1
|
Theisen EK, Rivas-Serna IM, Lee RJ, Jay TR, Kunduri G, Nguyen TT, Mazurak V, Clandinin MT, Clandinin TR, Vaughen JP. Glia phagocytose neuronal sphingolipids to infiltrate developing synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.14.648777. [PMID: 40313927 PMCID: PMC12045345 DOI: 10.1101/2025.04.14.648777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The complex morphologies of mature neurons and glia emerge through profound rearrangements of cell membranes during development. Despite being integral components of these membranes, it is unclear whether lipids might actively sculpt these morphogenic processes. By analyzing lipid levels in the developing fruit fly brain, we discover dramatic increases in specific sphingolipids coinciding with neural circuit establishment. Disrupting this sphingolipid bolus via genetic perturbations of sphingolipid biosynthesis and catabolism leads to impaired glial autophagy. Remarkably, glia can obtain sphingolipid precursors needed for autophagy by phagocytosing neurons. These precursors are then converted into specific long-chain ceramide phosphoethanolamines (CPEs), invertebrate analogs of sphingomyelin. These lipids are essential for glia to arborize and infiltrate the brain, a critical step in circuit maturation that when disrupted leads to reduced synapse numbers. Taken together, our results demonstrate how spatiotemporal tuning of sphingolipid metabolism during development plays an instructive role in programming brain architecture. Highlights Brain sphingolipids (SLs) remodel to very long-chain species during circuit maturation Glial autophagy requires de novo SL biosynthesis coordinated across neurons and glia Glia evade a biosynthetic blockade by phagolysosomal salvage of neuronal SLsCeramide Phosphoethanolamine is critical for glial infiltration and synapse density.
Collapse
|
2
|
Yang Z, Ren J, Lu S, Feng Y, Fan Y, Liu TX, Jing X. In vivo functional analysis of the cotton bollworm Helicoverpa armigera 24-dehydrocholesterol reductase (HaDHCR24) in phytosterol metabolism. INSECT SCIENCE 2025; 32:398-408. [PMID: 38973264 DOI: 10.1111/1744-7917.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 07/09/2024]
Abstract
Insects have to obtain sterols from food due to the inability to synthesize this essential nutrient de novo. For lepidopteran insects, they can convert a variety of phytosterols into cholesterol to meet their growth needs. The final step of the cholesterol biosynthesis is the metabolism of desmosterol catalyzed by 24-dehydrocholesterol reductase (DHCR24). In this study, we identified a DHCR24 homolog in the cotton bollworm Helicoverpa armigera, designated as H. armigera 24-dehydrocholesterol reductase (HaDHCR24)-1. The quantitative expression analyses indicated that HaDHCR24-1 was highly enriched in the midgut where dietary sterol uptake occurs. Compared to the control, the DHCR24-1 mutant larvae generated by clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 technology accumulated more desmosterol in the gut, while the content of cholesterol was significantly reduced. A similar phenomenon was observed when the DHCR24 inhibitor, amiodarone, was applied to the insects. Moreover, DHCR24-1 played an important role for the usage of β-sitosterol, a major sterol in plants, in H. armigera, and loss of function of DHCR24-1 resulted in higher mortality on β-sitosterol. However, the DHCR24 homolog does not necessarily exist in the genomes of all insects. The loss of this gene occurred more frequently in the insects feeding on animals, which further support the role of DHCR24-1 in using phytosterols. This gene may have important potential in developing new strategies to control herbivory pests in Lepidoptera and other insect orders.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinchan Ren
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuning Lu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanze Feng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongliang Fan
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong-Xian Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangfeng Jing
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Wang Z, Tian Z, Gao J, Wang H. Biomembrane structure at the molecular level and its application in precision medicine. BIOPHYSICS REVIEWS 2025; 6:011306. [PMID: 39980736 PMCID: PMC11839234 DOI: 10.1063/5.0213964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025]
Abstract
Biomembranes are fundamental to our understanding of the cell, the basic building block of all life. They form important barriers between the cytoplasm and the microenvironment of the cell and separate organelles within cells. Despite substantial advances in the study of cell membrane structure models, they are still in the stage of model hypothesis due to the high complexity of the components, structures, and functions of membranes. In this review, we summarized the progresses on membrane structure, properties, and functions at the molecular level using newly developed technologies and discussed some challenges and future directions in biomembrane research from our perspective. Moreover, we demonstrated the dynamic functions of membrane proteins and their role in achieving early detection, precise diagnosis, and the development of personalized treatment strategies at the molecular level. Overall, this review aims to engage researchers in related fields and multidisciplinary readers to understand and explore biomembranes for the accurate and effective development of membrane-targeting therapeutic agents.
Collapse
Affiliation(s)
- Zicheng Wang
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Tian
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Hongda Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
4
|
Hull AJ, Atilano ML, Hallqvist J, Heywood W, Kinghorn KJ. Ceramide lowering rescues respiratory defects in a Drosophila model of acid sphingomyelinase deficiency. Hum Mol Genet 2024; 33:2111-2122. [PMID: 39402882 PMCID: PMC11630749 DOI: 10.1093/hmg/ddae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 12/12/2024] Open
Abstract
Types A and B Niemann-Pick disease (NPD) are inherited multisystem lysosomal storage disorders due to mutations in the SMPD1 gene. Respiratory dysfunction is a key hallmark of NPD, yet the mechanism for this is underexplored. SMPD1 encodes acid sphingomyelinase (ASM), which hydrolyses sphingomyelin to ceramide and phosphocholine. Here, we present a Drosophila model of ASM loss-of-function, lacking the fly orthologue of SMPD1, dASM, modelling several aspects of the respiratory pathology of NPD. dASM is expressed in the late-embryonic fly respiratory network, the trachea, and is secreted into the tracheal lumen. Loss of dASM results in embryonic lethality, and the tracheal lumen fails to fill normally with gas prior to eclosion. We demonstrate that the endocytic clearance of luminal constituents prior to gas-filling is defective in dASM mutants, and is coincident with autophagic, but not lysosomal defects, in late stage embryonic trachea. Finally, we show that although bulk sphingolipids are unchanged, dietary loss of lipids in combination with genetic and pharmacological block of ceramide synthesis rescues the airway gas-filling defects. We highlight myriocin as a potential therapeutic drug for the treatment of the developmental respiratory defects associated with ASM deficiency, and present a new NPD model amenable to genetic and pharmacological screens.
Collapse
Affiliation(s)
- Alexander J Hull
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Magda L Atilano
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jenny Hallqvist
- Great Ormond Street Institute of Child Health, University College London, 30 Guildford Street, London, WC1N 1EN, United Kingdom
| | - Wendy Heywood
- Great Ormond Street Institute of Child Health, University College London, 30 Guildford Street, London, WC1N 1EN, United Kingdom
| | - Kerri J Kinghorn
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
He Q, Chen S, Hou T, Chen J. Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:792-805. [PMID: 39005109 DOI: 10.1111/imb.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with Drosophila genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
6
|
Prasad SS, Taylor MC, Colombo V, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. Correction: Prasad et al. Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly. Insects 2023, 14, 873. INSECTS 2024; 15:538. [PMID: 39057290 PMCID: PMC11276607 DOI: 10.3390/insects15070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Supplementary Table S3 in our recent publication [...].
Collapse
Affiliation(s)
- Shirleen S. Prasad
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Matthew C. Taylor
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Valentina Colombo
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Heng Lin Yeap
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Siu Fai Lee
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - John G. Oakeshott
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| |
Collapse
|
7
|
Frank HM, Walujkar S, Walsh RM, Laursen WJ, Theobald DL, Garrity PA, Gaudet R. Structural basis of ligand specificity and channel activation in an insect gustatory receptor. Cell Rep 2024; 43:114035. [PMID: 38573859 PMCID: PMC11100771 DOI: 10.1016/j.celrep.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Gustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs). Upon fructose binding, BmGr9's channel gate opens through helix S7b movements. In contrast to ORs, BmGr9's ligand-binding pocket, shaped by a kinked helix S4 and a shorter extracellular S3-S4 loop, is larger and solvent accessible in both agonist-free and fructose-bound states. Also, unlike ORs, fructose binding by BmGr9 involves helix S5 and a pocket lined with aromatic and polar residues. Structure-based sequence alignments reveal distinct patterns of ligand-binding pocket residue conservation in GR subfamilies associated with different ligand classes. These data provide insight into the molecular basis of GR ligand specificity and function.
Collapse
Affiliation(s)
- Heather M Frank
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Sanket Walujkar
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Willem J Laursen
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | | | - Paul A Garrity
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
8
|
Kumar M, Has C, Lam-Kamath K, Ayciriex S, Dewett D, Bashir M, Poupault C, Schuhmann K, Thomas H, Knittelfelder O, Raghuraman BK, Ahrends R, Rister J, Shevchenko A. Lipidome Unsaturation Affects the Morphology and Proteome of the Drosophila Eye. J Proteome Res 2024; 23:1188-1199. [PMID: 38484338 PMCID: PMC11002927 DOI: 10.1021/acs.jproteome.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/26/2024]
Abstract
Organisms respond to dietary and environmental challenges by altering the molecular composition of their glycerolipids and glycerophospholipids (GPLs), which may favorably adjust the physicochemical properties of lipid membranes. However, how lipidome changes affect the membrane proteome and, eventually, the physiology of specific organs is an open question. We addressed this issue in Drosophila melanogaster, which is not able to synthesize sterols and polyunsaturated fatty acids but can acquire them from food. We developed a series of semisynthetic foods to manipulate the length and unsaturation of fatty acid moieties in GPLs and singled out proteins whose abundance is specifically affected by membrane lipid unsaturation in the Drosophila eye. Unexpectedly, we identified a group of proteins that have muscle-related functions and increased their abundances under unsaturated eye lipidome conditions. In contrast, the abundance of two stress response proteins, Turandot A and Smg5, is decreased by lipid unsaturation. Our findings could guide the genetic dissection of homeostatic mechanisms that maintain visual function when the eye is exposed to environmental and dietary challenges.
