1
|
Bos I, Amiri S, Maire V, Dubois T, Karma A, Hakim V, Sykes C. The mechanism of nesprin-2 accumulation at the nucleus front during confined cell migration. Biophys J 2025:S0006-3495(25)00282-6. [PMID: 40340251 DOI: 10.1016/j.bpj.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 04/19/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025] Open
Abstract
Cell migration through constrictions is essential for many physiological processes. During this confined cell migration, the protein nesprin-2, which links the cytoskeletal network to the nucleus, can accumulate at the front of the nucleus. However, up to now, the exact mechanism of this accumulation is unknown. Here, we further investigate this accumulation mechanism. We quantify the spatial distribution of nesprin-2, actin, and the proteins SUN1 and SUN2, which are inner-nuclear-membrane proteins that bind to nesprin-2. We observe that SUN2 shows the same frontal accumulation as nesprin-2, but SUN1 does not. Based on the spatial protein distributions and the homology between the actin-binding domains of nesprin-2 and the well characterized actin-binding protein α-actinin-4, we hypothesize that strengthening of the nesprin-actin bond upon increasing actin pulling force induces frontal nesprin-2 accumulation. This force-strengthening behavior is known as catch-bond binding. Based on this catch-bond hypothesis, we develop a simple physical model that qualitatively reproduces the experimentally observed nesprin-2 profiles. We try to further test the catch-bond hypothesis by using a specific point mutation to abrogate the catch-bond behavior in mininesprin-2 constructs. These chimeric constructs consist of the N-terminal actin-binding domains and the C-terminal SUN-binding domain of nesprin-2. The experimentally measured distribution of the mininesprin-2 mutant agrees well with the model prediction on this mutation effect. All in all, our work builds an important foundation to unravel the mechanism of frontal nesprin-2 accumulation during confined cell migration.
Collapse
Affiliation(s)
- Inge Bos
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Sirine Amiri
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Virginie Maire
- Breast Cancer Biology Group, Translational Research Department and CNRS UMR144, Institut Curie-PSL Research University, 75005 Paris, France
| | - Thierry Dubois
- Breast Cancer Biology Group, Translational Research Department and CNRS UMR144, Institut Curie-PSL Research University, 75005 Paris, France
| | - Alain Karma
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | - Vincent Hakim
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Cécile Sykes
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France.
| |
Collapse
|
2
|
Dourlen P, Kilinc D, Landrieu I, Chapuis J, Lambert JC. BIN1 and Alzheimer's disease: the tau connection. Trends Neurosci 2025; 48:349-361. [PMID: 40268578 DOI: 10.1016/j.tins.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 04/25/2025]
Abstract
Bridging integrator 1 (BIN1) is a ubiquitously expressed protein that plays a critical role in endocytosis, trafficking and cytoskeletal dynamics. In 2010, BIN1 gene was reported as a major genetic risk factor for Alzheimer's disease (AD), which shifted the focus on its physiological and pathophysiological roles in the brain (at a time when data available were scarce). In this review, we discuss the multiple cerebral roles of BIN1, especially in regulating synaptic function, and the strong link between BIN1 and tau pathology, supported by recent evidence ranging from genetic and clinical/postmortem observations to molecular interactions.
Collapse
Affiliation(s)
- Pierre Dourlen
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Devrim Kilinc
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Isabelle Landrieu
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France; CNRS EMR9002-BSI-Integrative Structural Biology, Lille, France
| | - Julien Chapuis
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Jean-Charles Lambert
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases, Institut Pasteur de Lille, Université de Lille, Lille, France.
| |
Collapse
|
3
|
Ji J, Giraud Q, Diedhiou N, Lipkow E, Spiegelhalter C, Laporte J. BIN1 gene replacement reverses BIN1-related centronuclear myopathy. Mol Ther 2025:S1525-0016(25)00315-6. [PMID: 40308061 DOI: 10.1016/j.ymthe.2025.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/07/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025] Open
Abstract
Centronuclear myopathies (CNMs) are severe genetic disorders characterized by generalized muscle weakness associated with organelle mispositioning in myofibers. Most CNM cases are caused by mutations in proteins involved in membrane remodeling, including amphiphysin 2 (BIN1). There is no treatment, and the pathological mechanisms are not understood. Here, we aimed to cure the Bin1-CNM mouse model (Bin1mck-/-) via an adeno-associated virus (AAV)-based gene replacement strategy. Early systemic exogenous BIN1 expression efficiently prevented disease progression. Moreover, BIN1 expression after disease onset reversed all disease signs 4 weeks after treatment, including motor defects, muscle weakness, muscle and myofiber hypotrophy, kyphosis, nuclei and mitochondria misposition, and altered T-tubules network. We then validated the most efficient construct combining a myotropic AAV serotype with the muscle BIN1 isoform. The rescue correlated with the normalization of autophagy and excitation-contraction coupling markers. Cellular and in vivo investigations revealed that different BIN1 natural isoforms shared similar beneficial effects. Artificial constructs coding for separated protein domains rescued different CNM hallmarks. Only the muscle-specific BIN1 isoform combined the different cellular functions of BIN1 on membrane tubulation and dynamin (DNM2) regulation necessary for a full rescue. Overall, this study validates BIN1 gene replacement as a promising strategy to cure BIN1-related CNM.
Collapse
Affiliation(s)
- Jacqueline Ji
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Quentin Giraud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Nadège Diedhiou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Eva Lipkow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Coralie Spiegelhalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France.
| |
Collapse
|
4
|
Martin C, Servais L. X-linked myotubular myopathy: an untreated treatable disease. Expert Opin Biol Ther 2025; 25:379-394. [PMID: 40042390 DOI: 10.1080/14712598.2025.2473430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION X-linked myotubular myopathy (XLMTM) is a life-threatening congenital disorder characterized by severe respiratory and motor impairment. This disease presents significant therapeutic challenges, with various strategies being explored to address its underlying pathology. Among these approaches, gene replacement therapy has demonstrated substantial functional improvements in clinical trials. However, safety issues emerged across different therapeutic approaches, highlighting the need for further research. AREAS COVERED This review provides a comprehensive analysis of the data gathered from natural history studies, preclinical models and clinical trials, with a particular focus on gene replacement therapy for XLMTM. The different therapeutic strategies are addressed, including their outcomes and associated safety concerns. EXPERT OPINION Despite the encouraging potential of gene therapy for XLMTM, the occurrence of safety challenges emphasizes the urgent need for a more comprehensive understanding of the disease's complex phenotype. Enhancing preclinical models to more accurately mimic the full spectrum of disease manifestations will be crucial for optimizing therapeutic strategies and reducing risks in future clinical applications.
Collapse
Affiliation(s)
- Cristina Martin
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Pediatrics, Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
5
|
Morival J, Hazelwood A, Lammerding J. Feeling the force from within - new tools and insights into nuclear mechanotransduction. J Cell Sci 2025; 138:JCS263615. [PMID: 40059756 PMCID: PMC11959624 DOI: 10.1242/jcs.263615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The ability of cells to sense and respond to mechanical signals is essential for many biological processes that form the basis of cell identity, tissue development and maintenance. This process, known as mechanotransduction, involves crucial feedback between mechanical force and biochemical signals, including epigenomic modifications that establish transcriptional programs. These programs, in turn, reinforce the mechanical properties of the cell and its ability to withstand mechanical perturbation. The nucleus has long been hypothesized to play a key role in mechanotransduction due to its direct exposure to forces transmitted through the cytoskeleton, its role in receiving cytoplasmic signals and its central function in gene regulation. However, parsing out the specific contributions of the nucleus from those of the cell surface and cytoplasm in mechanotransduction remains a substantial challenge. In this Review, we examine the latest evidence on how the nucleus regulates mechanotransduction, both via the nuclear envelope (NE) and through epigenetic and transcriptional machinery elements within the nuclear interior. We also explore the role of nuclear mechanotransduction in establishing a mechanical memory, characterized by a mechanical, epigenetic and transcriptomic cell state that persists after mechanical stimuli cease. Finally, we discuss current challenges in the field of nuclear mechanotransduction and present technological advances that are poised to overcome them.
