1
|
Howard K, Ferris WF, van de Vyver M. The characterization and comparison of femoral bone-derived skeletal stem cells. Biochimie 2025; 233:88-98. [PMID: 40023362 DOI: 10.1016/j.biochi.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Skeletal stem cells (SSCs) reside in various niche locations within long bones to maintain bone homeostasis and facilitate fracture repair. Bone fragility, associated with ageing, increases the susceptibility of the femoral head to fractures due to an increase in bone adipocytes and concomitant loss of structural integrity. However, the specific contribution of epiphyseal SSCs to fragility is unknown. To explore this, a comparative analysis was performed on the transcriptional profiles and lineage commitment of Wistar rat femoral SSCs derived from the bone marrow (BM-), diaphyseal cortical bone (CB-) and proximal epiphyseal trabecular bone (PF-SSCs) isolated from the same long bones. SSCs were characterized based on morphology, immunophenotype (CD90/CD45), growth rate (population doubling time), gene expression profiles and differentiation capacity (Oil Red O, Alizarin Red S). qRT-PCR micro-arrays were performed on SSCs to evaluate the expression of stemness, SSC and lineage-specific markers in both undifferentiated and differentiated states. Our findings support the hypothesis that SSCs from different bone regions exhibit distinct transcriptional profiles, reflecting their specific niche environments. CB-SSCs displayed superior osteogenic potential as evidenced by the expression of key osteogenic genes and higher levels of mineralization. In contrast, PF-SSCs had a reduced osteogenic capacity with a higher adipogenic potential. Overall, the study revealed the importance of niche-specific stem cell properties for use in regenerative medicine applications and provides insight into the potential role of PF-SSCs in bone fragility and fracture risk.
Collapse
Affiliation(s)
- Kayla Howard
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - William Frank Ferris
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Mari van de Vyver
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
2
|
Wang Z, Qin Q, Thottappillil N, Gomez Salazar M, Cherief M, Archer M, Balaji D, James AW. Pdgfrβ marks distinct mesenchymal and pericyte populations within the periosteum with overlapping cellular features. Stem Cells 2025; 43:sxaf020. [PMID: 40237625 DOI: 10.1093/stmcls/sxaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Platelet-derived growth factor receptor β (Pdgfrβ) is a cell surface marker often present on mesenchymal progenitor cells, playing a key role in regulating cell proliferation, migration, and survival. In the skeleton, Pdgfrβ-positive cells have significant osteogenic potential, differentiating into osteoblasts after injury to promote bone repair and homeostasis. However, multiple cell types within bone tissue express Pdgfrβ and their overlapping or distinct cellular features remain incompletely understood. Using a combination of single-cell RNA sequencing and transgenic Pdgfrβ-CreERT2-mT/mG reporter mice, we examined Pdgfrβ+ cells in mouse long bone periosteum. By single-cell analysis, Pdgfrb expression was found among a subset of mesenchymal cells and universally among pericytes within the periosteum. Histologic analysis of Pdgfrβ reporter activity confirmed a combination of perivascular and non-perivascular Pdgfrβ-expressing cell types. When isolated, Pdgfrβ reporter+ skeletal periosteal cells showed enhanced colony-forming, proliferative, migratory, and osteogenic capacities. Pdgfrβ reporter+ cells were further distinguished by co-expression of the pericyte marker CD146, which yielded Pdgfrβ+CD146+ pericytes and Pdgfrβ+CD146- skeletal mesenchymal cells. Colony forming and proliferative capacity were most highly enriched among Pdgfrβ+CD146+ pericytes, while osteogenic differentiation was similarly enriched across both Pdgfrβ+ cell fractions. In summary, Pdgfrβ expression identifies multiple subsets of progenitor cells within long bone periosteum with or without perivascular distribution and with overlapping cellular features.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Deva Balaji
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Zhao H, Tu X. The potential key genes within focal adhesion that regulate mesenchymal stem cells osteogenesis or adipogenesis in microgravity related disuse osteoporosis: an integrated analysis. Front Endocrinol (Lausanne) 2025; 16:1469400. [PMID: 40130165 PMCID: PMC11930814 DOI: 10.3389/fendo.2025.1469400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
This study aimed to identify key genes related to focal adhesions (FA) and cells involved in osteoblast (OS) and adipocyte (AD) differentiation in osteoporosis. A mouse model of disuse osteoporosis was made by hindlimbs unloading (HLU)/Tail - suspension. Micro - CT and histological analysis were done, and differentially expressed genes (DEGs) from GSE100930 were analyzed. Soft clustering on GSE80614 OS/AD samples found FA - related candidate genes. protein-protein interaction (PPI) network and cytoHubba's Degree algorithm identified key FA - genes, validated by quantitative polymerase chain reaction (qPCR). Key OS/AD - associated cells were identified by single - cell analysis. The mouse model showed decreased bone density, microstructure damage, increased marrow adiposity, and altered gene expression. Key FA - related genes for osteogenesis (ITGB3, LAMC1, COL6A3, ITGA8, PDGFRB) and adipogenesis (ITGB3, ITGA4, LAMB1, ITGA8, LAMA4) were found and validated. Key cells (chondrocyte, adipocyte, and osteoblast progenitors) are involved in specific pathways, with osteoblast progenitors having stronger interactions. Pseudotime analysis implies differentiation from chondrocyte progenitors to adipocyte, then osteoblast progenitors. This study provides new insights for disuse osteoporosis research.
Collapse
Affiliation(s)
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Kodama J, Oichi T, Wilkinson KJ, Abzug JM, Kaito T, Enomoto-Iwamoto M, Iwamoto M, Otsuru S. Apolipoprotein E is a marker of all chondrocytes in the growth plate resting zone. Bone Res 2025; 13:31. [PMID: 40025030 PMCID: PMC11873292 DOI: 10.1038/s41413-025-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 03/04/2025] Open
Abstract
The resting zone (RZ) in mammalian growth plates is critical for maintaining and regulating chondrocyte turnover during longitudinal bone growth as a control tower and stem cell reservoir. Although recent lineage tracing studies have identified several markers for stem cells in the RZ, these markers only partially label chondrocytes in the RZ, suggesting that the resting chondrocytes (RCs) are a heterogeneous population with different types of stem cells. Since a comprehensive marker for RCs is still lacking, the RZ is generally determined based on ambiguous histological criteria, such as small and round chondrocytes without columnar formation, which may lead to inconsistencies among researchers. Therefore, in this study, we used single-cell RNA sequencing (scRNAseq) of growth plate chondrocytes followed by validation by fluorescence in situ hybridization (FISH) to precisely annotate cell clusters in scRNAseq and search for a marker of RCs. The scRNAseq analysis revealed that apolipoprotein E (Apoe) was the top-hit gene, which was ubiquitously expressed in the RC cluster. FISH confirmed that Apoe was exclusively localized to the histologically defined RZ. In newly generated ApoemCherry knock-in mice, we further confirmed that mCherry expression mirrored the distribution of Apoe-expressing chondrocytes in the RZ particularly after the formation of the secondary ossification center. These mCherry+ RCs were slow cycling in vivo and exhibited stem cell properties in vitro. Moreover, APOE was detected in human growth plate RCs. These findings suggest that apolipoprotein E is a novel pan-RC marker in both mouse and human growth plates.
Collapse
Affiliation(s)
- Joe Kodama
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Takeshi Oichi
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin J Wilkinson
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua M Abzug
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2025; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
6
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Wei X, Li M, You J, Luo J, Zhai J, Zhang J, Feng J, Wang H, Zhou Y. A Procedural Overview of the Involvement of Small Molecules in the Nervous System in the Regulation of Bone Healing. Int J Nanomedicine 2025; 20:1263-1284. [PMID: 39906525 PMCID: PMC11792627 DOI: 10.2147/ijn.s505677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Clinically, a multitude of factors can contribute to the development of bone defects. In the process of bone healing, the nervous system plays a vital role in bone regeneration. Small molecules from the nervous system, such as neurotrophic factors and neuropeptides, have been found to stimulate osteoblast proliferation and differentiation by activating signaling pathways associated with bone calcification and angiogenesis. These small molecules play a crucial regulatory role at various stages of bone healing. The systematic release mechanism of small molecules within the nervous system through diverse bone tissue engineering materials holds significant clinical implications for the controlled regulation of the bone healing process. This review provides an overview of the involvement of various nervous system small molecules at different stages of bone healing and discusses their regulatory mechanisms, aiming to establish a theoretical foundation for programmed regulation in bone regeneration and design of replacement materials in bone tissue engineering.