Collapse
Affiliation(s)
- Mukesh Kumar
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Canan Has
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Khanh Lam-Kamath
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Sophie Ayciriex
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Deepshe Dewett
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Mhamed Bashir
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Clara Poupault
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Kai Schuhmann
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Henrik Thomas
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Oskar Knittelfelder
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Bharath Kumar Raghuraman
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Robert Ahrends
- Department
of Analytical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Jens Rister
- Department
of Biology, University of Massachusetts
Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Andrej Shevchenko
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
9
|
Li Q, Chen L, Yang L, Zhang P. FA2H controls cool temperature sensing through modifying membrane sphingolipids in Drosophila. Curr Biol 2024; 34:997-1009.e6. [PMID: 38359821 DOI: 10.1016/j.cub.2024.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Animals have evolved the ability to detect ambient temperatures, allowing them to search for optimal living environments. In search of the molecules responsible for cold-sensing, we examined a Gal4 insertion line in the larvae of Drosophila melanogaster from previous screening work, which has a specific expression pattern in the cooling cells (CCs). We identified that the targeted gene, fa2h, which encodes a fatty acid 2-hydroxylase, plays an important role in cool temperature sensing. We found that fa2h mutants exhibit defects in cool avoidance behavior and that this phenotype could be rescued by genetically re-introducing the wild-type version of FA2H in CCs but not the enzymatically disabled point mutation version. Calcium imaging data showed that CCs require fa2h to respond to cool temperature. Lipidomic analysis revealed that the 2-hydroxy sphingolipids content in the cell membranes diminished in fa2h mutants, resulting in increased fluidity of CC neuron membranes. Furthermore, in mammalian systems, we showed that FA2H strongly regulates the function of the TRPV4 channel in response to its agonist treatment and warming. Taken together, our study has uncovered a novel role of FA2H in temperature sensing and has provided new insights into the link between membrane lipid composition and the function of temperature-sensing ion channels.
Collapse
Affiliation(s)
- Qiaoran Li
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Limin Chen
- The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Libo Yang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; The Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
10
|
Popošek LL, Kraševec N, Bajc G, Glavač U, Hrovatin M, Perko Ž, Slavič A, Pavšič M, Sepčić K, Skočaj M. New Insights into Interactions between Mushroom Aegerolysins and Membrane Lipids. Toxins (Basel) 2024; 16:143. [PMID: 38535809 PMCID: PMC10975569 DOI: 10.3390/toxins16030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2025] Open
Abstract
Aegerolysins are a family of proteins that recognize and bind to specific membrane lipids or lipid domains; hence they can be used as membrane lipid sensors. Although aegerolysins are distributed throughout the tree of life, the most studied are those produced by the fungal genus Pleurotus. Most of the aegerolysin-producing mushrooms code also for proteins containing the membrane attack complex/perforin (MACPF)-domain. The combinations of lipid-sensing aegerolysins and MACPF protein partners are lytic for cells harboring the aegerolysin membrane lipid receptor and can be used as ecologically friendly bioinsecticides. In this work, we have recombinantly expressed four novel aegerolysin/MACPF protein pairs from the mushrooms Heterobasidion irregulare, Trametes versicolor, Mucidula mucida, and Lepista nuda, and compared these proteins with the already studied aegerolysin/MACPF protein pair ostreolysin A6-pleurotolysin B from P. ostreatus. We show here that most of these new mushroom proteins can form active aegerolysin/MACPF cytolytic complexes upon aegerolysin binding to membrane sphingolipids. We further disclose that these mushroom aegerolysins bind also to selected glycerophospholipids, in particular to phosphatidic acid and cardiolipin; however, these interactions with glycerophospholipids do not lead to pore formation. Our results indicate that selected mushroom aegerolysins show potential as new molecular biosensors for labelling phosphatidic acid.
Collapse
Affiliation(s)
- Larisa Lara Popošek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Nada Kraševec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Urška Glavač
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Matija Hrovatin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Žan Perko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Ana Slavič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Miha Pavšič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.L.P.); (G.B.); (U.G.); (M.H.); (Ž.P.); (A.S.); (K.S.)
| |
Collapse
|
11
|
Mo L, Tie X, Che F, Zhang L, Li B, Wang G, Yang Y. A Novel Homozygous Deletion Including Exon 1 of FA2H Gene Causes Spastic Paraplegia-35: Genetic and Lipidomics Analysis of the Patients. Pediatr Neurol 2024; 152:200-208. [PMID: 38306901 DOI: 10.1016/j.pediatrneurol.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024]
Abstract
BACKGROUND Fatty acid 2-hydroxylase (FA2H) is encoded by the FA2H gene, with mutations therein leading to the neurodegenerative condition, spastic paraplegia-35 (SPG35). We aim to elucidate the genetic underpinnings of a nonconsanguineous Chinese family diagnosed with SPG35 by examining the clinical manifestations, scrutinizing genetic variants, and establishing the role of FA2H mutation in lipid metabolism. METHODS Using next-generation sequencing analysis to identify the pathogenic gene in this pedigree and family cosegregation verification. The use of lipidomics of patient pedigree peripheral blood mononuclear cells further substantiated alterations in lipid metabolism attributable to the FA2H exon 1 deletion. RESULTS The proband exhibited gait disturbance from age 5 years; he developed further clinical manifestations such as scissor gait and dystonia. His younger sister also presented with a spastic gait from the same age. We identified a homozygous deletion in the region of FA2H exon 1, spanning from chr16:74807867 to chr16: 74810391 in the patients. Lipidomic analysis revealed significant differences in 102 metabolites compared with healthy controls, with 62 metabolites increased and 40 metabolites decreased. We specifically zeroed in on 19 different sphingolipid metabolites, which comprised ceramides, ganglioside, etc., with only three of these sphingolipids previously reported. CONCLUSIONS This is the first study of lipid metabolism in the blood of patients with SPG35. The results broaden our understanding of the SPG35 gene spectrum, offering insights for future molecular mechanism research and laying groundwork for determining metabolic markers.
Collapse
Affiliation(s)
- Lidangzhi Mo
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Xiaoling Tie
- Department of Rehabilitation, Xi'an Children's Hospital, Xi'an, China
| | - Fengyu Che
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Liyu Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Benchang Li
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Guoxia Wang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China.
| |
Collapse
|
12
|
Zhang L, Zhao J, Lam SM, Chen L, Gao Y, Wang W, Xu Y, Tan T, Yu H, Zhang M, Liao X, Wu M, Zhang T, Huang J, Li B, Zhou QD, Shen N, Lee HJ, Ye C, Li D, Shui G, Zhang J. Low-input lipidomics reveals lipid metabolism remodelling during early mammalian embryo development. Nat Cell Biol 2024; 26:278-293. [PMID: 38302721 DOI: 10.1038/s41556-023-01341-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
Lipids are indispensable for energy storage, membrane structure and cell signalling. However, dynamic changes in various categories of endogenous lipids in mammalian early embryonic development have not been systematically characterized. Here we comprehensively investigated the dynamic lipid landscape during mouse and human early embryo development. Lipid signatures of different developmental stages are distinct, particularly for the phospholipid classes. We highlight that the high degree of phospholipid unsaturation is a conserved feature as embryos develop to the blastocyst stage. Moreover, we show that lipid desaturases such as SCD1 are required for in vitro blastocyst development and blastocyst implantation. One of the mechanisms is through the regulation of unsaturated fatty-acid-mediated fluidity of the plasma membrane and apical proteins and the establishment of apical-basal polarity during development of the eight-cell embryo to the blastocyst. Overall, our study provides an invaluable resource about the remodelling of the endogenous lipidome in mammalian preimplantation embryo development and mechanistic insights into the regulation of embryogenesis and implantation by lipid unsaturation.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- LipidALL Technologies, Changzhou, China
| | - Lang Chen
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingzhuo Gao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China
| | - Wenjie Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyan Xu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Yu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xufeng Liao
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengchen Wu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyun Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jie Huang
- College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Bowen Li
- LipidALL Technologies, Changzhou, China
| | - Quan D Zhou
- Institute of Immunology, Department of Surgical Oncology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering and Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Center of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Mendoza-Grimau V, Pérez-Gálvez A, Busturia A, Fontecha J. Lipidomic profiling of Drosophila strains Canton-S and white 1118 reveals intraspecific lipid variations in basal metabolic rate. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102618. [PMID: 38795635 DOI: 10.1016/j.plefa.2024.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/28/2024]
Abstract
Drosophila melanogaster is a well-established model system for studies on lipid metabolism and energy homeostasis. In this study, we identified and quantified the main components of the lipid profile of two widely utilized Drosophila strains, namely Canton-S and white1118, under identical experimental conditions. Differences observed between the strains can be attributed to inherent metabolic divergences, thus limiting the influence of confounding factors. Using the comprehensive lipid data acquired, we applied cluster analysis and PLS-DA techniques to ascertain whether the lipidome could effectively differentiate between the strains. Certain lipid features, such as triacylglycerols, polar lipids, and specific sterol components, could be distinguished between flies of both strains regardless of sex. Our results suggest that although Canton-S and white1118 have similar lipid profiles and distributions, a selected subset of lipids demonstrates clear discriminatory potential between strains, thereby bearing significant implications for planning biological studies using these strains as control references.