Collapse
Affiliation(s)
- Julien Morival
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anna Hazelwood
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
6
|
Giraud Q, Laporte J. Amphiphysin-2 (BIN1) functions and defects in cardiac and skeletal muscle. Trends Mol Med 2024; 30:579-591. [PMID: 38514365 DOI: 10.1016/j.molmed.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
Amphiphysin-2 is a ubiquitously expressed protein also known as bridging integrator 1 (BIN1), playing a critical role in membrane remodeling, trafficking, and cytoskeleton dynamics in a wide range of tissues. Mutations in the gene encoding BIN1 cause centronuclear myopathies (CNM), and recent evidence has implicated BIN1 in heart failure, underlining its crucial role in both skeletal and cardiac muscle. Furthermore, altered expression of BIN1 is linked to an increased risk of late-onset Alzheimer's disease and several types of cancer, including breast, colon, prostate, and lung cancers. Recently, the first proof-of-concept for potential therapeutic strategies modulating BIN1 were obtained for muscle diseases. In this review article, we discuss the similarities and differences in BIN1's functions in cardiac and skeletal muscle, along with its associated diseases and potential therapies.
Collapse
Affiliation(s)
- Quentin Giraud
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, 67400, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch-Graffenstaden, 67400, France.
| |
Collapse
|
7
|
Picas L, André-Arpin C, Comunale F, Bousquet H, Tsai FC, Rico F, Maiuri P, Pernier J, Bodin S, Nicot AS, Laporte J, Bassereau P, Goud B, Gauthier-Rouvière C, Miserey S. BIN1 regulates actin-membrane interactions during IRSp53-dependent filopodia formation. Commun Biol 2024; 7:549. [PMID: 38724689 PMCID: PMC11082164 DOI: 10.1038/s42003-024-06168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.
Collapse
Affiliation(s)
- Laura Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, Montpellier, France.
| | - Charlotte André-Arpin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, Montpellier, France
| | - Franck Comunale
- CRBM, University of Montpellier, CNRS UMR 5237, Montpellier, France
| | - Hugo Bousquet
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| | - Feng-Ching Tsai
- Institut Curie, CNRS UMR 168, PSL Research University, Paris, France
| | - Félix Rico
- Aix-Marseille Université, U1325 INSERM, DyNaMo, Turing center for living systems, Marseille, France
| | - Paolo Maiuri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Bodin
- CRBM, University of Montpellier, CNRS UMR 5237, Montpellier, France
| | - Anne-Sophie Nicot
- Grenoble Alpes University, INSERM U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Jocelyn Laporte
- Department of Translational Medicine, IGBMC, U1258, UMR7104 Strasbourg University, Collège de France, Illkirch, France
| | | | - Bruno Goud
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| | | | - Stéphanie Miserey
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France.
| |
Collapse
|
8
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
9
|
De Silva S, Fan Z, Kang B, Shanahan CM, Zhang Q. Nesprin-1: novel regulator of striated muscle nuclear positioning and mechanotransduction. Biochem Soc Trans 2023; 51:1331-1345. [PMID: 37171063 PMCID: PMC10317153 DOI: 10.1042/bst20221541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Nesprins (nuclear envelope spectrin repeat proteins) are multi-isomeric scaffolding proteins. Giant nesprin-1 and -2 localise to the outer nuclear membrane, interact with SUN (Sad1p/UNC-84) domain-containing proteins at the inner nuclear membrane to form the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex, which, in association with lamin A/C and emerin, mechanically couples the nucleus to the cytoskeleton. Despite ubiquitous expression of nesprin giant isoforms, pathogenic mutations in nesprin-1 and -2 are associated with tissue-specific disorders, particularly related to striated muscle such as dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. Recent evidence suggests this muscle-specificity might be attributable in part, to the small muscle specific isoform, nesprin-1α2, which has a novel role in striated muscle function. Our current understanding of muscle-specific functions of nesprin-1 and its isoforms will be summarised in this review to provide insight into potential pathological mechanisms of nesprin-related muscle disease and may inform potential targets of therapeutic modulation.
Collapse
Affiliation(s)
- Shanelle De Silva
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Zhijuan Fan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
- Clinical Laboratory, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Baoqiang Kang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Catherine M. Shanahan
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| | - Qiuping Zhang
- King's College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, London SE5 9NU, U.K
| |
Collapse
|
10
|
Li Mow Chee F, Beernaert B, Griffith BGC, Loftus AEP, Kumar Y, Wills JC, Lee M, Valli J, Wheeler AP, Armstrong JD, Parsons M, Leigh IM, Proby CM, von Kriegsheim A, Bickmore WA, Frame MC, Byron A. Mena regulates nesprin-2 to control actin-nuclear lamina associations, trans-nuclear membrane signalling and gene expression. Nat Commun 2023; 14:1602. [PMID: 36959177 PMCID: PMC10036544 DOI: 10.1038/s41467-023-37021-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.
Collapse
Affiliation(s)
- Frederic Li Mow Chee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Bruno Beernaert
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Department of Oncology, Medical Sciences Division, University of Oxford, Oxford, OX3 7DQ, UK
| | - Billie G C Griffith
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alexander E P Loftus
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Yatendra Kumar
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jimi C Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Jessica Valli
- Edinburgh Super Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Ann P Wheeler
- Advanced Imaging Resource, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - J Douglas Armstrong
- Simons Initiative for the Developing Brain, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Irene M Leigh
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Margaret C Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
11
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
12
|
Sokolova A, Galic M. Modulation of self-organizing circuits at deforming membranes by intracellular and extracellular factors. Biol Chem 2023; 404:417-425. [PMID: 36626681 DOI: 10.1515/hsz-2022-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Mechanical forces exerted to the plasma membrane induce cell shape changes. These transient shape changes trigger, among others, enrichment of curvature-sensitive molecules at deforming membrane sites. Strikingly, some curvature-sensing molecules not only detect membrane deformation but can also alter the amplitude of forces that caused to shape changes in the first place. This dual ability of sensing and inducing membrane deformation leads to the formation of curvature-dependent self-organizing signaling circuits. How these cell-autonomous circuits are affected by auxiliary parameters from inside and outside of the cell has remained largely elusive. Here, we explore how such factors modulate self-organization at the micro-scale and its emerging properties at the macroscale.
Collapse
Affiliation(s)
- Anastasiia Sokolova
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Straße 31, 48149 Münster, Germany.,CiM-IMRPS Graduate Program, Schlossplatz 5, 48149 Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Straße 31, 48149 Münster, Germany.,'Cells in Motion' Interfaculty Centre, University of Münster, Röntgenstraße 16, 48149 Münster, Germany
| |
Collapse
|
13
|
Abstract
Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.
Collapse
Affiliation(s)
- Jorel R. Padilla
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | - Eric S. Folker
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
14
|
Zhong T, Wu X, Xie W, Luo X, Song T, Sun S, Luo Y, Li D, Liu M, Xie S, Zhou J. ENKD1 promotes epidermal stratification by regulating spindle orientation in basal keratinocytes. Cell Death Differ 2022; 29:1719-1729. [PMID: 35197565 PMCID: PMC9433399 DOI: 10.1038/s41418-022-00958-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2022] Open
Abstract
Stratification of the epidermis is essential for the barrier function of the skin. However, the molecular mechanisms governing epidermal stratification are not fully understood. Herein, we demonstrate that enkurin domain-containing protein 1 (ENKD1) contributes to epidermal stratification by modulating the cell-division orientation of basal keratinocytes. The epidermis of Enkd1 knockout mice is thinner than that of wild-type mice due to reduced generation of suprabasal cells from basal keratinocytes through asymmetric division. Depletion of ENKD1 impairs proper orientation of the mitotic spindle and delays mitotic progression in cultured cells. Mechanistic investigation further reveals that ENKD1 is a novel microtubule-binding protein that promotes the stability of astral microtubules. Introduction of the microtubule-binding domain of ENKD1 can largely rescue the spindle orientation defects in ENKD1-depleted cells. These findings establish ENKD1 as a critical regulator of astral microtubule stability and spindle orientation that stimulates epidermal stratification in mammalian cells.
Collapse
Affiliation(s)
- Tao Zhong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiaofan Wu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiangrui Luo
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Ting Song
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shuang Sun
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Youguang Luo
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Dengwen Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Nankai University, Tianjin, 300071, China
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
15
|
Gentile GM, Gamarra JR, Engels NM, Blue RE, Hoerr I, Wiedner HJ, Hinkle ER, Cote JL, Leverence E, Mills CA, Herring LE, Tan X, Giudice J. The synaptosome-associated protein 23 (SNAP23) is necessary for proper myogenesis. FASEB J 2022; 36:e22441. [PMID: 35816155 PMCID: PMC9836321 DOI: 10.1096/fj.202101627rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023]
Abstract
Vesicle-mediated transport is necessary for maintaining cellular homeostasis and proper signaling. The synaptosome-associated protein 23 (SNAP23) is a member of the SNARE protein family and mediates the vesicle docking and membrane fusion steps of secretion during exocytosis. Skeletal muscle has been established as a secretory organ; however, the role of SNAP23 in the context of skeletal muscle development is still unknown. Here, we show that depletion of SNAP23 in C2C12 mouse myoblasts reduces their ability to differentiate into myotubes as a result of premature cell cycle exit and early activation of the myogenic transcriptional program. This effect is rescued when cells are seeded at a high density or when cultured in conditioned medium from wild type cells. Proteomic analysis of collected medium indicates that SNAP23 depletion leads to a misregulation of exocytosis, including decreased secretion of the insulin-like growth factor 1 (IGF1), a critical protein for muscle growth, development, and function. We further demonstrate that treatment of SNAP23-depleted cells with exogenous IGF1 rescues their myogenic capacity. We propose that SNAP23 mediates the secretion of specific proteins, such as IGF1, that are important for achieving proper differentiation of skeletal muscle cells during myogenesis. This work highlights the underappreciated role of skeletal muscle as a secretory organ and contributes to the understanding of factors necessary for myogenesis.
