.exphem.2020.09.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023]
Abstract
Decades-old findings supporting origin of F cells in adult life from adult-type progenitors and the in vitro and in vivo enhancement of fetal globin under stress conditions have been juxtaposed against recent mechanistic underpinnings. An updated molecular interrogation did not debunk prior conclusions on the origin of F cells. Although fetal globin reactivation by widely diverse approaches in vitro and in response to anemic stresses in vivo is a work in progress, accumulating evidence converges toward an integrated stress response pathway. The newly uncovered developmental regulators of globin gene switching not only have provided answers to the long-awaited quest of transregulation of switching, they are also reaching a clinical threshold. Although the effect of fetal globin silencers has been robustly validated in adult cells, the response of cells at earlier developmental stages has been unclear and inadequately studied.
Collapse
|
45
|
A Unique Epigenomic Landscape Defines Human Erythropoiesis. Cell Rep 2020; 28:2996-3009.e7. [PMID: 31509757 PMCID: PMC6863094 DOI: 10.1016/j.celrep.2019.08.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/28/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Mammalian erythropoiesis yields a highly specialized cell type, the mature erythrocyte, evolved to meet the organismal needs of increased oxygen-carrying capacity. To better understand the regulation of erythropoiesis, we performed genome-wide studies of chromatin accessibility, DNA methylation, and transcriptomics using a recently developed strategy to obtain highly purified populations of primary human erythroid cells. The integration of gene expression, DNA methylation, and chromatin state dynamics reveals that stage-specific gene regulation during erythropoiesis is a stepwise and hierarchical process involving many cis-regulatory elements. Erythroid-specific, nonpromoter sites of chromatin accessibility are linked to erythroid cell phenotypic variation and inherited disease. Comparative analyses of stage-specific chromatin accessibility indicate that there is limited early chromatin priming of erythroid genes during hematopoiesis. The epigenome of terminally differentiating erythroid cells defines a distinct subset of highly specialized cells that are vastly dissimilar from other hematopoietic and nonhematopoietic cell types. These epigenomic and transcriptome data are powerful tools to study human erythropoiesis. Schulz et al. use genome-wide studies of chromatin accessibility, DNA methylation, and transcriptomes in primary human erythroid cells to reveal important characteristics of erythropoiesis. Chromatin accessibility of terminal erythroid differentiation is markedly dissimilar from other hematopoietic cell types. Epigenomic changes are linked to erythroid cell traits and disease genes.
Collapse
|
46
|
Hyperacetylated chromatin domains mark cell type-specific genes and suggest distinct modes of enhancer function. Nat Commun 2020; 11:4544. [PMID: 32917861 PMCID: PMC7486385 DOI: 10.1038/s41467-020-18303-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/08/2020] [Indexed: 01/24/2023] Open
Abstract
Stratification of enhancers by signal strength in ChIP-seq assays has resulted in the establishment of super-enhancers as a widespread and useful tool for identifying cell type-specific, highly expressed genes and associated pathways. We examine a distinct method of stratification that focuses on peak breadth, termed hyperacetylated chromatin domains (HCDs), which classifies broad regions exhibiting histone modifications associated with gene activation. We find that this analysis serves to identify genes that are both more highly expressed and more closely aligned to cell identity than super-enhancer analysis does using multiple data sets. Moreover, genetic manipulations of selected gene loci suggest that some enhancers located within HCDs work at least in part via a distinct mechanism involving the modulation of histone modifications across domains and that this activity can be imported into a heterologous gene locus. In addition, such genetic dissection reveals that the super-enhancer concept can obscure important functions of constituent elements. Super-enhancer are usually defined by high levels of chromatin modification and associate with cell-specific gene expression. Here, the authors define hyperacetylated chromatin domains (HCDs) by using histone hyperacetylation peak breadth information and show that HCDs associated more closely with cell identity than super-enhancers.
Collapse
|
47
|
Chen J, Zhou Q, Liu MH, Yang YS, Wang YQ, Huang Y, Chen GQ. FAM122A Inhibits Erythroid Differentiation through GATA1. Stem Cell Reports 2020; 15:721-734. [PMID: 32763160 PMCID: PMC7486200 DOI: 10.1016/j.stemcr.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 12/15/2022] Open
Abstract
FAM122A is a highly conserved housekeeping gene, but its physiological and pathophysiological roles remain greatly elusive. Based on the fact that FAM122A is highly expressed in human CD71+ early erythroid cells, herein we report that FAM122A is downregulated during erythroid differentiation, while its overexpression significantly inhibits erythrocytic differentiation in primary human hematopoietic progenitor cells and erythroleukemia cells. Mechanistically, FAM122A directly interacts with the C-terminal zinc finger domain of GATA1, a critical transcriptional factor for erythropoiesis, and reduces GATA1 chromatin occupancy on the promoters of its target genes, thus resulting in the decrease of GATA1 transcriptional activity. The public datasets show that FAM122A is abnormally upregulated in patients with β-thalassemia. Collectively, our results demonstrate that FAM122A plays an inhibitory role in the regulation of erythroid differentiation, and it would be a potentially therapeutic target for GATA1-related dyserythropoiesis or an important regulator for amplifying erythroid cells ex vivo.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Sheng Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin-Qi Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education and Chinese Academy of Medical Sciences Research Unit, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Khandros E, Huang P, Peslak SA, Sharma M, Abdulmalik O, Giardine BM, Zhang Z, Keller CA, Hardison RC, Blobel GA. Understanding heterogeneity of fetal hemoglobin induction through comparative analysis of F and A erythroblasts. Blood 2020; 135:1957-1968. [PMID: 32268371 PMCID: PMC7256358 DOI: 10.1182/blood.2020005058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 01/27/2023] Open
Abstract