Collapse
Affiliation(s)
- Xuyan Wei
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mucong Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jian Feng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
8
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single-nucleus transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. eLife 2024; 13:RP92519. [PMID: 39642053 PMCID: PMC11623931 DOI: 10.7554/elife.92519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nucleus atlas of the periosteum at steady state and of the fracture site during the early stages of bone repair (https://fracture-repair-atlas.cells.ucsc.edu). We identified periosteal SSPCs expressing stemness markers (Pi16 and Ly6a/SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt, and the circadian clock signaling, respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | - Maria Ethel
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | | | | | | | - Marine Luka
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | | - Cécile Masson
- Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163ParisFrance
- INSERM US24/CNRS UAR3633, Paris Cité UniversityParisFrance
| | - Mickael Ménager
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | |
Collapse
|
9
|
Chen R, Zhang X, Li B, Tonetti MS, Yang Y, Li Y, Liu B, Qian S, Gu Y, Wang Q, Mao K, Cheng H, Lai H, Shi J. Progranulin-dependent repair function of regulatory T cells drives bone-fracture healing. J Clin Invest 2024; 135:e180679. [PMID: 39509336 PMCID: PMC11735098 DOI: 10.1172/jci180679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Local immunoinflammatory events instruct skeletal stem cells (SSCs) to repair/regenerate bone after injury, but mechanisms are incompletely understood. We hypothesized that specialized Tregs are necessary for bone repair and interact directly with SSCs through organ-specific messages. Both in human patients with bone fracture and a mouse model of bone injury, we identified a bone injury-responding Treg subpopulation with bone-repair capacity marked by CCR8. Local production of CCL1 induced a massive migration of CCR8+ Tregs from periphery to the injury site. Depending on secretion of progranulin (PGRN), a protein encoded by the granulin (Grn) gene, CCR8+ Tregs supported the accumulation and osteogenic differentiation of SSCs and thereby bone repair. Mechanistically, we revealed that CCL1 enhanced expression levels of basic leucine zipper ATF-like transcription factor (BATF) in CCR8+ Tregs, which bound to the Grn promoter and increased Grn translational output and then PGRN secretion. Together, our work provides a new perspective in osteoimmunology and highlights possible ways of manipulating Treg signaling to enhance bone repair and regeneration.
Collapse
Affiliation(s)
- Ruiying Chen
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaomeng Zhang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Integrated TCM & Western Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Department of Oncology, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Maurizio S. Tonetti
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yijie Yang
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuan Li
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Beilei Liu
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shujiao Qian
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yingxin Gu
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qingwen Wang
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Guangdong, China
| | - Kairui Mao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hao Cheng
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Guangdong, China
- Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hongchang Lai
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Junyu Shi
- Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Neag G, Lewis J, Turner JD, Manning JE, Dean I, Finlay M, Poologasundarampillai G, Woods J, Sahu MA, Khan KA, Begum J, McGettrick HM, Bellantuono I, Heath V, Jones SW, Buckley CD, Bicknell R, Naylor AJ. Type-H endothelial cell protein Clec14a orchestrates osteoblast activity during trabecular bone formation and patterning. Commun Biol 2024; 7:1296. [PMID: 39394430 PMCID: PMC11470016 DOI: 10.1038/s42003-024-06971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Type-H capillary endothelial cells control bone formation during embryogenesis and postnatal growth but few signalling mechanisms underpinning this influence have been characterised. Here, we identify a highly expressed type-H endothelial cell protein, Clec14a, and explore its role in coordinating osteoblast activity. Expression of Clec14a and its ligand, Mmrn2 are high in murine type-H endothelial cells but absent from osteoblasts. Clec14a-/- mice have premature condensation of the type-H vasculature and expanded distribution of osteoblasts and bone matrix, increased long-bone length and bone density indicative of accelerated skeletal development, and enhanced osteoblast maturation. Antibody-mediated blockade of the Clec14a-Mmrn2 interaction recapitulates the Clec14a-/- phenotype. Endothelial cell expression of Clec14a regulates osteoblast maturation and mineralisation activity during postnatal bone development in mice. This finding underscores the importance of type-H capillary control of osteoblast activity in bone formation and identifies a novel mechanism that mediates this vital cellular crosstalk.
Collapse
Affiliation(s)
- Georgiana Neag
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Jonathan Lewis
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Jason D Turner
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Julia E Manning
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Isaac Dean
- School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Melissa Finlay
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | - Jonathan Woods
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Muhammad Arham Sahu
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Kabir A Khan
- School of Medical Sciences, University of Birmingham, Birmingham, UK
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jenefa Begum
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Victoria Heath
- School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Simon W Jones
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Christopher D Buckley
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Roy Bicknell
- School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Amy J Naylor
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Otsuru S, Kodama J, Oichi T, Wilkinson K, Abzug J, Kaito T, Iwamoto-Enomoto M, Iwamoto M. Apolipoprotein E is a novel marker for chondrocytes in the growth plate resting zone. RESEARCH SQUARE 2024:rs.3.rs-4656728. [PMID: 39149484 PMCID: PMC11326366 DOI: 10.21203/rs.3.rs-4656728/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The resting zone (RZ) in mammalian growth plates is critical for maintaining and regulating chondrocyte turnover during longitudinal bone growth as a control tower and stem cell reservoir. Although recent lineage tracing studies have identified several markers for stem cells in the RZ, these markers only partially label chondrocytes in the RZ, suggesting that the resting chondrocytes (RCs) are a heterogeneous population with different types of stem cells. Since a comprehensive marker for RCs is still lacking, the RZ is generally determined based on ambiguous histological criteria, such as small and round chondrocytes without columnar formation, which may lead to inconsistencies among researchers. Therefore, in this study, we used single-cell RNA sequencing (scRNAseq) of growth plate chondrocytes followed by validation by fluorescence in situ hybridization (FISH) to precisely annotate cell clusters in scRNAseq and search for a marker of RCs. The scRNAseq analysis revealed that apolipoprotein E (Apoe) was the top-hit gene, which was ubiquitously expressed in the RC cluster. FISH confirmed that Apoe was exclusively localized to the histologically defined RZ. In newly generated Apoe-mCherry knock-in mice, we further confirmed that mCherry expression mirrored the distribution of Apoe-expressing chondrocytes in the RZ particularly after the formation of the secondary ossification center. These mCherry+ RCs were slow cycling in vivo and exhibited stem cell properties both in vitro and in vivo. Moreover, APOE was detected in human growth plate RCs. These findings suggest that Apoe is a novel pan-RC marker in both mouse and human growth plates.
Collapse
|
12
|
Lin H, Lin R, Hou J, Zhu C, Liu G, Lin Y, Su J, Yang M, Yang B, Ma Y, Cheng C, Deng M, Yu B, Xu T, Wu H, Cui Z. Targeting endothelial PDGFR-β facilitates angiogenesis-associated bone formation through the PAK1/NICD axis. J Cell Physiol 2024; 239:e31291. [PMID: 38721633 DOI: 10.1002/jcp.31291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 08/15/2024]
Abstract
The intricate orchestration of osteoporosis (OP) pathogenesis remains elusive. Mounting evidence suggests that angiogenesis-driven osteogenesis serves as a crucial foundation for maintaining bone homeostasis. This study aimed to explore the potential of the endothelial platelet-derived growth factor receptor-β (PDGFR-β) in mitigating bone loss through its facilitation of H-type vessel formation. Our findings demonstrate that the expression level of endothelial PDGFR-β is reduced in samples obtained from individuals suffering from OP, as well as in ovariectomy mice. Depletion of PDGFR-β in endothelial cells ameliorates angiogenesis-mediated bone formation in mice. The regulatory influence of endothelial PDGFR-β on H-type vessels is mediated through the PDGFRβ-P21-activated kinase 1-Notch1 intracellular domain signaling cascade. In particular, the endothelium-specific enhancement of PDGFR-β facilitates H-type vessels and their associated bone formation in OP. Hence, the strategic targeting of endothelial PDGFR-β emerges as a promising therapeutic approach for the management of OP in the near future.
Collapse
Affiliation(s)
- Hancheng Lin
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongmin Lin
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahui Hou
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chencheng Zhu
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanqiao Liu
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihuang Lin
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianwen Su
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mankai Yang
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingsheng Yang
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Ma
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingye Deng
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Xu
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - HangTian Wu
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuang Cui
- Department of Orthopaedics, Division of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Division of Orthopaedics and Traumatology, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single nuclei transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546220. [PMID: 39211065 PMCID: PMC11361009 DOI: 10.1101/2023.06.23.546220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nuclei atlas of the periosteum at steady-state and of the fracture site during early stages of bone repair ( https://fracture-repair-atlas.cells.ucsc.edu ). We identified periosteal SSPCs expressing stemness markers ( Pi16 and Ly6a /SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt and the circadian clock signaling respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
|
14
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R, Adams RH. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun 2024; 15:4575. [PMID: 38834586 PMCID: PMC11150404 DOI: 10.1038/s41467-024-48579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Collapse
Affiliation(s)
- M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| | - Kishor K Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Anusha Aravamudhan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Bong-Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Sequencing Core Facility, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Bioinformatics Service Unit, D-48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
16
|
Ji L, Yu Y, Zhu F, Huang D, Wang X, Wang J, Liu C. 2-N, 6-O sulfated chitosan evokes periosteal stem cells for bone regeneration. Bioact Mater 2024; 34:282-297. [PMID: 38261845 PMCID: PMC10796814 DOI: 10.1016/j.bioactmat.2023.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Musculoskeletal injuries and bone defects represent a significant clinical challenge, necessitating innovative approaches for effective bone tissue regeneration. In this study, we investigated the potential of harnessing periosteal stem cells (PSCs) and glycosaminoglycan (GAG)-mimicking materials for in situ bone regeneration. Our findings demonstrated that the introduction of 2-N, 6-O sulfated chitosan (26SCS), a GAG-like polysaccharide, enriched PSCs and promoted robust osteogenesis at the defect area. Mechanistically, 26SCS amplifies the biological effect of endogenous platelet-derived growth factor-BB (PDGF-BB) through enhancing the interaction between PDGF-BB and its receptor PDGFRβ abundantly expressed on PSCs, resulting in strengthened PSC proliferation and osteogenic differentiation. As a result, 26SCS effectively improved bone defect repair, even in an osteoporotic mouse model with lowered PDGF-BB level and diminished regenerative potential. Our findings suggested the significant potential of GAG-like biomaterials in regulating PSC behavior, which holds great promise for addressing osteoporotic bone defect repair in future applications.