Collapse
Affiliation(s)
- Gabrielle M. Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer R. Gamarra
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nichlas M. Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabel Hoerr
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emma R. Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L. Cote
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elise Leverence
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christine A. Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xianming Tan
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Abstract
Microtubules are essential cytoskeletal elements found in all eukaryotic cells. The structure and composition of microtubules regulate their function, and the dynamic remodeling of the network by posttranslational modifications and microtubule-associated proteins generates diverse populations of microtubules adapted for various contexts. In the cardiomyocyte, the microtubules must accommodate the unique challenges faced by a highly contractile, rigidly structured, and long-lasting cell. Through their canonical trafficking role and positioning of mRNA, proteins, and organelles, microtubules regulate essential cardiomyocyte functions such as electrical activity, calcium handling, protein translation, and growth. In a more specialized role, posttranslationally modified microtubules form load-bearing structures that regulate myocyte mechanics and mechanotransduction. Modified microtubules proliferate in cardiovascular diseases, creating stabilized resistive elements that impede cardiomyocyte contractility and contribute to contractile dysfunction. In this review, we highlight the most exciting new concepts emerging from recent studies into canonical and noncanonical roles of cardiomyocyte microtubules.
Collapse
Affiliation(s)
- Keita Uchida
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Emily A Scarborough
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
17
|
Silva-Rojas R, Nattarayan V, Jaque-Fernandez F, Gomez-Oca R, Menuet A, Reiss D, Goret M, Messaddeq N, Lionello VM, Kretz C, Cowling BS, Jacquemond V, Laporte J. Mice with muscle-specific deletion of Bin1 recapitulate centronuclear myopathy and acute downregulation of dynamin 2 improves their phenotypes. Mol Ther 2022; 30:868-880. [PMID: 34371181 PMCID: PMC8821932 DOI: 10.1016/j.ymthe.2021.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
Mutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1mck-/- mouse through Bin1 knockout in skeletal muscle. Bin1mck-/- mice were viable, unlike the constitutive Bin1 knockout, and displayed decreased muscle force and most histological hallmarks of CNM, including myofiber hypotrophy and intracellular disorganization. Notably, Bin1mck-/- myofibers presented strong defects in mitochondria and T-tubule networks associated with deficient calcium homeostasis and excitation-contraction coupling at the triads, potentially representing the main pathomechanisms. Systemic injection of antisense oligonucleotides (ASOs) targeting Dnm2 (Dynamin 2), which codes for dynamin 2, a BIN1 binding partner regulating membrane fission and mutated in other forms of CNM, improved muscle force and normalized the histological Bin1mck-/- phenotypes within 5 weeks. Overall, we generated a faithful mammalian model for CNM linked to BIN1 defects and validated Dnm2 ASOs as a first translatable approach to efficiently treat BIN1-CNM.
Collapse
Affiliation(s)
- Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Vasugi Nattarayan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Francisco Jaque-Fernandez
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, 69373 Lyon, France
| | - Raquel Gomez-Oca
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France,Dynacure, 67404 Illkirch, France
| | - Alexia Menuet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Marie Goret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Valentina M. Lionello
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Belinda S. Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France,Dynacure, 67404 Illkirch, France
| | - Vincent Jacquemond
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, 69373 Lyon, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France,Corresponding author: Jocelyn Laporte, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
18
|
Macías Á, Díaz-Larrosa JJ, Blanco Y, Fanjul V, González-Gómez C, Gonzalo P, Andrés-Manzano MJ, da Rocha AM, Ponce-Balbuena D, Allan A, Filgueiras-Rama D, Jalife J, Andrés V. Paclitaxel mitigates structural alterations and cardiac conduction system defects in a mouse model of Hutchinson-Gilford progeria syndrome. Cardiovasc Res 2022; 118:503-516. [PMID: 33624748 PMCID: PMC8803078 DOI: 10.1093/cvr/cvab055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown. METHODS AND RESULTS We conducted studies in heart tissue from progerin-expressing LmnaG609G/G609G (G609G) mice, including microscopy, intracellular calcium dynamics, patch-clamping, in vivo magnetic resonance imaging, and electrocardiography. G609G mouse cardiomyocytes showed tubulin-cytoskeleton disorganization, t-tubular system disruption, sarcomere shortening, altered excitation-contraction coupling, and reductions in ventricular thickening and cardiac index. G609G mice exhibited severe bradycardia, and significant alterations of atrio-ventricular conduction and repolarization. Most importantly, 50% of G609G mice had altered heart rate variability, and sinoatrial block, both significant signs of premature cardiac aging. G609G cardiomyocytes had electrophysiological alterations, which resulted in an elevated action potential plateau and early afterdepolarization bursting, reflecting slower sodium current inactivation and long Ca+2 transient duration, which may also help explain the mild QT prolongation in some HGPS patients. Chronic treatment with low-dose paclitaxel ameliorated structural and functional alterations in G609G hearts. CONCLUSIONS Our results demonstrate that tubulin-cytoskeleton disorganization in progerin-expressing cardiomyocytes causes structural, cardiac conduction, and excitation-contraction coupling defects, all of which can be partially corrected by chronic treatment with low dose paclitaxel.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Anti-Arrhythmia Agents/pharmacology
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Cytoskeleton/pathology
- Disease Models, Animal
- Excitation Contraction Coupling/drug effects
- Female
- Genetic Predisposition to Disease
- Heart Conduction System/drug effects
- Heart Conduction System/metabolism
- Heart Conduction System/physiopathology
- Heart Rate/drug effects
- Lamin Type A/genetics
- Lamin Type A/metabolism
- Male
- Mice, Mutant Strains
- Mutation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Paclitaxel/pharmacology
- Progeria/drug therapy
- Progeria/genetics
- Progeria/metabolism
- Progeria/physiopathology
- Refractory Period, Electrophysiological/drug effects
- Swine
- Swine, Miniature
- Tubulin/metabolism
- Mice
Collapse
Affiliation(s)
- Álvaro Macías
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - J Jaime Díaz-Larrosa
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Yaazan Blanco
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Víctor Fanjul
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Cristina González-Gómez
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Pilar Gonzalo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - María Jesús Andrés-Manzano
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Andre Monteiro da Rocha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - Andrew Allan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
| | - David Filgueiras-Rama
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Cardiology, Cardiac Electrophysiology Unit, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Myocardial, Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - José Jalife
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109-2800, USA
- Myocardial, Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Vicente Andrés
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| |
Collapse
|
19
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
20
|
Djeddi S, Reiss D, Menuet A, Freismuth S, de Carvalho Neves J, Djerroud S, Massana-Muñoz X, Sosson AS, Kretz C, Raffelsberger W, Keime C, Dorchies OM, Thompson J, Laporte J. Multi-omics comparisons of different forms of centronuclear myopathies and the effects of several therapeutic strategies. Mol Ther 2021; 29:2514-2534. [PMID: 33940157 DOI: 10.1016/j.ymthe.2021.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Omics analyses are powerful methods to obtain an integrated view of complex biological processes, disease progression, or therapy efficiency. However, few studies have compared different disease forms and different therapy strategies to define the common molecular signatures representing the most significant implicated pathways. In this study, we used RNA sequencing and mass spectrometry to profile the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNMs), untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of dynamin 2 (DNM2), or following modulation of DNM2 or amphiphysin 2 (BIN1) through genetic crosses. Unsupervised analysis and differential gene and protein expression were performed to retrieve CNM molecular signatures. Longitudinal studies before, at, and after disease onset highlighted potential disease causes and consequences. Main pathways in the common CNM disease signature include muscle contraction, regeneration and inflammation. The common therapy signature revealed novel potential therapeutic targets, including the calcium regulator sarcolipin. We identified several novel biomarkers validated in muscle and/or plasma through RNA quantification, western blotting, and enzyme-linked immunosorbent assay (ELISA) assays, including ANXA2 and IGFBP2. This study validates the concept of using multi-omics approaches to identify molecular signatures common to different disease forms and therapeutic strategies.
