1
|
Vanneste S, Pei Y, Friml J. Mechanisms of auxin action in plant growth and development. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00851-2. [PMID: 40389696 DOI: 10.1038/s41580-025-00851-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/21/2025]
Abstract
The phytohormone auxin is a major signal coordinating growth and development in plants. The variety of its effects arises from its ability to form local auxin maxima and gradients within tissues, generated through directional cell-to-cell transport and elaborate metabolic control. These auxin distribution patterns instruct cells in a context-dependent manner to undergo predefined developmental transitions. In this Review, we discuss advances in auxin action at the level of homeostasis and signalling. We highlight key insights into the structural basis of PIN-mediated intercellular auxin transport and explore two novel non-transcriptional auxin signalling mechanisms: one involving intracellular Ca2+ transients and another involving cell-surface auxin perception that mediates global, ultrafast phosphorylation. Furthermore, we examine emerging evidence indicating the involvement of cyclic adenosine monophosphate as a second messenger in the transcriptional auxin response. Together, these recent developments in auxin research have profoundly deepened our understanding of the complex and diverse activities of auxin in plant growth and development.
Collapse
Affiliation(s)
- Steffen Vanneste
- HortiCell, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Yuanrong Pei
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Fañanás‐Pueyo I, Carrera‐Castaño G, Pernas M, Oñate‐Sánchez L. Signalling and regulation of plant development by carbon/nitrogen balance. PHYSIOLOGIA PLANTARUM 2025; 177:e70228. [PMID: 40269445 PMCID: PMC12018728 DOI: 10.1111/ppl.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
The two most abundant macronutrients in plant cells are carbon (C) and nitrogen (N). Coordination of their cellular metabolism is a fundamental factor in guaranteeing the optimal growth and development of plants. N availability and assimilation profoundly affect plant gene expression and modulate root and stem architecture, thus affecting whole plant growth and crop yield. N status also affects C fixation, as it is an important component of the photosynthetic machinery in leaves. Reciprocally, increasing C supply promotes N uptake and assimilation. There is extensive knowledge of the different mechanisms that plants use for sensing and signalling their nutritional status to regulate the assimilation, metabolism and transport of C and N. However, the crosstalk between C and N pathways has received much less attention. Plant growth and development are greatly affected by suboptimal C/N balance, which can arise from nutrient deficiencies or/and environmental cues. Mechanisms that integrate and respond to changes in this specific nutritional balance have started to arise. This review will examine the specific responses to C/N imbalance in plants by focusing on the main inorganic and organic metabolites involved, how they are sensed and transported, and the interconnection between the early signalling components and hormonal networks that underlies plants' adaptive responses.
Collapse
Affiliation(s)
- Iris Fañanás‐Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Gerardo Carrera‐Castaño
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Luis Oñate‐Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPMMadridSpain
| |
Collapse
|
3
|
Pérez-Henríquez P, Nagawa S, Liu Z, Pan X, Michniewicz M, Tang W, Rasmussen C, Cui X, Van Norman J, Strader L, Yang Z. PIN2-mediated self-organizing transient auxin flow contributes to auxin maxima at the tip of Arabidopsis cotyledons. Nat Commun 2025; 16:1380. [PMID: 39910050 PMCID: PMC11799338 DOI: 10.1038/s41467-024-55480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/09/2024] [Indexed: 02/07/2025] Open
Abstract
Directional auxin transport and formation of auxin maxima are critical for embryogenesis, organogenesis, pattern formation, and growth coordination in plants, but the mechanisms underpinning the initiation and establishment of these auxin dynamics are not fully understood. Here we show that a self-initiating and -terminating transient auxin flow along the marginal cells (MCs) contributes to the formation of an auxin maximum at the tip of Arabidopsis cotyledon that globally coordinates the interdigitation of puzzle-shaped pavement cells in the cotyledon epidermis. Prior to the interdigitation, indole butyric acid (IBA) is converted to indole acetic acid (IAA) to induce PIN2 accumulation and polarization in the marginal cells, leading to auxin flow toward and accumulation at the cotyledon tip. Once IAA levels at the cotyledon tip reaches a maximum, it activates pavement cell interdigitation as well as the accumulation of the IBA transporter TOB1 in MCs, which sequesters IBA to the vacuole and reduces IBA availability and IAA levels. The reduction of IAA levels results in PIN2 down-regulation and cessation of the auxin flow. Hence, our results elucidate a self-activating and self-terminating transient polar auxin transport system in cotyledons, contributing to the formation of localized auxin maxima that spatiotemporally coordinate pavement cell interdigitation.
Collapse
Affiliation(s)
- Patricio Pérez-Henríquez
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Shingo Nagawa
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongchi Liu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xue Pan
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON, M1C1A4, Canada
| | - Marta Michniewicz
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
- Bayer Crop Science, 700 W Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Wenxin Tang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Carolyn Rasmussen
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA, 92521, USA
| | - Jaimie Van Norman
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Lucia Strader
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Zhenbiao Yang
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA.
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China.
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Institute of Emerging Agricultural Technology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Wu Y, Yuan J, Shen L, Li Q, Li Z, Cao H, Zhu L, Liu D, Sun Y, Jia Q, Chen H, Wang W, Kudla J, Zhang W, Gai J, Zhang Q. A phosphorylation-regulated NPF transporter determines salt tolerance by mediating chloride uptake in soybean plants. EMBO J 2025; 44:923-946. [PMID: 39753952 PMCID: PMC11790925 DOI: 10.1038/s44318-024-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 02/05/2025] Open
Abstract
Chloride (Cl-) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl- uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.5, as the dominant gene locus influencing Cl- homeostasis in soybean (Glycine max). A natural SNP variation resulted in two haplotypes (GmNPF7.5HapA and GmNPF7.5HapB), which was associated with Cl- content. GmNPF7.5HapA mediated Cl- or nitrate (NO3-) uptake in a pH-dependent manner and exhibited higher permeability for Cl- over NO3-. The suppression of GmNPF7.5HapA expression decreased Cl- accumulation and salt damage in plants, whereas its overexpression showed the opposite effects. The elite haplotype GmNPF7.5HapB diminished Cl- transport activity independently from NO3- permeability, thus enhancing soybean salt tolerance. Furthermore, the protein kinase GmPI4Kγ4 could phosphorylate GmNPF7.5, which repressed Cl- uptake without affecting NO3- permeability. Our findings define a regulatory mechanism for Cl- control under NaCl stress, providing a strategy for the improvement of salt tolerance in soybean plants.