Collapse
Affiliation(s)
- Victor Mendoza-Grimau
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa, CSIC, Sevilla 41013, Spain
| | - Ana Busturia
- Tissue and organ homeostasis, Centro de Biología Molecular Severo Ochoa, (CBMSO, CSIC-UAM), Madrid 28049, Spain
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
14
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
15
|
Nagao K, Suito T, Murakami A, Umeda M. Lipid-Mediated Mechanisms of Thermal Adaptation and Thermoregulatory Behavior in Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:79-95. [PMID: 39289275 DOI: 10.1007/978-981-97-4584-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Temperature affects a variety of cellular processes because the molecular motion of cellular constituents and the rate of biochemical reactions are sensitive to temperature changes. Thus, the adaptation to temperature is necessary to maintain cellular functions during temperature fluctuation, particularly in poikilothermic organisms. For a wide range of organisms, cellular lipid molecules play a pivotal role during thermal adaptation. Temperature changes affect the physicochemical properties of lipid molecules, resulting in the alteration of cell membrane-related functions and energy metabolism. Since the chemical structures of lipid molecules determine their physicochemical properties and cellular functions, cellular lipids, particularly fatty acid-containing lipid molecules, are remodeled as a thermal adaptation response to compensate for the effects of temperature change. In this chapter, we first introduce the structure and biosynthetic pathway of fatty acid-containing lipid molecules, such as phospholipid and triacylglycerol, followed by a description of the cellular lipid-mediated mechanisms of thermal adaptation and thermoregulatory behavior in animals.
Collapse
Affiliation(s)
- Kohjiro Nagao
- Laboratory of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan.
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Takuto Suito
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- HOLO BIO Co., Ltd., Kyoto, Japan
| |
Collapse
|
16
|
Prasad SS, Taylor MC, Colombo V, Yeap HL, Pandey G, Lee SF, Taylor PW, Oakeshott JG. Patterns of Variation in the Usage of Fatty Acid Chains among Classes of Ester and Ether Neutral Lipids and Phospholipids in the Queensland Fruit Fly. INSECTS 2023; 14:873. [PMID: 37999072 PMCID: PMC10672513 DOI: 10.3390/insects14110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Modern lipidomics has the power and sensitivity to elucidate the role of insects' lipidomes in their adaptations to the environment at a mechanistic molecular level. However, few lipidomic studies have yet been conducted on insects beyond model species such as Drosophila melanogaster. Here, we present the lipidome of adult males of another higher dipteran frugivore, Bactrocera tryoni. We describe 421 lipids across 15 classes of ester neutral lipids and phospholipids and ether neutral lipids and phospholipids. Most of the lipids are specified in terms of the carbon and double bond contents of each constituent hydrocarbon chain, and more ether lipids are specified to this degree than in any previous insect lipidomic analyses. Class-specific profiles of chain length and (un)saturation are broadly similar to those reported in D. melanogaster, although we found fewer medium-length chains in ether lipids. The high level of chain specification in our dataset also revealed widespread non-random combinations of different chain types in several ester lipid classes, including deficits of combinations involving chains of the same carbon and double bond contents among four phospholipid classes and excesses of combinations of dissimilar chains in several classes. Large differences were also found in the length and double bond profiles of the acyl vs. alkyl or alkenyl chains of the ether lipids. Work on other organisms suggests some of the differences observed will be functionally consequential and mediated, at least in part, by differences in substrate specificity among enzymes in lipid synthesis and remodelling pathways. Interrogation of the B. tryoni genome showed it has comparable levels of diversity overall in these enzymes but with some gene gain/loss differences and considerable sequence divergence from D. melanogaster.
Collapse
Affiliation(s)
- Shirleen S. Prasad
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Matthew C. Taylor
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Valentina Colombo
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
| | - Heng Lin Yeap
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Parkville, VIC 3052, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gunjan Pandey
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| | - Siu Fai Lee
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - Phillip W. Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW 2109, Australia
| | - John G. Oakeshott
- Environment, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, Acton, ACT 2601, Australia; (S.S.P.); (M.C.T.); (V.C.); (H.L.Y.); (S.F.L.); (J.G.O.)
- Applied BioSciences, Macquarie University, North Ryde, NSW 2109, Australia;
| |
Collapse
|
17
|
Abstract
BACKGROUND Bees provide essential pollination services for many food crops and are critical in supporting wild plant diversity. However, the dietary landscape of pollen food sources for social and solitary bees has changed because of agricultural intensification and habitat loss. For this reason, understanding the basic nutrient metabolism and meeting the nutritional needs of bees is becoming an urgent requirement for agriculture and conservation. We know that pollen is the principal source of dietary fat and sterols for pollinators, but a precise understanding of what the essential nutrients are and how much is needed is not yet clear. Sterols are key for producing the hormones that control development and may be present in cell membranes, where fatty-acid-containing species are important structural and signalling molecules (phospholipids) or to supply, store and distribute energy (glycerides). AIM OF THE REVIEW In this critical review, we examine the current general understanding of sterol and lipid metabolism of social and solitary bees from a variety of literature sources and discuss implications for bee health. KEY SCIENTIFIC CONCEPTS OF REVIEW We found that while eusocial bees are resilient to some dietary variation in sterol supply the scope for this is limited. The evidence of both de novo lipogenesis and a dietary need for particular fatty acids (FAs) shows that FA metabolism in insects is analogous to mammals but with distinct features. Bees rely on their dietary intake for essential sterols and lipids in a way that is dependent upon pollen availability.
Collapse
Affiliation(s)
- Samuel Furse
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
| | - Hauke Koch
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK
| | | | - Philip C Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
- Natural Resources Institute, University of Greenwich, Chatham, Kent, ME4 4TB, UK.
| |
Collapse
|
18
|
Yilmaz N, Panevska A, Tomishige N, Richert L, Mély Y, Sepčić K, Greimel P, Kobayashi T. Assembly dynamics and structure of an aegerolysin, ostreolysin A6. J Biol Chem 2023; 299:104940. [PMID: 37343702 PMCID: PMC10366546 DOI: 10.1016/j.jbc.2023.104940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Ostreolysin A6 (OlyA6) is an oyster mushroom-derived membrane-binding protein that, upon recruitment of its partner protein, pleurotolysin B, forms a cytolytic membrane pore complex. OlyA6 itself is not cytolytic but has been reported to exhibit pro-apoptotic activities in cell culture. Here we report the formation dynamics and the structure of OlyA6 assembly on a lipid membrane containing an OlyA6 high-affinity receptor, ceramide phosphoethanolamine, and cholesterol. High-speed atomic force microscopy revealed the reorganization of OlyA6 dimers from initial random surface coverage to 2D protein crystals composed of hexameric OlyA6 repeat units. Crystal growth took place predominantly in the longitudinal direction by the association of OlyA6 dimers, forming a hexameric unit cell. Molecular-level examination of the OlyA6 crystal elucidated the arrangement of dimers within the unit cell and the structure of the dimer that recruits pleurotolysin B for pore formation.
Collapse
Affiliation(s)
- Neval Yilmaz
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; NanoLSI, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan.
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nario Tomishige
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Greimel
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan.
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Wako, Saitama, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
19
|
Kumar M, Has C, Lam-Kamath K, Ayciriex S, Dewett D, Bashir M, Poupault C, Schuhmann K, Knittelfelder O, Raghuraman BK, Ahrends R, Rister J, Shevchenko A. Lipidome unsaturation affects the morphology and proteome of the Drosophila eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539765. [PMID: 37214967 PMCID: PMC10197557 DOI: 10.1101/2023.05.07.539765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
While the proteome of an organism is largely determined by the genome, the lipidome is shaped by a poorly understood interplay of environmental factors and metabolic processes. To gain insights into the underlying mechanisms, we analyzed the impacts of dietary lipid manipulations on the ocular proteome of Drosophila melanogaster . We manipulated the lipidome with synthetic food media that differed in the supplementation of an equal amount of saturated or polyunsaturated triacylglycerols. This allowed us to generate flies whose eyes had a highly contrasting length and unsaturation of glycerophospholipids, the major lipid class of biological membranes, while the abundance of other membrane lipid classes remained unchanged. By bioinformatically comparing the resulting ocular proteomic trends and contrasting them with the impacts of vitamin A deficiency, we identified ocular proteins whose abundances are differentially affected by lipid saturation and unsaturation. For instance, we unexpectedly identified a group of proteins that have muscle-related functions and increase their abundances in the eye upon lipidome unsaturation but are unaffected by lipidome saturation. Moreover, we identified two differentially lipid-responsive proteins involved in stress responses, Turandot A and Smg5, whose abundances decrease with lipid unsaturation. Lastly, we discovered that the ocular lipid class composition is robust to dietary changes and propose that this may be a general homeostatic feature of the organization of eukaryotic tissues, while the length and unsaturation of fatty acid moieties is more variable to compensate environmental challenges. We anticipate that these insights into the molecular responses of the Drosophila eye proteome to specific lipid manipulations will guide the genetic dissection of the mechanisms that maintain visual function when the eye is exposed to dietary challenges.
