1
|
Dziurka K, Dziurka M, Sujkowska-Rybkowska M, Laskoś K, Grela M, Muszyńska E. Auxin Metabolite Balance During Haploid and Zygotic Oat Embryo Development-Quantitative and Localization Studies. Int J Mol Sci 2025; 26:5737. [PMID: 40565200 PMCID: PMC12193405 DOI: 10.3390/ijms26125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2025] [Revised: 06/10/2025] [Accepted: 06/13/2025] [Indexed: 06/28/2025] Open
Abstract
Auxins play a critical role in establishing the embryo axis and embryonic pattern. Our study aimed to determine the developmental stage of 21-day old oat (Avena sativa L.) haploid embryos, obtained by distant crossing with maize, and examined oat zygotic embryos at different developmental stages for their levels of endogenous indole-3-acetic acid (IAA), its metabolites, and IAA localization. The content of auxin metabolites was determined by HPLC-MS/MS, while IAA visualization in embryos was performed by immunohistochemistry and observed under confocal microscopy. We found that 21-day-old haploid embryos contained half the IAA concentration of age-matched zygotic embryos. Simultaneously, the total conjugated auxins (IAA-Asp, IAA-Glu, meIAA) were higher than in zygotic embryos, regardless of their age. Immunolocalization revealed IAA accumulation in embryos aligned with regions of tissue differentiation (e.g., shoot apical meristem, radicle primordium, and coleptile). We conclude that limited morphogenetic progression, evidenced by microscopic sections accompanied by changes in IAA content and distribution in haploid embryos, indicates a developmental stage earlier than the coleoptilar stage of zygotic embryos which occurs 9 days after pollination. Our findings may be useful in embryo rescue techniques, suggesting modulation of auxin concentration in in vitro culture.
Collapse
Affiliation(s)
- Kinga Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (K.L.); (M.G.)
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (K.L.); (M.G.)
| | - Marzena Sujkowska-Rybkowska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland; (M.S.-R.); (E.M.)
| | - Kamila Laskoś
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (K.L.); (M.G.)
| | - Magdalena Grela
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (K.L.); (M.G.)
| | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland; (M.S.-R.); (E.M.)
| |
Collapse
|
2
|
Rawat SS, Laxmi A. Rooted in Communication: Exploring Auxin-Salicylic Acid Nexus in Root Growth and Development. PLANT, CELL & ENVIRONMENT 2025; 48:4140-4160. [PMID: 39910701 DOI: 10.1111/pce.15420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Plant hormones are pivotal in orchestrating diverse aspects of growth and developmental processes. Among various phytohormones, auxin and salicylic acid (SA) stand out as important regulators, often exerting opposing effects on overall plant growth. Essentially, research has indicated that auxin and SA-mediated pathways exhibit mutual antagonism during pathogen challenge. Additionally, in recent years, significant advancements have been made in uncovering the molecular intricacies that govern the action and interplay between these two phytohormones during various essential growth-related processes. In this discussion, we briefly delve into the genetic and molecular mechanisms involved in auxin and SA antagonism. We then analyse in detail how this dialogue impacts critical aspects of root development, with an emphasis on the transcriptional and protein regulatory networks. Finally, we propose the potential of exploring their interaction in various other aspects of below ground root growth processes. Understanding this relationship could provide valuable insights for optimizing and enhancing crop growth and yields.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Ashverya Laxmi
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, Delhi, India
| |
Collapse
|
3
|
Vanneste S, Pei Y, Friml J. Mechanisms of auxin action in plant growth and development. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00851-2. [PMID: 40389696 DOI: 10.1038/s41580-025-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/21/2025]
Abstract
The phytohormone auxin is a major signal coordinating growth and development in plants. The variety of its effects arises from its ability to form local auxin maxima and gradients within tissues, generated through directional cell-to-cell transport and elaborate metabolic control. These auxin distribution patterns instruct cells in a context-dependent manner to undergo predefined developmental transitions. In this Review, we discuss advances in auxin action at the level of homeostasis and signalling. We highlight key insights into the structural basis of PIN-mediated intercellular auxin transport and explore two novel non-transcriptional auxin signalling mechanisms: one involving intracellular Ca2+ transients and another involving cell-surface auxin perception that mediates global, ultrafast phosphorylation. Furthermore, we examine emerging evidence indicating the involvement of cyclic adenosine monophosphate as a second messenger in the transcriptional auxin response. Together, these recent developments in auxin research have profoundly deepened our understanding of the complex and diverse activities of auxin in plant growth and development.
Collapse
Affiliation(s)
- Steffen Vanneste
- HortiCell, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Yuanrong Pei
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
4
|
Tang H, Chen LH, Friml J. Auxin fluctuation and PIN polarization in moss leaf cell reprogramming. PLANT & CELL PHYSIOLOGY 2025; 66:658-667. [PMID: 39829340 DOI: 10.1093/pcp/pcaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Auxin and its PIN-FORMED (PIN) exporters are essential for tissue repair and regeneration in flowering plants. To gain insight into the evolution of this mechanism, we investigated their roles in leaves excised from Physcomitrium patens, a bryophyte known for its remarkable cell reprogramming capacity. We used various approaches to manipulate auxin levels, including exogenous application, pharmacological manipulations, and auxin biosynthesis mutants. We observed no significant effect on the rate of cell reprogramming. Rather, our analysis of auxin dynamics revealed a decrease in auxin levels upon excision, which was followed by a local increase before the reprogramming process began. Mutant analysis revealed that PpPINs are required for effective cell reprogramming, and endogenously expressed PpPINA-GFP accumulates polarly at sites that will develop into future filamentous stem cells. In addition, hyperpolarized PpPINA variants carrying mutated phosphorylation sites showed a marked delay in reprogramming, whereas endogenous or nonpolar versions do not have this effect. These results underscore that both the levels and the polarity of PpPINA are important for efficient cell reprogramming. Overall, these findings highlight the pivotal role of PIN polarity in plant regeneration. Furthermore, they suggest that understanding polarity mechanisms could have broader implications for improving regenerative processes across various plant species.
Collapse
Affiliation(s)
- Han Tang
- Graduate Institute of Biochemistry, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung 40227, Taiwan (R.O.C.)
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung 40227, Taiwan (R.O.C.)
| | - Li-Hang Chen
- Graduate Institute of Biochemistry, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung 40227, Taiwan (R.O.C.)
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
5
|
Farooq MA, Hannan F, Zou HX, Zhou W, Zhao DS, Abbas T, Ahmad R, Ayyaz A, Yan X. Comparative transcriptome and physiological analyses reveal involvement of photosynthesis, phytohormone signaling, and cysteine-methionine metabolism in arsenic toxicity tolerance in Brassica napus. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138521. [PMID: 40344829 DOI: 10.1016/j.jhazmat.2025.138521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/25/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
This study investigates the physiological, biochemical, and molecular responses of two Brassica napus (B. napus) cultivars, ZD622 and ZD630, exposed to arsenic (As) stress. ZD630 was more resistant to As-induced toxicity, as demonstrated by higher biomass retention, less chlorophyll degradation, and less impairment of photosynthetic activity than ZD622. Photosynthetic parameters like as Pn and chlorophyll fluorescence were less influenced in ZD630, indicating a higher resilience in maintaining photosynthetic machinery integrity. Ultrastructural study demonstrated that ZD630 caused less damage to cellular components such thylakoid membranes and mitochondria. Moreover, ZD630 more efficient As exclusion mechanism, as seen by decreased arsenic accumulation in aerial tissues, led to its higher stress performance. Comparative transcriptome analysis was conducted to further dissect the molecular mechanisms underlying these morpho-physiological traits. KEGG pathway analysis revealed that the pathways for photosynthesis, auxin signaling, and amino acid metabolism were overrepresented suggesting these pathways may play important roles in the differential response to As between the two cultivars. ZD630 revealed activation of genes related to photosystem II repair, auxin transport, MAPK signaling, and ABA receptors, which might contribute to its improved stress response. Additionally, the differential control of cysteine and methionine metabolism contributes to ZD630 improved capacity to detoxify As via glutathione production.
Collapse
Affiliation(s)
- Muhammad Ahsan Farooq
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Fakhir Hannan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, ZhejiangUniversity, Hangzhou 310058,, China
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, ZhejiangUniversity, Hangzhou 310058,, China
| | - Dong-Sheng Zhao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Toqueer Abbas
- United States department of agriculture, agriculture resources services, Brookings, SD 57006, USA
| | - Rehan Ahmad
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ahsan Ayyaz
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, ZhejiangUniversity, Hangzhou 310058,, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
6
|
Lai S, Wang W, Shen T, Li X, Kong D, Hou X, Chen G, Gao L, Xia T, Jiang X. Crucial Role of Aluminium-Regulated Flavonol Glycosides (F2-Type) Biosynthesis in Lateral Root Formation of Camellia sinensis. PLANT, CELL & ENVIRONMENT 2025; 48:3573-3589. [PMID: 39789692 DOI: 10.1111/pce.15372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
In acidic soil conditions, aluminium (Al) limits crop growth and yields but benefits the growth of tea plants. Flavonols are suggested to form complexes with Al, enhancing Al accumulation in tea plants. The role of flavonols in promoting lateral root formation under Al stress remains unclear. Here, we identified a 7-rhamnosylated type of flavonol glycosides (F2-type) crucial for this process in tea roots. Al treatment significantly stimulated lateral root initiation and bud germination in tea plants, enhancing flavonol glycoside accumulation, particularly the F2-type. Most genes in the flavonol biosynthetic pathway were upregulated post-Al treatment, including CsUGT89AC2/3 genes, which catalyze F2-type flavonol glycosides synthesis in vitro and in vivo. Overexpression of CsUGT89AC2/3 increased lateral root occurrence, flavonol glycoside accumulation and expression of biosynthetic pathway genes in tea roots. Kaempferol treatment activated flavonol pathway genes and stimulated lateral root growth. Al treatment, kaempferol treatment and CsUGT89AC3 overexpression accelerated auxin accumulation and expression of auxin-related genes. Therefore, Al stimulates flavonol biosynthetic pathway gene expression, regulates F2-type flavonol biosynthesis, and influences auxin homoeostasis, promoting lateral root formation in tea plants. These findings lay the foundation for further investigation into the mechanisms underlying the Al-mediated promotion of lateral root initiation in tea plants.