Collapse
Affiliation(s)
- Yunzhen Wu
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jingya Yuan
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Like Shen
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Qinxue Li
- Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, 314400, Hangzhou, China
| | - Zhuomeng Li
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Hongwei Cao
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lin Zhu
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Dan Liu
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yalu Sun
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qianru Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Wubin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Universität Münster, Münster, Germany
| | - Wenhua Zhang
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China
| | - Junyi Gai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Qun Zhang
- College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
5
|
Tan U. Application of indole-3-butyric acid (IBA) enhances agronomic, physiological and antioxidant traits of Salvia fruticosa under saline conditions: a practical approach. PeerJ 2025; 13:e18846. [PMID: 39807155 PMCID: PMC11727656 DOI: 10.7717/peerj.18846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Background Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like Salvia fruticosa. This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to Salvia fruticosa cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress. Methods The factors were arranged as three different IBA doses (0, 1, and 2 g/L) and four different salinity concentrations (0, 6, 12, and 18 dS/m) in controlled greenhouse conditions. Plant height (PH), flower spike length (FSL), fresh shoot length (FRL), root length (RL), fresh root weight (FRW), fresh shoot weight (FSW), dried root weight (DRW), dried shoot weight (DSW), root/shoot index, drog (g/plant), relative water content (RWC), relative membrane permeability (RMP), chlorophyll content (SPAD), extraction yield (%), DPPH (2,2-Diphenyl-1-picrylhydrazyl), phenol content, flavonoid content, and ABTS (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) values were measured. Results The results show that as salinity doses increased, all parameters showed a decline. However, with a one-time IBA application to the plant cuttings before the rooting stage, particularly at a concentration of 2 g/L, was effective for mitigating the negative effects of salinity stress. Across all measured parameters, IBA significantly reduced the adverse impacts of salinity on Salvia fruticosa.
Collapse
Affiliation(s)
- Uğur Tan
- Department of Field Crops, Aydin Adnan Menderes University, Aydin, Türkiye
| |
Collapse
|
6
|
Torra J, Alcántara-de la Cruz R, de Figueiredo MRA, Gaines TA, Jugulam M, Merotto A, Palma-Bautista C, Rojano-Delgado AM, Riechers DE. Metabolism of 2,4-D in plants: comparative analysis of metabolic detoxification pathways in tolerant crops and resistant weeds. PEST MANAGEMENT SCIENCE 2024; 80:6041-6052. [PMID: 39132883 DOI: 10.1002/ps.8373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The commercialization of 2,4-D (2,4-dichlorophenoxyacetic acid) latifolicide in 1945 marked the beginning of the selective herbicide market, with this active ingredient playing a pivotal role among commercial herbicides due to the natural tolerance of monocots compared with dicots. Due to its intricate mode of action, involving interactions within endogenous auxin signaling networks, 2,4-D was initially considered a low-risk herbicide to evolve weed resistance. However, the intensification of 2,4-D use has contributed to the emergence of 2,4-D-resistant broadleaf weeds, challenging earlier beliefs. This review explores 2,4-D tolerance in crops and evolved resistance in weeds, emphasizing an in-depth understanding of 2,4-D metabolic detoxification. Nine confirmed 2,4-D-resistant weed species, driven by rapid metabolism, highlight cytochrome P450 monooxygenases in Phase I and glycosyltransferases in Phase II as key enzymes. Resistance to 2,4-D may also involve impaired translocation associated with mutations in auxin/indole-3-acetic acid (Aux/IAA) co-receptor genes. Moreover, temperature variations affect 2,4-D efficacy, with high temperatures increasing herbicide metabolism rates and reducing weed control, while drought stress did not affect 2,4-D efficacy. Research on 2,4-D resistance has primarily focused on non-target-site resistance (NTSR) mechanisms, including 2,4-D metabolic detoxification, with limited exploration of the inheritance and genetic basis underlying these traits. Resistance to 2,4-D in weeds is typically governed by a single gene, either dominant or incompletely dominant, raising questions about gain-of-function or loss-of-function mutations that confer resistance. Future research should unravel the physiological and molecular-genetic basis of 2,4-D NTSR, exploring potential cross-resistance patterns and assessing fitness costs that may affect future evolution of auxin-resistant weeds. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Torra
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - Agrotecnio CERCA Center, Lleida, Spain
| | | | | | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Dean E Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Damodaran S, Strader LC. Factors governing cellular reprogramming competence in Arabidopsis adventitious root formation. Dev Cell 2024; 59:2745-2758.e3. [PMID: 39043189 PMCID: PMC11496020 DOI: 10.1016/j.devcel.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/25/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Developmental reprogramming allows for flexibility in growth and adaptation to changing environmental conditions. In plants, wounding events can result in new stem cell niches and lateral organs. Adventitious roots develop from aerial parts of the plant and are regulated by multiple stimuli, including wounding. Here, we find that Arabidopsis thaliana seedlings wounded at the hypocotyl-root junction reprogram certain pericycle cells to produce adventitious roots proximal to the wound site. We have determined that competence for this reprogramming is controlled; basal cells close to the wound site can produce adventitious roots, whereas cells distal from the wound site mostly cannot. We found that altering cytokinin response or indole-3-butyric acid (IBA)-to-(indole-3-acetic acid) IAA conversion resulted in an expanded adventitious root competence zone and delineated the connection between these pathways. Our work highlights the importance of endogenous IBA-derived auxin and its interaction with cytokinin in adventitious root formation and the regenerative properties of plants.
Collapse
Affiliation(s)
- Suresh Damodaran
- Department of Biology, Duke University, Durham, NC 27708, USA; Duke Center for Quantitative BioDesign, Durham, NC 27708, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA; Duke Center for Quantitative BioDesign, Durham, NC 27708, USA.
| |
Collapse
|
8
|
Yalamanchili K, Vermeer JEM, Scheres B, Willemsen V. Shaping root architecture: towards understanding the mechanisms involved in lateral root development. Biol Direct 2024; 19:87. [PMID: 39358783 PMCID: PMC11447941 DOI: 10.1186/s13062-024-00535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Plants have an amazing ability to adapt to their environment, and this extends beyond biochemical responses and includes developmental changes that help them better exploit resources and survive. The plasticity observed in individual plant morphology is associated with robust developmental pathways that are influenced by environmental factors. However, there is still much to learn about the mechanisms behind the formation of the root system. In Arabidopsis thaliana, the root system displays a hierarchical structure with primary and secondary roots. The process of lateral root (LR) organogenesis involves multiple steps, including LR pre-patterning, LR initiation, LR outgrowth, and LR emergence. The study of root developmental plasticity in Arabidopsis has led to significant progress in understanding the mechanisms governing lateral root formation. The importance of root system architecture lies in its ability to shape the distribution of roots in the soil, which affects the plant's ability to acquire nutrients and water. In Arabidopsis, lateral roots originate from pericycle cells adjacent to the xylem poles known as the xylem-pole-pericycle (XPP). The positioning of LRs along the primary root is underpinned by a repetitive pre-patterning mechanism that establishes primed sites for future lateral root formation. In a subset of primed cells, the memory of a transient priming stimulus leads to the formation of stable pre-branch sites and the establishment of founder cell identity. These founder cells undergo a series of highly organized periclinal and anticlinal cell divisions and expansion to form lateral root primordia. Subsequently, LRP emerges through three overlying cell layers of the primary root, giving rise to fully developed LRs. In addition to LRs Arabidopsis can also develop adventitious lateral roots from the primary root in response to specific stress signals such as wounding or environmental cues. Overall, this review creates an overview of the mechanisms governing root lateral root formation which can be a stepping stone to improved crop yields and a better understanding of plant adaptation to changing environments.