Collapse
|
20
|
Xu C, Xu J, Tang HW, Ericsson M, Weng JH, DiRusso J, Hu Y, Ma W, Asara JM, Perrimon N. A phosphate-sensing organelle regulates phosphate and tissue homeostasis. Nature 2023; 617:798-806. [PMID: 37138087 PMCID: PMC10443203 DOI: 10.1038/s41586-023-06039-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/31/2023] [Indexed: 05/05/2023]
Abstract
Inorganic phosphate (Pi) is one of the essential molecules for life. However, little is known about intracellular Pi metabolism and signalling in animal tissues1. Following the observation that chronic Pi starvation causes hyperproliferation in the digestive epithelium of Drosophila melanogaster, we determined that Pi starvation triggers the downregulation of the Pi transporter PXo. In line with Pi starvation, PXo deficiency caused midgut hyperproliferation. Interestingly, immunostaining and ultrastructural analyses showed that PXo specifically marks non-canonical multilamellar organelles (PXo bodies). Further, by Pi imaging with a Förster resonance energy transfer (FRET)-based Pi sensor2, we found that PXo restricts cytosolic Pi levels. PXo bodies require PXo for biogenesis and undergo degradation following Pi starvation. Proteomic and lipidomic characterization of PXo bodies unveiled their distinct feature as an intracellular Pi reserve. Therefore, Pi starvation triggers PXo downregulation and PXo body degradation as a compensatory mechanism to increase cytosolic Pi. Finally, we identified connector of kinase to AP-1 (Cka), a component of the STRIPAK complex and JNK signalling3, as the mediator of PXo knockdown- or Pi starvation-induced hyperproliferation. Altogether, our study uncovers PXo bodies as a critical regulator of cytosolic Pi levels and identifies a Pi-dependent PXo-Cka-JNK signalling cascade controlling tissue homeostasis.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY, USA.
| | - Jun Xu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Wen Tang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Maria Ericsson
- Department of Cell Biology, Electron Microscopy Facility, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jui-Hsia Weng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jonathan DiRusso
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wenzhe Ma
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Department of Medicine, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
22
|
Li J, Wang L, Li S, Liang X, Zhang Y, Wang Y, Liu Y. Sustained oral intake of nano-iron oxide perturbs the gut-liver axis. NANOIMPACT 2023; 30:100464. [PMID: 37068656 DOI: 10.1016/j.impact.2023.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 06/03/2023]
Abstract
Nanomaterial have shown excellent properties in the food industry. Although iron oxides are often considered safe and widely used as food additives, the toxicity of nano‑iron oxide remains unclear. Here we established a subchronic exposure mouse model by gavage, tested the biodistribution of nano‑iron oxide, and explored the mechanism of liver injury caused by it through disturbance of the gut-liver axis. Oral intake of nano‑iron oxide will likely disrupt the small intestinal epithelial barrier, induce hepatic lipid metabolism disorders through the gut-liver axis, and cause hepatic damage accompanied with hepatic iron deposition. Nano‑iron oxide mainly caused hepatic lipid metabolism disorder by perturbing glycerophospholipid metabolism and the sphingolipid metabolism pathways, with the total abundance of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) tending to decrease while that of triglyceride tended to increase, in a time- and dose-dependent manner. The imbalanced lipid homeostasis could cause damage via membrane disruption, lipid accumulation, and lipotoxicity. This data provides information about the subchronic toxicity of nano‑iron oxide, highlights the importance of gut-liver axis in the hepatotoxicity.
Collapse
Affiliation(s)
- Jiangxue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | | | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoyu Liang
- Zhengzhou University, Zhengzhou 450001, PR China; People's Hospital of Dengfeng, Zhengzhou 452470, PR China
| | - Yiming Zhang
- Zhengzhou University, Zhengzhou 450001, PR China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangdong 510700, PR China.
| |
Collapse
|
23
|
Liu S, Zhang J, Sheng Y, Feng T, Shi W, Lu Y, Guan X, Chen X, Huang J, Chen J. Metabolomics Provides New Insights into Host Manipulation Strategies by Asobara japonica (Hymenoptera: Braconidae), a Fruit Fly Parasitoid. Metabolites 2023; 13:metabo13030336. [PMID: 36984776 PMCID: PMC10053316 DOI: 10.3390/metabo13030336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Asobara japonica (Hymenoptera: Braconidae) is an endoparasitoid wasp that can successfully parasitize a wide range of host species across the Drosophila genus, including the invasive crop pest Drosophila suzukii. Parasitoids are capable of regulating the host metabolism to produce the nutritional metabolites for the survival of their offspring. Here, we intend to investigate the metabolic changes in D. melanogaster hosts after parasitization by A. japonica, using the non-targeted LC-MS (liquid chromatography-mass spectrometry) metabolomics analysis. In total, 3043 metabolites were identified, most of which were not affected by A. japonica parasitization. About 205 metabolites were significantly affected in parasitized hosts in comparison to non-parasitized hosts. The changed metabolites were divided into 10 distinct biochemical groups. Among them, most of the lipid metabolic substances were significantly decreased in parasitized hosts. On the contrary, most of metabolites associated with the metabolism of amino acids and sugars showed a higher abundance of parasitized hosts, and were enriched for a wide range of pathways. In addition, eight neuromodulatory-related substances were upregulated in hosts post A. japonica parasitization. Our results reveal that the metabolites are greatly changed in parasitized hosts, which might help uncover the underlying mechanisms of host manipulation that will advance our understanding of host–parasitoid coevolution.
Collapse
Affiliation(s)
- Shengmei Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Junwei Zhang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ting Feng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wenqi Shi
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yueqi Lu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiani Chen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982133
| |
Collapse
|
24
|
Pan X, Dutta D, Lu S, Bellen HJ. Sphingolipids in neurodegenerative diseases. Front Neurosci 2023; 17:1137893. [PMID: 36875645 PMCID: PMC9978793 DOI: 10.3389/fnins.2023.1137893] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Neurodegenerative Diseases (NDDs) are a group of disorders that cause progressive deficits of neuronal function. Recent evidence argues that sphingolipid metabolism is affected in a surprisingly broad set of NDDs. These include some lysosomal storage diseases (LSDs), hereditary sensory and autonomous neuropathy (HSAN), hereditary spastic paraplegia (HSP), infantile neuroaxonal dystrophy (INAD), Friedreich's ataxia (FRDA), as well as some forms of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Many of these diseases have been modeled in Drosophila melanogaster and are associated with elevated levels of ceramides. Similar changes have also been reported in vertebrate cells and mouse models. Here, we summarize studies using fly models and/or patient samples which demonstrate the nature of the defects in sphingolipid metabolism, the organelles that are implicated, the cell types that are initially affected, and potential therapeutics for these diseases.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
25
|
Panevska A, Čegovnik N, Fortuna K, Vukovič A, Grundner M, Modic Š, Bajc G, Skočaj M, Mravinec Bohte M, Popošek LL, Žigon P, Razinger J, Veranič P, Resnik N, Sepčić K. A single point mutation expands the applicability of ostreolysin A6 in biomedicine. Sci Rep 2023; 13:2149. [PMID: 36750638 PMCID: PMC9905591 DOI: 10.1038/s41598-023-28949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
An aegerolysin protein ostreolysin A6 (OlyA6) binds to cholesterol-complexed sphingomyelin and can be used for specific labelling of lipid rafts. In addition, OlyA6 interacts with even higher affinity with ceramide phosphoethanolamine (CPE), a sphingolipid that dominates in invertebrate cell membranes. In the presence of pleurotolysin B, a protein bearing the membrane-attack complex/perforin domain, OlyA6 forms pores in insect midgut cell membranes and acts as a potent bioinsecticide. It has been shown that a point mutation of glutamate 69 to alanine (E69A) allows OlyA6 to bind to cholesterol-free sphingomyelin. Using artificial lipid membranes and mammalian MDCK cells, we show that this mutation significantly enhances the interaction of OlyA6 with sphingomyelin and CPE, and allows recognition of these sphingolipids even in the absence of cholesterol. Our results suggest that OlyA6 mutant E69A could serve as complementary tool to detect and study cholesterol-associated and free sphingomyelin or CPE in membranes. However, the mutation does not improve the membrane-permeabilizing activity after addition of pleurotolysin B, which was confirmed in toxicity tests on insect and mammalian cell lines, and on Colorado potato beetle larvae.
Collapse
Affiliation(s)
- Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nastja Čegovnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Klavdija Fortuna
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Alen Vukovič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maja Grundner
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Špela Modic
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Martina Mravinec Bohte
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Lara Larisa Popošek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Primož Žigon
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Jaka Razinger
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Abdelbaset-Ismail A, Ciechanowicz AK, Bujko K, Ratajczak J, Kucia M, Ratajczak MZ. The Nox2-ROS-Nlrp3 Inflammasome Signaling Stimulates in the Hematopoietic Stem/Progenitor Cells Lipogenesis to Facilitate Membrane Lipid Raft Formation. Stem Cell Rev Rep 2023; 19:92-103. [PMID: 36441489 PMCID: PMC9823029 DOI: 10.1007/s12015-022-10481-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
Proliferation, metabolism, and migration of hematopoietic stem/progenitor cells (HSPCs) are coordinated by receptors expressed on outer cell membranes that are integrated into microdomains, known as membrane lipid rafts (MLRs). These structures float freely in the cell membrane bilayer and are enriched in cholesterol and sphingolipids for their functional integrity. Receptors, if expressed in MLRs, have prolonged occupancy on the cell surface and enhanced signaling power. Based on this, we have become interested in the regulation of synthesis of MLRs components in HSPCs. To address this, we tested the effect of selected factors that promote proliferation or migration and their potential involvement in the synthesis of MLRs components in HSPCs. Based on our previous research showing that HSPCs from Nox2-KO and Nlrp3-KO mice display a profound defect in MLRs formation, we focused on the role of Nox2-ROS-Nlrp3 inflammasome in regulating lipogenesis in HSPCs. We found that while at steady state conditions, Nox2-derived ROS is required for a proper expression of enzymes regulating lipogenesis, during inflammation, this effect is augmented by Nlrp3 inflammasome. Thus, our data sheds new light on the regulation of lipogenesis in HSPCs and the involvement of the Nox2-ROS-Nlrp3 inflammasome axis that differently regulates lipogenesis at steady state conditions and in response to inflammation, modulating MLRs-mediated responsiveness of these cells to external stimuli.