Collapse
Affiliation(s)
- Luli Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fuwei Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Dongao Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaogang Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
17
|
Ripamonti U, Duarte R. Mechanistic insights into the spontaneous induction of bone formation. BIOMATERIALS ADVANCES 2024; 158:213795. [PMID: 38335762 DOI: 10.1016/j.bioadv.2024.213795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The grand discovery of morphogens, or "form-generating substances", revealed that tissue morphogenesis is initiated by soluble molecular signals or morphogens primarily belonging to the transforming growth factor-β (TGF-β) supergene family. The regenerative potential of bone rests on its extracellular matrix, which is the repository of several morphogens that tightly control cellular differentiating pathways, cellular matrix deposition and remodeling. Alluringly, the matrix also contains specific factors transferred from the heterotopic implanted bone matrices initiating "Tissue Induction", as provocatively described in Nature in 1945. Later, it was found that selected genes and gene products of the TGF-β supergene family singly, synchronously, and synergistically mastermind the induction of bone formation. This review describes the phenomenon of the spontaneous and/or intrinsic osteoinductivity of calcium phosphate-based biomaterials and titanium' constructs without the applications of soluble osteogenetic molecular signals. The review shows the spontaneous induction of bone formation initiated by Ca++ activating stem cell differentiation and up-regulation of bone morphogenetic proteins genes. Expressed gene products are embedded into the concavities of the calcium phosphate-based substrata, initiating bone formation as a secondary response. Pure titanium's substrata do not initiate the spontaneous induction of bone formation. The induction of bone is solely dependent on acid, alkali and heat treatments to form apatite layers on the treated titanium surfaces. The induction of bone formation is achieved exclusively by apatite-based biomaterial surfaces. The hydroxyapatite, in its various forms and geometric configurations, finely tunes the induction of bone formation in heterotopic sites. Cellular differentiation by fine-tuning of the cellular molecular machinery is initiated by specific geometric modularity of the hydroxyapatite substrata that push cellular buttons that start the ripple-like cascade of "Tissue Induction", generating newly formed ossicles with bone marrow in heterotopic extraskeletal sites. The highlighted mechanistic insights into the spontaneous induction of bone formation are a research platform invocating selected molecular elements to construct the induction of bone formation.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Laboratory, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Raquel Duarte
- Bone Research Laboratory, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Internal Medicine Research Laboratory, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
Zhang X, Deng C, Qi S. Periosteum Containing Implicit Stem Cells: A Progressive Source of Inspiration for Bone Tissue Regeneration. Int J Mol Sci 2024; 25:2162. [PMID: 38396834 PMCID: PMC10889827 DOI: 10.3390/ijms25042162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Chen Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Shengcai Qi
- Department of Prosthodontics, Shanghai Stomatological Hospital, School of Stomatology, Fudan University, Shanghai 200001, China;
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| |
Collapse
|
19
|
Wein MN. Blood and bones: Mechanical cues and Hippo signaling drive vascular invasion during limb formation. Dev Cell 2024; 59:173-174. [PMID: 38262346 DOI: 10.1016/j.devcel.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
Although mechanical cues are known to influence the postnatal skeleton, the impact of bone cell mechano-transduction on early skeletal development remains less clear. In this issue of Developmental Cell, Collins et al. (2023) report that YAP/TAZ deletion in osteoblast precursors reduces Cxcl12 expression, leading to defects in bone vascularization.
Collapse
Affiliation(s)
- Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
20
|
Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Thomas Kim JH, Ahmed S, Szeto GL, Qin L, Gottardi R, Dyment NA, Nowlan NC, Boerckel JD. YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulation in murine bone development. Dev Cell 2024; 59:211-227.e5. [PMID: 38141609 PMCID: PMC10843704 DOI: 10.1016/j.devcel.2023.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Fetal bone development occurs through the conversion of avascular cartilage to vascularized bone at the growth plate. This requires coordinated mobilization of osteoblast precursors with blood vessels. In adult bone, vessel-adjacent osteoblast precursors are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Here, we show that the mechanoresponsive transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) spatially couple osteoblast precursor mobilization to angiogenesis, regulate vascular morphogenesis to control cartilage remodeling, and mediate mechanoregulation of embryonic murine osteogenesis. Mechanistically, YAP and TAZ regulate a subset of osteoblast-lineage cells, identified by single-cell RNA sequencing as vessel-associated osteoblast precursors, which regulate transcriptional programs that direct blood vessel invasion through collagen-integrin interactions and Cxcl12. Functionally, in 3D human cell co-culture, CXCL12 treatment rescues angiogenesis impaired by stromal cell YAP/TAZ depletion. Together, these data establish functions of the vessel-associated osteoblast precursors in bone development.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristian Parisi
- Department of Bioengineering, Imperial College London, London, UK
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Thomas Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Ling Qin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Picoli CDC, Birbrair A, Li Z. Pericytes as the Orchestrators of Vasculature and Adipogenesis. Genes (Basel) 2024; 15:126. [PMID: 38275607 PMCID: PMC10815550 DOI: 10.3390/genes15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Pericytes (PCs) are located surrounding the walls of small blood vessels, particularly capillaries and microvessels. In addition to their functions in maintaining vascular integrity, participating in angiogenesis, and regulating blood flow, PCs also serve as a reservoir for multi-potent stem/progenitor cells in white, brown, beige, and bone marrow adipose tissues. Due to the complex nature of this cell population, the identification and characterization of PCs has been challenging. A comprehensive understanding of the heterogeneity of PCs may enhance their potential as therapeutic targets for metabolic syndromes or bone-related diseases. This mini-review summarizes multiple PC markers commonly employed in lineage-tracing studies, with an emphasis on their contribution to adipogenesis and functions in different adipose depots under diverse metabolic conditions.
Collapse
Affiliation(s)
| | - Alexander Birbrair
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Madison, WI 53706, USA;
| | - Ziru Li
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA;
| |
Collapse
|
22
|
Yao L, Lu J, Zhong L, Wei Y, Gui T, Wang L, Ahn J, Boerckel JD, Rux D, Mundy C, Qin L, Pacifici M. Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy. eLife 2023; 12:e89822. [PMID: 38079220 PMCID: PMC10783872 DOI: 10.7554/elife.89822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
Insufficient bone fracture repair represents a major clinical and societal burden and novel strategies are needed to address it. Our data reveal that the transforming growth factor-β superfamily member Activin A became very abundant during mouse and human bone fracture healing but was minimally detectable in intact bones. Single-cell RNA-sequencing revealed that the Activin A-encoding gene Inhba was highly expressed in a unique, highly proliferative progenitor cell (PPC) population with a myofibroblast character that quickly emerged after fracture and represented the center of a developmental trajectory bifurcation producing cartilage and bone cells within callus. Systemic administration of neutralizing Activin A antibody inhibited bone healing. In contrast, a single recombinant Activin A implantation at fracture site in young and aged mice boosted: PPC numbers; phosphorylated SMAD2 signaling levels; and bone repair and mechanical properties in endochondral and intramembranous healing models. Activin A directly stimulated myofibroblastic differentiation, chondrogenesis and osteogenesis in periosteal mesenchymal progenitor culture. Our data identify a distinct population of Activin A-expressing PPCs central to fracture healing and establish Activin A as a potential new therapeutic tool.
Collapse
Affiliation(s)
- Lutian Yao
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Orthopaedics, The First Hospital of China Medical UniversityShenyangChina
| | - Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Michigan Medicine, University of MichiganAnn ArborUnited States
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| |
Collapse
|
23
|
Steppe L, Megafu M, Tschaffon-Müller ME, Ignatius A, Haffner-Luntzer M. Fracture healing research: Recent insights. Bone Rep 2023; 19:101686. [PMID: 38163010 PMCID: PMC10757288 DOI: 10.1016/j.bonr.2023.101686] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 01/03/2024] Open
Abstract
Bone has the rare capability of scarless regeneration that enables the complete restoration of the injured bone area. In recent decades, promising new technologies have emerged from basic, translational and clinical research for fracture treatment; however, 5-10 % of all bone fractures still fail to heal successfully or heal in a delayed manner. Several comorbidities and risk factors have been identified which impair bone healing and might lead to delayed bone union or non-union. Therefore, a considerable amount of research has been conducted to elucidate molecular mechanisms of successful and delayed fracture healing to gain further insights into this complex process. One focus of recent research is to investigate the complex interactions of different cell types and the action of progenitor cells during the healing process. Of particular interest is also the identification of patient-specific comorbidities and how these affect fracture healing. In this review, we discuss the recent knowledge about progenitor cells for long bone repair and the influence of comorbidities such as diabetes, postmenopausal osteoporosis, and chronic stress on the healing process. The topic selection for this review was made based on the presented studies at the 2022 annual meeting of the European Calcified Tissue Society (ECTS) in Helsinki.