Collapse
Affiliation(s)
- Sarah Djeddi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Alexia Menuet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Sébastien Freismuth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Juliana de Carvalho Neves
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Sarah Djerroud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Xènia Massana-Muñoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Anne-Sophie Sosson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Wolfgang Raffelsberger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Olivier M Dorchies
- Pharmaceutical Biochemistry, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1211 Geneva, Switzerland
| | - Julie Thompson
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory-CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
21
|
Mechanisms and Regulation of Cardiac Ca V1.2 Trafficking. Int J Mol Sci 2021; 22:ijms22115927. [PMID: 34072954 PMCID: PMC8197997 DOI: 10.3390/ijms22115927] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
During cardiac excitation contraction coupling, the arrival of an action potential at the ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+ release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway, ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of β-adrenergic and angiotensin receptor signaling cascades on this process.
Collapse
|
22
|
Hao H, Kalra S, Jameson LE, Guerrero LA, Cain NE, Bolivar J, Starr DA. The Nesprin-1/-2 ortholog ANC-1 regulates organelle positioning in C. elegans independently from its KASH or actin-binding domains. eLife 2021; 10:e61069. [PMID: 33860766 PMCID: PMC8139857 DOI: 10.7554/elife.61069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/11/2021] [Indexed: 12/15/2022] Open
Abstract
KASH proteins in the outer nuclear membrane comprise the cytoplasmic half of linker of nucleoskeleton and cytoskeleton (LINC) complexes that connect nuclei to the cytoskeleton. Caenorhabditis elegans ANC-1, an ortholog of Nesprin-1/2, contains actin-binding and KASH domains at opposite ends of a long spectrin-like region. Deletion of either the KASH or calponin homology (CH) domains does not completely disrupt nuclear positioning, suggesting neither KASH nor CH domains are essential. Deletions in the spectrin-like region of ANC-1 led to significant defects, but only recapitulated the null phenotype in combination with mutations in the transmembrane (TM) span. In anc-1 mutants, the endoplasmic reticulum ER, mitochondria, and lipid droplets were unanchored, moving throughout the cytoplasm. The data presented here support a cytoplasmic integrity model where ANC-1 localizes to the ER membrane and extends into the cytoplasm to position nuclei, ER, mitochondria, and other organelles in place.
Collapse
Affiliation(s)
- Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Laura E Jameson
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Leslie A Guerrero
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jessica Bolivar
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
23
|
Zhang Q, Wang Y, Qu D, Yu J, Yang J. Role of HDAC6 inhibition in sepsis-induced acute respiratory distress syndrome (Review). Exp Ther Med 2021; 21:422. [PMID: 33747162 DOI: 10.3892/etm.2021.9866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) induced by sepsis contributes remarkably to the high mortality rate observed in intensive care units, largely due to a lack of effective drug therapies. Histone deacetylase 6 (HDAC6) is a class-IIb deacetylase that modulates non-nuclear protein functions via deacetylation and ubiquitination. Importantly, HDAC6 has been shown to exert anti-cancer, anti-neurodegeneration, and immunological effects, and several HDAC6 inhibitors have now entered clinical trials. It has also been recently shown to modulate inflammation, and HDAC6 inhibition has been demonstrated to markedly suppress experimental sepsis. The present review summarizes the role of HDAC6 in sepsis-induced inflammation and endothelial barrier dysfunction in recent years. It is proposed that HDAC6 inhibition predominantly ameliorates sepsis-induced ARDS by directly attenuating inflammation, which modulates the innate and adaptive immunity, transcription of pro-inflammatory genes, and protects endothelial barrier function. HDAC6 inhibition protects against sepsis-induced ARDS, thereby making HDAC6 a promising therapeutic target. However, HDAC inhibition may be associated with adverse effects on the embryo sac and oocyte, necessitating further studies.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Danhua Qu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jinyan Yu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Junling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
24
|
Lee JK, Liu D, Jiang D, Kulikowicz E, Tekes A, Liu P, Qin Q, Koehler RC, Aggarwal M, Zhang J, Martin LJ. Fractional anisotropy from diffusion tensor imaging correlates with acute astrocyte and myelin swelling in neonatal swine models of excitotoxic and hypoxic-ischemic brain injury. J Comp Neurol 2021; 529:2750-2770. [PMID: 33543493 DOI: 10.1002/cne.25121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
The specific cytopathology that causes abnormal fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) after neonatal hypoxia-ischemia (HI) is not completely understood. The panoply of cell types in the brain might contribute differentially to changes in DTI metrics. Because glia are the predominant cell type in brain, we hypothesized that changes in FA and MD would signify perturbations in glial microstructure. Using a 3-Tesla clinical scanner, we conducted in vivo DTI MRI in nine neonatal piglets at 20-96 h after excitotoxic brain injury from striatal quinolinic acid injection or global HI. FA and MD from putamen, caudate, and internal capsule in toto were correlated with astrocyte swelling, neuronal excitotoxicity, and white matter injury. Low FA correlated with more swollen astrocytes immunophenotyped by aquaporin-4 (AQP4), glial fibrillary acidic protein (GFAP), and glutamate transporter-1 (GLT-1). Low FA was also related to the loss of neurons with perineuronal GLT-1+ astrocyte decorations, large myelin swellings, lower myelin density, and oligodendrocyte cell death identified by 2',3'-cyclic nucleotide 3'-phosphodiesterase, bridging integrator-1, and nuclear morphology. MD correlated with degenerating oligodendrocytes and depletion of normal GFAP+ astrocytes but not with astrocyte or myelin swelling. We conclude that FA is associated with cytotoxic edema in astrocytes and oligodendrocyte processes as well as myelin injury at the cellular level. MD can detect glial cell death and loss, but it may not discern subtle pathology in swollen astrocytes, oligodendrocytes, or myelin. This study provides a cytopathologic basis for interpreting DTI in the neonatal brain after HI.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dapeng Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ewa Kulikowicz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aylin Tekes
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qin Qin
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Manisha Aggarwal
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Department of Radiology, New York University, New York, New York, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
26
|
Actin on and around the Nucleus. Trends Cell Biol 2020; 31:211-223. [PMID: 33376040 DOI: 10.1016/j.tcb.2020.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Actin plays roles in many important cellular processes, including cell motility, organelle movement, and cell signaling. The discovery of transmembrane actin-binding proteins at the outer nuclear membrane (ONM) raises the exciting possibility that actin can play a role in direct force transmission to the nucleus and the genome at its interior. Actin-dependent nucleus displacement was first described a decade ago. We are now gaining a more detailed understanding of its mechanisms, as well as new roles for actin during mitosis and meiosis, for gene expression, and in the cell's response to mechanical stimuli. Here we review these recent developments, the actin-binding proteins involved, the tissue specificity of these mechanisms, and methods developed to reconstitute and study this interaction in vitro.
Collapse
|
27
|
Prokic I, Cowling BS, Kutchukian C, Kretz C, Tasfaout H, Gache V, Hergueux J, Wendling O, Ferry A, Toussaint A, Gavriilidis C, Nattarayan V, Koch C, Lainé J, Combe R, Tiret L, Jacquemond V, Pilot-Storck F, Laporte J. Differential physiological roles for BIN1 isoforms in skeletal muscle development, function and regeneration. Dis Model Mech 2020; 13:dmm044354. [PMID: 32994313 PMCID: PMC7710016 DOI: 10.1242/dmm.044354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle development and regeneration are tightly regulated processes. How the intracellular organization of muscle fibers is achieved during these steps is unclear. Here, we focus on the cellular and physiological roles of amphiphysin 2 (BIN1), a membrane remodeling protein mutated in both congenital and adult centronuclear myopathies (CNM), that is ubiquitously expressed and has skeletal muscle-specific isoforms. We created and characterized constitutive muscle-specific and inducible Bin1 homozygous and heterozygous knockout mice targeting either ubiquitous or muscle-specific isoforms. Constitutive Bin1-deficient mice died at birth from lack of feeding due to a skeletal muscle defect. T-tubules and other organelles were misplaced and altered, supporting a general early role for BIN1 in intracellular organization, in addition to membrane remodeling. Although restricted deletion of Bin1 in unchallenged adult muscles had no impact, the forced switch from the muscle-specific isoforms to the ubiquitous isoforms through deletion of the in-frame muscle-specific exon delayed muscle regeneration. Thus, ubiquitous BIN1 function is necessary for muscle development and function, whereas its muscle-specific isoforms fine tune muscle regeneration in adulthood, supporting that BIN1 CNM with congenital onset are due to developmental defects, whereas later onset may be due to regeneration defects.
