1
|
Zhang J, Weng S, Fan Z, Hu D, Le J, Sheng K. Migrasomes: Critical players in intercellular nanovesicle communication. Cell Signal 2025; 132:111796. [PMID: 40209968 DOI: 10.1016/j.cellsig.2025.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Migrasomes are vesicular structures that form on elongated tethers originating from the tips or junctions of cellular tails during migration. These organelles, named for their vesicle rich lumen and release during cell movement, have gained attention for their role in intercellular communication and signal transduction. Migrasome formation is closely associated with the dynamic and active movement of cells, as well as with the intrinsic properties of cells and the extracellular microenvironment under various pathophysiological conditions. This review provides a comprehensive overview of migrasome dynamics, examining the mechanisms and distinct features of nanoscale vesicle-mediated intercellular signaling. It also highlights the influence of microscopic secretory factors on migrasome generation and formation. By comparing migrasomes with other active extracellular vesicles, this review highlights the advantages of migrasomes and addresses future challenges.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of ECG, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, China
| | - Shoutao Weng
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zaiwei Fan
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College Nanchang University, Nanchang, Jiangxi 330006, China
| | - Dongyang Hu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiadi Le
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kongsheng Sheng
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou 318000, China.
| |
Collapse
|
2
|
Zhou H, Gong J, Zhang Z, Wang B, Qiu Y, Xu H, Sun X, Li Z. Proteomic Profiling of Serum-Derived Extracellular Vesicles in Diffuse Idiopathic Skeletal Hyperostosis Patients. J Proteome Res 2025. [PMID: 40387066 DOI: 10.1021/acs.jproteome.4c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
This study focuses on the proteomic profiles of serum-derived EVs in diffuse idiopathic skeletal hyperostosis (DISH), aiming to identify the potential diagnostic biomarkers for DISH. Serum-EVs were separated using a differential centrifugation technique. Then, label-free-liquid chromatography mass spectrometry (LC-MS/MS) was utilized to identify differentially expressed proteins (DEPs) highly associated with DISH. DEPs' expression levels were tested using enzyme-linked immunosorbent assay (ELISA) and bioinformatic analyses were performed. According to ectopic ossification severity, DISH cohort was stratified into T-DISH and L-DISH subtypes. Serum-EVs' AHSG level was also compared between T-DISH and L-DISH subgroups. Additionally, the number of ossified segments of all DISH patients was assessed and its correlation with serum-EVs' AHSG was analyzed. LC-MS/MS proteomic analyses demonstrated 24 up-regulated and 6 down-regulated proteins in the DISH group. ELISA results showed that AHSG level in serum-EVs was significantly higher in the DISH group. Interestingly, serum-EVs' AHSG was found significantly higher in the L-DISH subgroup compared to the T-DISH subgroup and a strong positive correlation was demonstrated between the quantified ossified segments and serum-EVs' AHSG. Hence, serum-EVs' AHSG may be a promising biomarker for DISH and participate in the pathogenesis of heterotopic bone formation in DISH.
Collapse
Affiliation(s)
- Haicheng Zhou
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jianmin Gong
- College of Life Science, Yangtze University, Jingzhou 434000, China
| | - Zhentao Zhang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Bin Wang
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Hongpan Xu
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Xu Sun
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| |
Collapse
|
3
|
Wang C, Fulati A, Kimura K, Li X, Richardson JJ, Naito M, Miyata K, Ichiki T, Ejima H. Encapsulation of Small Extracellular Vesicles into Selectively Disassemblable Shells of PEGylated Metal-Phenolic Networks. Adv Healthc Mater 2025:e2405188. [PMID: 40326152 DOI: 10.1002/adhm.202405188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/12/2025] [Indexed: 05/07/2025]
Abstract
Small extracellular vesicles (sEVs) are cell-derived particles used for intercellular communication in living organisms that have gained great interest from researchers for their use as drug carriers and diagnostic agents. However, the isolation and storage of sEVs lead to issues including lipid membrane disruption, protein denaturation, and nucleic acid degradation. Herein, a surface functionalization strategy is reported for encapsulating single sEV into selectively disassemblable protective shells composed of metal-phenolic networks (MPNs) post-modified with poly(ethylene glycol) (PEG). Disassemblable MPN shells can be rapidly deposited on sEVs in a one-step manner and post-modified with PEG. These coatings enhance the colloidal stability of sEVs and protect them against harsh storage conditions, while the non-covalent and selectively disassemblable nature of the MPN shell allows recovery after storage without compromising their surface integrity and functionality. It is demonstrated that various triggers, such as pH adjustment, competitive chelation, and redox reactions, can be used to disassemble the MPN shell, thereby offering widely adoptable strategies depending on the target applications. This approach potentially overcomes conventional challenges associated with sEV processing and storage and may contribute to reducing cold-chain requirements and transportation costs of future sEVs-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ailifeire Fulati