Collapse
Affiliation(s)
- Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Wenzhuo Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tianlin Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiu Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Dexu Kong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaohan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Gao Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Moore S, Liu J, Chen C, Lindsey K. Necessity for modeling hormonal crosstalk in arabidopsis root development? TRENDS IN PLANT SCIENCE 2025; 30:484-498. [PMID: 40082164 DOI: 10.1016/j.tplants.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/16/2025]
Abstract
Hormones play vital roles in plant root development. Mathematical models have been employed to study hormone functions. However, models developed by different research groups focus on different aspects of hormones and therefore cannot be used to study root growth as an integrative system that involves the functions of all hormones. To use modeling to study root development, the crosstalk nature of hormones requires the further development of mathematical models to understand their interplay in the context of diverse experimental data. This opinion article discusses what new insights can be developed by modeling hormonal crosstalk beyond experimental data. We propose that one integrative model should be developed to integrate all experimental data for elucidating root growth.
Collapse
Affiliation(s)
- Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
8
|
Yu TY, Wang P, Lv Y, Wang B, Zhao MR, Dong XW. Auxin Orchestrates Germ Cell Specification in Arabidopsis. Int J Mol Sci 2025; 26:3257. [PMID: 40244090 PMCID: PMC11989617 DOI: 10.3390/ijms26073257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The initiation and specification of germline cells are crucial for plant reproduction and the continuity of species. In Arabidopsis thaliana, auxin plays a vital role in guiding the transition of somatic cells into germline fate, orchestrating the specification of both male archesporial cells and female megaspore mother cells. This process is regulated through interaction with the transcription factor Sporocyteless/Nozzle, which forms a feedback mechanism that modulates germ cell specialization. Auxin biosynthesis, polar transport, and signal transduction pathways collectively ensure the accurate determination of germ cell fate. Furthermore, the coordination of auxin signaling with epigenetic regulation and miRNA-mediated control fine-tunes the differentiation between germline and somatic cells. This review discusses the mechanisms underlying auxin-guided germ cell specification. It proposes future research directions, including studies on PIN-FORMED-mediated polar transport, the role of the YUCCA family in auxin biosynthesis, and the involvement of the Transport Inhibitors Response 1/Auxn Signaling F-Box-Auxin Response Factor (TIR1/AFB-ARF) signaling pathway in germ cell fate determination. These insights will enhance our understanding of plant reproductive biology and provide new strategies for crop breeding.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | | | | | | | | | - Xin-Wei Dong
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
9
|
Aardening Z, Khandal H, Erlichman OA, Savaldi-Goldstein S. The whole and its parts: cell-specific functions of brassinosteroids. TRENDS IN PLANT SCIENCE 2025; 30:389-408. [PMID: 39562236 DOI: 10.1016/j.tplants.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Brassinosteroid (BR) phytohormones operate at both the cellular and organ levels, and impart distinct transcriptional responses in different cell types and developmental zones, with distinct effects on organ size and shape. Here, we review recent advances implementing high-resolution and modeling tools that have provided new insights into the role of BR signaling in growth coordination across cell layers. We discuss recently gained knowledge on BR movement and its relevance for intercellular communication, as well as how local protein environments enable cell- and stage-specific BR regulation. We also explore how tissue-specific alterations in BR signaling enhance crop yield. Together, we offer a comprehensive view of how BR signaling shapes the whole (overall growth dynamics) through its parts (intricate cellular interactions).
Collapse
Affiliation(s)
- Ziv Aardening
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hitaishi Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
10
|
Ibañes M. Modeling Arabidopsis root growth and development. PLANT PHYSIOLOGY 2025; 197:kiaf045. [PMID: 40036788 PMCID: PMC11878784 DOI: 10.1093/plphys/kiaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 03/06/2025]
Abstract
Modeling has been used to explore various aspects of primary root development and growth in Arabidopsis thaliana, thanks to enormous advances in the genetic and biochemical bases of cell division, cell growth and differentiation, and, more recently, progress in measuring these processes. Modeling has facilitated the characterization of the regulations involved in these processes and the system properties that they confer. Recently, the mechanical-physical properties of root growth have started to be determined with the help of modeling. Here we review recent progress in modeling approaches used to examine root development and growth, from the transcriptional and signaling regulation of cell decisions to the mechanical basis of morphogenesis, and we highlight common features and future challenges.
Collapse
Affiliation(s)
- Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Li T, Jia W, Peng S, Guo Y, Liu J, Zhang X, Li P, Zhang H, Xu R. Endogenous cAMP elevation in Brassica napus causes changes in phytohormone levels. PLANT SIGNALING & BEHAVIOR 2024; 19:2310963. [PMID: 38314783 PMCID: PMC10854363 DOI: 10.1080/15592324.2024.2310963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
In higher plants, the regulatory roles of cAMP (cyclic adenosine 3',5'-monophosphate) signaling remain elusive until now. Cellular cAMP levels are generally much lower in higher plants than in animals and transiently elevated for triggering downstream signaling events. Moreover, plant adenylate cyclase (AC) activities are found in different moonlighting multifunctional proteins, which may pose additional complications in distinguishing a specific signaling role for cAMP. Here, we have developed rapeseed (Brassica napus L.) transgenic plants that overexpress an inducible plant-origin AC activity for generating high AC levels much like that in animal cells, which served the genetic model disturbing native cAMP signaling as a whole in plants. We found that overexpression of the soluble AC activity had significant impacts on the contents of indole-3-acetic acid (IAA) and stress phytohormones, i.e. jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA) in the transgenic plants. Acute induction of the AC activity caused IAA overaccumulation, and upregulation of TAA1 and CYP83B1 in the IAA biosynthesis pathways, but also simultaneously the hyper-induction of PR4 and KIN2 expression indicating activation of JA and ABA signaling pathways. We observed typical overgrowth phenotypes related to IAA excess in the transgenic plants, including significant increases in plant height, internode length, width of leaf blade, petiole length, root length, and fresh shoot biomass, as well as the precocious seed development, as compared to wild-type plants. In addition, we identified a set of 1465 cAMP-responsive genes (CRGs), which are most significantly enriched in plant hormone signal transduction pathway, and function mainly in relevance to hormonal, abiotic and biotic stress responses, as well as growth and development. Collectively, our results support that cAMP elevation impacts phytohormone homeostasis and signaling, and modulates plant growth and development. We proposed that cAMP signaling may be critical in configuring the coordinated regulation of growth and development in higher plants.
Collapse
Affiliation(s)
- Tianming Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hanfeng Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Luo C, Liu X, Zheng Y, Dai X, Tang X, Zhang T, Zhang X. Physiological and transcriptomic analysis reveal the regulation of adventitious root formation in Cinnamomum parthenoxylon cuttings. BMC PLANT BIOLOGY 2024; 24:1217. [PMID: 39701972 DOI: 10.1186/s12870-024-05941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Cinnamomum parthenoxylon is a significant essential oil plant in southern China, however, the challenge of rooting cuttings poses a hindrance to its development and widespread cultivation. Adventitious root (AR) formation is a vital mechanism for plants to acclimate to environmental changes, yet the precise regulatory mechanisms governing this process remain largely unknown. This study investigated the morphological, physiological, and transcriptomic alterations during AR formation in C. parthenoxylon. Our findings revealed that the AR in C. parthenoxylon originated from callus tissue. Nutrients, enzymes, and plant hormones exerted crucial functions in cutting propagation, with some gradually shifting roles in the rooting process until the pivotal stage of root primordium initiation. Analysis of differentially expressed genes (DEGs) highlighted the significance of auxin, ethylene, and plant wound signaling pathways in regulating AR. Furthermore, 14 hub genes were identified through protein-protein interaction (PPI) networks, shedding light on key molecular players. Understanding the dynamics involved in AR formation enhances our comprehension of the regulatory mechanisms, offering insights for optimizing cutting treatment methods.
Collapse
Affiliation(s)
- Chenglin Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, P.R. China
- Camphor Engineering and Technology Research Centre of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Xinliang Liu
- Camphor Engineering and Technology Research Centre of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Yongjie Zheng
- Camphor Engineering and Technology Research Centre of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Xiaoying Dai
- Camphor Engineering and Technology Research Centre of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Xinglin Tang
- Camphor Engineering and Technology Research Centre of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Ting Zhang
- Camphor Engineering and Technology Research Centre of National Forestry and Grassland Administration, Jiangxi Academy of Forestry, Nanchang, 330032, China.