Collapse
Affiliation(s)
- Ahmed Abdelbaset-Ismail
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Andrzej K. Ciechanowicz
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
| | - Mariusz Z. Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202 USA
- Department of Regenerative Medicine, Center for Preclinical Studies and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Cellular function of (a)symmetric biological membranes. Emerg Top Life Sci 2022; 7:47-54. [PMID: 36562339 DOI: 10.1042/etls20220029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In mammalian cells, phospholipids are asymmetrically distributed between the outer and inner leaflets of the plasma membrane. The maintenance of asymmetric phospholipid distribution has been demonstrated to be required for a wide range of cellular functions including cell division, cell migration, and signal transduction. However, we recently reported that asymmetric phospholipid distribution is disrupted in Drosophila cell membranes, and this unique phospholipid distribution leads to the formation of highly deformable cell membranes. In addition, it has become clear that asymmetry in the trans-bilayer distribution of phospholipids is disturbed even in living mammalian cells under certain circumstances. In this article, we introduce our recent studies while focusing on the trans-bilayer distribution of phospholipids, and discuss the cellular functions of (a)symmetric biological membranes.
Collapse
|
28
|
Kunduri G, Acharya U, Acharya JK. Lipid Polarization during Cytokinesis. Cells 2022; 11:3977. [PMID: 36552741 PMCID: PMC9776629 DOI: 10.3390/cells11243977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The plasma membrane of eukaryotic cells is composed of a large number of lipid species that are laterally segregated into functional domains as well as asymmetrically distributed between the outer and inner leaflets. Additionally, the spatial distribution and organization of these lipids dramatically change in response to various cellular states, such as cell division, differentiation, and apoptosis. Division of one cell into two daughter cells is one of the most fundamental requirements for the sustenance of growth in all living organisms. The successful completion of cytokinesis, the final stage of cell division, is critically dependent on the spatial distribution and organization of specific lipids. In this review, we discuss the properties of various lipid species associated with cytokinesis and the mechanisms involved in their polarization, including forward trafficking, endocytic recycling, local synthesis, and cortical flow models. The differences in lipid species requirements and distribution in mitotic vs. male meiotic cells will be discussed. We will concentrate on sphingolipids and phosphatidylinositols because their transbilayer organization and movement may be linked via the cytoskeleton and thus critically regulate various steps of cytokinesis.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
29
|
Vaughen JP, Theisen E, Rivas-Serna IM, Berger AB, Kalakuntla P, Anreiter I, Mazurak VC, Rodriguez TP, Mast JD, Hartl T, Perlstein EO, Reimer RJ, Clandinin MT, Clandinin TR. Glial control of sphingolipid levels sculpts diurnal remodeling in a circadian circuit. Neuron 2022; 110:3186-3205.e7. [PMID: 35961319 PMCID: PMC10868424 DOI: 10.1016/j.neuron.2022.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022]
Abstract
Structural plasticity in the brain often necessitates dramatic remodeling of neuronal processes, with attendant reorganization of the cytoskeleton and membranes. Although cytoskeletal restructuring has been studied extensively, how lipids might orchestrate structural plasticity remains unclear. We show that specific glial cells in Drosophila produce glucocerebrosidase (GBA) to locally catabolize sphingolipids. Sphingolipid accumulation drives lysosomal dysfunction, causing gba1b mutants to harbor protein aggregates that cycle across circadian time and are regulated by neural activity, the circadian clock, and sleep. Although the vast majority of membrane lipids are stable across the day, a specific subset that is highly enriched in sphingolipids cycles daily in a gba1b-dependent fashion. Remarkably, both sphingolipid biosynthesis and degradation are required for the diurnal remodeling of circadian clock neurites, which grow and shrink across the day. Thus, dynamic sphingolipid regulation by glia enables diurnal circuit remodeling and proper circadian behavior.
Collapse
Affiliation(s)
- John P Vaughen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Emma Theisen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Irma Magaly Rivas-Serna
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew B Berger
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Prateek Kalakuntla
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Ina Anreiter
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Vera C Mazurak
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Joshua D Mast
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | - Tom Hartl
- Perlara PBC, 2625 Alcatraz Ave #435, Berkeley, CA 94705, USA
| | | | - Richard J Reimer
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - M Thomas Clandinin
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Renthal R, Chen LY. Tunnel connects lipid bilayer to occluded odorant-binding site of insect olfactory receptor. Biophys Chem 2022; 289:106862. [DOI: 10.1016/j.bpc.2022.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
|
31
|
Kinnebrew M, Woolley RE, Ansell TB, Byrne EFX, Frigui S, Luchetti G, Sircar R, Nachtergaele S, Mydock-McGrane L, Krishnan K, Newstead S, Sansom MSP, Covey DF, Siebold C, Rohatgi R. Patched 1 regulates Smoothened by controlling sterol binding to its extracellular cysteine-rich domain. SCIENCE ADVANCES 2022; 8:eabm5563. [PMID: 35658032 PMCID: PMC9166294 DOI: 10.1126/sciadv.abm5563] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/15/2022] [Indexed: 05/06/2023]
Abstract
Smoothened (SMO) transduces the Hedgehog (Hh) signal across the plasma membrane in response to accessible cholesterol. Cholesterol binds SMO at two sites: one in the extracellular cysteine-rich domain (CRD) and a second in the transmembrane domain (TMD). How these two sterol-binding sites mediate SMO activation in response to the ligand Sonic Hedgehog (SHH) remains unknown. We find that mutations in the CRD (but not the TMD) reduce the fold increase in SMO activity triggered by SHH. SHH also promotes the photocrosslinking of a sterol analog to the CRD in intact cells. In contrast, sterol binding to the TMD site boosts SMO activity regardless of SHH exposure. Mutational and computational analyses show that these sites are in allosteric communication despite being 45 angstroms apart. Hence, sterols function as both SHH-regulated orthosteric ligands at the CRD and allosteric ligands at the TMD to regulate SMO activity and Hh signaling.
Collapse
Affiliation(s)
- Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel E. Woolley
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Eamon F. X. Byrne
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sara Frigui
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Giovanni Luchetti
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ria Sircar
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sigrid Nachtergaele
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laurel Mydock-McGrane
- Department of Developmental Biology, Washington School of Medicine, St. Louis, MO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington School of Medicine, St. Louis, MO, USA
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Douglas F. Covey
- Department of Developmental Biology, Washington School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
32
|
Balbi T, Trenti F, Panevska A, Bajc G, Guella G, Ciacci C, Canonico B, Canesi L, Sepčić K. Ceramide Aminoethylphosphonate as a New Molecular Target for Pore-Forming Aegerolysin-Based Protein Complexes. Front Mol Biosci 2022; 9:902706. [PMID: 35693554 PMCID: PMC9174665 DOI: 10.3389/fmolb.2022.902706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Ostreolysin A6 (OlyA6) is a 15 kDa protein produced by the oyster mushroom (Pleurotus ostreatus). It belongs to the aegerolysin family of proteins and binds with high affinity to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with its partnering protein with the membrane-attack-complex/perforin domain, pleurotolysin B (PlyB), OlyA6 can form bicomponent 13-meric transmembrane pores in artificial and biological membranes containing the aegerolysin lipid receptor, CPE. This pore formation is the main underlying molecular mechanism of potent and selective insecticidal activity of OlyA6/PlyB complexes against two economically important coleopteran plant pests: the western corn rootworm and the Colorado potato beetle. In contrast to insects, the main sphingolipid in cell membranes of marine invertebrates (i.e., molluscs and cnidarians) is ceramide aminoethylphosphonate (CAEP), a CPE analogue built on a phosphono rather than the usual phosphate group in its polar head. Our targeted lipidomic analyses of the immune cells (hemocytes) of the marine bivalve, the mussel Mytilus galloprovincialis, confirmed the presence of 29.0 mol% CAEP followed by 36.4 mol% of phosphatidylcholine and 34.6 mol% of phosphatidylethanolamine. Further experiments showed the potent binding of OlyA6 to artificial lipid vesicles supplemented with mussel CAEP, and strong lysis of these vesicles by the OlyA6/PlyB mixture. In Mytilus haemocytes, short term exposure (max. 1 h) to the OlyA6/PlyB mixture induced lysosomal membrane destabilization, decreased phagocytic activity, increased Annexin V binding and oxyradical production, and decreased levels of reduced glutathione, indicating rapid damage of endo-lysosomal and plasma membranes and oxidative stress. Our data suggest CAEP as a novel high-affinity receptor for OlyA6 and a target for cytolytic OlyA6/PlyB complexes.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Trento, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
- *Correspondence: Kristina Sepčić, ; Laura Canesi,
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Kristina Sepčić, ; Laura Canesi,
| |
Collapse
|
33
|
Martelli F, Hernandes NH, Zuo Z, Wang J, Wong CO, Karagas NE, Roessner U, Rupasinghe T, Robin C, Venkatachalam K, Perry T, Batterham P, Bellen HJ. Low doses of the organic insecticide spinosad trigger lysosomal defects, elevated ROS, lipid dysregulation, and neurodegeneration in flies. eLife 2022; 11:e73812. [PMID: 35191376 PMCID: PMC8863376 DOI: 10.7554/elife.73812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Large-scale insecticide application is a primary weapon in the control of insect pests in agriculture. However, a growing body of evidence indicates that it is contributing to the global decline in population sizes of many beneficial insect species. Spinosad emerged as an organic alternative to synthetic insecticides and is considered less harmful to beneficial insects, yet its mode of action remains unclear. Using Drosophila, we show that low doses of spinosad antagonize its neuronal target, the nicotinic acetylcholine receptor subunit alpha 6 (nAChRα6), reducing the cholinergic response. We show that the nAChRα6 receptors are transported to lysosomes that become enlarged and increase in number upon low doses of spinosad treatment. Lysosomal dysfunction is associated with mitochondrial stress and elevated levels of reactive oxygen species (ROS) in the central nervous system where nAChRα6 is broadly expressed. ROS disturb lipid storage in metabolic tissues in an nAChRα6-dependent manner. Spinosad toxicity is ameliorated with the antioxidant N-acetylcysteine amide. Chronic exposure of adult virgin females to low doses of spinosad leads to mitochondrial defects, severe neurodegeneration, and blindness. These deleterious effects of low-dose exposures warrant rigorous investigation of its impacts on beneficial insects.