Collapse
Affiliation(s)
- Kavya Yalamanchili
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Joop E M Vermeer
- Laboratory of Molecular and Cellular Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Dölfors F, Ilbäck J, Bejai S, Fogelqvist J, Dixelius C. Nitrate transporter protein NPF5.12 and major latex-like protein MLP6 are important defense factors against Verticillium longisporum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4148-4164. [PMID: 38666306 PMCID: PMC11233413 DOI: 10.1093/jxb/erae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Plant defense responses to the soil-borne fungus Verticillium longisporum causing stem stripe disease on oilseed rape (Brassica napus) are poorly understood. In this study, a population of recombinant inbred lines (RILs) using the Arabidopsis accessions Sei-0 and Can-0 was established. Composite interval mapping, transcriptome data, and T-DNA mutant screening identified the NITRATE/PEPTIDE TRANSPORTER FAMILY 5.12 (AtNPF5.12) gene as being associated with disease susceptibility in Can-0. Co-immunoprecipitation revealed interaction between AtNPF5.12 and the MAJOR LATEX PROTEIN family member AtMLP6, and fluorescence microscopy confirmed this interaction in the plasma membrane and endoplasmic reticulum. CRISPR/Cas9 technology was applied to mutate the NPF5.12 and MLP6 genes in B. napus. Elevated fungal growth in the npf5.12 mlp6 double mutant of both oilseed rape and Arabidopsis demonstrated the importance of these genes in defense against V. longisporum. Colonization of this fungus depends also on available nitrates in the host root. Accordingly, the negative effect of nitrate depletion on fungal growth was less pronounced in Atnpf5.12 plants with impaired nitrate transport. In addition, suberin staining revealed involvement of the NPF5.12 and MLP6 genes in suberin barrier formation. Together, these results demonstrate a dependency on multiple plant factors that leads to successful V. longisporum root infection.
Collapse
Affiliation(s)
- Fredrik Dölfors
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Jonas Ilbäck
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Sarosh Bejai
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Johan Fogelqvist
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Christina Dixelius
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| |
Collapse
|
10
|
Hammes UZ, Pedersen BP. Structure and Function of Auxin Transporters. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:185-209. [PMID: 38211951 DOI: 10.1146/annurev-arplant-070523-034109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Auxins, a group of central hormones in plant growth and development, are transported by a diverse range of transporters with distinct biochemical and structural properties. This review summarizes the current knowledge on all known auxin transporters with respect to their biochemical and biophysical properties and the methods used to characterize them. In particular, we focus on the recent advances that were made concerning the PIN-FORMED family of auxin exporters. Insights derived from solving their structures have improved our understanding of the auxin export process, and we discuss the current state of the art on PIN-mediated auxin transport, including the use of biophysical methods to examine their properties. Understanding the mechanisms of auxin transport is crucial for understanding plant growth and development, as well as for the development of more effective strategies for crop production and plant biotechnology.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | | |
Collapse
|
11
|
Pérez-Henríquez P, Nagawa S, Liu Z, Pan X, Michniewicz M, Tang W, Rasmussen C, Van Norman J, Strader L, Yang Z. PIN2-mediated self-organizing transient auxin flow contributes to auxin maxima at the tip of Arabidopsis cotyledons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.599792. [PMID: 38979163 PMCID: PMC11230289 DOI: 10.1101/2024.06.24.599792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Directional auxin transport and formation of auxin maxima are critical for embryogenesis, organogenesis, pattern formation, and growth coordination in plants, but the mechanisms underpinning the initiation and establishment of these auxin dynamics are not fully understood. Here we show that a self-initiating and -terminating transient auxin flow along the marginal cells (MCs) contributes to the formation of an auxin maximum at the tip of Arabidopsis cotyledon that globally coordinates the interdigitation of puzzle-shaped pavement cells in the cotyledon epidermis. Prior to the interdigitation, indole butyric acid (IBA) is converted to indole acetic acid (IAA) to induce PIN2 accumulation and polarization in the marginal cells, leading to auxin flow toward and accumulation at the cotyledon tip. When IAA levels at the cotyledon tip reaches a maximum, it activates pavement cell interdigitation as well as the accumulation of the IBA transporter TOB1 in MCs, which sequesters IBA to the vacuole and reduces IBA availability and IAA levels. The reduction of IAA levels results in PIN2 down-regulation and cessation of the auxin flow. Hence, our results elucidate a self-activating and self-terminating transient polar auxin transport system in cotyledons, contributing to the formation of localized auxin maxima that spatiotemporally coordinate pavement cell interdigitation.
Collapse
Affiliation(s)
- Patricio Pérez-Henríquez
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shingo Nagawa
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongchi Liu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xue Pan
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C1A4, Canada
| | | | - Wenxin Tang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Carolyn Rasmussen
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Jaimie Van Norman
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Zhenbiao Yang
- Institute of Integrated Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- The Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Cowling CL, Homayouni AL, Callwood JB, McReynolds MR, Khor J, Ke H, Draves MA, Dehesh K, Walley JW, Strader LC, Kelley DR. ZmPILS6 is an auxin efflux carrier required for maize root morphogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313216121. [PMID: 38781209 PMCID: PMC11145266 DOI: 10.1073/pnas.2313216121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.
Collapse
Affiliation(s)
- Craig L. Cowling
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | | | - Jodi B. Callwood
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Maxwell R. McReynolds
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Jasper Khor
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Haiyan Ke
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Melissa A. Draves
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| | - Katayoon Dehesh
- Botany and Plant Sciences Department, University of California, Riverside, CA92521
| | - Justin W. Walley
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | | | - Dior R. Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
13
|
Roy S, Torres-Jerez I, Zhang S, Liu W, Schiessl K, Jain D, Boschiero C, Lee HK, Krom N, Zhao PX, Murray JD, Oldroyd GED, Scheible WR, Udvardi M. The peptide GOLVEN10 alters root development and noduletaxis in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:607-625. [PMID: 38361340 DOI: 10.1111/tpj.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.