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, 330032, China.
| | - Xuhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, Jiangsu, 210037, P.R. China.
| |
Collapse
|
13
|
Zhang L, Yu G, Xue H, Li M, Lozano-Durán R, Macho AP. Ralstonia solanacearum Alters Root Developmental Programmes in Auxin-Dependent and -Independent Manners. MOLECULAR PLANT PATHOLOGY 2024; 25:e70043. [PMID: 39707703 DOI: 10.1111/mpp.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Microbial pathogens and other parasites can modify the development of their hosts, either as a target or a side effect of their virulence activities. The plant-pathogenic bacterium Ralstonia solanacearum, causal agent of the devastating bacterial wilt disease, is a soilborne microbe that invades host plants through their roots and later proliferates in xylem vessels. In this work, we studied the early stages of R. solanacearum infection in the model plant Arabidopsis thaliana, using an in vitro infection system. In addition to the previously reported inhibition of primary root length and increase in root hair formation at the root tip, we observed an earlier xylem differentiation during R. solanacearum infection that occurs in a HrpG-dependent manner, suggesting that the pathogen actively promotes the development of the vascular system upon invasion of the root. Moreover, we found that the phytohormone auxin, of which the accumulation is promoted by the bacterial infection, is required for the R. solanacearum-triggered induction of root hair formation but not earlier xylem differentiation. Altogether, our results shed light on the capacity of R. solanacearum to induce alterations of root developmental pathways and on the role of auxin in this process.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Hanzawa A, Rahman AA, Rahman A. Actin Isovariant ACT2-Mediated Cellular Auxin Homeostasis Regulates Lateral Root Organogenesis in Arabidopsis thaliana. Cytoskeleton (Hoboken) 2024. [PMID: 39548860 DOI: 10.1002/cm.21956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024]
Abstract
Lateral root (LR) organogenesis is regulated by cellular flux of auxin within pericycle cells, which depends on the membrane distribution and polar localization of auxin carrier proteins. The correct distribution of auxin carrier proteins relies on the intracellular trafficking of these proteins aided by filamentous actin as a track. However, the precise role of actin in lateral root development is still elusive. Here, using vegetative class actin isovariant mutants, we revealed that loss of actin isovariant ACT8 led to increased lateral root formation. The distribution of auxin within pericycle cells was altered in act8 mutant, primarily due to the altered distribution of AUX1 and PIN7. Interestingly, incorporation of act2 mutant in act8 background (act2act8) effectively nullified the LR phenotype observed in act8 mutant, indicating that ACT2 plays an important role in LR development. To explore further, we investigated the possibility that the act8 mutant's LR phenotype and cellular auxin distribution resulted from ACT2 overexpression. Consistent with the idea, enhanced lateral root formation, altered AUX1, PIN7 expression, and auxin distribution in pericycle cells were observed in ACT2 overexpression lines. Collectively, these results suggest that actin isovariant ACT2 but not ACT8 plays a pivotal role in regulating source-to-sink auxin distribution during lateral root organogenesis.
Collapse
Affiliation(s)
- Aya Hanzawa
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Arifa Ahamed Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Abidur Rahman
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
- Department of Plant Biosciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
15
|
Sharma M, Friedrich T, Oluoch P, Zhang N, Peruzzo F, Jha V, Pi L, Groot EP, Kornet N, Follo M, Aichinger E, Fleck C, Laux T. A coherent feed-forward loop in the Arabidopsis root stem cell organizer regulates auxin biosynthesis and columella stem cell maintenance. NATURE PLANTS 2024; 10:1737-1748. [PMID: 39394505 DOI: 10.1038/s41477-024-01810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Stem cells in plant meristems are kept undifferentiated by signals from surrounding cells and provide the basis for continuous organ formation. In the stem cell organizer of the Arabidopsis thaliana root, the quiescent centre (QC), the WOX5 transcription factor, functions as a central hub in regulating columella stem cell (CSC) homoeostasis. However, the processes mediating WOX5 function are only poorly understood. Here we identify the transcription factor HAN as a central mediator of WOX5-regulated stem cell maintenance. HAN is required for mitotic quiescence of QC and CSC maintenance and is sufficient to induce ectopic stem cells. WOX5 and HAN repress transcription of the differentiation factor gene CDF4 in a coherent feed-forward loop (cFFL), one output of which is the expression of the auxin biosynthesis gene TAA1 and maintenance of auxin response maxima in the organizer. These findings and mathematical modelling provide a mechanistic framework for WOX5 function in the root stem cell niche.
Collapse
Affiliation(s)
- Mohan Sharma
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thomas Friedrich
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter Oluoch
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ning Zhang
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- National Key Laboratory of Wheat Improvement, College of Agriculture, Shandong Agricultural University, Tai'an, China
| | - Federico Peruzzo
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Vikram Jha
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Limin Pi
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Edwin Philip Groot
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Noortje Kornet
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Uniklinik Freiburg, Zentrum für Translationale Zellforschung (ZTZ), Freiburg, Germany
| | - Ernst Aichinger
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM), Freiburg, Germany
| | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
16
|
Luo L, Yu L, Yang J, Wang E. Peptide Signals Regulate Nitrogen Deficiency Adaptation of Dicotyledonous Model Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420598 DOI: 10.1111/pce.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Nitrogen is a crucial macroelement essential for plant growth and development. In Arabidopsis Thaliana, classical phytohormones such as auxin and cytokinin orchestrate local and systemic signalling networks coordinate plant growth and development in response to nitrogen deficiency. Nowadays, emerging signalling pathways involving small peptides like CLAVATA3/EMBRYO SURROUNDINGR REGION (CLE) and C-TERMINALLY ENCODED PEPTIDE (CEP) and their corresponding kinase receptors, also regulate Arabidopsis' adaptation to nitrogen scarcity. Unlike Arabidopsis, which adapts to nitrogen deficiency by changing root development, legumes have the unique ability to form nitrogen-fixing root nodules through symbiotic interactions with soil rhizobia. During the symbiotic nodulation in Medicago, CLE and CEP peptides and their receptors consist of an autoregulatory network governing the number of nodules in accordance with the soil nitrogen level. Additionally, other plant peptides, such as phytosulfokine (PSK) and root meristem growth factors (RGF), have been identified as new regulators of leguminous root nodule development under nitrogen-limited condition. However, the precise mechanism by which these peptides coordinate nitrogen deficiency response and the development of nitrogen-fixing organs remains to be fully elucidated. This review summarises the adaptive strategies of dicotyledons to nitrogen deficiency, with a particular focus on the regulation of Medicago nitrogen-fixing nodule development by the peptides.
Collapse
Affiliation(s)
- Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Eljebbawi A, Dolata A, Strotmann VI, Stahl Y. Stem cell quiescence and dormancy in plant meristems. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6022-6036. [PMID: 38721716 PMCID: PMC11480668 DOI: 10.1093/jxb/erae201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
Plants exhibit opportunistic developmental patterns, alternating between growth and dormancy in response to external cues. Moreover, quiescence plays a critical role in proper plant growth and development, particularly within the root apical meristem and the shoot apical meristem. In these meristematic tissues, cells with relatively slower mitotic activity are present in the quiescent center and the central zone, respectively. These centers form long-term reservoirs of stem cells maintaining the meristematic stem cell niche, and thus sustaining continuous plant development and adaptation to changing environments. This review explores early observations, structural characteristics, functions, and gene regulatory networks of the root and shoot apical meristems. It also highlights the intricate mechanism of dormancy within the shoot apical meristem. The aim is to contribute to a holistic understanding of quiescence in plants, which is fundamental for the proper growth and environmental response of plants.
Collapse
Affiliation(s)
| | | | - Vivien I Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
18
|
Liu YK, Li JJ, Xue QQ, Zhang SJ, Xie M, Cheng T, Wang HL, Liu CM, Chu JF, Pei YS, Jia BQ, Li J, Tian LJ, Fu AG, Hao YQ, Su H. Actin-bundling protein fimbrin serves as a new auxin biosynthesis orchestrator in Arabidopsis root tips. THE NEW PHYTOLOGIST 2024; 244:496-510. [PMID: 39044442 DOI: 10.1111/nph.19959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Plants delicately regulate endogenous auxin levels through the coordination of transport, biosynthesis, and inactivation, which is crucial for growth and development. While it is well-established that the actin cytoskeleton can regulate auxin levels by affecting polar transport, its potential role in auxin biosynthesis has remained largely unexplored. Using LC-MS/MS-based methods combined with fluorescent auxin marker detection, we observed a significant increase in root auxin levels upon deletion of the actin bundling proteins AtFIM4 and AtFIM5. Fluorescent observation, immunoblotting analysis, and biochemical approaches revealed that AtFIM4 and AtFIM5 affect the protein abundance of the key auxin synthesis enzyme YUC8 in roots. AtFIM4 and AtFIM5 regulate the auxin synthesis enzyme YUC8 at the protein level, with its degradation mediated by the 26S proteasome. This regulation modulates auxin synthesis and endogenous auxin levels in roots, consequently impacting root development. Based on these findings, we propose a molecular pathway centered on the 'actin cytoskeleton-26S proteasome-YUC8-auxin' axis that controls auxin levels. Our findings shed light on a new pathway through which plants regulate auxin synthesis. Moreover, this study illuminates a newfound role of the actin cytoskeleton in regulating plant growth and development, particularly through its involvement in maintaining protein homeostasis via the 26S proteasome.
Collapse
Affiliation(s)
- Yan-Kun Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing-Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qiao-Qiao Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shu-Juan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Min Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ting Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hong-Li Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Cui-Mei Liu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Fang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yu-Sha Pei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bing-Qian Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Li-Jun Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ai-Gen Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ya-Qi Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
19
|
Chen JC, Lin HY, Novák O, Strnad M, Lee YI, Fang SC. Diverse geotropic responses in the orchid family. PLANT, CELL & ENVIRONMENT 2024; 47:3828-3845. [PMID: 38809156 DOI: 10.1111/pce.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.