Collapse
Affiliation(s)
- Felipe Martelli
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | | | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Julia Wang
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ching-On Wong
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences CenterHoustonUnited States
| | - Nicholas E Karagas
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences CenterHoustonUnited States
| | - Ute Roessner
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | | | - Charles Robin
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences CenterHoustonUnited States
| | - Trent Perry
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Philip Batterham
- School of BioSciences, The University of MelbourneMelbourneAustralia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Neurological Research Institute, Texas Children HospitalHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
34
|
Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res 2022; 63:100164. [PMID: 34953866 PMCID: PMC8953652 DOI: 10.1016/j.jlr.2021.100164] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, the importance of lipid metabolism in biology was recognized but difficult to mechanistically understand due to the lack of sensitive and robust technologies for identification and quantification of lipid molecular species. The enabling technological breakthroughs emerged in the 1980s with the development of soft ionization methods (Electrospray Ionization and Matrix Assisted Laser Desorption/Ionization) that could identify and quantify intact individual lipid molecular species. These soft ionization technologies laid the foundations for what was to be later named the field of lipidomics. Further innovative advances in multistage fragmentation, dramatic improvements in resolution and mass accuracy, and multiplexed sample analysis fueled the early growth of lipidomics through the early 1990s. The field exponentially grew through the use of a variety of strategic approaches, which included direct infusion, chromatographic separation, and charge-switch derivatization, which facilitated access to the low abundance species of the lipidome. In this Thematic Review, we provide a broad perspective of the foundations, enabling advances, and predicted future directions of growth of the lipidomics field.
Collapse
Affiliation(s)
- Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Departments of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Chemistry, Washington University, St. Louis, MO, USA
| |
Collapse
|
35
|
Moore WM, Milshteyn D, Tsai YT, Budin I. Engineering the bilayer: Emerging genetic tool kits for mechanistic lipid biology. Curr Opin Chem Biol 2021; 65:66-73. [PMID: 34218059 PMCID: PMC12066147 DOI: 10.1016/j.cbpa.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
The structural diversity of lipids underpins the biophysical properties of cellular membranes, which vary across all scales of biological organization. Because lipid composition results from complex metabolic and transport pathways, its experimental control has been a major goal of mechanistic membrane biology. Here, we argue that in the wake of synthetic biology, similar metabolic engineering strategies can be applied to control the composition, physicochemical properties, and function of cell membranes. In one emerging area, titratable expression platforms allow for specific and genome-wide alterations in lipid biosynthetic genes, providing analog control over lipidome stoichiometry in membranes. Simultaneously, heterologous expression of biosynthetic genes and pathways has allowed for gain-of-function experiments with diverse lipids in non-native systems. Finally, we highlight future directions for tool development, including recently discovered lipid transport pathways to intracellular lipid pools. Further tool development providing synthetic control of membrane properties can allow biologists to untangle membrane lipid structure-associated functions.
Collapse
Affiliation(s)
- William M Moore
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Daniel Milshteyn
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yi-Ting Tsai
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Itay Budin
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
36
|
Juarez-Carreño S, Vallejo DM, Carranza-Valencia J, Palomino-Schätzlein M, Ramon-Cañellas P, Santoro R, de Hartog E, Ferres-Marco D, Romero A, Peterson HP, Ballesta-Illan E, Pineda-Lucena A, Dominguez M, Morante J. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate sexual maturation in Drosophila. Cell Rep 2021; 37:109830. [PMID: 34644570 DOI: 10.1016/j.celrep.2021.109830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/25/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Fat stores are critical for reproductive success and may govern maturation initiation. Here, we report that signaling and sensing fat sufficiency for sexual maturation commitment requires the lipid carrier apolipophorin in fat cells and Sema1a in the neuroendocrine prothoracic gland (PG). Larvae lacking apolpp or Sema1a fail to initiate maturation despite accruing sufficient fat stores, and they continue gaining weight until death. Mechanistically, sensing peripheral body-fat levels via the apolipophorin/Sema1a axis regulates endocytosis, endoplasmic reticulum remodeling, and ribosomal maturation for the acquisition of the PG cells' high biosynthetic and secretory capacity. Downstream of apolipophorin/Sema1a, leptin-like upd2 triggers the cessation of feeding and initiates sexual maturation. Human Leptin in the insect PG substitutes for upd2, preventing obesity and triggering maturation downstream of Sema1a. These data show how peripheral fat levels regulate the control of the maturation decision-making process via remodeling of endomembranes and ribosomal biogenesis in gland cells.
Collapse
Affiliation(s)
- Sergio Juarez-Carreño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Diana Marcela Vallejo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Juan Carranza-Valencia
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | | | - Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Roberto Santoro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Emily de Hartog
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Dolors Ferres-Marco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Aitana Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Esther Ballesta-Illan
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Antonio Pineda-Lucena
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain; Programa de Terapias Moleculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, Avenida Pío XII, 55, 31008 Pamplona, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
37
|
Hu X, Zhang W, Chi X, Wang H, Liu Z, Wang Y, Ma L, Xu B. Non-targeted lipidomics and transcriptomics analysis reveal the molecular underpinnings of mandibular gland development in Apis mellifera ligustica. Dev Biol 2021; 479:23-36. [PMID: 34332994 DOI: 10.1016/j.ydbio.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022]
Abstract
The mandibular gland is an important exocrine gland of worker bees, which mainly secretes fatty acids and pheromones. Lipids have important roles in energy storage, membrane structure stabilization, and signaling. However, molecular underpinnings of mandibular gland development and lipid remodeling at the different physiological stages of worker bees is still lacking. In this study, we used scanning and transmission electron microscopy to reveal the morphological changes in secretory cells, and liquid chromatography-mass spectrometry and RNA-seq to investigate the lipidome and gene transcripts during development. The morphology of secretory cells was flat in newly emerged workers, becoming vacuolated and turgid when they were activated in nurse bees and foragers. Transport vesicles became denser from newly emerged bees to 21-day worker bees. Concentrations of 10-HDA reached a maximum within 15d workers and changes in genes expression were consistent with 10-HDA content. Non-targeted lipidomics analysis of newly emerged, 6d, and 15d worker bees revealed that PC and TAG were the main lipids in mandibular gland, and lipids dramatically altered across developmental stages. TAG 54:4 was increased most strongly at 6d and 15d worker bees, meanwhile, the abundances of TAG 54:1 and TAG 54:2 were decreased sharply. Further, transcriptomics analysis showed that differentially expressed genes were significantly enriched in key nutrient metabolic pathways, particularly lipid metabolism, in 6d and 15d bees. This multi-omic perspective provides a unique resource and deeper insight into bee mandibular gland development and baseline data for further study of the mandibular gland in worker bees.
Collapse
Affiliation(s)
- Xiyi Hu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Weixing Zhang
- School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
38
|
Hofbauer HF, Heier C, Sen Saji AK, Kühnlein RP. Lipidome remodeling in aging normal and genetically obese Drosophila males. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103498. [PMID: 33221388 DOI: 10.1016/j.ibmb.2020.103498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Lipid homeostasis is essential for insects to maintain phospholipid (PL)-based membrane integrity and to provide on-demand energy supply throughout life. Triacylglycerol (TAG) is the major lipid class used for energy production and is stored in lipid droplets, the universal cellular fat storage organelles. Accumulation and mobilization of TAG are strictly regulated since excessive accumulation of TAG leads to obesity and has been correlated with adverse effects on health- and lifespan across phyla. Little is known, however, about when during adult life and why excessive storage lipid accumulation restricts lifespan. We here used genetically obese Drosophila mutant males, which were all shown to be short-lived compared to control males and applied single fly mass spectrometry-based lipidomics to profile TAG, diacylglycerol and major membrane lipid signatures throughout adult fly life from eclosion to death. Our comparative approach revealed distinct phases of lipidome remodeling throughout aging. Quantitative and qualitative compositional changes of TAG and PL species, which are characterized by the length and saturation of their constituent fatty acids, were pronounced during young adult life. In contrast, lipid signatures of adult and senescent flies were remarkably stable. Genetically obese flies displayed both quantitative and qualitative changes in TAG species composition, while PL signatures were almost unaltered compared to normal flies at all ages. Collectively, this suggests a tight control of membrane composition throughout lifetime largely uncoupled from storage lipid metabolism. Finally, we present first evidence for a characteristic lipid signature of moribund flies, likely generated by a rapid and selective storage lipid depletion close to death. Of note, the analytical power to monitor lipid species profiles combined with high sensitivity of this single fly lipidomics approach is universally applicable to address developmental or behavioral lipid signature modulations of importance for insect life.