Collapse
Affiliation(s)
- Lena Steppe
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | - Michael Megafu
- A.T. Still University Kirksville College of Osteopathic Medicine, USA
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Germany
| | | |
Collapse
|
24
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Xiao X, Juan C, Drennon T, Uytingco CR, Vishlaghi N, Sokolowskei D, Xu L, Levi B, Sammarco MC, Tower RJ. Spatial transcriptomic interrogation of the murine bone marrow signaling landscape. Bone Res 2023; 11:59. [PMID: 37926705 PMCID: PMC10625929 DOI: 10.1038/s41413-023-00298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Self-renewal and differentiation of skeletal stem and progenitor cells (SSPCs) are tightly regulated processes, with SSPC dysregulation leading to progressive bone disease. While the application of single-cell RNA sequencing (scRNAseq) to the bone field has led to major advancements in our understanding of SSPC heterogeneity, stem cells are tightly regulated by their neighboring cells which comprise the bone marrow niche. However, unbiased interrogation of these cells at the transcriptional level within their native niche environment has been challenging. Here, we combined spatial transcriptomics and scRNAseq using a predictive modeling pipeline derived from multiple deconvolution packages in adult mouse femurs to provide an endogenous, in vivo context of SSPCs within the niche. This combined approach localized SSPC subtypes to specific regions of the bone and identified cellular components and signaling networks utilized within the niche. Furthermore, the use of spatial transcriptomics allowed us to identify spatially restricted activation of metabolic and major morphogenetic signaling gradients derived from the vasculature and bone surfaces that establish microdomains within the marrow cavity. Overall, we demonstrate, for the first time, the feasibility of applying spatial transcriptomics to fully mineralized tissue and present a combined spatial and single-cell transcriptomic approach to define the cellular components of the stem cell niche, identify cell‒cell communication, and ultimately gain a comprehensive understanding of local and global SSPC regulatory networks within calcified tissue.
Collapse
Affiliation(s)
- Xue Xiao
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Conan Juan
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tingsheng Drennon
- Department of Cell Biology & Applications, 10x Genomics, Pleasanton, CA, USA
| | - Cedric R Uytingco
- Department of Cell Biology & Applications, 10x Genomics, Pleasanton, CA, USA
| | - Neda Vishlaghi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dimitri Sokolowskei
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mimi C Sammarco
- Department of Surgery, Tulane School of Medicine, New Orleans, LA, USA
| | - Robert J Tower
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Dubois V, Ciancia S, Doms S, El Kharraz S, Sommers V, Kim NR, David K, Van Dijck J, Valle-Tenney R, Maes C, Antonio L, Decallonne B, Carmeliet G, Claessens F, Cools M, Vanderschueren D. Testosterone Restores Body Composition, Bone Mass, and Bone Strength Following Early Puberty Suppression in a Mouse Model Mimicking the Clinical Strategy in Trans Boys. J Bone Miner Res 2023; 38:1497-1508. [PMID: 37222072 DOI: 10.1002/jbmr.4832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
Transgender youth increasingly present at pediatric gender services. Some of them receive long-term puberty suppression with gonadotropin-releasing hormone analogues (GnRHa) before starting gender-affirming hormones (GAH). The impact of GnRHa use started in early puberty on bone composition and bone mass accrual is unexplored. It is furthermore unclear whether subsequent GAH fully restore GnRHa effects and whether the timing of GAH introduction matters. To answer these questions, we developed a mouse model mimicking the clinical strategy applied in trans boys. Prepubertal 4-week-old female mice were treated with GnRHa alone or with GnRHa supplemented with testosterone (T) from 6 weeks (early puberty) or 8 weeks (late puberty) onward. Outcomes were analyzed at 16 weeks and compared with untreated mice of both sexes. GnRHa markedly increased total body fat mass, decreased lean body mass, and had a modest negative impact on grip strength. Both early and late T administration shaped body composition to adult male levels, whereas grip strength was restored to female values. GnRHa-treated animals showed lower trabecular bone volume and reduced cortical bone mass and strength. These changes were reversed by T to female levels (cortical bone mass and strength) irrespective of the time of administration or even fully up to adult male control values (trabecular parameters) in case of earlier T start. The lower bone mass in GnRHa-treated mice was associated with increased bone marrow adiposity, also reversed by T. In conclusion, prolonged GnRHa use started in prepubertal female mice modifies body composition toward more fat and less lean mass and impairs bone mass acquisition and strength. Subsequent T administration counteracts GnRHa impact on these parameters, shaping body composition and trabecular parameters to male values while restoring cortical bone architecture and strength up to female but not male control levels. These findings could help guide clinical strategies in transgender care. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Vanessa Dubois
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Silvia Ciancia
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stefanie Doms
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
| | - Sarah El Kharraz
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Vera Sommers
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Na Ri Kim
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
| | - Karel David
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Jolien Van Dijck
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Roger Valle-Tenney
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Leen Antonio
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Martine Cools
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Pediatric Endocrinology Service, Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (Chrometa), KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Otani S, Ohnuma M, Ito K, Matsushita Y. Cellular dynamics of distinct skeletal cells and the development of osteosarcoma. Front Endocrinol (Lausanne) 2023; 14:1181204. [PMID: 37229448 PMCID: PMC10203529 DOI: 10.3389/fendo.2023.1181204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Bone contributes to the maintenance of vital biological activities. At the cellular level, multiple types of skeletal cells, including skeletal stem and progenitor cells (SSPCs), osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, orchestrate skeletal events such as development, aging, regeneration, and tumorigenesis. Osteosarcoma (OS) is a primary malignant tumor and the main form of bone cancer. Although it has been proposed that the cellular origins of OS are in osteogenesis-related skeletal lineage cells with cancer suppressor gene mutations, its origins have not yet been fully elucidated because of a poor understanding of whole skeletal cell diversity and dynamics. Over the past decade, the advent and development of single-cell RNA sequencing analyses and mouse lineage-tracing approaches have revealed the diversity of skeletal stem and its lineage cells. Skeletal stem cells (SSCs) in the bone marrow endoskeletal region have now been found to efficiently generate OS and to be robust cells of origin under p53 deletion conditions. The identification of SSCs may lead to a more limited redefinition of bone marrow mesenchymal stem/stromal cells (BM-MSCs), and this population has been thought to contain cells from which OS originates. In this mini-review, we discuss the cellular diversity and dynamics of multiple skeletal cell types and the origin of OS in the native in vivo environment in mice. We also discuss future challenges in the study of skeletal cells and OS.
Collapse
Affiliation(s)
- Shohei Otani
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mizuho Ohnuma
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
28
|
Wang F, Ye Y, Zhang Z, Teng W, Sun H, Chai X, Zhou X, Chen J, Mou H, Eloy Y, Jin X, Chen L, Shao Z, Wu Y, Shen Y, Liu A, Lin P, Wang J, Yu X, Ye Z. PDGFR in PDGF-BB/PDGFR Signaling Pathway Does Orchestrates Osteogenesis in a Temporal Manner. RESEARCH (WASHINGTON, D.C.) 2023; 6:0086. [PMID: 37223474 PMCID: PMC10202377 DOI: 10.34133/research.0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/13/2023] [Indexed: 12/01/2023]
Abstract
Platelet-derived growth factor-BB (PDGF-BB)/platelet-derived growth factor receptor-β (PDGFR-β) pathway is conventionally considered as an important pathway to promote osteogenesis; however, recent study suggested its role during osteogenesis to be controversial. Regarding the differential functions of this pathway during 3 stages of bone healing, we hypothesized that temporal inhibition of PDGF-BB/PDGFR-β pathway could shift the proliferation/differentiation balance of skeletal stem and progenitor cells, toward osteogenic lineage, which leads to improved bone regeneration. We first validated that inhibition of PDGFR-β at late stage of osteogenic induction effectively enhanced differentiation toward osteoblasts. This effect was also replicated in vivo by showing accelerated bone formation when block PDGFR-β pathway at late stage of critical bone defect healing mediated using biomaterials. Further, we found that such PDGFR-β inhibitor-initiated bone healing was also effective in the absence of scaffold implantation when administrated intraperitoneally. Mechanistically, timely inhibition of PDGFR-β blocked extracellular regulated protein kinase 1/2 pathway, which shift proliferation/differentiation balance of skeletal stem and progenitor cell to osteogenic lineage by upregulating osteogenesis-related products of Smad to induce osteogenesis. This study offered updated understanding of the use of PDGFR-β pathway and provides new insight routes of action and novel therapeutic methods in the field of bone repair.