Collapse
Affiliation(s)
- Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
20
|
González Ortega-Villaizán A, King E, Patel MK, Pérez-Alonso MM, Scholz SS, Sakakibara H, Kiba T, Kojima M, Takebayashi Y, Ramos P, Morales-Quintana L, Breitenbach S, Smolko A, Salopek-Sondi B, Bauer N, Ludwig-Müller J, Krapp A, Oelmüller R, Vicente-Carbajosa J, Pollmann S. The endophytic fungus Serendipita indica affects auxin distribution in Arabidopsis thaliana roots through alteration of auxin transport and conjugation to promote plant growth. PLANT, CELL & ENVIRONMENT 2024; 47:3899-3919. [PMID: 38847336 DOI: 10.1111/pce.14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 11/20/2024]
Abstract
Plants share their habitats with a multitude of different microbes. This close vicinity promoted the evolution of interorganismic interactions between plants and many different microorganisms that provide mutual growth benefits both to the plant and the microbial partner. The symbiosis of Arabidopsis thaliana with the beneficial root colonizing endophyte Serendipita indica represents a well-studied system. Colonization of Arabidopsis roots with S. indica promotes plant growth and stress tolerance of the host plant. However, until now, the molecular mechanism by which S. indica reprograms plant growth remains largely unknown. This study used comprehensive transcriptomics, metabolomics, reverse genetics, and life cell imaging to reveal the intricacies of auxin-related processes that affect root growth in the symbiosis between A. thaliana and S. indica. Our experiments revealed the sustained stimulation of auxin signalling in fungus infected Arabidopsis roots and disclosed the essential role of tightly controlled auxin conjugation in the plant-fungus interaction. It particularly highlighted the importance of two GRETCHEN HAGEN 3 (GH3) genes, GH3.5 and GH3.17, for the fungus infection-triggered stimulation of biomass production, thus broadening our knowledge about the function of GH3s in plants. Furthermore, we provide evidence for the transcriptional alteration of the PIN2 auxin transporter gene in roots of Arabidopsis seedlings infected with S. indica and demonstrate that this transcriptional adjustment affects auxin signalling in roots, which results in increased plant growth.
Collapse
Affiliation(s)
- Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Eoghan King
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Manish K Patel
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
| | - Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Patricio Ramos
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Talca, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Universidad Autonóma de Chile, Talca, Chile
| | - Sarah Breitenbach
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Ana Smolko
- Department for Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Nataša Bauer
- Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Anne Krapp
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Université Paris-Saclay, Versailles, France
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
21
|
Peng Y, Ji K, Mao Y, Wang Y, Korbei B, Luschnig C, Shen J, Benková E, Friml J, Tan S. Polarly localized Bro1 domain proteins regulate PIN-FORMED abundance and root gravitropic growth in Arabidopsis. Commun Biol 2024; 7:1085. [PMID: 39232040 PMCID: PMC11374797 DOI: 10.1038/s42003-024-06747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/18/2024] [Indexed: 09/06/2024] Open
Abstract
The developmental plasticity of the root system plays an essential role in the adaptation of plants to the environment. Among many other signals, auxin and its directional, intercellular transport are critical in regulating root growth and development. In particular, the PIN-FORMED2 (PIN2) auxin exporter acts as a key regulator of root gravitropic growth. Multiple regulators have been reported to be involved in PIN2-mediated root growth; however, our information remains incomplete. Here, we identified ROWY Bro1-domain proteins as important regulators of PIN2 sorting control. Genetic analysis revealed that Arabidopsis rowy1 single mutants and higher-order rowy1 rowy2 rowy3 triple mutants presented a wavy root growth phenotype. Cell biological experiments revealed that ROWY1 and PIN2 colocalized to the apical side of the plasma membrane in the root epidermis and that ROWYs are required for correct PM targeting of PIN2. In addition, ROWYs also affected PIN3 protein abundance in the stele, suggesting the potential involvement of additional PIN transporters as well as other proteins. A global transcriptome analysis revealed that ROWY genes are involved in the Fe2+ availability perception pathway. This work establishes ROWYs as important novel regulators of root gravitropic growth by connecting micronutrient availability to the proper subcellular targeting of PIN auxin transporters.
Collapse
Affiliation(s)
- Yakun Peng
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kangkang Ji
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanbo Mao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiqun Wang
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, Wien, Austria
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Eva Benková
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, Austria
| | - Shutang Tan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
22
|
Acheampong A, Li L, Elsherbiny SM, Wu Y, Swallah MS, Bondzie-Quaye P, Huang Q. A crosswalk on the genetic and conventional strategies for enhancing astaxanthin production in Haematococcus pluvialis. Crit Rev Biotechnol 2024; 44:1018-1039. [PMID: 37778751 DOI: 10.1080/07388551.2023.2240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 10/03/2023]
Abstract
Astaxanthin is a naturally occurring xanthophyll with powerful: antioxidant, antitumor, and antibacterial properties that are widely employed in food, feed, medicinal and nutraceutical industries. Currently, chemical synthesis dominates the world's astaxanthin market, but the increasing demand for natural products is shifting the market for natural astaxanthin. Haematococcus pluvialis (H. pluvialis) is the factory source of natural astaxanthin when grown in optimal conditions. Currently, various strategies for the production of astaxanthin have been proposed or are being developed in order to meet its market demand. This up-to-date review scrutinized the current approaches or strategies that aim to increase astaxanthin yield from H. pluvialis. We have emphasized the genetic and environmental parameters that increase astaxanthin yield. We also looked at the transcriptomic dynamics caused by environmental factors (phytohormones induction, light, salt, temperature, and nutrient starvation) on astaxanthin synthesizing genes and other metabolic changes. Genetic engineering and culture optimization (environmental factors) are effective approaches to producing more astaxanthin for commercial purposes. Genetic engineering, in particular, is accurate, specific, potent, and safer than conventional random mutagenesis approaches. New technologies, such as CRISPR-Cas9 coupled with omics and emerging computational tools, may be the principal strategies in the future to attain strains that can produce more astaxanthin. This review provides accessible data on the strategies to increase astaxanthin accumulation natively. Also, this review can be a starting point for new scholars interested in H. pluvialis research.
Collapse
Affiliation(s)
- Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lamei Li
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Shereen M Elsherbiny
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Han E, Geng Z, Qin Y, Wang Y, Ma S. Single-cell network analysis reveals gene expression programs for Arabidopsis root development and metabolism. PLANT COMMUNICATIONS 2024; 5:100978. [PMID: 38783601 PMCID: PMC11369779 DOI: 10.1016/j.xplc.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Single-cell RNA-sequencing datasets of Arabidopsis roots have been generated, but related comprehensive gene co-expression network analyses are lacking. We conducted a single-cell gene co-expression network analysis with publicly available scRNA-seq datasets of Arabidopsis roots using a SingleCellGGM algorithm. The analysis identified 149 gene co-expression modules, which we considered to be gene expression programs (GEPs). By examining their spatiotemporal expression, we identified GEPs specifically expressed in major root cell types along their developmental trajectories. These GEPs define gene programs regulating root cell development at different stages and are enriched with relevant developmental regulators. As examples, a GEP specific for the quiescent center (QC) contains 20 genes regulating QC and stem cell niche homeostasis, and four GEPs are expressed in sieve elements (SEs) from early to late developmental stages, with the early-stage GEP containing 17 known SE developmental regulators. We also identified GEPs for metabolic pathways with cell-type-specific expression, suggesting the existence of cell-type-specific metabolism in roots. Using the GEPs, we discovered and verified a columella-specific gene, NRL27, as a regulator of the auxin-related root gravitropism response. Our analysis thus systematically reveals GEPs that regulate Arabidopsis root development and metabolism and provides ample resources for root biology studies.
Collapse
Affiliation(s)
- Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Yue Qin
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Yuewei Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Shisong Ma
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China; School of Data Science, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
24
|
Sun Y, Yang Z, Zhang C, Xia J, Li Y, Liu X, Sun L, Tan S. Indole-3-propionic acid regulates lateral root development by targeting auxin signaling in Arabidopsis. iScience 2024; 27:110363. [PMID: 39071891 PMCID: PMC11278081 DOI: 10.1016/j.isci.2024.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Indole-3-propionic acid (IPA) is known to be a microbe-derived compound with a similar structure to the phytohormone auxin (indole-3-acetic acid, IAA). Previous studies reported that IPA exhibited auxin-like bioactivities in plants. However, the underlying molecular mechanism is not totally understood. Here, we revealed that IPA modulated lateral root (LR) development via auxin signaling in the model plant Arabidopsis thaliana. Genetic analysis indicated that deficiency of the TIR1/AFB-Aux/IAA-ARF auxin signaling pathway abolished the effects of IPA on regulating LR development. Further biochemical, transcriptomic profiling and cell biological analyses revealed that IPA directly bound to the TIR1/AFB-Aux/IAA coreceptor complex and thus activated downstream gene expression. Therefore, our work revealed that IPA is a potential signaling molecule that modulates plant growth and development by targeting the TIR1/AFB-Aux/IAA-mediated auxin signaling pathway, providing potential insights into root growth regulation in plants.
Collapse
Affiliation(s)
- Yue Sun
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhisen Yang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Caoli Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jing Xia
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Li
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xin Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Linfeng Sun
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shutang Tan
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
25
|
Fernandez‐Moreno J, Yaschenko AE, Neubauer M, Marchi AJ, Zhao C, Ascencio‐Ibanez JT, Alonso JM, Stepanova AN. A rapid and scalable approach to build synthetic repetitive hormone-responsive promoters. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1942-1956. [PMID: 38379432 PMCID: PMC11182585 DOI: 10.1111/pbi.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Advancement of DNA-synthesis technologies has greatly facilitated the development of synthetic biology tools. However, high-complexity DNA sequences containing tandems of short repeats are still notoriously difficult to produce synthetically, with commercial DNA synthesis companies usually rejecting orders that exceed specific sequence complexity thresholds. To overcome this limitation, we developed a simple, single-tube reaction method that enables the generation of DNA sequences containing multiple repetitive elements. Our strategy involves commercial synthesis and PCR amplification of padded sequences that contain the repeats of interest, along with random intervening sequence stuffers that include type IIS restriction enzyme sites. GoldenBraid molecular cloning technology is then employed to remove the stuffers, rejoin the repeats together in a predefined order, and subclone the tandem(s) in a vector using a single-tube digestion-ligation reaction. In our hands, this new approach is much simpler, more versatile and efficient than previously developed solutions to this problem. As a proof of concept, two different phytohormone-responsive, synthetic, repetitive proximal promoters were generated and tested in planta in the context of transcriptional reporters. Analysis of transgenic lines carrying the synthetic ethylene-responsive promoter 10x2EBS-S10 fused to the GUS reporter gene uncovered several developmentally regulated ethylene response maxima, indicating the utility of this reporter for monitoring the involvement of ethylene in a variety of physiologically relevant processes. These encouraging results suggest that this reporter system can be leveraged to investigate the ethylene response to biotic and abiotic factors with high spatial and temporal resolution.