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kenta Kimura
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Xianglan Li
- Materials Fabrication and Analysis Platform, Research Network and Facility Services Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Joseph J Richardson
- Department of Chemical and Environmental Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Mitsuru Naito
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takanori Ichiki
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
4
|
Oliveira Dias J, Sampaio Fagundes I, Bisio MDC, da Silva Barboza V, Jacinto AA, Altei WF. Extracellular vesicles as the common denominator among the 7 Rs of radiobiology: From the cellular level to clinical practice. Biochim Biophys Acta Rev Cancer 2025; 1880:189315. [PMID: 40216093 DOI: 10.1016/j.bbcan.2025.189315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Extracellular vesicles (EVs) are lipid-bound particles released by tumor cells and widely explored in cancer development, progression, and treatment response, being considered as valuable components to be explored as biomarkers or cellular targets to modulate the effect of therapies. The mechanisms underlying the production and profile of EVs during radiotherapy (RT) require addressing radiobiological aspects to determine cellular responses to specific radiation doses and fractionation. In this review, we explore the role of EVs in the 7 Rs of radiobiology, known as the molecular basis of a biological tissue response to radiation, supporting EVs as a shared player in all the seven processes. We also highlight the relevance of EVs in the context of liquid biopsy and resistance to immunotherapy, aiming to establish the connection and utility of EVs as tools in contemporary and precision radiotherapy.
Collapse
Affiliation(s)
- Júlia Oliveira Dias
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | - Wanessa Fernanda Altei
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil; Radiation Oncology Department, Barretos Cancer Hospital, Barretos, Brazil.
| |
Collapse
|
5
|
Wang L, Liu R, Wang Y. The roles of extracellular vesicles in mental disorders: information carriers, biomarkers, therapeutic agents. Front Pharmacol 2025; 16:1591469. [PMID: 40271072 PMCID: PMC12014780 DOI: 10.3389/fphar.2025.1591469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Mental disorders are complex conditions that encompass various symptoms and types, affecting approximately 1 in 8 people globally. They place a significant burden on both families and society as a whole. So far, the etiology of mental disorders remains poorly understood, making diagnosis and treatment particularly challenging. Extracellular vesicles (EVs) are nanoscale particles produced by cells and released into the extracellular space. They contain bioactive molecules including nucleotides, proteins, lipids, and metabolites, which can mediate intercellular communication and are involved in various physiological and pathological processes. Recent studies have shown that EVs are closely linked to mental disorders like schizophrenia, major depressive disorder, and bipolar disorder, playing a key role in their development, diagnosis, prognosis, and treatment. Therefore, based on recent research findings, this paper aims to describe the roles of EVs in mental disorders and summarize their potential applications in diagnosis and treatment, providing new ideas for the future clinical transformation and application of EVs.
Collapse
Affiliation(s)
| | | | - Ying Wang
- Department of Pharmacy, Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
6
|
Cruz-Bustos T, Feix AS, Hummel K, Schlosser S, Razzazi-Fazeli E, Joachim A. The proteomic landscape of Toxoplasma gondii extracellular vesicles across diverse host cell types. Front Cell Infect Microbiol 2025; 15:1565684. [PMID: 40171158 PMCID: PMC11958994 DOI: 10.3389/fcimb.2025.1565684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) are emerging as powerful tools used by pathogens to manipulate host cells, delivering molecular cargo that rewires cellular processes and the immune response. Toxoplasma gondii, a globally distributed parasite capable of infecting nearly all nucleated animal cells, uses this strategy to thrive in diverse host species and tissue environments. Methods Here, we reveal the adaptability of T. gondii EVs through proteomic analysis of vesicles released from tachyzoites cultured in four different host cell types: human fibroblasts, green monkey kidney epithelial cells, mouse myoblasts and porcine intestinal epithelial cells. Results A core set of 1,244 proteins was consistently identified across TgEVs, defining a conserved signature. Beyond this conserved cargo, host-cell specific variation revealed how T. gondii fine-tunes EV content to exploit different cellular environments. Functional enrichment analyses revealed roles for TgEVs in targeting host protein synthesis and stress response pathways, with implications for immune evasion and infection spread. Discussion These findings provide insight into the potential role of EVs in host-pathogen interactions and help us understand the adaptive strategies used by T. gondii to survive and spread.