Collapse
Affiliation(s)
- Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, Tennessee, 37209, USA
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | - Ivone Torres-Jerez
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
| | - Shulan Zhang
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
| | - Wei Liu
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | | | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, Tennessee, 37209, USA
| | | | - Hee-Kyung Lee
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
| | - Nicholas Krom
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | - Patrick X Zhao
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | - Jeremy D Murray
- Shanghai Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Michael Udvardi
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
- University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
15
|
Cai Z, Dai Y, Jin X, Xu H, Huang Z, Xie Z, Yu X, Luo J. Ambient temperature regulates root circumnutation in rice through the ethylene pathway: transcriptome analysis reveals key genes involved. FRONTIERS IN PLANT SCIENCE 2024; 15:1348295. [PMID: 38525142 PMCID: PMC10957643 DOI: 10.3389/fpls.2024.1348295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Plant roots are constantly prepared to adjust their growth trajectories to avoid unfavorable environments, and their ability to reorient is particularly crucial for survival. Under laboratory conditions, this continuous reorientation of the root tip is manifested as coiling or waving, which we refer to as root circumnutation. However, the effect of ambient temperature (AT) on root circumnutation remains unexplored. In this study, rice seedlings were employed to assess the impact of varying ATs on root circumnutation. The role of ethylene in mediating root circumnutation under elevated AT was examined using the ethylene biosynthesis inhibitor aminooxyacetic acid (AOA) and the ethylene perception antagonist silver thiosulfate (STS). Furthermore, transcriptome sequencing, weighted gene co-expression network analysis, and real-time quantitative PCR were utilized to analyze gene expressions in rice root tips under four distinct treatments: 25°C, 35°C, 35°C+STS, and 35°C+AOA. As a result, genes associated with ethylene synthesis and signaling (OsACOs and OsERFs), auxin synthesis and transport (OsYUCCA6, OsABCB15, and OsNPFs), cell elongation (OsEXPAs, OsXTHs, OsEGL1, and OsEXORDIUMs), as well as the inhibition of root curling (OsRMC) were identified. Notably, the expression levels of these genes increased with rising temperatures above 25°C. This study is the first to demonstrate that elevated AT can induce root circumnutation in rice via the ethylene pathway and proposes a potential molecular model through the identification of key genes. These findings offer valuable insights into the growth regulation mechanism of plant roots under elevated AT conditions.
Collapse
Affiliation(s)
- Zeping Cai
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Yinuo Dai
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Xia Jin
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Hui Xu
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Zhen Huang
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Zhenyu Xie
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Xudong Yu
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
| | - Jiajia Luo
- School of Tropical Agriculture and Forestry, Hainan University, Hainan, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
16
|
Jan M, Muhammad S, Jin W, Zhong W, Zhang S, Lin Y, Zhou Y, Liu J, Liu H, Munir R, Yue Q, Afzal M, Wang G. Modulating root system architecture: cross-talk between auxin and phytohormones. FRONTIERS IN PLANT SCIENCE 2024; 15:1343928. [PMID: 38390293 PMCID: PMC10881875 DOI: 10.3389/fpls.2024.1343928] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024]
Abstract
Root architecture is an important agronomic trait that plays an essential role in water uptake, soil compactions, nutrient recycling, plant-microbe interactions, and hormone-mediated signaling pathways. Recently, significant advancements have been made in understanding how the complex interactions of phytohormones regulate the dynamic organization of root architecture in crops. Moreover, phytohormones, particularly auxin, act as internal regulators of root development in soil, starting from the early organogenesis to the formation of root hair (RH) through diverse signaling mechanisms. However, a considerable gap remains in understanding the hormonal cross-talk during various developmental stages of roots. This review examines the dynamic aspects of phytohormone signaling, cross-talk mechanisms, and the activation of transcription factors (TFs) throughout various developmental stages of the root life cycle. Understanding these developmental processes, together with hormonal signaling and molecular engineering in crops, can improve our knowledge of root development under various environmental conditions.
Collapse
Affiliation(s)
- Mehmood Jan
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sajid Muhammad
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weicai Jin
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| | - Wenhao Zhong
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaolong Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| | - Yanjie Lin
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yueni Zhou
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinlong Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haifeng Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| | - Raheel Munir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Muhammad Afzal
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, China
- Heyuan Division of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, Guangdong, China
| |
Collapse
|
17
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
18
|
Dash L, Swaminathan S, Šimura J, Gonzales CLP, Montes C, Solanki N, Mejia L, Ljung K, Zabotina OA, Kelley DR. Changes in cell wall composition due to a pectin biosynthesis enzyme GAUT10 impact root growth. PLANT PHYSIOLOGY 2023; 193:2480-2497. [PMID: 37606259 PMCID: PMC10663140 DOI: 10.1093/plphys/kiad465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as β-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to β-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.
Collapse
Affiliation(s)
- Linkan Dash
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Caitlin Leigh P Gonzales
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Iowa City, IA 50011, USA
| | - Neel Solanki
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Ludvin Mejia
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| |
Collapse
|
19
|
Radchuk V, Belew ZM, Gündel A, Mayer S, Hilo A, Hensel G, Sharma R, Neumann K, Ortleb S, Wagner S, Muszynska A, Crocoll C, Xu D, Hoffie I, Kumlehn J, Fuchs J, Peleke FF, Szymanski JJ, Rolletschek H, Nour-Eldin HH, Borisjuk L. SWEET11b transports both sugar and cytokinin in developing barley grains. THE PLANT CELL 2023; 35:2186-2207. [PMID: 36857316 DOI: 10.1093/plcell/koad055] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Zeinu M Belew
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Andre Gündel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Simon Mayer
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Goetz Hensel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JGUK
| | - Kerstin Neumann
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Steffen Wagner
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Aleksandra Muszynska
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Christoph Crocoll
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Deyang Xu
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Iris Hoffie
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Joerg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Fritz F Peleke
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Jedrzej J Szymanski
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Hussam H Nour-Eldin
- Faculty of Science, Department of Plant and Environmental Sciences, DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| |
Collapse
|
20
|
Lin YC, Tsay YF. Study of vacuole glycerate transporter NPF8.4 reveals a new role of photorespiration in C/N balance. NATURE PLANTS 2023; 9:803-816. [PMID: 37055555 DOI: 10.1038/s41477-023-01392-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/09/2023] [Indexed: 05/23/2023]
Abstract
The photorespiratory intermediate glycerate is known to be shuttled between the peroxisome and chloroplast. Here, localization of NPF8.4 in the tonoplast, together with the reduced vacuolar glycerate content displayed by an npf8.4 mutant and the glycerate efflux activity detected in an oocyte expression system, identifies NPF8.4 as a tonoplast glycerate influx transporter. Our study shows that expression of NPF8.4 and most photorespiration-associated genes, as well as the photorespiration rate, is upregulated in response to short-term nitrogen (N) depletion. We report growth retardation and early senescence phenotypes for npf8.4 mutants specifically upon N depletion, suggesting that the NPF8.4-mediated regulatory pathway for sequestering the photorespiratory carbon intermediate glycerate in vacuoles is important to alleviate the impact of an increased C/N ratio under N deficiency. Thus, our study of NPF8.4 reveals a novel role for photorespiration in N flux to cope with short-term N depletion.