Collapse
Affiliation(s)
- Fangqian Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yuxiao Ye
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Zengjie Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Wangsiyuan Teng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Hangxiang Sun
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xupeng Chai
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xingzhi Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jiayu Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Haochen Mou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yinwang Eloy
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Liang Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Zhenxuan Shao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yan Wu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Yue Shen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - An Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Peng Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Jianwei Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
| |
Collapse
|
29
|
Li J, Chen X, Ren L, Chen X, Wu T, Wang Y, Ren X, Cheng B, Xia J. Type H vessel/platelet-derived growth factor receptor β + perivascular cell disintegration is involved in vascular injury and bone loss in radiation-induced bone damage. Cell Prolif 2023:e13406. [PMID: 36694343 DOI: 10.1111/cpr.13406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Collapse of the microvascular system is a prerequisite for radiation-induced bone loss. Since type H vessels, a specific bone vessel subtype surrounded by platelet-derived growth factor receptor β+ (PDGFRβ+ ) perivascular cells (PVCs), has been recently identified to couple angiogenesis and osteogenesis, we hypothesize that type H vessel injury initiates PDGFRβ+ PVC dysfunction, which contributes to the abnormal angiogenesis and osteogenesis after irradiation. In this study, we found that radiation led to the decrease of both type H endothelial cell (EC) and PDGFRβ+ PVC numbers. Remarkably, results from lineage tracing showed that PDGFRβ+ PVCs detached from microvessels and converted the lineage commitment from osteoblasts to adipocytes, leading to vascular injury and bone loss after irradiation. These phenotype transitions above were further verified to be associated with the decrease in hypoxia-inducible factor-1α (HIF-1α)/PDGF-BB/PDGFRβ signalling between type H ECs and PDGFRβ+ PVCs. Pharmacological blockade of HIF-1α/PDGF-BB/PDGFRβ signalling induced a phenotype similar to radiation-induced bone damage, while the rescue of this signalling significantly alleviated radiation-induced bone injury. Our findings show that the decrease in HIF-1α/PDGF-BB/PDGFRβ signalling between type H ECs and PDGFRβ+ PVCs after irradiation affects the homeostasis of EC-PVC coupling and plays a part in vascular damage and bone loss, which has broad implications for effective translational therapies.
Collapse
Affiliation(s)
- Jiayan Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lin Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tong Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yun Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Kim JH(T, Szeto GL, Qin L, Gottardi RL, Dyment NA, Nowlan NC, Boerckel JD. YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulated bone development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524918. [PMID: 36711590 PMCID: PMC9882292 DOI: 10.1101/2023.01.20.524918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endochondral ossification requires coordinated mobilization of osteoblast precursors with blood vessels. During adult bone homeostasis, vessel adjacent osteoblast precursors respond to and are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Previously, we found that deletion of the mechanoresponsive transcriptional regulators, YAP and TAZ, from Osterix-expressing osteoblast precursors and their progeny caused perinatal lethality. Here, we show that embryonic YAP/TAZ signaling couples vessel-associated osteoblast precursor mobilization to angiogenesis in developing long bones. Osterix-conditional YAP/TAZ deletion impaired endochondral ossification in the primary ossification center but not intramembranous osteogenesis in the bone collar. Single-cell RNA sequencing revealed YAP/TAZ regulation of the angiogenic chemokine, Cxcl12, which was expressed uniquely in vessel-associated osteoblast precursors. YAP/TAZ signaling spatially coupled osteoblast precursors to blood vessels and regulated vascular morphogenesis and vessel barrier function. Further, YAP/TAZ signaling regulated vascular loop morphogenesis at the chondro-osseous junction to control hypertrophic growth plate remodeling. In human cells, mesenchymal stromal cell co-culture promoted 3D vascular network formation, which was impaired by stromal cell YAP/TAZ depletion, but rescued by recombinant CXCL12 treatment. Lastly, YAP and TAZ mediated mechanotransduction for load-induced osteogenesis in embryonic bone.
Collapse
Affiliation(s)
- Joseph M. Collins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristian Parisi
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P. Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun (Thomas) Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ling Qin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo L. Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathanial A. Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kingdom
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D. Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Novak S, Madunic J, Shum L, Vucetic M, Wang X, Tanigawa H, Ghosh M, Sanjay A, Kalajzic I. PDGF inhibits BMP2-induced bone healing. NPJ Regen Med 2023; 8:3. [PMID: 36631491 PMCID: PMC9834334 DOI: 10.1038/s41536-023-00276-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Bone regeneration depends on a pool of bone/cartilage stem/progenitor cells and signaling mechanisms regulating their differentiation. Using in vitro approach, we have shown that PDGF signaling through PDGFRβ inhibits BMP2-induced osteogenesis, and significantly attenuates expression of BMP2 target genes. We evaluated outcomes of treatment with two anabolic agents, PDGF and BMP2 using different bone healing models. Targeted deletion of PDGFRβ in αSMA osteoprogenitors, led to increased callus bone mass, resulting in improved biomechanical properties of fractures. In critical size bone defects BMP2 treatment increased proportion of osteoprogenitors, while the combined treatment of PDGF BB with BMP2 decreased progenitor number at the injury site. BMP2 treatment induced significant bone formation and increased number of osteoblasts, while in contrast combined treatment with PDGF BB decreased osteoblast numbers. This is in vivo study showing that PDGF inhibits BMP2-induced osteogenesis, but inhibiting PDGF signaling early in healing process does not improve BMP2-induced bone healing.
Collapse
Affiliation(s)
- Sanja Novak
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Josip Madunic
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA ,grid.414681.e0000 0004 0452 3941Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Laura Shum
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Milan Vucetic
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Xi Wang
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Hitoshi Tanigawa
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| | - Mallika Ghosh
- grid.208078.50000000419370394Center for Vascular Biology, UConn Health, Farmington, CT USA
| | - Archana Sanjay
- grid.208078.50000000419370394Department of Orthopeadic Surgery, UConn Health, Farmington, CT USA
| | - Ivo Kalajzic
- grid.208078.50000000419370394Center for Regenerative Medicine and Skeletal Development, UConn Health, Farmington, CT USA
| |
Collapse
|
32
|
Atkinson EG, Adaway M, Horan DJ, Korff C, Klunk A, Orr AL, Ratz K, Bellido T, Plotkin LI, Robling AG, Bidwell JP. Conditional Loss of Nmp4 in Mesenchymal Stem Progenitor Cells Enhances PTH-Induced Bone Formation. J Bone Miner Res 2023; 38:70-85. [PMID: 36321253 PMCID: PMC9825665 DOI: 10.1002/jbmr.4732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/29/2022] [Indexed: 11/24/2022]
Abstract
Activation of bone anabolic pathways is a fruitful approach for treating severe osteoporosis, yet FDA-approved osteoanabolics, eg, parathyroid hormone (PTH), have limited efficacy. Improving their potency is a promising strategy for maximizing bone anabolic output. Nmp4 (Nuclear Matrix Protein 4) global knockout mice exhibit enhanced PTH-induced increases in trabecular bone but display no overt baseline skeletal phenotype. Nmp4 is expressed in all tissues; therefore, to determine which cell type is responsible for driving the beneficial effects of Nmp4 inhibition, we conditionally removed this gene from cells at distinct stages of osteogenic differentiation. Nmp4-floxed (Nmp4fl/fl ) mice were crossed with mice bearing one of three Cre drivers including (i) Prx1Cre+ to remove Nmp4 from mesenchymal stem/progenitor cells (MSPCs) in long bones; (ii) BglapCre+ targeting mature osteoblasts, and (iii) Dmp1Cre+ to disable Nmp4 in osteocytes. Virgin female Cre+ and Cre- mice (10 weeks of age) were sorted into cohorts by weight and genotype. Mice were administered daily injections of either human PTH 1-34 at 30 μg/kg or vehicle for 4 weeks or 7 weeks. Skeletal response was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, bone histomorphometry, and serum analysis for remodeling markers. Nmp4fl/fl ;Prx1Cre+ mice virtually phenocopied the global Nmp4-/- skeleton in the femur, ie, a mild baseline phenotype but significantly enhanced PTH-induced increase in femur trabecular bone volume/total volume (BV/TV) compared with their Nmp4fl/fl ;Prx1Cre- controls. This was not observed in the spine, where Prrx1 is not expressed. Heightened response to PTH was coincident with enhanced bone formation. Conditional loss of Nmp4 from the mature osteoblasts (Nmp4fl/fl ;BglapCre+ ) failed to increase BV/TV or enhance PTH response. However, conditional disabling of Nmp4 in osteocytes (Nmp4fl/fl ;Dmp1Cre+ ) increased BV/TV without boosting response to hormone under our experimental regimen. We conclude that Nmp4-/- Prx1-expressing MSPCs drive the improved response to PTH therapy and that this gene has stage-specific effects on osteoanabolism. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Emily G. Atkinson
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Michele Adaway
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Daniel J. Horan
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | | | - Angela Klunk
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Ashley L. Orr
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Present Address: Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University Indianapolis, IN 46222
| | - Katherine Ratz
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Present Address: Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University Indianapolis, IN 46222
| | - Teresita Bellido
- Department of Physiology and Cell Biology University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, IUSM
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, IUSM
| | - Joseph P. Bidwell
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, IUSM
| |
Collapse
|
33
|
Szyluk K, Jarosz A, Balcerzyk-Matić A, Iwanicka J, Iwanicki T, Nowak T, Gierek M, Negru M, Kalita M, Górczyńska-Kosiorz S, Kania W, Niemiec P. Polymorphic Variants of the PDGFRB Gene Influence Efficacy of PRP Therapy in Treating Tennis Elbow: A Prospective Cohort Study. J Clin Med 2022; 11:6362. [PMID: 36362590 PMCID: PMC9657684 DOI: 10.3390/jcm11216362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Differences in response to PRP (platelet-rich plasma) therapy may be linked to the variability of growth factors and their receptor's genes. Considering that, we checked whether the platelet-derived growth factor receptor beta gene (PDGFRB) single nucleotide polymorphisms (SNPs) affect the effectiveness of PRP therapy in treating tennis elbow patients. METHODS The treatment efficacy was analyzed over time (2, 4, 8, 12, 24, 52, and 104 weeks after PRP injection) on 107 patients (132 elbows) using PROMs (patient-reported outcome measures), namely VAS (Visual Analog Scale), QDASH (quick version of Disabilities of the Arm, Shoulder, and Hand) and PRTEE (Patient-Rated Tennis Elbow Evaluation). Five polymorphisms of the PDGFRB gene (rs4324662, rs758588, rs3828610, rs3756311, and rs3756312) were genotyped. RESULTS The CC (rs3828610) and GG (rs3756311 and rs3756312) genotypes had a particularly strong impact on the effectiveness of the therapy, as measured by the values of PROMs, both in additive as well as dominant/recessive models. These homozygotes were also characterized by significantly higher values of MPV (mean platelet volume). CONCLUSIONS The PDGFRB gene SNPs affect the effectiveness of PRP therapy in treating tennis elbow patients and it may result from the differentiated metabolic activity of platelets in particular genotype variants.