Collapse
Affiliation(s)
- Teresa Cruz-Bustos
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anna Sophia Feix
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Hummel
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sarah Schlosser
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
7
|
Dartora VFC, Carney R, Wang A, Qiu P, Panitch A. Extracellular matrix ligands modulate the endothelial progenitor cell secretome for enhanced angiogenesis. Acta Biomater 2025; 195:240-255. [PMID: 39954753 DOI: 10.1016/j.actbio.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/07/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Wound healing is a complex physiological process fundamentally dependent on angiogenesis for effective tissue repair. Endothelial progenitor cells (EPCs) have shown significant potential in promoting angiogenesis, primarily through their secretome, rich in proteins and extracellular vesicles (EVs) essential for cell signaling and tissue regeneration. This study investigates the effect of a collagen-bound proteoglycan mimetic (LXW7-DS-SILY or LDS), that binds to the αvβ3 integrin receptor, on the EPC secretome, with a dual focus on the proteomic content and the functional properties of EVs. Utilizing high-resolution two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) alongside bioinformatic analysis, we identified significant alterations in protein expression profiles, particularly in angiogenesis and wound healing pathways. The functional impact of these changes was validated through biological assays, where the whole secretome and the EV fraction from EPCs seeded on collagen-bound LDS markedly enhanced vascular network formation, driven by the increase of growth factors and angiogenic regulators such as FGFR1, NRP1, and ANGPT2 within the EV fraction. Gene Ontology (GO) enrichment analysis further highlighted the enrichment of proteins within the EVs driving biological processes, including 'response to wounding' and 'positive regulation of cell motility'. These results underscore that LDS modulates the EPC secretome and significantly enhances its angiogenic potential, offering a promising therapeutic strategy for non-healing and ischemic wounds and suggesting that biomaterials can be modified to control the EV secretome to enhance tissue repair. Functional assays validating the omics data highlight the robustness of LDS as a targeted therapeutic for enhancing angiogenesis and tissue repair in clinical settings. Moreover, the pivotal role of EVs in mediating pro-angiogenic effects offers insights into developing biomaterial therapies that exploit key regulators within the EPC secretome for wound healing. STATEMENT OF SIGNIFICANCE: This manuscript explores how a proteoglycan mimetic that binds to both collagen and the αvβ3 integrin receptor affects the proteome component of the secretome from endothelial progenitor cells (EPCs). It presents functional biological data, analytical data, and proteomic analysis of the soluble and extracellular vesical (EV) components of the secratome. The proteomic data maps to the observed enhanced angiogenic potential of the EVs. These results suggest that by controlling the cellular environment and judicially engineering how cells interact with a biomaterial can influence the proteomic composition of EVs to enhance tissue regeneration. This is the foundation of future work aimed at engineering biomaterial cell systems to influence the proteomic component of EVs for therapeutic use.
Collapse
Affiliation(s)
- Vanessa F C Dartora
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Randy Carney
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA
| | - Aijun Wang
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Peng Qiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Alyssa Panitch
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Department of Surgery, University of California Davis, Sacramento, CA 95817, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA.
| |
Collapse
|
8
|
McAtee C, Patel M, Hoshino D, Sung BH, von Lersner A, Shi M, Hong NH, Young A, Krystofiak E, Zijlstra A, Weaver AM. Secreted exosomes induce filopodia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.20.604139. [PMID: 40161676 PMCID: PMC11952364 DOI: 10.1101/2024.07.20.604139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Filopodia are dynamic adhesive cytoskeletal structures that are critical for directional sensing, polarization, cell-cell adhesion, and migration of diverse cell types. Filopodia are also critical for neuronal synapse formation. While dynamic rearrangement of the actin cytoskeleton is known to be critical for filopodia biogenesis, little is known about the upstream extracellular signals. Here, we identify secreted exosomes as potent regulators of filopodia formation. Inhibition of exosome secretion inhibited the formation and stabilization of filopodia in both cancer cells and neurons and inhibited subsequent synapse formation by neurons. Rescue experiments with purified small and large extracellular vesicles (EVs) identified exosome-enriched small EVs (SEVs) as having potent filopodia-inducing activity. Proteomic analyses of cancer cell-derived SEVs identified the TGF-β family coreceptor endoglin as a key SEV-enriched cargo that regulates filopodia. Cancer cell endoglin levels also affected filopodia-dependent behaviors, including metastasis of cancer cells in chick embryos and 3D migration in collagen gels. As neurons do not express endoglin, we performed a second proteomics experiment to identify SEV cargoes regulated by endoglin that might promote filopodia in both cell types. We discovered a single SEV cargo that was altered in endoglin-KD cancer SEVs, the transmembrane protein Thrombospondin Type 1 Domain Containing 7A (THSD7A). We further found that both cancer cell and neuronal SEVs carry THSD7A and that add-back of purified THSD7A is sufficient to rescue filopodia defects of both endoglin-KD cancer cells and exosome-inhibited neurons. We also find that THSD7A induces filopodia formation through activation of the Rho GTPase, Cdc42. These findings suggest a new model for filopodia formation, triggered by exosomes carrying THSD7A.