Collapse
Affiliation(s)
- Ivana Prokic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Belinda S Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Candice Kutchukian
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Hichem Tasfaout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Vincent Gache
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Josiane Hergueux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Olivia Wendling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Arnaud Ferry
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, Unité Mixte de Recherche (UMRS) 794, 75013 Paris, France
| | - Anne Toussaint
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Christos Gavriilidis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Vasugi Nattarayan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Catherine Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Jeanne Lainé
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, Department of Physiology, UMRS 974, 75013 Paris, France
- Sorbonne Université, Department of Physiology, Université Paris 06, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Roy Combe
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
- CELPHEDIA-PHENOMIN, Institut Clinique de la Souris (ICS), 67404 Illkirch, France
| | - Laurent Tiret
- Université Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, BNMS Team, 94700 Maisons-Alfort, France
| | - Vincent Jacquemond
- Université Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69373 Lyon, France
| | - Fanny Pilot-Storck
- Université Paris Est Creteil, INSERM, EnvA, EFS, AP-HP, IMRB, BNMS Team, 94700 Maisons-Alfort, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Translational Medicine, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
28
|
Abstract
LINC complexes (Linker of Nucleoskeleton and Cytoskeleton), consisting of inner nuclear membrane SUN (Sad1, UNC-84) proteins and outer nuclear membrane KASH (Klarsicht, ANC-1, and Syne Homology) proteins, are essential for nuclear positioning, cell migration and chromosome dynamics. To test the in vivo functions of conserved interfaces revealed by crystal structures, Cain et al used a combination of Caenorhabditis elegans genetics, imaging in cultured NIH 3T3 fibroblasts, and Molecular Dynamic simulations, to study SUN-KASH interactions. Conserved aromatic residues at the -7 position of the C-termini of KASH proteins and conserved disulfide bonds in LINC complexes play important roles in force transmission across the nuclear envelope. Other properties of LINC complexes, such as the helices preceding the SUN domain, the longer coiled-coils spanning the perinuclear space and higher-order organization may also function to transmit mechanical forces generated by the cytoskeleton across the nuclear envelope.
Collapse
Affiliation(s)
- Hongyan Hao
- a Department of Molecular and Cellular Biology , University of California , Davis , CA USA
| | - Daniel A Starr
- a Department of Molecular and Cellular Biology , University of California , Davis , CA USA
| |
Collapse
|
29
|
Identification of cancer stem cell-related biomarkers in lung adenocarcinoma by stemness index and weighted correlation network analysis. J Cancer Res Clin Oncol 2020; 146:1463-1472. [PMID: 32221746 DOI: 10.1007/s00432-020-03194-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Accounting for tumor heterogeneity, cancer stem cells (CSC) are involved in tumor metastasis, relapse, and drug resistance. Genes regulating CSC characteristics in lung adenocarcinoma (LUAD) were explored and validated in this study. METHODS The mRNA stemness index (mRNAsi) of more than 500 LUAD cases from The Cancer Genome Atlas database were calculated using a one-class logistic regression machine learning algorithm based on the mRNA expression of pluripotent stem cells and their differentiated progeny. mRNAsi-related key genes were identified by weighted correlation network analysis. The expression levels and prognostic roles of key genes were analyzed in Oncomine, PrognoScan, and Kaplan-Meier plotter databases, and validated using data from our center. RESULTS The mRNAsi was significantly higher in LUAD compared with normal lung tissues. LUAD patients of advanced stage exhibited a higher mRNAsi and worse overall survival (OS). Eight key genes were identified: heat shock 70 kDa protein 4 (HSPA4), cell division cycle associated 7 (CDCA7), cell division cycle 20 (CDC20), cyclin-dependent kinase 1 (CDK1), CAP-GLY domain containing linker protein 1 (CLIP1), cyclin B1 (CCNB1), H2A histone family, member X (H2AFX), and Bloom syndrome, RecQ helicase-like (BLM). These genes were differentially expressed in various types of malignancies and validated in the LUAD cases. LUAD patients with low expression of CDC20, CDK1, CCNB1, H2AFX, or BLM had a significantly better OS, whereas OS was reduced for patients with low expression of CLIP1. In addition, the expression of CDCA7 did not significantly impact the OS of LUAD patients. The protein-protein interaction networks evaluated by STRING demonstrated strong relationships between these key genes, which were validated in our cases. CONCLUSIONS The mRNAsi was significantly higher in LUAD compared with normal samples. Eight mRNAsi-related key genes were associated with prognosis and the cell cycle, and were strongly correlated with each other and differentially expressed in tumor and normal samples. We provide a new strategy for exploring stemness-related genes in LUAD cases.
Collapse
|
30
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
31
|
Schartner V, Laporte J, Böhm J. Abnormal Excitation-Contraction Coupling and Calcium Homeostasis in Myopathies and Cardiomyopathies. J Neuromuscul Dis 2020; 6:289-305. [PMID: 31356215 DOI: 10.3233/jnd-180314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muscle contraction requires specialized membrane structures with precise geometry and relies on the concerted interplay of electrical stimulation and Ca2+ release, known as excitation-contraction coupling (ECC). The membrane structure hosting ECC is called triad in skeletal muscle and dyad in cardiac muscle, and structural or functional defects of triads and dyads have been observed in a variety of myopathies and cardiomyopathies. Based on their function, the proteins localized at the triad/dyad can be classified into three molecular pathways: the Ca2+ release complex (CRC), store-operated Ca2+ entry (SOCE), and membrane remodeling. All three are mechanistically linked, and consequently, aberrations in any of these pathways cause similar disease entities. This review provides an overview of the clinical and genetic spectrum of triad and dyad defects with a main focus of attention on the underlying pathomechanisms.
Collapse
Affiliation(s)
- Vanessa Schartner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|
32
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
33
|
Nesprin-1-alpha2 associates with kinesin at myotube outer nuclear membranes, but is restricted to neuromuscular junction nuclei in adult muscle. Sci Rep 2019; 9:14202. [PMID: 31578382 PMCID: PMC6775114 DOI: 10.1038/s41598-019-50728-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
Nesprins, nuclear envelope spectrin-repeat proteins encoded by the SYNE1 and SYNE2 genes, are involved in localization of nuclei. The short isoform, nesprin-1-alpha2, is required for relocation of the microtubule organizer function from centromeres to the nuclear rim during myogenesis. Using specific antibodies, we now show that both nesprin-1-alpha2 and nesprin-1-giant co-localize with kinesin at the junctions of concatenated nuclei and at the outer poles of nuclear chains in human skeletal myotubes. In adult muscle, nesprin-1-alpha2 was found, together with kinesin, only on nuclei associated with neuromuscular junctions, whereas all adult cardiomyocyte nuclei expressed nesprin-1-alpha2. In a proteomics study, kinesin heavy and light chains were the only significant proteins in myotube extracts pulled down by nesprin-1-alpha2, but not by a mutant lacking the highly-conserved STAR domain (18 amino-acids, including the LEWD motif). The results support a function for nesprin-1-alpha2 in the specific localization of skeletal muscle nuclei mediated by kinesins and suggest that its primary role is at the outer nuclear membrane.
Collapse
|
34
|
Ross JA, Levy Y, Ripolone M, Kolb JS, Turmaine M, Holt M, Lindqvist J, Claeys KG, Weis J, Monforte M, Tasca G, Moggio M, Figeac N, Zammit PS, Jungbluth H, Fiorillo C, Vissing J, Witting N, Granzier H, Zanoteli E, Hardeman EC, Wallgren-Pettersson C, Ochala J. Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy. Acta Neuropathol 2019; 138:477-495. [PMID: 31218456 PMCID: PMC6689292 DOI: 10.1007/s00401-019-02034-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Nemaline myopathy (NM) is a skeletal muscle disorder caused by mutations in genes that are generally involved in muscle contraction, in particular those related to the structure and/or regulation of the thin filament. Many pathogenic aspects of this disease remain largely unclear. Here, we report novel pathological defects in skeletal muscle fibres of mouse models and patients with NM: irregular spacing and morphology of nuclei; disrupted nuclear envelope; altered chromatin arrangement; and disorganisation of the cortical cytoskeleton. Impairments in contractility are the primary cause of these nuclear defects. We also establish the role of microtubule organisation in determining nuclear morphology, a phenomenon which is likely to contribute to nuclear alterations in this disease. Our results overlap with findings in diseases caused directly by mutations in nuclear envelope or cytoskeletal proteins. Given the important role of nuclear shape and envelope in regulating gene expression, and the cytoskeleton in maintaining muscle fibre integrity, our findings are likely to explain some of the hallmarks of NM, including contractile filament disarray, altered mechanical properties and broad transcriptional alterations.