Collapse
Affiliation(s)
| | - Anna E. Yaschenko
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Matthew Neubauer
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Alex J. Marchi
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Chengsong Zhao
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - José T. Ascencio‐Ibanez
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | - Jose M. Alonso
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Anna N. Stepanova
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
26
|
Guo Y, Liu C, Chen S, Tian Z. GmHXK2 promotes the salt tolerance of soybean seedlings by mediating AsA synthesis, and auxin synthesis and distribution. BMC PLANT BIOLOGY 2024; 24:613. [PMID: 38937682 PMCID: PMC11210165 DOI: 10.1186/s12870-024-05301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Salt is an important factor that affects crop productivity. Plant hexokinases (HXKs) are key enzymes in the glycolytic pathway and sugar signaling transduction pathways of plants. In previous studies, we identified and confirmed the roles of GmHXK2 in salt tolerance. RESULTS In this study, we analyzed the tissue-specific expression of GmHXK2 at different growth stages throughout the plant's life cycle. The results showed that GmHXK2 was expressed significantly in all tissues at vegetative stages, including germination and seedling. However, no expression was detected in the pods, and there was little expression in flowers during the later mature period. Arabidopsis plants overexpressing the GmHXK2 (OE) had more lateral roots. The OE seedlings also produced higher levels of auxin and ascorbic acid (AsA). Additionally, the expression levels of genes PMM, YUC4/YUC6/YUC8, and PIN/LAX1,LAX3, which are involved respectively in the synthesis of AsA and auxin, as well as polar auxin transport, were upregulated in OE plants. This upregulation occurred specifically under exogenous glucose treatment. AtHKT1, AtSOS1, and AtNHX1 were up-regulated in OE plants under salt stress, suggesting that GmHXK2 may modulate salt tolerance by maintaining ion balance within the cells and alleviating damage caused by salt stress. Additionally, we further confirmed the interaction between GmHXK2 and the protein GmPMM through yeast two-hybridization and bimolecular fluorescence complementation assays, respectively. CONCLUSION The expression of GmHXK2 gene in plants is organ-specific and developmental stage specific. GmHXK2 not only regulates the synthesis of AsA and the synthesis and distribution of auxin, but also promotes root elongation and induces lateral root formation, potentially enhancing soil water absorption. This study reveals the crosstalk between sugar signaling and hormone signaling in plants, where GmHXK2 acts as a glucose sensor through its interaction with GmPMM, and sheds light on the molecular mechanism by which GmHXK2 gene is involved in salt tolerance in plants.
Collapse
Affiliation(s)
- Yuqi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shuai Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
27
|
García-Gómez ML, Ten Tusscher K. Multi-scale mechanisms driving root regeneration: From regeneration competence to tissue repatterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38824611 DOI: 10.1111/tpj.16860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Plants possess an outstanding capacity to regenerate enabling them to repair damages caused by suboptimal environmental conditions, biotic attacks, or mechanical damages impacting the survival of these sessile organisms. Although the extent of regeneration varies greatly between localized cell damage and whole organ recovery, the process of regeneration can be subdivided into a similar sequence of interlinked regulatory processes. That is, competence to regenerate, cell fate reprogramming, and the repatterning of the tissue. Here, using root tip regeneration as a paradigm system to study plant regeneration, we provide a synthesis of the molecular responses that underlie both regeneration competence and the repatterning of the root stump. Regarding regeneration competence, we discuss the role of wound signaling, hormone responses and synthesis, and rapid changes in gene expression observed in the cells close to the cut. Then, we consider how this rapid response is followed by the tissue repatterning phase, where cells experience cell fate changes in a spatial and temporal order to recreate the lost stem cell niche and columella. Lastly, we argue that a multi-scale modeling approach is fundamental to uncovering the mechanisms underlying root regeneration, as it allows to integrate knowledge of cell-level gene expression, cell-to-cell transport of hormones and transcription factors, and tissue-level growth dynamics to reveal how the bi-directional feedbacks between these processes enable self-organized repatterning of the root apex.
Collapse
Affiliation(s)
- Monica L García-Gómez
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
- Translational Plant Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
| |
Collapse
|
28
|
Vollen K, Zhao C, Alonso JM, Stepanova AN. Sourcing DNA parts for synthetic biology applications in plants. Curr Opin Biotechnol 2024; 87:103140. [PMID: 38723389 DOI: 10.1016/j.copbio.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Transgenic approaches are now standard in plant biology research aiming to characterize gene function or improve crops. Recent advances in DNA synthesis and assembly make constructing transgenes a routine task. What remains nontrivial is the selection of the DNA parts and optimization of the transgene design. Early career researchers and seasoned molecular biologists alike often face difficult decisions on what promoter or terminator to use, what tag to include, and where to place it. This review aims to inform about the current approaches being employed to identify and characterize DNA parts with the desired functionalities and give general advice on basic construct design. Furthermore, we hope to share the excitement about new experimental and computational tools being developed in this field.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
29
|
Pérez-Sancho J, Van den Broeck L, García-Caparros P, Sozzani R. Insights into multilevel spatial regulation within the root stem cell niche. Curr Opin Genet Dev 2024; 86:102200. [PMID: 38704928 DOI: 10.1016/j.gde.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
All differentiated root cells derive from stem cells spatially organized within the stem cell niche (SCN), a microenvironment located within the root tip. Here, we compiled recent advances in the understanding of how the SCN drives the establishment and maintenance of cell types. The quiescent center (QC) is widely recognized as the primary driver of cell fate determination, but it is recently considered a convergence center of multiple signals. Cell identity of the cortex endodermis initials is mainly driven by the regulatory feedback loops between transcription factors (TFs), acting as mobile signals between neighboring cells, including the QC. As exemplified in the vascular initials, the precise spatial expression of these regulatory TFs is connected with a dynamic hormonal interplay. Thus, stem cell maintenance and cell differentiation are regulated by a plethora of signals forming a complex, multilevel regulatory network. Integrating the transcriptional and post-translational regulations, protein-protein interactions, and mobile signals into models will be fundamental for the comprehensive understanding of SCN maintenance and differentiation.
Collapse
Affiliation(s)
| | - Lisa Van den Broeck
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA. https://twitter.com/@LisaVandenBroec
| | | | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
30
|
Chen H, Chu Z, Huang J, Wen Y. Regulatory potential of secondary metabolite DIMBOA and baicalein to imazethapyr-induced toxicity in wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38265-38273. [PMID: 38801610 DOI: 10.1007/s11356-024-33812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Controlling and mitigating the toxicity of herbicides to non-target plants is of significant importance in reducing ecological risks. The development of green and natural herbicide control technologies has become an urgent necessity. In this paper, how 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA) and baicalein alleviated oxidative stress induced by imazethapyr (IM) in wheat seedlings was investigated. We found that DIMBOA and baicalein enhanced the antioxidant enzyme activities in wheat seedlings exposed to IM and reduced the excessive reactive oxygen species due to IM stress by 21.3% and 23.5%, respectively. DIMBOA and baicalein also restored the iron content reduced by IM and effectively mitigated Fe2+ overload by alleviating the response of heme oxygenase 1 to IM stress. The antioxidant and iron homeostatic maintenance properties of DIMBOA and baicalein enhanced the defenses of wheat seedlings against IM stress. Our results highlight the potential implication of secondary metabolites as natural products to modulate herbicide toxicity to non-target plants.
Collapse
Affiliation(s)
- Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Zheyu Chu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Li T, Zhang S, Yao S, Li X, Jia Q, Yuan J, Zhang W, Wang X, Zhang Q. Nonspecific phospholipases C3 and C4 interact with PIN-FORMED2 to regulate growth and tropic responses in Arabidopsis. THE PLANT CELL 2024; 36:2310-2327. [PMID: 38442314 PMCID: PMC11132888 DOI: 10.1093/plcell/koae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
The dynamic changes in membrane phospholipids affect membrane biophysical properties and cell signaling, thereby influencing numerous biological processes. Nonspecific phospholipase C (NPC) enzymes hydrolyze common phospholipids to release diacylglycerol (DAG), which is converted to phosphatidic acid (PA) and other lipids. In this study, 2 Arabidopsis (Arabidopsis thaliana) tandemly arrayed genes, NPC3 and NPC4, were identified as critical factors modulating auxin-controlled plant growth and tropic responses. Moreover, NPC3 and NPC4 were shown to interact with the auxin efflux transporter PIN-FORMED2 (PIN2). The loss of NPC3 and NPC4 enhanced the endocytosis and vacuolar degradation of PIN2, which disrupted auxin gradients and slowed gravitropic and halotropic responses. Furthermore, auxin-triggered activation of NPC3 and NPC4 is required for the asymmetric PA distribution that controls PIN2 trafficking dynamics and auxin-dependent tropic responses. Collectively, our study reveals an NPC-derived PA signaling pathway in Arabidopsis auxin fluxes that is essential for fine-tuning the balance between root growth and environmental responses.