Collapse
Affiliation(s)
- Yi-Chen Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
21
|
Avilez-Montalvo JR, Quintana-Escobar AO, Méndez-Hernández HA, Aguilar-Hernández V, Brito-Argáez L, Galaz-Ávalos RM, Uc-Chuc MA, Loyola-Vargas VM. Auxin-Cytokinin Cross Talk in Somatic Embryogenesis of Coffea canephora. PLANTS 2022; 11:plants11152013. [PMID: 35956493 PMCID: PMC9370429 DOI: 10.3390/plants11152013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Cytokinins (CK) are plant growth regulators involved in multiple physiological processes in plants. One less studied aspect is CK homeostasis (HM). The primary genes related to HM are involved in biosynthesis (IPT), degradation (CKX), and signaling (ARR). This paper demonstrates the effect of auxin (Aux) and CK and their cross talk in a Coffea canephora embryogenic system. The transcriptome and RT-qPCR suggest that Aux in pre-treatment represses biosynthesis, degradation, and signal CK genes. However, in the induction, there is an increase of genes implicated in the CK perception/signal, indicating perhaps, as in other species, Aux is repressing CK, and CK are inducing per se genes involved in its HM. This is reflected in the endogenous concentration of CK; pharmacology experiments helped study the effect of each plant growth regulator in our SE system. We conclude that the Aux–CK balance is crucial to directing somatic embryogenesis in C. canephora.
Collapse
Affiliation(s)
- Johny R. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Ana O. Quintana-Escobar
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor Aguilar-Hernández
- Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida 97205, Mexico;
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Rosa M. Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Miguel A. Uc-Chuc
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130 × 32 y 34, Mérida 97205, Mexico; (J.R.A.-M.); (A.O.Q.-E.); (H.A.M.-H.); (L.B.-A.); (R.M.G.-Á.); (M.A.U.-C.)
- Correspondence: ; Tel.: +52-999-942-83-30 (ext. 243)
| |
Collapse
|
22
|
Paschoal D, Costa JL, da Silva EM, da Silva FB, Capelin D, Ometto V, Aricetti JA, Carvalho GG, Pimpinato RF, de Oliveira RF, Carrera E, López-Díaz I, Rossi ML, Tornisielo V, Caldana C, Riano-Pachon DM, Cesarino I, Teixeira PJPL, Figueira A. Infection by Moniliophthora perniciosa reprograms tomato Micro-Tom physiology, establishes a sink, and increases secondary cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3651-3670. [PMID: 35176760 DOI: 10.1093/jxb/erac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.
Collapse
Affiliation(s)
- Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Juliana L Costa
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Fábia B da Silva
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Diogo Capelin
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Vitor Ometto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Juliana A Aricetti
- Laboratório Nacional de Biorrenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, 13083-100, Brazil
| | - Gabriel G Carvalho
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Rodrigo F Pimpinato
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Ricardo F de Oliveira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Esther Carrera
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Isabel López-Díaz
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Valdemar Tornisielo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Camila Caldana
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Diego M Riano-Pachon
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Igor Cesarino
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
23
|
Bustillo-Avendaño E, Serrano-Ron L, Moreno-Risueno MA. The Root Clock as a Signal Integrator System: Ensuring Balance for Survival. FRONTIERS IN PLANT SCIENCE 2022; 13:886700. [PMID: 35665188 PMCID: PMC9161171 DOI: 10.3389/fpls.2022.886700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The root system is essential for the survival of terrestrial plants, plant development, and adaptation to changing environments. The development of the root system relies on post-embryonic organogenesis and more specifically on the formation and growth of lateral roots (LR). The spacing of LR along the main root is underpinned by a precise prepatterning mechanism called the Root Clock. In Arabidopsis, the primary output of this mechanism involves the generation of periodic gene expression oscillations in a zone close to the root tip called the Oscillation Zone (OZ). Because of these oscillations, pre-branch sites (PBS) are established in the positions from which LR will emerge, although the oscillations can also possibly regulate the root wavy pattern and growth. Furthermore, we show that the Root Clock is present in LR. In this review, we describe the recent advances unraveling the inner machinery of Root Clock as well as the new tools to track the Root Clock activity. Moreover, we discuss the basis of how Arabidopsis can balance the creation of a repetitive pattern while integrating both endogenous and exogenous signals to adapt to changing environmental conditions. These signals can work as entrainment signals, but in occasions they also affect the periodicity and amplitude of the oscillatory dynamics in gene expression. Finally, we identify similarities with the Segmentation Clock of vertebrates and postulate the existence of a determination front delimiting the end of the oscillations in gene expression and initiating LR organogenesis through the activation of PBS in an ARF7 dependent-manner.
Collapse
Affiliation(s)
| | | | - Miguel A. Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Madrid, Spain
| |
Collapse
|
24
|
Abstract
From embryogenesis to fruit formation, almost every aspect of plant development and differentiation is controlled by the cellular accumulation or depletion of auxin from cells and tissues. The respective auxin maxima and minima are generated by cell-to-cell auxin transport via transporter proteins. Differential auxin accumulation as a result of such transport processes dynamically regulates auxin distribution during differentiation. In this review, we introduce all auxin transporter (families) identified to date and discuss the knowledge on prominent family members, namely, the PIN-FORMED exporters, ATP-binding cassette B (ABCB)-type transporters, and AUX1/LAX importers. We then concentrate on the biochemical features of these transporters and their regulation by posttranslational modifications and interactors.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture
- Agriculture Biotechnology Center, University of Maryland, College Park, Maryland 20742, USA
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
25
|
Jia Z, Giehl RFH, von Wirén N. Nutrient-hormone relations: Driving root plasticity in plants. MOLECULAR PLANT 2022; 15:86-103. [PMID: 34920172 DOI: 10.1016/j.molp.2021.12.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 05/25/2023]
Abstract
Optimal plant development requires root uptake of 14 essential mineral elements from the soil. Since the bioavailability of these nutrients underlies large variation in space and time, plants must dynamically adjust their root architecture to optimize nutrient access and acquisition. The information on external nutrient availability and whole-plant demand is translated into cellular signals that often involve phytohormones as intermediates to trigger a systemic or locally restricted developmental response. Timing and extent of such local root responses depend on the overall nutritional status of the plant that is transmitted from shoots to roots in the form of phytohormones or other systemic long-distance signals. The integration of these systemic and local signals then determines cell division or elongation rates in primary and lateral roots, the initiation, emergence, or elongation of lateral roots, as well as the formation of root hairs. Here, we review the cascades of nutrient-related sensing and signaling events that involve hormones and highlight nutrient-hormone relations that coordinate root developmental plasticity in plants.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany.