Collapse
|
35
|
Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert JC. The new genetic landscape of Alzheimer's disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol 2019; 138:221-236. [PMID: 30982098 PMCID: PMC6660578 DOI: 10.1007/s00401-019-02004-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022]
Abstract
A strong genetic predisposition (60–80% of attributable risk) is present in Alzheimer’s disease (AD). In view of this major genetic component, identification of the genetic risk factors has been a major objective in the AD field with the ultimate aim to better understand the pathological processes. In this review, we present how the genetic risk factors are involved in APP metabolism, β-amyloid peptide production, degradation, aggregation and toxicity, innate immunity, and Tau toxicity. In addition, on the basis of the new genetic landscape, resulting from the recent high-throughput genomic approaches and emerging neurobiological information, we propose an over-arching model in which the focal adhesion pathway and the related cell signalling are key elements in AD pathogenesis. The core of the focal adhesion pathway links the physiological functions of amyloid precursor protein and Tau with the pathophysiological processes they are involved in. This model includes several entry points, fitting with the different origins for the disease, and supports the notion that dysregulation of synaptic plasticity is a central node in AD. Notably, our interpretation of the latest data from genome wide association studies complements other hypotheses already developed in the AD field, i.e., amyloid cascade, cellular phase or propagation hypotheses. Genetically driven synaptic failure hypothesis will need to be further tested experimentally within the general AD framework.
Collapse
Affiliation(s)
- Pierre Dourlen
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Devrim Kilinc
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Nicolas Malmanche
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Julien Chapuis
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Jean-Charles Lambert
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France.
| |
Collapse
|
36
|
Lionello VM, Nicot AS, Sartori M, Kretz C, Kessler P, Buono S, Djerroud S, Messaddeq N, Koebel P, Prokic I, Hérault Y, Romero NB, Laporte J, Cowling BS. Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. Sci Transl Med 2019; 11:11/484/eaav1866. [DOI: 10.1126/scitranslmed.aav1866] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Centronuclear myopathies (CNMs) are severe diseases characterized by muscle weakness and myofiber atrophy. Currently, there are no approved treatments for these disorders. Mutations in the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for X-linked CNM (XLCNM), also called myotubular myopathy, whereas mutations in the membrane remodeling Bin/amphiphysin/Rvs protein amphiphysin 2 [bridging integrator 1 (BIN1)] are responsible for an autosomal form of the disease. Here, we investigated the functional relationship between MTM1 and BIN1 in healthy skeletal muscle and in the physiopathology of CNM. Genetic overexpression of human BIN1 efficiently rescued the muscle weakness and life span in a mouse model of XLCNM. Exogenous human BIN1 expression with adeno-associated virus after birth also prevented the progression of the disease, suggesting that human BIN1 overexpression can compensate for the lack of MTM1 expression in this mouse model. Our results showed that MTM1 controls cell adhesion and integrin localization in mammalian muscle. Alterations in this pathway in Mtm1−/y mice were associated with defects in myofiber shape and size. BIN1 expression rescued integrin and laminin alterations and restored myofiber integrity, supporting the idea that MTM1 and BIN1 are functionally linked and necessary for focal adhesions in skeletal muscle. The results suggest that BIN1 modulation might be an effective strategy for treating XLCNM.
Collapse
|
37
|
Fongy A, Falcone S, Lainé J, Prudhon B, Martins-Bach A, Bitoun M. Nuclear defects in skeletal muscle from a Dynamin 2-linked centronuclear myopathy mouse model. Sci Rep 2019; 9:1580. [PMID: 30733559 PMCID: PMC6367339 DOI: 10.1038/s41598-018-38184-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022] Open
Abstract
Dynamin 2 (DNM2) is a key protein of the endocytosis and intracellular membrane trafficking machinery. Mutations in the DNM2 gene cause autosomal dominant centronuclear myopathy (CNM) and a knock-in mouse model expressing the most frequent human DNM2 mutation in CNM (Knock In-Dnm2R465W/+) develops a myopathy sharing similarities with human disease. Using isolated muscle fibres from Knock In-Dnm2R465W/+ mice, we investigated number, spatial distribution and morphology of myonuclei. We showed a reduction of nuclear number from 20 weeks of age in Tibialis anterior muscle from heterozygous mice. This reduction is associated with a decrease in the satellite cell content in heterozygous muscles. The concomitant reduction of myonuclei number and cross-section area in the heterozygous fibres contributes to largely maintain myonuclear density and volume of myonuclear domain. Moreover, we identified signs of impaired spatial nuclear distribution including alteration of distance from myonuclei to their nearest neighbours and change in orientation of the nuclei. This study highlights reduction of number of myonuclei, a key regulator of the myofiber size, as a new pathomechanism underlying muscle atrophy in the dominant centronuclear myopathy. In addition, this study opens a new line of investigation which could prove particularly important on satellite cells in dominant centronuclear myopathy.
Collapse
Affiliation(s)
- Anaïs Fongy
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Jeanne Lainé
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Bernard Prudhon
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France
| | - Aurea Martins-Bach
- Institute of Myology, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Marc Bitoun
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, F-75013, Paris, France.
| |
Collapse
|
38
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
39
|
Perillo M, Folker ES. Specialized Positioning of Myonuclei Near Cell-Cell Junctions. Front Physiol 2018; 9:1531. [PMID: 30443220 PMCID: PMC6221937 DOI: 10.3389/fphys.2018.01531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscles are large cells with multiple nuclei that are precisely positioned. The importance of the correct nuclear position is highlighted by the correlation between mispositioned nuclei and muscle disease (Spiro et al., 1966; Gueneau et al., 2009). Myonuclei are generally considered to be equivalent and therefore how far nuclei are from their nearest neighbor is the primary measurement of nuclear positioning. However, skeletal muscles have two specialized cell-cell contacts, the neuromuscular (NMJ) and the myotendinous junction (MTJ). Using these cell-cell contacts as reference points, we have determined that there are at least two distinct populations of myonuclei whose position is uniquely regulated. The post-synaptic myonuclei (PSMs) near the NMJ, and the myonuclei near the myotendinous junction myonuclei (MJMs) have different spacing requirements compared to other myonuclei. The correct positioning of pairs of PSMs depends on the specific action of dynein and kinesin. Positions of the PSMs and MJMs relative to the junctions that define them depend on the KASH-domain protein, Klar. We also found that MJMs are positioned close to the MTJ as a consequence of muscle stretching. Our study defines for the first time that nuclei in skeletal muscles are not all equally positioned, and that subsets of distinct myonuclei have specialized rules that dictate their spacing.
Collapse
Affiliation(s)
| | - Eric S. Folker
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
40
|
Roman W, Gomes ER. Nuclear positioning in skeletal muscle. Semin Cell Dev Biol 2018; 82:51-56. [DOI: 10.1016/j.semcdb.2017.11.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
|
41
|
Cain NE, Jahed Z, Schoenhofen A, Valdez VA, Elkin B, Hao H, Harris NJ, Herrera LA, Woolums BM, Mofrad MRK, Luxton GWG, Starr DA. Conserved SUN-KASH Interfaces Mediate LINC Complex-Dependent Nuclear Movement and Positioning. Curr Biol 2018; 28:3086-3097.e4. [PMID: 30245107 DOI: 10.1016/j.cub.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/18/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Many nuclear positioning events involve linker of nucleoskeleton and cytoskeleton (LINC) complexes, which transmit forces generated by the cytoskeleton across the nuclear envelope. LINC complexes are formed by trans-luminal interactions between inner nuclear membrane SUN proteins and outer nuclear membrane KASH proteins, but how these interactions are regulated is poorly understood. We combine in vivo C. elegans genetics, in vitro wounded fibroblast polarization, and in silico molecular dynamics simulations to elucidate mechanisms of LINC complexes. The extension of the KASH domain by a single alanine residue or the mutation of the conserved tyrosine at -7 completely blocked the nuclear migration function of C. elegans UNC-83. Analogous mutations at -7 of mouse nesprin-2 disrupted rearward nuclear movements in NIH 3T3 cells, but did not disrupt ANC-1 in nuclear anchorage. Furthermore, conserved cysteines predicted to form a disulfide bond between SUN and KASH proteins are important for the function of certain LINC complexes, and might promote a developmental switch between nuclear migration and nuclear anchorage. Mutations of conserved cysteines in SUN or KASH disrupted ANC-1-dependent nuclear anchorage in C. elegans and Nesprin-2G-dependent nuclear movements in polarizing fibroblasts. However, the SUN cysteine mutation did not disrupt nuclear migration. Moreover, molecular dynamics simulations showed that a disulfide bond is necessary for the maximal transmission of cytoskeleton-generated forces by LINC complexes in silico. Thus, we have demonstrated functions for SUN-KASH binding interfaces, including a predicted intermolecular disulfide bond, as mechanistic determinants of nuclear positioning that may represent targets for regulation.