Collapse
Affiliation(s)
- Teng Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shujuan Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Xuebing Li
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qianru Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Jingya Yuan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
32
|
Jan M, Muhammad S, Jin W, Zhong W, Zhang S, Lin Y, Zhou Y, Liu J, Liu H, Munir R, Yue Q, Afzal M, Wang G. Modulating root system architecture: cross-talk between auxin and phytohormones. FRONTIERS IN PLANT SCIENCE 2024; 15:1343928. [PMID: 38390293 PMCID: PMC10881875 DOI: 10.3389/fpls.2024.1343928] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024]
Abstract
Root architecture is an important agronomic trait that plays an essential role in water uptake, soil compactions, nutrient recycling, plant-microbe interactions, and hormone-mediated signaling pathways. Recently, significant advancements have been made in understanding how the complex interactions of phytohormones regulate the dynamic organization of root architecture in crops. Moreover, phytohormones, particularly auxin, act as internal regulators of root development in soil, starting from the early organogenesis to the formation of root hair (RH) through diverse signaling mechanisms. However, a considerable gap remains in understanding the hormonal cross-talk during various developmental stages of roots. This review examines the dynamic aspects of phytohormone signaling, cross-talk mechanisms, and the activation of transcription factors (TFs) throughout various developmental stages of the root life cycle. Understanding these developmental processes, together with hormonal signaling and molecular engineering in crops, can improve our knowledge of root development under various environmental conditions.
Collapse
Affiliation(s)
- Mehmood Jan
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sajid Muhammad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weicai Jin
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| | - Wenhao Zhong
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaolong Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| | - Yanjie Lin
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yueni Zhou
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinlong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haifeng Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| | - Raheel Munir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Muhammad Afzal
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| |
Collapse
|
33
|
Hu F, Fang D, Zhang W, Dong K, Ye Z, Cao J. Lateral root primordium: Formation, influencing factors and regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108429. [PMID: 38359556 DOI: 10.1016/j.plaphy.2024.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Roots are the primary determinants of water and nutrient uptake by plants. The structure of roots is largely determined by the repeated formation of new lateral roots (LR). A new lateral root primordium (LRP) is formed between the beginning and appearance of LR, which defines the organization and function of LR. Therefore, proper LRP morphogenesis is a crucial process for lateral root formation. The development of LRP is regulated by multiple factors, including hormone and environmental signals. Roots integrate signals and regulate growth and development. At the molecular level, many genes regulate the growth and development of root organs to ensure stable development plans, while also being influenced by various environmental factors. To gain a better understanding of the LRP formation and its influencing factors, this study summarizes previous research. The cell cycle involved in LRP formation, as well as the roles of ROS, auxin, other auxin-related plant hormones, and genetic regulation, are discussed in detail. Additionally, the effects of gravity, mechanical stress, and cell death on LRP formation are explored. Throughout the text unanswered or poorly understood questions are identified to guide future research in this area.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
34
|
Pasternak TP, Steinmacher D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. PLANTS (BASEL, SWITZERLAND) 2024; 13:327. [PMID: 38276784 PMCID: PMC10818547 DOI: 10.3390/plants13020327] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Precise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for this scientific knowledge, resulting in more productive and resilient plants in the field. However, the development and application of cell and tissue culture techniques are usually based on empirical studies, although some data-driven models are available. Overall, the success of plant tissue culture is dependent on several factors such as available nutrients, endogenous auxin synthesis, organic compounds, and environment conditions. In this review, the most important aspects are described one by one, with some practical recommendations based on basic research in plant physiology and sharing our practical experience from over 20 years of research in this field. The main aim is to help new plant biotechnologists and increase the impact of the plant tissue culture industry worldwide.
Collapse
Affiliation(s)
- Taras P. Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | | |
Collapse
|
35
|
Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. PLANT CELL REPORTS 2024; 43:27. [PMID: 38163826 DOI: 10.1007/s00299-023-03083-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
KEY MESSAGE In this review, we made an attempt to create a holistic picture of plant response to a rising temperature environment and its impact by covering all aspects from temperature perception to thermotolerance. This comprehensive account describing the molecular mechanisms orchestrating these responses and potential mitigation strategies will be helpful for understanding the impact of global warming on plant life. Organisms need to constantly recalibrate development and physiology in response to changes in their environment. Climate change-associated global warming is amplifying the intensity and periodicity of these changes. Being sessile, plants are particularly vulnerable to variations happening around them. These changes can cause structural, metabolomic, and physiological perturbations, leading to alterations in the growth program and in extreme cases, plant death. In general, plants have a remarkable ability to respond to these challenges, supported by an elaborate mechanism to sense and respond to external changes. Once perceived, plants integrate these signals into the growth program so that their development and physiology can be modulated befittingly. This multifaceted signaling network, which helps plants to establish acclimation and survival responses enabled their extensive geographical distribution. Temperature is one of the key environmental variables that affect all aspects of plant life. Over the years, our knowledge of how plants perceive temperature and how they respond to heat stress has improved significantly. However, a comprehensive mechanistic understanding of the process still largely elusive. This review explores how an increase in the global surface temperature detrimentally affects plant survival and productivity and discusses current understanding of plant responses to high temperature (HT) and underlying mechanisms. We also highlighted potential resilience attributes that can be utilized to mitigate the impact of global warming.
Collapse
Affiliation(s)
- Pratyay Seth
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India
| | - Jose Sebastian
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India.
| |
Collapse
|
36
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
37
|
Zhang H, Mu Y, Zhang H, Yu C. Maintenance of stem cell activity in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1302046. [PMID: 38155857 PMCID: PMC10754534 DOI: 10.3389/fpls.2023.1302046] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Stem cells residing in plant apical meristems play an important role during postembryonic development. These stem cells are the wellspring from which tissues and organs of the plant emerge. The shoot apical meristem (SAM) governs the aboveground portions of a plant, while the root apical meristem (RAM) orchestrates the subterranean root system. In their sessile existence, plants are inextricably bound to their environment and must adapt to various abiotic stresses, including osmotic stress, drought, temperature fluctuations, salinity, ultraviolet radiation, and exposure to heavy metal ions. These environmental challenges exert profound effects on stem cells, potentially causing severe DNA damage and disrupting the equilibrium of reactive oxygen species (ROS) and Ca2+ signaling in these vital cells, jeopardizing their integrity and survival. In response to these challenges, plants have evolved mechanisms to ensure the preservation, restoration, and adaptation of the meristematic stem cell niche. This enduring response allows plants to thrive in their habitats over extended periods. Here, we presented a comprehensive overview of the cellular and molecular intricacies surrounding the initiation and maintenance of the meristematic stem cell niche. We also delved into the mechanisms employed by stem cells to withstand and respond to abiotic stressors.
Collapse
Affiliation(s)
- Huankai Zhang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yangwei Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Caiyu Yu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
38
|
Moeen-Ud-Din M, Yang S, Wang J. Auxin homeostasis in plant responses to heavy metal stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108210. [PMID: 38006792 DOI: 10.1016/j.plaphy.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Expeditious industrialization and anthropogenic activities have resulted in large amounts of heavy metals (HMs) being released into the environment. These HMs affect crop yields and directly threaten global food security. Therefore, significant efforts have been made to control the toxic effects of HMs on crops. When HMs are taken up by plants, various mechanisms are stimulated to alleviate HM stress, including the biosynthesis and transport of auxin in the plant. Interestingly, researchers have noted the significant potential of auxin in mediating resistance to HM stress, primarily by reducing uptake of metals, promoting chelation and sequestration in plant tissues, and mitigating oxidative damage. Both exogenous administration of auxin and manipulation of intrinsic auxin status are effective strategies to protect plants from the negative consequences of HMs stress. Regulation of genes and transcription factors related to auxin homeostasis has been shown to be related to varying degrees to the type and concentration of HMs. Therefore, to derive the maximum benefit from auxin-mediated mechanisms to attenuate HM toxicities, it is essential to gain a comprehensive understanding of signaling pathways involved in regulatory actions. This review primarily emphases on the auxin-mediated mechanisms participating in the injurious effects of HMs in plants. Thus, it will pave the way to understanding the mechanism of auxin homeostasis in regulating HM tolerance in plants and become a tool for developing sustainable strategies for agricultural growth in the future.
Collapse
Affiliation(s)
- Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
39
|
Yadav S, Kumar H, Mahajan M, Sahu SK, Singh SK, Yadav RK. Local auxin biosynthesis promotes shoot patterning and stem cell differentiation in Arabidopsis shoot apex. Development 2023; 150:dev202014. [PMID: 38054970 DOI: 10.1242/dev.202014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023]
Abstract
The shoot apical meristem (SAM) of higher plants comprises distinct functional zones. The central zone (CZ) is located at the meristem summit and harbors pluripotent stem cells. Stem cells undergo cell division within the CZ and give rise to descendants, which enter the peripheral zone (PZ) and become recruited into lateral organs. Stem cell daughters that are pushed underneath the CZ form rib meristem (RM). To unravel the mechanism of meristem development, it is essential to know how stem cells adopt distinct cell fates in the SAM. Here, we show that meristem patterning and floral organ primordia formation, besides auxin transport, are regulated by auxin biosynthesis mediated by two closely related genes of the TRYPTOPHAN AMINOTRANSFERASE family. In Arabidopsis SAM, TAA1 and TAR2 played a role in maintaining auxin responses and the identity of PZ cell types. In the absence of auxin biosynthesis and transport, the expression pattern of the marker genes linked to the patterning of the SAM is perturbed. Our results prove that local auxin biosynthesis, in concert with transport, controls the patterning of the SAM into the CZ, PZ and RM.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Harish Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Monika Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sangram Keshari Sahu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Sharad Kumar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| | - Ram Kishor Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab 140306, India
| |
Collapse
|
40
|
Smet W, Blilou I. A blast from the past: Understanding stem cell specification in plant roots using laser ablation. QUANTITATIVE PLANT BIOLOGY 2023; 4:e14. [PMID: 38034417 PMCID: PMC10685261 DOI: 10.1017/qpb.2023.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023]
Abstract
In the Arabidopsis root, growth is sustained by the meristem. Signalling from organiser cells, also termed the quiescent centre (QC), is essential for the maintenance and replenishment of the stem cells. Here, we highlight three publications from the founder of the concept of the stem cell niche in Arabidopsis and a pioneer in unravelling regulatory modules governing stem cell specification and maintenance, as well as tissue patterning in the root meristem: Ben Scheres. His research has tremendously impacted the plant field. We have selected three publications from the Scheres legacy, which can be considered a breakthrough in the field of plant developmental biology. van den Berg et al. (1995) and van den Berg et al. (1997) uncovered that positional information-directed patterning. Sabatini et al. (1999), discovered that auxin maxima determine tissue patterning and polarity. We describe how simple but elegant experimental designs have provided the foundation of our current understanding of the functioning of the root meristem.