| |
Collapse
|
26
|
Pinto RT, Cardoso TB, Paiva LV, Benedito VA. Genomic and transcriptomic inventory of membrane transporters in coffee: Exploring molecular mechanisms of metabolite accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111018. [PMID: 34620453 DOI: 10.1016/j.plantsci.2021.111018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/07/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The genus Coffea (Rubiaceae) encompasses a group of perennial plant species, including a commodity crop from which seeds are roasted, ground, and infused to make one of the most appreciated beverages in the world. As an important tropical crop restricted to specific regions of the world, coffee production is highly susceptible to the effects of environmental instabilities (i.e., local year-to-year weather fluctuations and global climate change) and threatening pest pressures, not to mention an increasing quality rigor by consumers in industrialized countries. Specialized metabolites are substances that largely affect plant-environment interactions as well as how consumers experience agricultural products. Membrane transporters are key targets, albeit understudied, for understanding and tailoring the spatiotemporal distribution of specialized metabolites as they mediate and control molecular trafficking and substance accumulation. Therefore, we analyzed the transportome of C. canephora encoded within the 25,574 protein-coding genes annotated in the genome of this species and identified 1847 putative membrane transporters. Following, we mined 152 transcriptional profiles of C. canephora and C. arabica and performed a comprehensive co-expression analysis to identify transporters potentially involved in the accumulation of specialized metabolites associated with beverage quality and bioactivity attributes. In toto, this report points to an avenue of possibilities on Coffea genomic and transcriptomic data mining for genetic breeding strategies, which can lead to the development of new, resilient varieties for more sustainable coffee production systems.
Collapse
Affiliation(s)
- Renan T Pinto
- Division of Plant and Soil Sciences, West Virginia University, 3425 Agricultural Sciences Building, Morgantown, WV 26506-6108, USA; Molecular Biology Laboratory, Federal University of Lavras, Lavras, MG 37200-000, Brazil
| | - Thiago B Cardoso
- Molecular Biology Laboratory, Federal University of Lavras, Lavras, MG 37200-000, Brazil
| | - Luciano V Paiva
- Molecular Biology Laboratory, Federal University of Lavras, Lavras, MG 37200-000, Brazil
| | - Vagner A Benedito
- Division of Plant and Soil Sciences, West Virginia University, 3425 Agricultural Sciences Building, Morgantown, WV 26506-6108, USA.
| |
Collapse
|
27
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
28
|
Anfang M, Shani E. Transport mechanisms of plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102055. [PMID: 34102450 PMCID: PMC7615258 DOI: 10.1016/j.pbi.2021.102055] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Plant growth, development, and response to the environment are mediated by a group of small signaling molecules named hormones. Plants regulate hormone response pathways at multiple levels, including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit the unique ability to spatially control hormone distribution. In recent years, multiple transporters have been identified for most of the plant hormones. Here we present an updated snapshot of the known transporters for the hormones abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, salicylic acid, and strigolactone. We also describe new findings regarding hormone movement and elaborate on hormone substrate specificity and possible genetic redundancy in hormone transport and distribution. Finally, we discuss subcellular, cell-to-cell, and long-distance hormone movement and local hormone sinks that trigger or prevent hormone-mediated responses.
Collapse
Affiliation(s)
- Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
29
|
Chao ZF, Wang YL, Chen YY, Zhang CY, Wang PY, Song T, Liu CB, Lv QY, Han ML, Wang SS, Yan J, Lei MG, Chao DY. NPF transporters in synaptic-like vesicles control delivery of iron and copper to seeds. SCIENCE ADVANCES 2021; 7:eabh2450. [PMID: 34516912 PMCID: PMC8442890 DOI: 10.1126/sciadv.abh2450] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/13/2021] [Indexed: 05/18/2023]
Abstract
Accumulation of iron in seeds is essential for both plant reproduction and human nutrition. Transport of iron to seeds requires the chelator nicotianamine (NA) to prevent its precipitation in the plant vascular tissues. However, how NA is transported to the apoplast for forming metal-NA complexes remains unknown. Here, we report that two members of the nitrate/peptide transporter family, NAET1 and NAET2, function as NA transporters required for translocation of both iron and copper to seeds. We show that NAET1 and NAET2 are predominantly expressed in the shoot and root vascular tissues and mediate secretion of NA out of the cells in resembling the release of neurotransmitters from animal synaptic vesicles. These findings reveal an unusual mechanism of transmembrane transport in plants and uncover a fundamental aspect of plant nutrition that has implications for improving food nutrition and human health.
Collapse
Affiliation(s)
- Zhen-Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuan-Yuan Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chu-Ying Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science, Henan University, Kaifeng 457000, China
| | - Peng-Yun Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science, Henan University, Kaifeng 457000, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chu-Bin Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao-Yan Lv
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shan-Shan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming-Guang Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author.