Collapse
Affiliation(s)
- Karol Szyluk
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Śląskie, Poland
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland
| | - Anna Balcerzyk-Matić
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland
| | - Tomasz Nowak
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland
| | - Marcin Gierek
- Center for Burns Treatment, Jana Pawła II Str., 41-100 Siemianowice Śląskie, Poland
| | - Marius Negru
- Trauma and Orthopaedics Department, St. Bernard’s Hospital, Harbour Views Rd., Gibraltar GX11 1AA, UK
| | - Marcin Kalita
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Śląskie, Poland
| | - Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Wojciech Kania
- Department of Trauma and Orthopedic Surgery, Multidisciplinary Hospital in Jaworzno, Chełmońskiego 28 Str., 43-600 Jaworzno, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The periosteum, the outer layer of bone, is a major source of skeletal stem/progenitor cells (SSPCs) for bone repair. Here, we discuss recent findings on the characterization, role, and regulation of periosteal SSPCs (pSSPCs) during bone regeneration. RECENT FINDINGS Several markers have been described for pSSPCs but lack tissue specificity. In vivo lineage tracing and transcriptomic analyses have improved our understanding of pSSPC functions during bone regeneration. Bone injury activates pSSPCs that migrate, proliferate, and have the unique potential to form both bone and cartilage. The injury response of pSSPCs is controlled by many signaling pathways including BMP, FGF, Notch, and Wnt, their metabolic state, and their interactions with the blood clot, nerve fibers, blood vessels, and macrophages in the fracture environment. Periosteal SSPCs are essential for bone regeneration. Despite recent advances, further studies are required to elucidate pSSPC heterogeneity and plasticity that make them a central component of the fracture healing process and a prime target for clinical applications.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| |
Collapse
|
35
|
McKenzie JA, Galbreath IM, Coello AF, Hixon KR, Silva MJ. VEGFA from osteoblasts is not required for lamellar bone formation following tibial loading. Bone 2022; 163:116502. [PMID: 35872107 PMCID: PMC9624127 DOI: 10.1016/j.bone.2022.116502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
The relationship between osteogenesis and angiogenesis is complex. Normal bone development requires angiogenesis, mediated by vascular endothelial growth factor A (VEGFA). Studies have demonstrated through systemic inhibition or genetic modification that VEGFA is indispensable for several types of bone repair, presumably via its role in supporting angiogenesis. But a direct role for VEGFA within osteoblasts, in the absence of angiogenesis, has also been suggested. To address the question of whether VEGFA from osteoblasts supports bone formation directly, we applied anabolic loading to induce lamellar bone formation in mice, a process shown to be independent of angiogenesis. We hypothesized that VEGFA from osteoblasts is required for lamellar bone formation. To test this hypothesis, we applied axial tibial compression to inducible Cre/LoxP mice from three lines. Vegfafl/fl mice were crossed with Ubiquitin C (UBC), Osterix (Osx) and Dentin-Matrix Protein 1 (DMP1) Cre-ERT2 mice to target all cells, (pre)osteoblast-lineage cells, and mature osteoblasts and osteocytes, respectively. Genotype effects were determined by comparing control (Vegfafl/fl) and Cre+ (VegfaΔ) mice for each line. At 5 months of age tamoxifen was injected for 5 days followed by a 3-week clearance prior to loading. Female and male mice (N = 100) were loaded for 5 days to peak forces to engender -3100 με peak compressive strain and processed for dynamic histomorphometry (day 12). Percent MS/BS increased 20-70 % as a result of loading, with no effect of genotype in Osx or Dmp1 lines. In contrast, the UBC groups had a significant decrease in relative periosteal BFR/BS in VegfaΔ vs. Vegfafl/fl mice. The UBC line did not have any cortical bone phenotype in non-loaded femurs. In summary, dynamic histomorphometry data confirmed that tibial loading induces lamellar bone formation. Contrary to our hypothesis, there was no decrease in loading-induced bone formation in the Osx or Dmp1 lines in the absence of VEGFA. There was a decrease in bone formation in the UBC line where all cells were targeted. This result indicates that VEGFA from a non-osteoblast cell source supports loading-induced lamellar bone formation, although osteoblast/osteocyte VEGFA is dispensable. These findings support a paracrine model whereby non-osteoblast VEGFA supports lamellar bone formation, independent of angiogenesis.
Collapse
Affiliation(s)
- Jennifer A McKenzie
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Ian M Galbreath
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; St. Louis University, St. Louis, MO, United States of America
| | - Andre F Coello
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Katherine R Hixon
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; Dartmouth Engineering, Dartmouth College, Hanover, NH, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America.