Collapse
Affiliation(s)
- Harald F Hofbauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50/II, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Christoph Heier
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50/II, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Anantha Krishnan Sen Saji
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50/II, A-8010 Graz, Austria
| | - Ronald P Kühnlein
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50/II, A-8010 Graz, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth - University of Graz, Graz, Austria
| |
Collapse
|
39
|
Goh EXY, Guan XL. Targeted Lipidomics of Drosophila melanogaster During Development. Methods Mol Biol 2021; 2306:187-213. [PMID: 33954948 DOI: 10.1007/978-1-0716-1410-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Lipids play critical roles in developmental processes, and alterations in lipid metabolism are linked to a wide range of human diseases, including neurodegeneration, cancer, metabolic diseases, and microbial infections. Drosophila melanogaster, more commonly known as the fruit fly, is a powerful organism for developmental biology and human disease research. We have previously developed a comprehensive biochemical tool, based on liquid chromatography-mass spectrometry (LC-MS), to probe the dynamics of lipid remodeling during D. melanogaster development. This chapter introduces a step-by-step protocol for extracting and analyzing lipids across all developmental stages (embryo, larvae, pupa, and adult) of D. melanogaster. The targeted semi-quantitative approach offers a comprehensive coverage of more than 400 lipid species spanning the lipid classes, glycerophospholipids, sphingolipids, triacylglycerols, and sterols.
Collapse
Affiliation(s)
- Esther Xue Yi Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
40
|
Szuba A, Bano F, Castro-Linares G, Iv F, Mavrakis M, Richter RP, Bertin A, Koenderink GH. Membrane binding controls ordered self-assembly of animal septins. eLife 2021; 10:63349. [PMID: 33847563 PMCID: PMC8099429 DOI: 10.7554/elife.63349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Septins are conserved cytoskeletal proteins that regulate cell cortex mechanics. The mechanisms of their interactions with the plasma membrane remain poorly understood. Here, we show by cell-free reconstitution that binding to flat lipid membranes requires electrostatic interactions of septins with anionic lipids and promotes the ordered self-assembly of fly septins into filamentous meshworks. Transmission electron microscopy reveals that both fly and mammalian septin hexamers form arrays of single and paired filaments. Atomic force microscopy and quartz crystal microbalance demonstrate that the fly filaments form mechanically rigid, 12- to 18-nm thick, double layers of septins. By contrast, C-terminally truncated septin mutants form 4-nm thin monolayers, indicating that stacking requires the C-terminal coiled coils on DSep2 and Pnut subunits. Our work shows that membrane binding is required for fly septins to form ordered arrays of single and paired filaments and provides new insights into the mechanisms by which septins may regulate cell surface mechanics.
Collapse
Affiliation(s)
- Agata Szuba
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands
| | - Fouzia Bano
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Gerard Castro-Linares
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Francois Iv
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, United Kingdom.,Bragg Centre for Materials Research, University of Leeds, Leeds, United Kingdom
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Gijsje H Koenderink
- AMOLF, Department of Living Matter, Biological Soft Matter group, Amsterdam, Netherlands.,Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
41
|
Entringer PF, Majerowicz D, Gondim KC. The Fate of Dietary Cholesterol in the Kissing Bug Rhodnius prolixus. Front Physiol 2021; 12:654565. [PMID: 33868022 PMCID: PMC8047208 DOI: 10.3389/fphys.2021.654565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Insects are unable to synthesize cholesterol and depend on the presence of sterols in the diet for cell membrane composition and hormone production. Thus, cholesterol absorption, transport, and metabolism are potential targets for vector and pest control strategies. Here, we investigate the dietary cholesterol absorption and tissue distribution in the kissing bug Rhodnius prolixus using radiolabeled cholesterol. Both the anterior and posterior midguts absorbed cholesterol from the ingested blood, although the anterior midgut absorbed more. We also observed esterified cholesterol labeling in the epithelium, indicating that midgut cells can metabolize and store cholesterol. Only a small amount of labeled cholesterol was found in the hemolymph, where it was mainly in the free form and associated with lipophorin (Lp). The fat body transiently accumulated cholesterol, showing a labeled cholesterol peak on the fifth day after the blood meal. The ovaries also incorporated cholesterol, but cumulatively. The insects did not absorb almost half of the ingested labeled cholesterol, and radioactivity was present in the feces. After injection of 3H-cholesterol-labeled Lp into females, a half-life of 5.5 ± 0.7 h in the hemolymph was determined. Both the fat body and ovaries incorporated Lp-associated cholesterol, which was inhibited at low temperature, indicating the participation of active cholesterol transport. These results help describe an unexplored part of R. prolixus lipid metabolism.
Collapse
Affiliation(s)
- Petter F. Entringer
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Fu T, Knittelfelder O, Geffard O, Clément Y, Testet E, Elie N, Touboul D, Abbaci K, Shevchenko A, Lemoine J, Chaumot A, Salvador A, Degli-Esposti D, Ayciriex S. Shotgun lipidomics and mass spectrometry imaging unveil diversity and dynamics in Gammarus fossarum lipid composition. iScience 2021; 24:102115. [PMID: 33615205 PMCID: PMC7881238 DOI: 10.1016/j.isci.2021.102115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepatopancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies. Baseline lipidome profiling of G. fossarum of different sex and reproductive stages Spatial localization of lipids in gammarid tissue by mass spectrometry imaging SIMS imaging guided discovery of sulfate-based lipids in hepatopancreas epithelium Disclosure of a dynamic lipid composition in maturing female oocytes
Collapse
Affiliation(s)
- Tingting Fu
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Olivier Geffard
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Yohann Clément
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Eric Testet
- Laboratoire de Biogenèse Membranaire (LBM), CNRS, University of Bordeaux, UMR 5200, F-33882 Villenave d'Ornon, France
| | - Nicolas Elie
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Khedidja Abbaci
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Jerome Lemoine
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology Team, F-69625 Villeurbanne, France
| | - Arnaud Salvador
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | | | - Sophie Ayciriex
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
- Corresponding author
| |
Collapse
|
43
|
Laczkó-Dobos H, Maddali AK, Jipa A, Bhattacharjee A, Végh AG, Juhász G. Lipid profiles of autophagic structures isolated from wild type and Atg2 mutant Drosophila. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158868. [PMID: 33333179 DOI: 10.1016/j.bbalip.2020.158868] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 01/15/2023]
Abstract
Autophagy is mediated by membrane-bound organelles and it is an intrinsic catabolic and recycling process of the cell, which is very important for the health of organisms. The biogenesis of autophagic membranes is still incompletely understood. In vitro studies suggest that Atg2 protein transports lipids presumably from the ER to the expanding autophagic structures. Autophagy research has focused heavily on proteins and very little is known about the lipid composition of autophagic membranes. Here we describe a method for immunopurification of autophagic structures from Drosophila melanogaster (an excellent model to study autophagy in a complete organism) for subsequent lipidomic analysis. Western blots of several organelle markers indicate the high purity of the isolated autophagic vesicles, visualized by various microscopy techniques. Mass spectrometry results show that phosphatidylethanolamine (PE) is the dominant lipid class in wild type (control) membranes. We demonstrate that in Atg2 mutants (Atg2-), phosphatidylinositol (PI), negatively charged phosphatidylserine (PS), and phosphatidic acid (PA) with longer fatty acyl chains accumulate on stalled, negatively charged phagophores. Tandem mass spectrometry analysis of lipid species composing the lipid classes reveal the enrichment of unsaturated PE and phosphatidylcholine (PC) in controls versus PI, PS and PA species in Atg2-. Significant differences in the lipid profiles of control and Atg2- flies suggest that the lipid composition of autophagic membranes dynamically changes during their maturation. These lipidomic results also point to the in vivo lipid transport function of the Atg2 protein, pointing to its specific role in the transport of short fatty acyl chain PE species.
Collapse
Affiliation(s)
| | - Asha Kiran Maddali
- Institute of Genetics, Biological Research Centre, Szeged, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | - András Jipa
- Institute of Genetics, Biological Research Centre, Szeged, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary.
| | | | | | - Gábor Juhász
- Institute of Genetics, Biological Research Centre, Szeged, Hungary; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
44
|
Phosphatidic acid increases Notch signalling by affecting Sanpodo trafficking during Drosophila sensory organ development. Sci Rep 2020; 10:21731. [PMID: 33303974 PMCID: PMC7729928 DOI: 10.1038/s41598-020-78831-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022] Open
Abstract
Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of Drosophila melanogaster. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of numb or the α-subunit of Adaptor Protein complex-2 enhance dominantly this phenotype while removing a copy of Notch or sanpodo suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes.