Reversing the developmental switch from fetal hemoglobin (HbF, α2γ2) to adult hemoglobin (HbA, α2β2) is an important therapeutic approach in sickle cell disease (SCD) and β-thalassemia. In healthy individuals, SCD patients, and patients treated with pharmacologic HbF inducers, HbF is present only in a subset of red blood cells known as F cells. Despite more than 50 years of observations, the cause for this heterocellular HbF expression pattern, even among genetically identical cells, remains unknown. Adult F cells might represent a reversion of a given cell to a fetal-like epigenetic and transcriptional state. Alternatively, isolated transcriptional or posttranscriptional events at the γ-globin genes might underlie heterocellularity. Here, we set out to understand the heterogeneity of HbF activation by developing techniques to purify and profile differentiation stage-matched late erythroblast F cells and non-F cells (A cells) from the human HUDEP2 erythroid cell line and primary human erythroid cultures. Transcriptional and proteomic profiling of these cells demonstrated very few differences between F and A cells at the RNA level either under baseline conditions or after treatment with HbF inducers hydroxyurea or pomalidomide. Surprisingly, we did not find differences in expression of any known HbF regulators, including BCL11A or LRF, that would account for HbF activation. Our analysis shows that F erythroblasts are not significantly different from non-HbF-expressing cells and that the primary differences likely occur at the transcriptional level at the β-globin locus.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scott A Peslak
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Malini Sharma
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA; and
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA; and
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA; and
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
49
|
Romano O, Petiti L, Felix T, Meneghini V, Portafax M, Antoniani C, Amendola M, Bicciato S, Peano C, Miccio A. GATA Factor-Mediated Gene Regulation in Human Erythropoiesis. iScience 2020; 23:101018. [PMID: 32283524 PMCID: PMC7155206 DOI: 10.1016/j.isci.2020.101018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/14/2020] [Accepted: 03/24/2020] [Indexed: 01/31/2023] Open
Abstract
Erythroid commitment and differentiation are regulated by the coordinated action of a host of transcription factors, including GATA2 and GATA1. Here, we explored GATA-mediated transcriptional regulation through the integrative analysis of gene expression, chromatin modifications, and GATA factors' binding in human multipotent hematopoietic stem/progenitor cells, early erythroid progenitors, and late precursors. A progressive loss of H3K27 acetylation and a diminished usage of active enhancers and super-enhancers were observed during erythroid commitment and differentiation. GATA factors mediate transcriptional changes through a stage-specific interplay with regulatory elements: GATA1 binds different sets of regulatory elements in erythroid progenitors and precursors and controls the transcription of distinct genes during commitment and differentiation. Importantly, our results highlight a pivotal role of promoters in determining the transcriptional program activated upon erythroid differentiation. Finally, we demonstrated that GATA1 binding to a stage-specific super-enhancer sustains the expression of the KIT receptor in human erythroid progenitors. GATA2/1 binding to regulatory regions and transcriptional changes during erythropoiesis GATA1 sustains KIT expression in human erythroid progenitors
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Petiti
- Institute of Biomedical Technologies, CNR, Milan, Italy
| | - Tristan Felix
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Vasco Meneghini
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Michel Portafax
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | - Chiara Antoniani
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France
| | | | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clelia Peano
- Institute of Biomedical Technologies, CNR, Milan, Italy; Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy.
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, Imagine Institute, INSERM UMR, 1163 Paris, France; Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
50
|
Li K, Zhang Y, Liu X, Liu Y, Gu Z, Cao H, Dickerson KE, Chen M, Chen W, Shao Z, Ni M, Xu J. Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies. Cancer Discov 2020; 10:724-745. [PMID: 32188707 DOI: 10.1158/2159-8290.cd-19-1128] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Mutations in protein-coding genes are well established as the basis for human cancer, yet how alterations within noncoding genome, a substantial fraction of which contain cis-regulatory elements (CRE), contribute to cancer pathophysiology remains elusive. Here, we developed an integrative approach to systematically identify and characterize noncoding regulatory variants with functional consequences in human hematopoietic malignancies. Combining targeted resequencing of hematopoietic lineage-associated CREs and mutation discovery, we uncovered 1,836 recurrently mutated CREs containing leukemia-associated noncoding variants. By enhanced CRISPR/dCas9-based CRE perturbation screening and functional analyses, we identified 218 variant-associated oncogenic or tumor-suppressive CREs in human leukemia. Noncoding variants at KRAS and PER2 enhancers reside in proximity to nuclear receptor (NR) binding regions and modulate transcriptional activities in response to NR signaling in leukemia cells. NR binding sites frequently colocalize with noncoding variants across cancer types. Hence, recurrent noncoding variants connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignancies. SIGNIFICANCE: We describe an integrative approach to identify noncoding variants in human leukemia, and reveal cohorts of variant-associated oncogenic and tumor-suppressive cis-regulatory elements including KRAS and PER2 enhancers. Our findings support a model in which noncoding regulatory variants connect enhancer dysregulation with nuclear receptor signaling to modulate gene programs in hematopoietic malignancies.See related commentary by van Galen, p. 646.This article is highlighted in the In This Issue feature, p. 627.
Collapse
Affiliation(s)
- Kailong Li
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xin Liu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuxuan Liu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhimin Gu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hui Cao
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mingyi Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Weina Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhen Shao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Ni
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Xu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|