Collapse
Affiliation(s)
- Wouter Smet
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
41
|
Gélinas-Marion A, Eléouët MP, Cook SD, Vander Schoor JK, Abel SAG, Nichols DS, Smith JA, Hofer JMI, Ross JJ. Plant Development in the Garden Pea as Revealed by Mutations in the Crd/PsYUC1 Gene. Genes (Basel) 2023; 14:2115. [PMID: 38136938 PMCID: PMC10742580 DOI: 10.3390/genes14122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/28/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
In common with other plant species, the garden pea (Pisum sativum) produces the auxin indole-3-acetic acid (IAA) from tryptophan via a single intermediate, indole-3-pyruvic acid (IPyA). IPyA is converted to IAA by PsYUC1, also known as Crispoid (Crd). Here, we extend our understanding of the developmental processes affected by the Crd gene by examining the phenotypic effects of crd gene mutations on leaves, flowers, and roots. We show that in pea, Crd/PsYUC1 is important for the initiation and identity of leaflets and tendrils, stamens, and lateral roots. We also report on aspects of auxin deactivation in pea.
Collapse
Affiliation(s)
- Ariane Gélinas-Marion
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - Morgane P. Eléouët
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK;
| | - Sam D. Cook
- Department of Chemistry, Umea University, Linnaeus vag 10, Kemi A3, 901 87 Umea, Sweden;
| | - Jacqueline K. Vander Schoor
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - Steven A. G. Abel
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Sandy Bay, Hobart 7001, Australia;
| | - Jason A. Smith
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| | - Julie M. I. Hofer
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK;
| | - John J. Ross
- School of Natural Sciences, University of Tasmania, Sandy Bay, Hobart 7001, Australia; (A.G.-M.); (J.K.V.S.); (S.A.G.A.); (J.A.S.)
| |
Collapse
|
42
|
Günther J, Halitschke R, Gershenzon J, Burow M. Heterologous expression of PtAAS1 reveals the metabolic potential of the common plant metabolite phenylacetaldehyde for auxin synthesis in planta. PHYSIOLOGIA PLANTARUM 2023; 175:e14078. [PMID: 38148231 DOI: 10.1111/ppl.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Aromatic aldehydes and amines are common plant metabolites involved in several specialized metabolite biosynthesis pathways. Recently, we showed that the aromatic aldehyde synthase PtAAS1 and the aromatic amino acid decarboxylase PtAADC1 contribute to the herbivory-induced formation of volatile 2-phenylethanol and its glucoside 2-phenylethyl-β-D-glucopyranoside in Populus trichocarpa. To unravel alternative metabolic fates of phenylacetaldehyde and 2-phenylethylamine beyond alcohol and alcohol glucoside formation, we heterologously expressed PtAAS1 and PtAADC1 in Nicotiana benthamiana and analyzed plant extracts using untargeted LC-qTOF-MS and targeted LC-MS/MS analysis. While the metabolomes of PtAADC1-expressing plants did not significantly differ from those of control plants, expression of PtAAS1 resulted in the accumulation of phenylacetic acid (PAA) and PAA-amino acid conjugates, identified as PAA-aspartate and PAA-glutamate. Herbivory-damaged poplar leaves revealed significantly induced accumulation of PAA-Asp, while levels of PAA remained unaltered upon herbivory. Transcriptome analysis showed that members of auxin-amido synthetase GH3 genes involved in the conjugation of auxins with amino acids were significantly upregulated upon herbivory in P. trichocarpa leaves. Overall, our data indicates that phenylacetaldehyde generated by poplar PtAAS1 serves as a hub metabolite linking the biosynthesis of volatile, non-volatile herbivory-induced specialized metabolites, and phytohormones, suggesting that plant growth and defense can be balanced on a metabolic level.
Collapse
Affiliation(s)
- Jan Günther
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rayko Halitschke
- Department of Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
43
|
Huang J, Li J, Chen H, Shen C, Wen Y. Phytotoxicity alleviation of imazethapyr to non-target plant wheat: active regulation between auxin and DIMBOA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116004-116017. [PMID: 37897577 DOI: 10.1007/s11356-023-30608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Effectively controlling target organisms while reducing the adverse effects of pesticides on non-target organisms is a crucial scientific inquiry and challenge in pesticide ecotoxicology research. Here, we studied the alleviation of herbicide (R)-imazethapyr [(R)-IM] to non-target plant wheat by active regulation between auxin and secondary metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA). We found (R)-IM reduced 32.4% auxin content in wheat leaves and induced 40.7% DIMBOA accumulation compared to the control group, which effortlessly disrupted the balance between wheat growth and defense. Transcriptomic results indicated that restoration of the auxin level in plants promoted the up-regulation of growth-related genes and the accumulation of DIMBOA up-regulated the expression of defense-related genes. Auxin and DIMBOA alleviated herbicide stress primarily through effects in the two directions of wheat growth and defense, respectively. Additionally, as a common precursor of auxin and DIMBOA, indole adopted a combined growth and defense strategy in response to (R)-IM toxicity, i.e., restoring growth development and enhancing the defense system. Future regulation of auxin and DIMBOA levels in plants may be possible through appropriate methods, thus regulating the plant growth-defense balance under herbicide stress. Our insight into the interference mechanism of herbicides to the plant growth-defense system will facilitate the design of improved strategies for herbicide detoxification.
Collapse
Affiliation(s)
- Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Wong C, Alabadí D, Blázquez MA. Spatial regulation of plant hormone action. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6089-6103. [PMID: 37401809 PMCID: PMC10575700 DOI: 10.1093/jxb/erad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Although many plant cell types are capable of producing hormones, and plant hormones can in most cases act in the same cells in which they are produced, they also act as signaling molecules that coordinate physiological responses between different parts of the plant, indicating that their action is subject to spatial regulation. Numerous publications have reported that all levels of plant hormonal pathways, namely metabolism, transport, and perception/signal transduction, can help determine the spatial ranges of hormone action. For example, polar auxin transport or localized auxin biosynthesis contribute to creating a differential hormone accumulation across tissues that is instrumental for specific growth and developmental responses. On the other hand, tissue specificity of cytokinin actions has been proposed to be regulated by mechanisms operating at the signaling stages. Here, we review and discuss current knowledge about the contribution of the three levels mentioned above in providing spatial specificity to plant hormone action. We also explore how new technological developments, such as plant hormone sensors based on FRET (fluorescence resonance energy transfer) or single-cell RNA-seq, can provide an unprecedented level of resolution in defining the spatial domains of plant hormone action and its dynamics.
Collapse
Affiliation(s)
- Cynthia Wong
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| |
Collapse
|
45
|
Pasternak T, Kircher S, Palme K, Pérez-Pérez JM. Regulation of early seedling establishment and root development in Arabidopsis thaliana by light and carbohydrates. PLANTA 2023; 258:76. [PMID: 37670114 PMCID: PMC10480265 DOI: 10.1007/s00425-023-04226-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
MAIN CONCLUSION Root development is regulated by sucrose and light during early seedling establishment through changes in the auxin response and chromatin topology. Light is a key environmental signal that regulates plant growth and development. The impact of light on development is primarily analyzed in the above-ground tissues, but little is known about the mechanisms by which light shapes the architecture of underground roots. Our study shows that carbohydrate starvation during skotomorphogenesis is accompanied by compaction of nuclei in the root apical meristem, which prevents cell cycle progression and leads to irreversible root differentiation in the absence of external carbohydrates, as evidenced by the lack of DNA replication and increased numbers of nuclei with specific chromatin characteristics. In these conditions, induction of photomorphogenesis was unable to restore seedling growth, as overall root growth was compromised. The addition of carbohydrates, either locally or systemically by transferring seedlings to sugar-containing medium, led to the induction of adventitious root formation with rapid recovery of seedling growth. Conversely, transferring in vitro carbohydrate-grown seedlings from light to dark transiently promoted cell elongation and significantly reduced root meristem size, but did not primarily affect cell cycle kinetics. We show that, in the presence of sucrose, dark incubation does not affect zonation in the root apical meristem but leads to shortening of the proliferative and transition zones. Sugar starvation led to a rapid increase in lysine demethylation of histone H3 at position K9, which preceded a rapid decline in cell cycle activity and activation of cell differentiation. In conclusion, carbohydrates are required for cell cycle activity, epigenetics reprogramming and for postmitotic cell elongation and auxin-regulated response in the root apical meristem.