| |
Collapse
|
30
|
Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int J Mol Sci 2021; 22:ijms22115508. [PMID: 34073675 PMCID: PMC8197090 DOI: 10.3390/ijms22115508] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Collapse
|
31
|
Fichtner F, Dissanayake IM, Lacombe B, Barbier F. Sugar and Nitrate Sensing: A Multi-Billion-Year Story. TRENDS IN PLANT SCIENCE 2021; 26:352-374. [PMID: 33281060 DOI: 10.1016/j.tplants.2020.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
Sugars and nitrate play a major role in providing carbon and nitrogen in plants. Understanding how plants sense these nutrients is crucial, most notably for crop improvement. The mechanisms underlying sugar and nitrate sensing are complex and involve moonlighting proteins such as the nitrate transporter NRT1.1/NFP6.3 or the glycolytic enzyme HXK1. Major components of nutrient signaling, such as SnRK1, TOR, and HXK1, are relatively well conserved across eukaryotes, and the diversification of components such as the NRT1 family and the SWEET sugar transporters correlates with plant terrestrialization. In plants, Tre6P plays a hormone-like role in plant development. In addition, nutrient signaling has evolved to interact with the more recent hormone signaling, allowing fine-tuning of physiological and developmental responses.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
32
|
Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin Metabolism in Plants. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039867. [PMID: 33431579 PMCID: PMC7919392 DOI: 10.1101/cshperspect.a039867] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major natural auxin in plants, indole-3-acetic acid (IAA), orchestrates a plethora of developmental responses that largely depend on the formation of auxin concentration gradients within plant tissues. Together with inter- and intracellular transport, IAA metabolism-which comprises biosynthesis, conjugation, and degradation-modulates auxin gradients and is therefore critical for plant growth. It is now very well established that IAA is mainly produced from Trp and that the IPyA pathway is a major and universally conserved biosynthetic route in plants, while other redundant pathways operate in parallel. Recent findings have shown that metabolic inactivation of IAA is also redundantly performed by oxidation and conjugation processes. An exquisite spatiotemporal expression of the genes for auxin synthesis and inactivation have been shown to drive several plant developmental processes. Moreover, a group of transcription factors and epigenetic regulators controlling the expression of auxin metabolic genes have been identified in past years, which are illuminating the road to understanding the molecular mechanisms behind the coordinated responses of local auxin metabolism to specific cues. Besides transcriptional regulation, subcellular compartmentalization of the IAA metabolism and posttranslational modifications of the metabolic enzymes are emerging as important contributors to IAA homeostasis. In this review, we summarize the current knowledge on (1) the pathways for IAA biosynthesis and inactivation in plants, (2) the influence of spatiotemporally regulated IAA metabolism on auxin-mediated responses, and (3) the regulatory mechanisms that modulate IAA levels in response to external and internal cues during plant development.
Collapse
Affiliation(s)
| | | | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
33
|
Nenadić M, Vermeer JEM. Dynamic cytokinin signalling landscapes during lateral root formation in Arabidopsis. QUANTITATIVE PLANT BIOLOGY 2021; 2:e13. [PMID: 37077210 PMCID: PMC10095801 DOI: 10.1017/qpb.2021.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023]
Abstract
By forming lateral roots, plants expand their root systems to improve anchorage and absorb more water and nutrients from the soil. Each phase of this developmental process in Arabidopsis is tightly regulated by dynamic and continuous signalling of the phytohormones cytokinin and auxin. While the roles of auxin in lateral root organogenesis and spatial accommodation by overlying cell layers have been well studied, insights on the importance of cytokinin is still somewhat limited. Cytokinin is a negative regulator of lateral root formation with versatile modes of action being activated at different root developmental zones. Here, we review the latest progress made towards our understanding of these spatially separated mechanisms of cytokinin-mediated signalling that shape lateral root initiation, outgrowth and emergence and highlight some of the enticing open questions.
Collapse
Affiliation(s)
- Milica Nenadić
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| | - Joop E. M. Vermeer
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Author for correspondence: Joop E. M. Vermeer, E-mail:
| |
Collapse
|
34
|
Isoda R, Yoshinari A, Ishikawa Y, Sadoine M, Simon R, Frommer WB, Nakamura M. Sensors for the quantification, localization and analysis of the dynamics of plant hormones. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:542-557. [PMID: 33231903 PMCID: PMC7898640 DOI: 10.1111/tpj.15096] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/19/2020] [Indexed: 05/13/2023]
Abstract
Plant hormones play important roles in plant growth and development and physiology, and in acclimation to environmental changes. The hormone signaling networks are highly complex and interconnected. It is thus important to not only know where the hormones are produced, how they are transported and how and where they are perceived, but also to monitor their distribution quantitatively, ideally in a non-invasive manner. Here we summarize the diverse set of tools available for quantifying and visualizing hormone distribution and dynamics. We provide an overview over the tools that are currently available, including transcriptional reporters, degradation sensors, and luciferase and fluorescent sensors, and compare the tools and their suitability for different purposes.
Collapse
Affiliation(s)
- Reika Isoda
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
| | - Akira Yoshinari
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
| | - Yuuma Ishikawa
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
- Molecular PhysiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Mayuri Sadoine
- Molecular PhysiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Rüdiger Simon
- Developmental GeneticsHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Wolf B. Frommer
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
- Molecular PhysiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Masayoshi Nakamura
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8601Japan
| |
Collapse
|
35
|
Peco JD, Higueras P, Campos JA, Olmedilla A, Romero-Puertas MC, Sandalio LM. Deciphering lead tolerance mechanisms in a population of the plant species Biscutella auriculata L. from a mining area: Accumulation strategies and antioxidant defenses. CHEMOSPHERE 2020; 261:127721. [PMID: 32745740 DOI: 10.1016/j.chemosphere.2020.127721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The uptake and distribution of Pb and the mechanisms involved in the metal tolerance have been investigated in a mine population of Biscutella auriculata. Seedlings were exposed to 125 μM Pb(NO3)2 for 15 days under semihydroponic conditions. The results showed an increase in the size of Pb-treated seedlings and symptoms of toxicity were not observed. ICP-OES analyses showed that Pb accumulation was restricted to root tissue. Imaging of Pb accumulation by dithizone histochemistry revealed the presence of the metal in vacuoles and cell wall in root cells. The accumulation of Pb in vacuoles could be stimulated by an increase in phytochelatin PC2 content. Pb did not promote oxidative damage and this is probably due the increase of antioxidative defenses. In the leaves, Pb produced a significant increase in superoxide dismutase activity, while in roots an increase in catalase and components of the Foyer- Halliwell-Asada cycle were observed. The results indicated that Biscutella auriculata has a high capacity to tolerate Pb and this is mainly due to a very efficient mechanism to sequester the metal in roots and a capacity to avoid oxidative stress. This species could therefore be very useful for phytostabilization and repopulation of areas contaminated with Pb.