Collapse
Affiliation(s)
- Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, 208A Stanley Hall, Berkeley, CA 94720, USA
| | - Amy Schoenhofen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Venecia A Valdez
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Baila Elkin
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Nathan J Harris
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Leslie A Herrera
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Brian M Woolums
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, 208A Stanley Hall, Berkeley, CA 94720, USA
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Reuveny A, Shnayder M, Lorber D, Wang S, Volk T. Ma2/d promotes myonuclear positioning and association with the sarcoplasmic reticulum. Development 2018; 145:dev.159558. [PMID: 30093550 DOI: 10.1242/dev.159558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
The cytoplasm of striated myofibers contains a large number of membrane organelles, including sarcoplasmic reticulum (SR), T-tubules and the nuclear membrane. These organelles maintain a characteristic juxtaposition that appears to be essential for efficient inter-membranous exchange of RNA, proteins and ions. We found that the membrane-associated Muscle-specific α2/δ (Ma2/d) subunit of the Ca2+ channel complex localizes to the SR and T-tubules, and accumulates at the myonuclear surfaces. Furthermore, Ma2/d mutant larval muscles exhibit nuclear positioning defects, disruption of the nuclear-SR juxtapositioning, as well as impaired larval locomotion. Ma2/d localization at the nuclear membrane depends on the proper function of the nesprin ortholog Msp300 and the BAR domain protein Amphiphysin (Amph). Importantly, live imaging of muscle contraction in intact Drosophila larvae indicated altered distribution of Sarco/Endoplamic Reticulum Ca2+-ATPase (SERCA) around the myonuclei of Ma2/d mutant larvae. Co-immunoprecipitation analysis supports association between Ma2/d and Amph, and indirectly with Msp300. We therefore suggest that Ma2/d, in association with Msp300 and Amph, mediates interactions between the SR and the nuclear membrane.
Collapse
Affiliation(s)
- Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute, Rehovot 76100, Israel
| | - Marina Shnayder
- Department of Molecular Genetics, Weizmann Institute, Rehovot 76100, Israel
| | - Dana Lorber
- Department of Molecular Genetics, Weizmann Institute, Rehovot 76100, Israel
| | - Shuoshuo Wang
- Department of Molecular Genetics, Weizmann Institute, Rehovot 76100, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute, Rehovot 76100, Israel
| |
Collapse
|
43
|
Cabrera-Serrano M, Mavillard F, Biancalana V, Rivas E, Morar B, Hernández-Laín A, Olive M, Muelas N, Khan E, Carvajal A, Quiroga P, Diaz-Manera J, Davis M, Ávila R, Domínguez C, Romero NB, Vílchez JJ, Comas D, Laing NG, Laporte J, Kalaydjieva L, Paradas C. A Roma founder BIN1 mutation causes a novel phenotype of centronuclear myopathy with rigid spine. Neurology 2018; 91:e339-e348. [PMID: 29950440 DOI: 10.1212/wnl.0000000000005862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/16/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To describe a large series of BIN1 patients, in which a novel founder mutation in the Roma population of southern Spain has been identified. METHODS Patients diagnosed with centronuclear myopathy (CNM) at 5 major reference centers for neuromuscular disease in Spain (n = 53) were screened for BIN1 mutations. Clinical, histologic, radiologic, and genetic features were analyzed. RESULTS Eighteen patients from 13 families carried the p.Arg234Cys variant; 16 of them were homozygous for it and 2 had compound heterozygous p.Arg234Cys/p.Arg145Cys mutations. Both BIN1 variants have only been identified in Roma, causing 100% of CNM in this ethnic group in our cohort. The haplotype analysis confirmed all families are related. In addition to clinical features typical of CNM, such as proximal limb weakness and ophthalmoplegia, most patients in our cohort presented with prominent axial weakness, often associated with rigid spine. Severe fat replacement of paravertebral muscles was demonstrated by muscle imaging. This phenotype seems to be specific to the p.Arg234Cys mutation, not reported in other BIN1 mutations. Extreme clinical variability was observed in the 2 compound heterozygous patients for the p.Arg234Cys/p.Arg145Cys mutations, from a congenital onset with catastrophic outcome to a late-onset disease. Screening of European Roma controls (n = 758) for the p.Arg234Cys variant identified a carrier frequency of 3.5% among the Spanish Roma. CONCLUSION We have identified a BIN1 founder Roma mutation associated with a highly specific phenotype, which is, from the present cohort, the main cause of CNM in Spain.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Fabiola Mavillard
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Valerie Biancalana
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Eloy Rivas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Bharti Morar
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Aurelio Hernández-Laín
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Montse Olive
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Nuria Muelas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Eduardo Khan
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Alejandra Carvajal
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Pablo Quiroga
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Jordi Diaz-Manera
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Mark Davis
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Rainiero Ávila
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Cristina Domínguez
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Norma Beatriz Romero
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Juan J Vílchez
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - David Comas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Nigel G Laing
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Jocelyn Laporte
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Luba Kalaydjieva
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France
| | - Carmen Paradas
- From the Unidad de Enfermedades Neuromusculares, Department of Neurology (M.C.-S., C.P.), Instituto de Biomedicina de Sevilla (IBiS) (M.C.-S., F.M., C.P.), and Department of Pathology, Neuropathology Unit (E.R.), Hospital Universitario Virgen del Rocío, Sevilla, Spain; Laboratoire Diagnostic Génétique (V.B.), Faculté de Médecine-CHRU, Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (V.B., R.Á., J.L.), Illkirch, France; Harry Perkins Institute of Medical Research and Centre for Medical Research (B.M., N.G.L., L.K.), University of Western Australia, Nedlands; Department of Pathology (Neuropathology) (A.H.-L.), Hospital Universitario 12 de Octubre, Madrid Research Institute; Neuropathology Unit (M.O.), Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital de Bellvitge, Hospitalet de Llobregat, Barcelona; Department of Neurology and IIS La Fe (N.M., J.J.V.), Hospital Universitari i Politècnic La Fe, Valencia; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) (N.M., J.D.-M., J.J.V.); Department of Neurology (E.K.), Consulta de Enfermedades Neuromusculares y Unidad de ELA, Hospital General Universitario Santa Lucía, Cartagena, Murcia; Department of Neurology (A.C.), Hospital Virgen de las Nieves, Granada; Department of Neurology (P.Q.), Hospital Torrecárdenas, Almería; Unidad de Enfermedades Neuromusculares (J.D.-M.), Department of Neurology, Universidad Autónoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Diagnostic Genomics (M.D.), PathWest Laboratory Medicine WA, Perth, Australia; Department of Neurology (C.D.), Hospital 12 de Octubre, Madrid, Spain; Unité de Morphologie Neuromusculaire (N.B.R.), Centre de Référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris; Université Sorbonne (N.B.R.), UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France; Department of Medicine (J.J.V.), Universitat de Valencia; Department of Experimental and Health Sciences (D.C.), Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain; Centre National de la Recherche Scientifique (J.L.), UMR7104, Illkirch; and Institut National de la Santé et de la Recherche Médicale (J.L.), U964, Illkirch, France.
| |
Collapse
|
44
|
Roman W, Martins JP, Gomes ER. Local Arrangement of Fibronectin by Myofibroblasts Governs Peripheral Nuclear Positioning in Muscle Cells. Dev Cell 2018; 46:102-111.e6. [PMID: 29937388 PMCID: PMC6035285 DOI: 10.1016/j.devcel.2018.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022]
Abstract
Skeletal muscle cells (myofibers) are rod-shaped multinucleated cells surrounded by an extracellular matrix (ECM) basal lamina. In contrast to other cell types, nuclei in myofibers are positioned just below the plasma membrane at the cell periphery. Peripheral nuclear positioning occurs during myogenesis and is driven by myofibril crosslinking and contraction. Here we show that peripheral nuclear positioning is triggered by local accumulation of fibronectin secreted by myofibroblasts. We demonstrate that fibronectin via α5-integrin mediates peripheral nuclear positioning dependent on FAK and Src activation. Finally, we show that Cdc42, downstream of restricted fibronectin activation, is required for myofibril crosslinking but not myofibril contraction. Thus we identify that local activation of integrin by fibronectin secreted by myofibroblasts activates peripheral nuclear positioning in skeletal myofibers.