Collapse
Affiliation(s)
- Taras Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Kircher
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Palme
- Faculty for Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104 Freiburg, Germany
- Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- ScreenSYSGmbH, Engesserstr. 4a, Freiburg, 79108 Germany
| | | |
Collapse
|
46
|
Tan C, Liang M, Luo Q, Zhang T, Wang W, Li S, Men S. AUX1, PIN3, and TAA1 collectively maintain fertility in Arabidopsis. PLANTA 2023; 258:68. [PMID: 37598130 DOI: 10.1007/s00425-023-04219-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
MAIN CONCLUSION We found that auxin synthesis gene TAA1 and auxin polar transport genes AUX1 and PIN3 collectively maintain fertility and seed size in Arabidopsis. Auxin plays a vital role in plant gametophyte development and embryogenesis. The auxin synthesis gene TAA1 and the auxin polar transport genes AUX1 and PIN3 are expressed during Arabidopsis gametophyte and seed development. However, aux1, pin3, and taa1 single mutants only exhibit mild reproductive defects. We, therefore, generated aux1-T pin3 taa1-k2 and aux1-T pin3-2 taa1-k1 triple mutants by crossing or CRISPR/Cas9 technique. These triple mutants displayed severe reproductive defects with approximately 70% and 77%, respectively, of the siliques failing to elongate after anthesis. Reciprocal crosses and microscopy analyses showed that the development of pollen and ovules in the aux1 pin3 taa1 mutants was normal, whereas the filaments were remarkably short, which might be the cause of the silique sterility. Further analyses indicated that the development and morphology of aux1 pin3 taa1 seeds were normal, but their size was smaller compared with that of the wild type. These results indicate that AUX1, PIN3, and TAA1 act in concert to maintain fertility and seed size in Arabidopsis.
Collapse
Affiliation(s)
- Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengxiao Liang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiong Luo
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenhui Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Suxin Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
47
|
Ma Y, Li X, Wang F, Zhang L, Zhou S, Che X, Yu D, Liu X, Li Z, Sun H, Yu G, Zhang H. Structural and biochemical characterization of the key components of an auxin degradation operon from the rhizosphere bacterium Variovorax. PLoS Biol 2023; 21:e3002189. [PMID: 37459330 PMCID: PMC10374108 DOI: 10.1371/journal.pbio.3002189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/27/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
Plant-associated bacteria play important regulatory roles in modulating plant hormone auxin levels, affecting the growth and yields of crops. A conserved auxin degradation (iad) operon was recently identified in the Variovorax genomes, which is responsible for root growth inhibition (RGI) reversion, promoting rhizosphere colonization and root growth. However, the molecular mechanism underlying auxin degradation by Variovorax remains unclear. Here, we systematically screened Variovorax iad operon products and identified 2 proteins, IadK2 and IadD, that directly associate with auxin indole-3-acetic acid (IAA). Further biochemical and structural studies revealed that IadK2 is a highly IAA-specific ATP-binding cassette (ABC) transporter solute-binding protein (SBP), likely involved in IAA uptake. IadD interacts with IadE to form a functional Rieske non-heme dioxygenase, which works in concert with a FMN-type reductase encoded by gene iadC to transform IAA into the biologically inactive 2-oxindole-3-acetic acid (oxIAA), representing a new bacterial pathway for IAA inactivation/degradation. Importantly, incorporation of a minimum set of iadC/D/E genes could enable IAA transformation by Escherichia coli, suggesting a promising strategy for repurposing the iad operon for IAA regulation. Together, our study identifies the key components and underlying mechanisms involved in IAA transformation by Variovorax and brings new insights into the bacterial turnover of plant hormones, which would provide the basis for potential applications in rhizosphere optimization and ecological agriculture.
Collapse
Affiliation(s)
- Yongjian Ma
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuzichao Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Feng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lingling Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengmin Zhou
- YDS Pharmatech, Albany, New York, United States of America
| | - Xing Che
- YDS Pharmatech, Albany, New York, United States of America
| | - Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Guimei Yu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
48
|
Fleitas AL, Castro A, Blumwald E, Vidal S. Functional specialization of chloroplast vesiculation ( CV) duplicated genes from soybean shows partial overlapping roles during stress-induced or natural senescence. FRONTIERS IN PLANT SCIENCE 2023; 14:1184020. [PMID: 37346131 PMCID: PMC10280078 DOI: 10.3389/fpls.2023.1184020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Soybean is a globally important legume crop which is highly sensitive to drought. The identification of genes of particular relevance for drought responses provides an important basis to improve tolerance to environmental stress. Chloroplast Vesiculation (CV) genes have been characterized in Arabidopsis and rice as proteins participating in a specific chloroplast-degradation vesicular pathway (CVV) during natural or stress-induced leaf senescence. Soybean genome contains two paralogous genes encoding highly similar CV proteins, CV1 and CV2. In this study, we found that expression of CV1 was differentially upregulated by drought stress in soybean contrasting genotypes exhibiting slow-wilting (tolerant) or fast-wilting (sensitive) phenotypes. CV1 reached higher induction levels in fast-wilting plants, suggesting a negative correlation between CV1 gene expression and drought tolerance. In contrast, autophagy (ATG8) and ATI-PS (ATI1) genes were induced to higher levels in slow-wilting plants, supporting a pro-survival role for these genes in soybean drought tolerance responses. The biological function of soybean CVs in chloroplast degradation was confirmed by analyzing the effect of conditional overexpression of CV2-FLAG fusions on the accumulation of specific chloroplast proteins. Functional specificity of CV1 and CV2 genes was assessed by analyzing their specific promoter activities in transgenic Arabidopsis expressing GUS reporter gene driven by CV1 or CV2 promoters. CV1 promoter responded primarily to abiotic stimuli (hyperosmolarity, salinity and oxidative stress), while the promoter of CV2 was predominantly active during natural senescence. Both promoters were highly responsive to auxin but only CV1 responded to other stress-related hormones, such as ABA, salicylic acid and methyl jasmonate. Moreover, the dark-induced expression of CV2, but not of CV1, was strongly inhibited by cytokinin, indicating similarities in the regulation of CV2 to the reported expression of Arabidopsis and rice CV genes. Finally, we report the expression of both CV1 and CV2 genes in roots of soybean and transgenic Arabidopsis, suggesting a role for the encoded proteins in root plastids. Together, the results indicate differential roles for CV1 and CV2 in development and in responses to environmental stress, and point to CV1 as a potential target for gene editing to improve crop performance under stress without compromising natural development.
Collapse
Affiliation(s)
- Andrea Luciana Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
49
|
Jiang X, Lai S, Kong D, Hou X, Shi Y, Fu Z, Liu Y, Gao L, Xia T. Al-induced CsUGT84J2 enhances flavonol and auxin accumulation to promote root growth in tea plants. HORTICULTURE RESEARCH 2023; 10:uhad095. [PMID: 37350798 PMCID: PMC10282599 DOI: 10.1093/hr/uhad095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Although Al is not necessary or even toxic to most plants, it is beneficial for the growth of tea plants. However, the mechanism through which Al promotes root growth in tea plants remains unclear. In the present study, we found that flavonol glycoside levels in tea roots increased following Al treatment, and the Al-induced UDP glycosyltransferase CsUGT84J2 was involved in this mechanism. Enzyme activity assays revealed that rCsUGT84J2 exhibited catalytic activity on multiple types of substrates, including phenolic acids, flavonols, and auxins in vitro. Furthermore, metabolic analysis with UPLC-QqQ-MS/MS revealed significantly increased flavonol and auxin glycoside accumulation in CsUGT84J2-overexpressing Arabidopsis thaliana. In addition, the expression of genes involved in the flavonol pathway as well as in the auxin metabolism, transport, and signaling pathways was remarkably enhanced. Additionally, lateral root growth and exogenous Al stress tolerance were significantly improved in transgenic A. thaliana. Moreover, gene expression and metabolic accumulation related to phenolic acids, flavonols, and auxin were upregulated in CsUGT84J2-overexpressing tea plants but downregulated in CsUGT84J2-silenced tea plants. In conclusion, Al treatment induced CsUGT84J2 expression, mediated flavonol and auxin glycosylation, and regulated endogenous auxin homeostasis in tea roots, thereby promoting the growth of tea plants. Our findings lay the foundation for studying the precise mechanisms through which Al promotes the growth of tea plants.
Collapse
Affiliation(s)
| | | | - Dexu Kong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaohan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | | | - Tao Xia
- Corresponding author: E-mail:
| |
Collapse
|
50
|
Rai PK, Sonne C, Kim KH. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162327. [PMID: 36813200 DOI: 10.1016/j.scitotenv.2023.162327] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The spread of heavy metal(loid)s at soil-food crop interfaces has become a threat to sustainable agricultural productivity, food security, and human health. The eco-toxic effects of heavy metals on food crops can be manifested through reactive oxygen species that have the potential to disturb seed germination, normal growth, photosynthesis, cellular metabolism, and homeostasis. This review provides a critical overview of stress tolerance mechanisms in food crops/hyperaccumulator plants against heavy metals and arsenic (HM-As). The HM-As antioxidative stress tolerance in food crops is associated with changes in metabolomics (physico-biochemical/lipidomics) and genomics (molecular level). Furthermore, HM-As stress tolerance can occur through plant-microbe, phytohormone, antioxidant, and signal molecule interactions. Information regarding the avoidance, tolerance, and stress resilience of HM-As should help pave the way to minimize food chain contamination, eco-toxicity, and health risks. Advanced biotechnological approaches (e.g., genome modification with CRISPR-Cas9 gene editing) in concert with traditional sustainable biological methods are useful options to develop 'pollution safe designer cultivars' with increased climate change resilience and public health risks mitigation. Further, the usage of HM-As tolerant hyperaccumulator biomass in biorefineries (e.g., environmental remediation, value added chemicals, and bioenergy) is advocated to realize the synergy between biotechnological research and socio-economic policy frameworks, which are inextricably linked with environmental sustainability. The biotechnological innovations, if directed toward 'cleaner climate smart phytotechnologies' and 'HM-As stress resilient food crops', should help open the new path to achieve sustainable development goals (SDGs) and a circular bioeconomy.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|