Collapse
Affiliation(s)
- J D Peco
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha (UCLM), Ronda de Calatrava 7, 13071, Ciudad Real, Spain; Instituto de Geología Aplicada, Universidad de Castilla-La Mancha (UCLM), Plaza de Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
| | - P Higueras
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha (UCLM), Plaza de Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
| | - J A Campos
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha (UCLM), Ronda de Calatrava 7, 13071, Ciudad Real, Spain
| | - A Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental Del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419 E, 18080, Granada, Spain
| | - M C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental Del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419 E, 18080, Granada, Spain
| | - L M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental Del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419 E, 18080, Granada, Spain.
| |
Collapse
|
36
|
Shitan N, Yazaki K. Dynamism of vacuoles toward survival strategy in plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183127. [DOI: 10.1016/j.bbamem.2019.183127] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
|
37
|
The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Proc Natl Acad Sci U S A 2020; 117:31500-31509. [PMID: 33219124 PMCID: PMC7733822 DOI: 10.1073/pnas.2013305117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Active membrane transport of plant hormones and their related compounds is an essential process that determines the distribution of the compounds within plant tissues and, hence, regulates various physiological events. Here, we report that the Arabidopsis NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY 7.3 (NPF7.3) protein functions as a transporter of indole-3-butyric acid (IBA), a precursor of the major endogenous auxin indole-3-acetic acid (IAA). When expressed in yeast, NPF7.3 mediated cellular IBA uptake. Loss-of-function npf7.3 mutants showed defective root gravitropism with reduced IBA levels and auxin responses. Nevertheless, the phenotype was restored by exogenous application of IAA but not by IBA treatment. NPF7.3 was expressed in pericycle cells and the root tip region including root cap cells of primary roots where the IBA-to-IAA conversion occurs. Our findings indicate that NPF7.3-mediated IBA uptake into specific cells is required for the generation of appropriate auxin gradients within root tissues.
Collapse
|
38
|
Trujillo-Hernandez JA, Bariat L, Enders TA, Strader LC, Reichheld JP, Belin C. A glutathione-dependent control of the indole butyric acid pathway supports Arabidopsis root system adaptation to phosphate deprivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4843-4857. [PMID: 32309856 PMCID: PMC7410191 DOI: 10.1093/jxb/eraa195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/17/2020] [Indexed: 05/04/2023]
Abstract
Root system architecture results from a highly plastic developmental process to adapt to environmental conditions. In particular, the development of lateral roots and root hair growth are constantly optimized to the rhizosphere properties, including biotic and abiotic constraints. The development of the root system is tightly controlled by auxin, the driving morphogenic hormone in plants. Glutathione, a major thiol redox regulator, is also critical for root development but its interplay with auxin is scarcely understood. Previous work showed that glutathione deficiency does not alter root responses to indole acetic acid (IAA), the main active auxin in plants. Because indole butyric acid (IBA), another endogenous auxinic compound, is an important source of IAA for the control of root development, we investigated the crosstalk between glutathione and IBA during root development. We show that glutathione deficiency alters lateral roots and root hair responses to exogenous IBA but not IAA. Detailed genetic analyses suggest that glutathione regulates IBA homeostasis or conversion to IAA in the root cap. Finally, we show that both glutathione and IBA are required to trigger the root hair response to phosphate deprivation, suggesting an important role for this glutathione-dependent regulation of the auxin pathway in plant developmental adaptation to its environment.
Collapse
Affiliation(s)
- José A Trujillo-Hernandez
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
| | - Laetitia Bariat
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
| | - Tara A Enders
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
- Present address: Hofstra University, Department of Biology, Hempstead, NY 11549, USA
| | - Lucia C Strader
- NSF Science and Technology Center for Engineering Mechanobiology, Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Jean-Philippe Reichheld
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
| | - Christophe Belin
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR, Perpignan, France
- Correspondence:
| |
Collapse
|
39
|
Yang S, Bai J, Wang J. TDIF peptides regulate root growth by affecting auxin homeostasis and PINs expression in Arabidopsis thaliana. PLANTA 2020; 251:109. [PMID: 32472155 DOI: 10.1007/s00425-020-03406-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
TDIF and TDIF-like peptides in excess simultaneously facilitate primary root elongation and lateral root formation through regulating auxin distribution and transport. Tracheary element differentiation inhibitory factor (TDIF) plays key roles in mediating cell-cell communication and stem cell maintenance during vascular development. Recently, TDIF has also been linked to lateral root (LR) organogenesis through Brassinosteroid Insensitive 2 (BIN2) action. In this work, by comparing the in vitro and in vivo activities of AtCLE41-encoded TDIF and one poplar-derived TDIF-like peptide in Arabidopsis thaliana, we demonstrated that both TDIFs promoted primary root (PR) growth and stimulated LR formation. Without affecting auxin biosynthesis and catabolism, TDIFs suppressed the auxin maxima at PR apex but intensified the auxin accumulation at LR initiation sites along the longitudinal axis of PR. TDIF did not alter root sensitivity to exogenous auxin and mutants with varied endogenous auxin levels responded to TDIF peptides in a wild-type manner but to a lesser extent. Intriguingly, TDIF specifically upregulated the transcript abundance of PINs and multiple pin mutants displayed insensitivity to TDIF, demonstrating that PIN-mediated polar auxin transport (PAT) is indispensably required for the TDIF-induced root phenotypes. Taken together, our results revealed that TDIF might target PAT via mobilizing auxin efflux carriers to dynamically regulate the auxin signaling output and hence facilitate PR growth and LR formation.
Collapse
Affiliation(s)
- Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jingping Bai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
40
|
Sultan S, Snider J, Conn A, Li M, Topp CN, Navlakha S. A Statistical Growth Property of Plant Root Architectures. PLANT PHENOMICS (WASHINGTON, D.C.) 2020; 2020:2073723. [PMID: 33313546 PMCID: PMC7706341 DOI: 10.34133/2020/2073723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/03/2020] [Indexed: 05/14/2023]
Abstract
Numerous types of biological branching networks, with varying shapes and sizes, are used to acquire and distribute resources. Here, we show that plant root and shoot architectures share a fundamental design property. We studied the spatial density function of plant architectures, which specifies the probability of finding a branch at each location in the 3-dimensional volume occupied by the plant. We analyzed 1645 root architectures from four species and discovered that the spatial density functions of all architectures are population-similar. This means that despite their apparent visual diversity, all of the roots studied share the same basic shape, aside from stretching and compression along orthogonal directions. Moreover, the spatial density of all architectures can be described as variations on a single underlying function: a Gaussian density truncated at a boundary of roughly three standard deviations. Thus, the root density of any architecture requires only four parameters to specify: the total mass of the architecture and the standard deviations of the Gaussian in the three (x, y, z) growth directions. Plant shoot architectures also follow this design form, suggesting that two basic plant transport systems may use similar growth strategies.
Collapse
Affiliation(s)
- Sam Sultan
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA
| | - Joseph Snider
- University of California San Diego, Institute for Neural Computation, La Jolla, CA, USA
| | - Adam Conn
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA
| | - Mao Li
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Saket Navlakha
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY, USA
| |
Collapse
|