| |
Collapse
|
36
|
Julien A, Perrin S, Martínez-Sarrà E, Kanagalingam A, Carvalho C, Luka M, Ménager M, Colnot C. Skeletal Stem/Progenitor Cells in Periosteum and Skeletal Muscle Share a Common Molecular Response to Bone Injury. J Bone Miner Res 2022; 37:1545-1561. [PMID: 35652423 PMCID: PMC9543664 DOI: 10.1002/jbmr.4616] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022]
Abstract
Bone regeneration involves skeletal stem/progenitor cells (SSPCs) recruited from bone marrow, periosteum, and adjacent skeletal muscle. To achieve bone reconstitution after injury, a coordinated cellular and molecular response is required from these cell populations. Here, we show that SSPCs from periosteum and skeletal muscle are enriched in osteochondral progenitors, and more efficiently contribute to endochondral ossification during fracture repair as compared to bone-marrow stromal cells. Single-cell RNA sequencing (RNAseq) analyses of periosteal cells reveal the cellular heterogeneity of periosteum at steady state and in response to bone fracture. Upon fracture, both periosteal and skeletal muscle SSPCs transition from a stem/progenitor to a fibrogenic state prior to chondrogenesis. This common activation pattern in periosteum and skeletal muscle SSPCs is mediated by bone morphogenetic protein (BMP) signaling. Functionally, Bmpr1a gene inactivation in platelet-derived growth factor receptor alpha (Pdgfra)-derived SSPCs impairs bone healing and decreases SSPC proliferation, migration, and osteochondral differentiation. These results uncover a coordinated molecular program driving SSPC activation in periosteum and skeletal muscle toward endochondral ossification during bone regeneration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Anais Julien
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | | | | | | | - Marine Luka
- Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Université de Paris, Paris, France.,Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Mickaël Ménager
- Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Université de Paris, Paris, France.,Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
37
|
Kaspiris A, Hadjimichael AC, Vasiliadis ES, Papachristou DJ, Giannoudis PV, Panagiotopoulos EC. Therapeutic Efficacy and Safety of Osteoinductive Factors and Cellular Therapies for Long Bone Fractures and Non-Unions: A Meta-Analysis and Systematic Review. J Clin Med 2022; 11:3901. [PMID: 35807186 PMCID: PMC9267779 DOI: 10.3390/jcm11133901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Long bone fractures display significant non-union rates, but the exact biological mechanisms implicated in this devastating complication remain unclear. The combination of osteogenetic and angiogenetic factors at the fracture site is an essential prerequisite for successful bone regeneration. The aim of this study is to investigate the results of the clinical implantation of growth factors for intraoperative enhancement of osteogenesis for the treatment of long bone fractures and non-unions. METHODS A systematic literature review search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in the PubMed and Web of Science databases from the date of inception of each database through to 10 January 2022. Specific inclusion and exclusion criteria were applied in order to identify relevant studies reporting on the treatment of upper and lower limb long bone non-unions treated with osteoinductive or cellular factors. RESULTS Overall, 18 studies met the inclusion criteria and examined the effectiveness of the application of Bone Morphogenetic Proteins-2 and -7 (BMPs), platelet rich plasma (PRP) and mesenchymal stem cells (MSCs). Despite the existence of limitations in the studies analysed (containing mixed groups of open and close fractures, different types of fractures, variability of treatment protocols, different selection criteria and follow-up periods amongst others), their overall effectiveness was found significantly increased in patients who received them compared with the controls (I2 = 60%, 95% CI = 1.59 [0.99-2.54], Z =1.93, p = 0.05). CONCLUSION Administration of BMP-2 and -7, PRP and MSCs were considered effective and safe methods in fracture treatment, increasing bone consolidation, reducing time to repair and being linked to satisfactory postoperative functional scores.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Argyris C. Hadjimichael
- Department of Orthopaedics, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, Praed Street, London W2 1NY, UK;
| | - Elias S. Vasiliadis
- Third Department of Orthopaedic Surgery, School of Medicine, “KAT” General Hospital, National and Kapodistrian University of Athens, 2 Nikis Street, 14561 Athens, Greece;
| | - Dionysios J. Papachristou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, University Patras Medical School, 26504 Patras, Greece;
| | - Peter V. Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds LS7 4SA, UK;
- NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Elias C. Panagiotopoulos
- Department of Trauma and Orthopaedics, Patras University Hospital and Medical School, 26504 Patras, Greece;
| |
Collapse
|
38
|
Nédélec A, Guérit EM, Dachy G, Lenglez S, Wong LS, Arts FA, Demoulin JB. Penttinen syndrome-associated PDGFRB Val665Ala variant causes aberrant constitutive STAT1 signalling. J Cell Mol Med 2022; 26:3902-3912. [PMID: 35689379 PMCID: PMC9279580 DOI: 10.1111/jcmm.17427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Penttinen syndrome is a rare progeroid disorder caused by mutations in platelet‐derived growth factor (PDGF) receptor beta (encoded by the PDGFRB proto‐oncogene) and characterized by a prematurely aged appearance with lipoatrophy, skin lesions, thin hair and acro‐osteolysis. Activating mutations in PDGFRB have been associated with other human diseases, including Kosaki overgrowth syndrome, infantile myofibromatosis, fusiform aneurysms, acute lymphoblastic leukaemia and myeloproliferative neoplasms associated with eosinophilia. The goal of the present study was to characterize the PDGFRB p.Val665Ala variant associated with Penttinen syndrome at the molecular level. This substitution is located in a conserved loop of the receptor tyrosine kinase domain. We observed that the mutant receptor was expressed at a lower level but showed constitutive activity. In the absence of ligand, the mutant activated STAT1 and elicited an interferon‐like transcriptional response. Phosphorylation of STAT3, STAT5, AKT and phospholipase Cγ was weak or undetectable. It was devoid of oncogenic activity in two cell proliferation assays, contrasting with classical PDGF receptor oncogenic mutants. STAT1 activation was not sensitive to ruxolitinib and did not rely on interferon‐JAK2 signalling. Another tyrosine kinase inhibitor, imatinib, blocked signalling by the p.Val665Ala variant at a higher concentration compared with the wild‐type receptor. Importantly, this concentration remained in the therapeutic range. Dasatinib, nilotinib and ponatinib also inhibited the mutant receptor. In conclusion, the p.Val665Ala variant confers unique features to PDGF receptor β compared with other characterized gain‐of‐function mutants, which may in part explain the particular set of symptoms associated with Penttinen syndrome.
Collapse
Affiliation(s)
- Audrey Nédélec
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Emilie M Guérit
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Guillaume Dachy
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sandrine Lenglez
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Lok San Wong
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Florence A Arts
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
39
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
40
|
Zhou X, Liu J, Zheng Y, Zhang Z, Wu Y, Yang W, Liu J, Huang Y, Yi Y, Zhao Z, Xiao H, Mo X, Wang J. SM22α-lineage niche cells regulate intramembranous bone regeneration via PDGFRβ-triggered hydrogen sulfide production. Cell Rep 2022; 39:110750. [PMID: 35508129 DOI: 10.1016/j.celrep.2022.110750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/02/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023] Open
Abstract
Bone stromal cells are critical for bone homeostasis and regeneration. Growing evidence suggests that non-stem bone niche cells support bone homeostasis and regeneration via paracrine mechanisms, which remain to be elucidated. Here, we show that physiologically quiescent SM22α-lineage stromal cells expand after bone injury to regulate diverse processes of intramembranous bone regeneration. The majority of SM22α-lineage cells neither act as stem cells in vivo nor show their expression patterns. Dysfunction of SM22α-lineage niche cells induced by loss of platelet-derived growth factor receptor β (PDGFRβ) impairs bone repair. We further show that PDGFRβ-triggered hydrogen sulfide (H2S) generation in SM22α-lineage niche cells facilitates osteogenesis and angiogenesis and suppresses overactive osteoclastogenesis. Collectively, these data demonstrate that non-stem SM22α-lineage niche cells support the niche for bone regeneration with a PDGFRβ/H2S-dependent regulatory mechanism. Our findings provide further insight into non-stem bone stromal niche cell populations and niche-regulation strategy for bone repair.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yange Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenke Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanmei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hengyi Xiao
- Laboratory of Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
41
|
Zhang L, Fu X, Ni L, Liu C, Zheng Y, You H, Li M, Xiu C, Zhang L, Gong T, Luo N, Zhang Z, He G, Hu S, Yang H, Chen D, Chen J. Hedgehog Signaling Controls Bone Homeostasis by Regulating Osteogenic/Adipogenic Fate of Skeletal Stem/Progenitor Cells in Mice. J Bone Miner Res 2022; 37:559-576. [PMID: 34870341 DOI: 10.1002/jbmr.4485] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022]
Abstract
Skeletal stem/progenitor cells (SSPCs) can differentiate into osteogenic or adipogenic lineage. The mechanism governing lineage allocation of SSPCs is still not completely understood. Hedgehog (Hh) signaling plays an essential role in specifying osteogenic fate of mesenchymal progenitors during embryogenesis. However, it is still unclear whether Hh signaling is required for lineage allocation of SSPCs in postnatal skeleton, and whether its dysregulation is related to age-related osteoporosis. Here, we demonstrated that Hh signaling was activated in metaphyseal SSPCs during osteogenic differentiation in the adult skeleton, and its activity decreased with aging. Inactivation of Hh signaling by genetic ablation of Smo, a key molecule in Hh signaling, in Osx-Cre-targeted SSPCs and hypertrophic chondrocytes led to decreased bone formation and increased bone marrow adiposity, two key pathological features of age-related osteoporosis. Moreover, we found that the bone-fat imbalance phenotype caused by Smo deletion mainly resulted from aberrant allocation of SSPCs toward adipogenic lineage at the expense of osteogenic differentiation, but not due to accelerated transdifferentiation of chondrocytes into adipocytes. Mechanistically, we found that Hh signaling regulated osteoblast versus adipocyte fate of SSPCs partly through upregulating Wnt signaling. Thus, our results indicate that Hh signaling regulates bone homeostasis and age-related osteoporosis by acting as a critical switch of cell fate decisions of Osx-Cre-targeted SSPCs in mice and suggest that Hh signaling may serve as a potential therapeutic target for the treatment of osteoporosis and other metabolic bone diseases. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Liwei Zhang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang, China.,Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Xuejie Fu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Li Ni
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cunchang Liu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Yixin Zheng
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Hongji You
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Meng Li
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Chunmei Xiu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Lei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Tingting Gong
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Na Luo
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Zunyi Zhang
- Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang, China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shijun Hu
- Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
| | - Huilin Yang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China.,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China.,Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
42
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
43
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
44
|
Sivaraj KK, Majev PG, Jeong HW, Dharmalingam B, Zeuschner D, Schröder S, Bixel MG, Timmen M, Stange R, Adams RH. Mesenchymal stromal cell-derived septoclasts resorb cartilage during developmental ossification and fracture healing. Nat Commun 2022; 13:571. [PMID: 35091558 PMCID: PMC8799643 DOI: 10.1038/s41467-022-28142-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Developmental osteogenesis, physiological bone remodelling and fracture healing require removal of matrix and cellular debris. Osteoclasts generated by the fusion of circulating monocytes degrade bone, whereas the identity of the cells responsible for cartilage resorption is a long-standing and controversial question. Here we show that matrix degradation and chondrocyte phagocytosis are mediated by fatty acid binding protein 5-expressing cells representing septoclasts, which have a mesenchymal origin and are not derived from haematopoietic cells. The Notch ligand Delta-like 4, provided by endothelial cells, is necessary for septoclast specification and developmental bone growth. Consistent with the termination of growth, septoclasts disappear in adult and ageing bone, but re-emerge in association with growing vessels during fracture healing. We propose that cartilage degradation is mediated by rare, specialized cells distinct from osteoclasts. Our findings have implications for fracture healing, which is frequently impaired in aging humans.