Collapse
|
45
|
Martínez BA, Hoyle RG, Yeudall S, Granade ME, Harris TE, Castle JD, Leitinger N, Bland ML. Innate immune signaling in Drosophila shifts anabolic lipid metabolism from triglyceride storage to phospholipid synthesis to support immune function. PLoS Genet 2020; 16:e1009192. [PMID: 33227003 PMCID: PMC7721134 DOI: 10.1371/journal.pgen.1009192] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/07/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
During infection, cellular resources are allocated toward the metabolically-demanding processes of synthesizing and secreting effector proteins that neutralize and kill invading pathogens. In Drosophila, these effectors are antimicrobial peptides (AMPs) that are produced in the fat body, an organ that also serves as a major lipid storage depot. Here we asked how activation of Toll signaling in the larval fat body perturbs lipid homeostasis to understand how cells meet the metabolic demands of the immune response. We find that genetic or physiological activation of fat body Toll signaling leads to a tissue-autonomous reduction in triglyceride storage that is paralleled by decreased transcript levels of the DGAT homolog midway, which carries out the final step of triglyceride synthesis. In contrast, Kennedy pathway enzymes that synthesize membrane phospholipids are induced. Mass spectrometry analysis revealed elevated levels of major phosphatidylcholine and phosphatidylethanolamine species in fat bodies with active Toll signaling. The ER stress mediator Xbp1 contributed to the Toll-dependent induction of Kennedy pathway enzymes, which was blunted by deleting AMP genes, thereby reducing secretory demand elicited by Toll activation. Consistent with ER stress induction, ER volume is expanded in fat body cells with active Toll signaling, as determined by transmission electron microscopy. A major functional consequence of reduced Kennedy pathway induction is an impaired immune response to bacterial infection. Our results establish that Toll signaling induces a shift in anabolic lipid metabolism to favor phospholipid synthesis and ER expansion that may serve the immediate demand for AMP synthesis and secretion but with the long-term consequence of insufficient nutrient storage.
Collapse
Affiliation(s)
- Brittany A. Martínez
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - Rosalie G. Hoyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - Scott Yeudall
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, United States of America
| | - Mitchell E. Granade
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - Thurl E. Harris
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - J. David Castle
- Department of Cell Biology, University of Virginia, Charlottesville, VA, United States of America
| | - Norbert Leitinger
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - Michelle L. Bland
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
46
|
Hebbar S, Schuhmann K, Shevchenko A, Knust E. Hydroxylated sphingolipid biosynthesis regulates photoreceptor apical domain morphogenesis. J Cell Biol 2020; 219:211460. [PMID: 33048164 PMCID: PMC7557679 DOI: 10.1083/jcb.201911100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/07/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023] Open
Abstract
Apical domains of epithelial cells often undergo dramatic changes during morphogenesis to form specialized structures, such as microvilli. Here, we addressed the role of lipids during morphogenesis of the rhabdomere, the microvilli-based photosensitive organelle of Drosophila photoreceptor cells. Shotgun lipidomics analysis performed on mutant alleles of the polarity regulator crumbs, exhibiting varying rhabdomeric growth defects, revealed a correlation between increased abundance of hydroxylated sphingolipids and abnormal rhabdomeric growth. This could be attributed to an up-regulation of fatty acid hydroxylase transcription. Indeed, direct genetic perturbation of the hydroxylated sphingolipid metabolism modulated rhabdomere growth in a crumbs mutant background. One of the pathways targeted by sphingolipid metabolism turned out to be the secretory route of newly synthesized Rhodopsin, a major rhabdomeric protein. In particular, altered biosynthesis of hydroxylated sphingolipids impaired apical trafficking via Rab11, and thus apical membrane growth. The intersection of lipid metabolic pathways with apical domain growth provides a new facet to our understanding of apical growth during morphogenesis.
Collapse
|
47
|
Martelli F, Zhongyuan Z, Wang J, Wong CO, Karagas NE, Roessner U, Rupasinghe T, Venkatachalam K, Perry T, Bellen HJ, Batterham P. Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in Drosophila. Proc Natl Acad Sci U S A 2020; 117:25840-25850. [PMID: 32989137 PMCID: PMC7568275 DOI: 10.1073/pnas.2011828117] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Declining insect population sizes are provoking grave concern around the world as insects play essential roles in food production and ecosystems. Environmental contamination by intense insecticide usage is consistently proposed as a significant contributor, among other threats. Many studies have demonstrated impacts of low doses of insecticides on insect behavior, but have not elucidated links to insecticidal activity at the molecular and cellular levels. Here, the histological, physiological, and behavioral impacts of imidacloprid are investigated in Drosophila melanogaster, an experimental organism exposed to insecticides in the field. We show that oxidative stress is a key factor in the mode of action of this insecticide at low doses. Imidacloprid produces an enduring flux of Ca2+ into neurons and a rapid increase in levels of reactive oxygen species (ROS) in the larval brain. It affects mitochondrial function, energy levels, the lipid environment, and transcriptomic profiles. Use of RNAi to induce ROS production in the brain recapitulates insecticide-induced phenotypes in the metabolic tissues, indicating that a signal from neurons is responsible. Chronic low level exposures in adults lead to mitochondrial dysfunction, severe damage to glial cells, and impaired vision. The potent antioxidant, N-acetylcysteine amide (NACA), reduces the severity of a number of the imidacloprid-induced phenotypes, indicating a causal role for oxidative stress. Given that other insecticides are known to generate oxidative stress, this research has wider implications. The systemic impairment of several key biological functions, including vision, reported here would reduce the resilience of insects facing other environmental challenges.
Collapse
Affiliation(s)
- Felipe Martelli
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Zuo Zhongyuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Julia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102
| | - Nicholas E Karagas
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Thusitha Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, TX 77030
| | - Trent Perry
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | - Philip Batterham
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia;
| |
Collapse
|
48
|
Wrapping axons in mammals and Drosophila: Different lipids, same principle. Biochimie 2020; 178:39-48. [PMID: 32800899 DOI: 10.1016/j.biochi.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Plasma membranes of axon-wrapping glial cells develop specific cylindrical bilayer membranes that surround thin individual axons or axon bundles. Axons are wrapped with single layered glial cells in lower organisms whereas in the mammalian nervous system, axons are surrounded with a characteristic complex multilamellar myelin structure. The high content of lipids in myelin suggests that lipids play crucial roles in the structure and function of myelin. The most striking feature of myelin lipids is the high content of galactosylceramide (GalCer). Serological and genetic studies indicate that GalCer plays a key role in the formation and function of the myelin sheath in mammals. In contrast to mammals, Drosophila lacks GalCer. Instead of GalCer, ceramide phosphoethanolamine (CPE) has an important role to ensheath axons with glial cells in Drosophila. GalCer and CPE share similar physical properties: both lipids have a high phase transition temperature and high packing, are immiscible with cholesterol and form helical liposomes. These properties are caused by both the strong headgroup interactions and the tight packing resulting from the small size of the headgroup and the hydrogen bonds between lipid molecules. These results suggest that mammals and Drosophila wrap axons using different lipids but the same conserved principle.
Collapse
|
49
|
Triacylglycerols sequester monotopic membrane proteins to lipid droplets. Nat Commun 2020; 11:3944. [PMID: 32769983 PMCID: PMC7414839 DOI: 10.1038/s41467-020-17585-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 01/05/2023] Open
Abstract
Triacylglycerols (TG) are synthesized at the endoplasmic reticulum (ER) bilayer and packaged into organelles called lipid droplets (LDs). LDs are covered by a single phospholipid monolayer contiguous with the ER bilayer. This connection is used by several monotopic integral membrane proteins, with hydrophobic membrane association domains (HDs), to diffuse between the organelles. However, how proteins partition between ER and LDs is not understood. Here, we employed synthetic model systems and found that HD-containing proteins strongly prefer monolayers and returning to the bilayer is unfavorable. This preference for monolayers is due to a higher affinity of HDs for TG over membrane phospholipids. Protein distribution is regulated by PC/PE ratio via alterations in monolayer packing and HD-TG interaction. Thus, HD-containing proteins appear to non-specifically accumulate to the LD surface. In cells, protein editing mechanisms at the ER membrane would be necessary to prevent unspecific relocation of HD-containing proteins to LDs. Triacylglycerols (TG) are synthesized at the endoplasmic reticulum (ER) bilayer and packaged into monolayer lipid droplets (LDs), but how proteins partition between ER and LDs is poorly understood. Here authors use synthetic model systems and find that proteins containing hydrophobic membrane association domains strongly prefer monolayers and that returning to the bilayer is unfavorable.
Collapse
|
50
|
Song Y, Shvartsman SY. Chemical Embryology Redux: Metabolic Control of Development. Trends Genet 2020; 36:577-586. [PMID: 32532533 PMCID: PMC10947471 DOI: 10.1016/j.tig.2020.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
New studies of metabolic reactions and networks in embryos are making important additions to regulatory models of development, so far dominated by genes and signals. Metabolic control of development is not a new idea and can be traced back to Joseph Needham's 'Chemical Embryology', published in the 1930s. Even though Needham's ideas fell by the wayside with the advent of genetic studies of embryogenesis, they demonstrated that embryos provide convenient models for addressing fundamental questions in biochemistry and are now experiencing a comeback, enabled by the powerful merger of detailed mechanistic studies and systems-level techniques. Here we review recent results from studies that quantified the energy budget of embryogenesis in Drosophila and started to untangle the intricate connections between core anabolic processes and developmental transitions. Dynamic coordination of metabolic, genetic, and signaling networks appears to be essential for seamless progression of development.
Collapse
Affiliation(s)
- Yonghyun Song
- Computational Sciences Department, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Stanislav Y Shvartsman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA.
| |
Collapse
|