Collapse
Affiliation(s)
- Caitlin McAtee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
| | - Mikin Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | | | - Bong Hwan Sung
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
| | - Ariana von Lersner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Mingjian Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| | - Nan Hyung Hong
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
| | - Anna Young
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - Evan Krystofiak
- Cell Imaging Shared Resource EM Facility, Vanderbilt University, Nashville, Tennessee, USA
| | - Andries Zijlstra
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
9
|
Mulzer LM, Felger T, Muñoz LE, Engl G, Reutter H, Schiffer M, Jahromi LP, Boros FA, Zunke F, Arnold P, Hilger AC. Dynamic changes of extracellular vesicles during zebrafish organogenesis. Cell Commun Signal 2025; 23:60. [PMID: 39901276 PMCID: PMC11789338 DOI: 10.1186/s12964-025-02053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Extracellular Vesicles (EVs) play a crucial role in cell differentiation. Despite its role as a well-established vertebrate model, little is known about EVs during zebrafish embryogenesis. This study investigates EVs during zebrafish embryogenesis, analysing size- and concentration-changes over time.Wild-type AB strain zebrafish larvae (zfl) were collected at 24, 48, 72, and 96 h post fertilization (hpf) and homogenized. EVs were isolated and characterized using flow cytometry, negative staining transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western Blot.Flow cytometry and TEM showed a high purity of the samples. Small EVs (sEVs) and large EVs (lEVs) were differentiated using NTA, showing that zfl use different types of EVs during embryogenesis. It was observed that the total EV number increased significantly over the first 72 hpf, but not proportionally to zfl growth in length. Additionally, sEV size also increased significantly, with a maximum diameter at 72 hpf. Since most organs are formed during the first 72 hpf and from then on mainly maturation and growth occur, the elevated number and larger size before 72 hpf suggests an important role of EVs during zebrafish organogenesis. Since EVs serve as cargo delivery platforms, the increase in size of sEVs may reflect the need for a higher transport capacity.
Collapse
Affiliation(s)
- Linda-Marie Mulzer
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology and Pediatric, Intensive Care University Hospital Erlangen, Erlangen, Germany.
| | - Tim Felger
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology and Pediatric, Intensive Care University Hospital Erlangen, Erlangen, Germany
| | - Luis E Muñoz
- Department of Internal Medicine 3 Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen- Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Gesa Engl
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology and Pediatric, Intensive Care University Hospital Erlangen, Erlangen, Germany
| | - Heiko Reutter
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology and Pediatric, Intensive Care University Hospital Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Internal Medicine 4 Nephrology, Friedrich-Alexander-University Erlangen- Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | | | - Fanni Annamária Boros
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander- University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander- University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Philipp Arnold
- Institute of Anatomy, Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Alina C Hilger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
- Research Center on Rare Kidney Diseases (RECORD), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
10
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
11
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
12
|
Zakaria A, Sultan N, Nabil N, Elgamily M. Exosomes derived from bone marrow mesenchymal stem cells ameliorate chemotherapeutically induced damage in rats' parotid salivary gland. Oral Maxillofac Surg 2025; 29:39. [PMID: 39821446 PMCID: PMC11742274 DOI: 10.1007/s10006-025-01331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
OBJECTIVE A nanometer-sized vesicles originating from bone marrow mesenchymal stem cells (BMMSCs), called exosomes, have been extensively recognized. This study defines the impact of BMMSCs and their derived exosomes on proliferation, apoptosis and oxidative stress (OS) levels of CP-induced parotid salivary gland damage. METHODS BMMSCs were isolated from the tibia of four white albino rats and further characterized by flowcytometric analysis. BMMSCs-derived exosomes were harvested and underwent characterization using transmission electron microscopy (TEM), western blot analysis and BCA assay. Fifty-six healthy white albino male rats weighting from 200 to 250 g were allocated into 4 groups (n = 14); Group I, rats received phosphate buffered saline (PBS), group II, rats were intraperitoneally injected with CP, group III& IV received CP and after 3 days they were intravenously injected with either BMMSCs (group III) or BMMSCs-exosomes (group IV). Histological, and immunohistochemical studies using proliferating cell nuclear antigen (PCNA) were done after 7 and 14 days. The OS was measured using malondialdehyde (MDA) and apoptosis was measured by annexin V-FITC/PI. RESULTS BMMSCs and exosomes treated groups showed better histological features approximating the normal architecture of the control group. The percentage of PCNA positively stained cells were significantly higher in the exosomes treated group in comparison to all other groups. MDA assay test revealed that the exosomes were able to reduce the OS when compared to the cell-based therapy using BMMSCs. Annexin V revealed that BMMSCs-exosomes significantly reduced the percentage of apoptotic cells compared to other treated groups. CONCLUSIONS BMMSCs-exosomes could improve the CP-induced cytotoxicity in rats' parotid salivary gland.