Collapse
Affiliation(s)
- Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Paul-Georg Majev
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Backialakshmi Dharmalingam
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max-Planck-Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Silke Schröder
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - M Gabriele Bixel
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine (IMM), University Hospital Münster, 48149, Münster, Germany
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
45
|
PDGFRα reporter activity identifies periosteal progenitor cells critical for bone formation and fracture repair. Bone Res 2022; 10:7. [PMID: 35075130 PMCID: PMC8786977 DOI: 10.1038/s41413-021-00176-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
The outer coverings of the skeleton, which is also known as the periosteum, are arranged in concentric layers and act as a reservoir for tissue-specific bone progenitors. The cellular heterogeneity within this tissue depot is being increasingly recognized. Here, inducible PDGFRα reporter animals were found to mark a population of cells within the periosteum that act as a stem cell reservoir for periosteal appositional bone formation and fracture repair. During these processes, PDGFRα reporter+ progenitors give rise to Nestin+ periosteal cells before becoming osteoblasts and osteocytes. The diphtheria toxin-mediated ablation of PDGFRα reporter+ cells led to deficits in cortical bone formation during homeostasis and a diminutive hard callus during fracture repair. After ossicle transplantation, both mouse PDGFRα reporter+ periosteal cells and human Pdgfrα+ periosteal progenitors expand, ossify, and recruit marrow to a greater extent than their counterpart periosteal cells, whereas PDGFRα reporter− periosteal cells exhibit a predisposition to chondrogenesis in vitro. Total RNA sequencing identified enrichment of the secreted factors Fermt3 and Ptpn6 within PDGFRα reporter+ periosteal cells, which partly underlie the osteoblastogenic features of this cell population.
Collapse
|
46
|
Shen F, Shi Y. Recent Advances in Single-Cell View of Mesenchymal Stem Cell in Osteogenesis. Front Cell Dev Biol 2022; 9:809918. [PMID: 35071243 PMCID: PMC8766509 DOI: 10.3389/fcell.2021.809918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoblasts continuously replenished by osteoblast progenitor cells form the basis of bone development, maintenance, and regeneration. Mesenchymal stem cells (MSCs) from various tissues can differentiate into the progenitor cell of osteogenic lineage and serve as the main source of osteoblasts. They also respond flexibly to regenerative and anabolic signals emitted by the surrounding microenvironment, thereby maintaining bone homeostasis and participating in bone remodeling. However, MSCs exhibit heterogeneity at multiple levels including different tissue sources and subpopulations which exhibit diversified gene expression and differentiation capacity, and surface markers used to predict cell differentiation potential remain to be further elucidated. The rapid advancement of lineage tracing methods and single-cell technology has made substantial progress in the characterization of osteogenic stem/progenitor cell populations in MSCs. Here, we reviewed the research progress of scRNA-seq technology in the identification of osteogenic markers and differentiation pathways, MSC-related new insights drawn from single-cell technology combined with experimental technology, and recent findings regarding the interaction between stem cell fate and niche in homeostasis and pathological process.
Collapse
Affiliation(s)
- Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Loopmans S, Stockmans I, Carmeliet G, Stegen S. Isolation and in vitro characterization of murine young-adult long bone skeletal progenitors. Front Endocrinol (Lausanne) 2022; 13:930358. [PMID: 35979436 PMCID: PMC9376626 DOI: 10.3389/fendo.2022.930358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal stem and progenitor cells (SSPCs) constitute a reservoir of bone-forming cells necessary for bone development, modeling and remodeling, as well as for fracture healing. Recent advances in tools to identify and isolate SSPCs have revealed that cells with multipotent properties are present not only in neonatal bone, but also in adult bone marrow and periosteum. The long bone metaphysis and endosteum have been proposed as an additional SSPC niche, although in vitro approaches to study their cellular and molecular characteristics are still limited. Here, we describe a comprehensive procedure to isolate and culture SSPCs derived from the metaphysis and endosteum of young-adult mice. Based on flow cytometry analysis of known SSPC markers, we found the presence of putative multipotent SSPCs, similar to neonatal bone tissue. In vitro, metaphyseal/endosteal SSPCs possess self-renewing capacity, and their multipotency is underscored by the ability to differentiate into the osteogenic and adipogenic lineage, while chondrogenic potential is limited. Expansion of metaphyseal/endosteal SSPCs under low oxygen conditions increases their proliferation capacity, while progenitor properties are maintained, likely reflecting their hypoxic niche in vivo. Collectively, we propose a validated isolation and culture protocol to study metaphyseal/endosteal SSPC biology in vitro.
Collapse
|
48
|
Abstract
Fracture healing is a complex, multistep process that is highly sensitive to mechanical signaling. To optimize repair, surgeons prescribe immediate weight-bearing as-tolerated within 24 hours after surgical fixation; however, this recommendation is based on anecdotal evidence and assessment of bulk healing outcomes (e.g., callus size, bone volume, etc.). Given challenges in accurately characterizing the mechanical environment and the ever-changing properties of the regenerate, the principles governing mechanical regulation of repair, including their cell and molecular basis, are not yet well defined. However, the use of mechanobiological rodent models, and their relatively large genetic toolbox, combined with recent advances in imaging approaches and single-cell analyses is improving our understanding of the bone microenvironment in response to loading. This review describes the identification and characterization of distinct cell populations involved in bone healing and highlights the most recent findings on mechanical regulation of bone homeostasis and repair with an emphasis on osteo-angio coupling. A discussion on aging and its impact on bone mechanoresponsiveness emphasizes the need for novel mechanotherapeutics that can re-sensitize skeletal stem and progenitor cells to physical rehabilitation protocols.
Collapse
Affiliation(s)
- Tareq Anani
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA
| | - Alesha B Castillo
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; Department of Veterans Affairs, New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA.
| |
Collapse
|
49
|
Chen Y, Yang S, Lovisa S, Ambrose CG, McAndrews KM, Sugimoto H, Kalluri R. Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta. Nat Commun 2021; 12:7199. [PMID: 34893625 PMCID: PMC8664945 DOI: 10.1038/s41467-021-27563-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Type I collagen (Col1) is the most abundant protein in mammals. Col1 contributes to 90% of the total organic component of bone matrix. However, the precise cellular origin and functional contribution of Col1 in embryogenesis and bone formation remain unknown. Single-cell RNA-sequencing analysis identifies Fap+ cells and Fsp1+ cells as the major contributors of Col1 in the bone. We generate transgenic mouse models to genetically delete Col1 in various cell lineages. Complete, whole-body Col1 deletion leads to failed gastrulation and early embryonic lethality. Specific Col1 deletion in Fap+ cells causes severe skeletal defects, with hemorrhage, edema, and prenatal lethality. Specific Col1 deletion in Fsp1+ cells results in Osteogenesis Imperfecta-like phenotypes in adult mice, with spontaneous fractures and compromised bone healing. This study demonstrates specific contributions of mesenchymal cell lineages to Col1 production in organogenesis, skeletal development, and bone formation/repair, with potential insights into cell-based therapy for patients with Osteogenesis Imperfecta.
Collapse
Affiliation(s)
- Yang Chen
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Sujuan Yang
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Sara Lovisa
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Catherine G. Ambrose
- grid.267308.80000 0000 9206 2401Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Kathleen M. McAndrews
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Hikaru Sugimoto
- grid.240145.60000 0001 2291 4776Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054 USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
50
|
Kwon HR, Kim JH, Woods JP, Olson LE. Skeletal stem cell fate defects caused by Pdgfrb activating mutation. Development 2021; 148:272709. [PMID: 34738614 DOI: 10.1242/dev.199607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022]
Abstract
Autosomal dominant PDGFRβ gain-of-function mutations in mice and humans cause a spectrum of wasting and overgrowth disorders afflicting the skeleton and other connective tissues, but the cellular origin of these disorders remains unknown. We demonstrate that skeletal stem cells (SSCs) isolated from mice with a gain-of-function D849V point mutation in PDGFRβ exhibit colony formation defects that parallel the wasting or overgrowth phenotypes of the mice. Single-cell RNA transcriptomics with SSC-derived polyclonal colonies demonstrates alterations in osteogenic and chondrogenic precursors caused by PDGFRβD849V. Mutant cells undergo poor osteogenesis in vitro with increased expression of Sox9 and other chondrogenic markers. Mice with PDGFRβD849V exhibit osteopenia. Increased STAT5 phosphorylation and overexpression of Igf1 and Socs2 in PDGFRβD849V cells suggests that overgrowth in mice involves PDGFRβD849V activating the STAT5-IGF1 axis locally in the skeleton. Our study establishes that PDGFRβD849V causes osteopenic skeletal phenotypes that are associated with intrinsic changes in SSCs, promoting chondrogenesis over osteogenesis.
Collapse
Affiliation(s)
- Hae Ryong Kwon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jang H Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - John P Woods
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|