Collapse
Affiliation(s)
- William Roman
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | - João P Martins
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
45
|
Zanoteli E. Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Wang S, Stoops E, Cp U, Markus B, Reuveny A, Ordan E, Volk T. Mechanotransduction via the LINC complex regulates DNA replication in myonuclei. J Cell Biol 2018; 217:2005-2018. [PMID: 29650775 PMCID: PMC5987719 DOI: 10.1083/jcb.201708137] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/08/2018] [Accepted: 03/27/2018] [Indexed: 12/26/2022] Open
Abstract
Nuclear mechanotransduction has been implicated in the control of chromatin organization and gene expression. Wang et al. show that, in Drosophila myofibers, the LINC complex is required for the regulation of DNA replication and synchronized cell-cycle progression in myonuclei. Nuclear mechanotransduction has been implicated in the control of chromatin organization; however, its impact on functional contractile myofibers is unclear. We found that deleting components of the linker of nucleoskeleton and cytoskeleton (LINC) complex in Drosophila melanogaster larval muscles abolishes the controlled and synchronized DNA endoreplication, typical of nuclei across myofibers, resulting in increased and variable DNA content in myonuclei of individual myofibers. Moreover, perturbation of LINC-independent mechanical input after knockdown of β-Integrin in larval muscles similarly led to increased DNA content in myonuclei. Genome-wide RNA-polymerase II occupancy analysis in myofibers of the LINC mutant klar indicated an altered binding profile, including a significant decrease in the chromatin regulator barrier-to-autointegration factor (BAF) and the contractile regulator Troponin C. Importantly, muscle-specific knockdown of BAF led to increased DNA content in myonuclei, phenocopying the LINC mutant phenotype. We propose that mechanical stimuli transmitted via the LINC complex act via BAF to regulate synchronized cell-cycle progression of myonuclei across single myofibers.
Collapse
Affiliation(s)
- Shuoshuo Wang
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth Stoops
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Unnikannan Cp
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Barak Markus
- G-INCPM/Mantoux Institute for Bioinformatics, Weizmann Institute of Science, Rehovot, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Camuglia JM, Mandigo TR, Moschella R, Mark J, Hudson CH, Sheen D, Folker ES. An RNAi based screen in Drosophila larvae identifies fascin as a regulator of myoblast fusion and myotendinous junction structure. Skelet Muscle 2018; 8:12. [PMID: 29625624 PMCID: PMC5889537 DOI: 10.1186/s13395-018-0159-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/22/2018] [Indexed: 02/08/2023] Open
Abstract
Background A strength of Drosophila as a model system is its utility as a tool to screen for novel regulators of various functional and developmental processes. However, the utility of Drosophila as a screening tool is dependent on the speed and simplicity of the assay used. Methods Here, we use larval locomotion as an assay to identify novel regulators of skeletal muscle function. We combined this assay with muscle-specific depletion of 82 genes to identify genes that impact muscle function by their expression in muscle cells. The data from the screen were supported with characterization of the muscle pattern in embryos and larvae that had disrupted expression of the strongest hit from the screen. Results With this assay, we showed that 12/82 tested genes regulate muscle function. Intriguingly, the disruption of five genes caused an increase in muscle function, illustrating that mechanisms that reduce muscle function exist and that the larval locomotion assay is sufficiently quantitative to identify conditions that both increase and decrease muscle function. We extended the data from this screen and tested the mechanism by which the strongest hit, fascin, impacted muscle function. Compared to controls, animals in which fascin expression was disrupted with either a mutant allele or muscle-specific expression of RNAi had fewer muscles, smaller muscles, muscles with fewer nuclei, and muscles with disrupted myotendinous junctions. However, expression of RNAi against fascin only after the muscle had finished embryonic development did not recapitulate any of these phenotypes. Conclusions These data suggest that muscle function is reduced due to impaired myoblast fusion, muscle growth, and muscle attachment. Together, these data demonstrate the utility of Drosophila larval locomotion as an assay for the identification of novel regulators of muscle development and implicate fascin as necessary for embryonic muscle development. Electronic supplementary material The online version of this article (10.1186/s13395-018-0159-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Torrey R Mandigo
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Jenna Mark
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Derek Sheen
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Eric S Folker
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
48
|
Fridolfsson HN, Herrera LA, Brandt JN, Cain NE, Hermann GJ, Starr DA. Genetic Analysis of Nuclear Migration and Anchorage to Study LINC Complexes During Development of Caenorhabditis elegans. Methods Mol Biol 2018; 1840:163-180. [PMID: 30141045 DOI: 10.1007/978-1-4939-8691-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Studying nuclear positioning in developing tissues of the model nematode Caenorhabditis elegans greatly contributed to the discovery of SUN and KASH proteins and the formation of the LINC model. Such studies continue to make important contributions into both how LINC complexes are regulated and how defects in LINC components disrupt normal development. The methods described explain how to observe and quantify the following: nuclear migration in embryonic dorsal hypodermal cells, nuclear migration through constricted spaces in larval P cells, nuclear positioning in the embryonic intestinal primordia, and nuclear anchorage in syncytial hypodermal cells. These methods will allow others to employ nuclear positioning in C. elegans as a model to further explore LINC complex regulation and function.
Collapse
Affiliation(s)
- Heidi N Fridolfsson
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Leslie A Herrera
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - James N Brandt
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Greg J Hermann
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
49
|
Zhu R, Liu C, Gundersen GG. Nuclear positioning in migrating fibroblasts. Semin Cell Dev Biol 2017; 82:41-50. [PMID: 29241691 DOI: 10.1016/j.semcdb.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 01/09/2023]
Abstract
The positioning and movement of the nucleus has recently emerged as an important aspect of cell migration. Understanding of nuclear positioning and movement has reached an apogee in studies of fibroblast migration. Specific nuclear positioning and movements have been described in the polarization of fibroblast for cell migration and in active migration in 2D and 3D environments. Here, we review recent studies that have uncovered novel molecular mechanisms that contribute to these events in fibroblasts. Many of these involve a connection between the nucleus and the cytoskeleton through the LINC complex composed of outer nuclear membrane nesprins and inner nuclear membrane SUN proteins. We consider evidence that appropriate nuclear positioning contributes to efficient fibroblast polarization and migration and the possible mechanism through which the nucleus affects cell migration.
Collapse
Affiliation(s)
- Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Chenshu Liu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
50
|
Cowling BS, Prokic I, Tasfaout H, Rabai A, Humbert F, Rinaldi B, Nicot AS, Kretz C, Friant S, Roux A, Laporte J. Amphiphysin (BIN1) negatively regulates dynamin 2 for normal muscle maturation. J Clin Invest 2017; 127:4477-4487. [PMID: 29130937 DOI: 10.1172/jci90542] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/03/2017] [Indexed: 01/25/2023] Open
Abstract
Regulation of skeletal muscle development and organization is a complex process that is not fully understood. Here, we focused on amphiphysin 2 (BIN1, also known as bridging integrator-1) and dynamin 2 (DNM2), two ubiquitous proteins implicated in membrane remodeling and mutated in centronuclear myopathies (CNMs). We generated Bin1-/- Dnm2+/- mice to decipher the physiological interplay between BIN1 and DNM2. While Bin1-/- mice die perinatally from a skeletal muscle defect, Bin1-/- Dnm2+/- mice survived at least 18 months, and had normal muscle force and intracellular organization of muscle fibers, supporting BIN1 as a negative regulator of DNM2. We next characterized muscle-specific isoforms of BIN1 and DNM2. While BIN1 colocalized with and partially inhibited DNM2 activity during muscle maturation, BIN1 had no effect on the isoform of DNM2 found in adult muscle. Together, these results indicate that BIN1 and DNM2 regulate muscle development and organization, function through a common pathway, and define BIN1 as a negative regulator of DNM2 in vitro and in vivo during muscle maturation. Our data suggest that DNM2 modulation has potential as a therapeutic approach for patients with CNM and BIN1 defects. As BIN1 is implicated in cancers, arrhythmia, and late-onset Alzheimer disease, these findings may trigger research directions and therapeutic development for these common diseases.
Collapse
Affiliation(s)
- Belinda S Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Ivana Prokic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Hichem Tasfaout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Aymen Rabai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Frédéric Humbert
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Bruno Rinaldi
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Anne-Sophie Nicot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland.,Swiss National Centre of Competence in Research Programme Chemical Biology, Geneva, Switzerland
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|