Collapse
Affiliation(s)
| | - Nessma Sultan
- Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
- Oral Biology and Dental Morphology, Faculty of Dentistry, Mansoura National University, Gamasa, Egypt.
| | - Nesreen Nabil
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
- Oral Biology Department, Faculty of Dentistry, Egyptian Russian University, Cairo, Egypt
| | - Mahitabe Elgamily
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
14
|
Joshi M, Sharma S, Onteru SK, Singh D. Comprehensive proteomic analysis of buffalo milk extracellular vesicles. Int J Biol Macromol 2024; 282:136735. [PMID: 39433188 DOI: 10.1016/j.ijbiomac.2024.136735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Extracellular vesicles are secretory vesicles involved in cell-to-cell communication via their encapsulated cargo of proteins, lipids, and nucleic acids. Bovine milk provides a rich source of extracellular vesicles (mEVs) that have been studied as therapeutics and drug delivery systems. Therefore, insight into the mEV cargo, such as its proteome, may help in understanding the molecular mechanism underlying the potential health benefits attributed to the mEVs. Hence, mEVs were isolated from healthy buffalo milk after screening the milk somatic cell count. The total proteins of mEVs were analyzed using LC-MS, and 331 proteins were found commonly present among three buffalo milk samples. These proteins were primarily derived from extracellular regions and lysosomes. The major biological roles associated with the proteins were immune response, metabolism, and cell cycle regulation. The molecular functions of the proteins were transporter activity, catalytic activity, and GTPase activity. Further, comparative analysis with the previously available bovine mEVs proteome data showed 114 proteins to be newly identified in the buffalo mEVs. The biological pathways associated with these proteins may play a major role in muscle development. These findings shed a light on the potential health benefits of buffalo mEVs as therapeutics as well as drug delivery vehicles.
Collapse
Affiliation(s)
- Mansi Joshi
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sanjay Sharma
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
15
|
Liu Y, Cheng DH, Su ZY, Lv JH, Wang L, Deng YY, Li L. Effects of total coumarins from Pileostegia tomentella on exosomal miRNA expression and angiogenesis in colorectal cancer cells. PHARMACEUTICAL BIOLOGY 2024; 62:153-161. [PMID: 38347502 PMCID: PMC10866057 DOI: 10.1080/13880209.2024.2309871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/20/2024] [Indexed: 02/15/2024]
Abstract
CONTEXT Pileostegia tomentella Hand. Mazz (Saxifragaceae) total coumarins (TCPT) show antitumour activity in colorectal cancer (CRC) with unknown mechanism of action. Tumour angiogenesis mediated by exosomes-derived miRNA exhibits the vital regulation of endothelial cell function in metastasis of CRC. OBJECTIVE To investigate the effect of TCPT on exosomal miRNA expression and angiogenesis of CRC cells. MATERIALS AND METHODS HT-29-derived exosomes were generated from human CRC cells (HT-29) or either treated with TCPT (100 μg/mL) for 24 h, followed by identification by transmission electron microscope, nanoparticle tracking analysis (NTA) and Western blot. Co-culture experiments for human umbilical vein endothelial cells (HUVECs) and exosomes were performed to detect the uptake of exosomes in HUVECs and its influence on HUVECs cells migration and lumen formation ability. Potential target miRNAs in exosomes were screened out by sequencing technology. Rescue assays of angiogenesis were performed by the transfecting mimics or inhibitors of targeted miRNA into HUVECs. RESULTS HT-29-derived exosomes, after TCPT treatment (Exo-TCPT), inhibited the migration and lumen formation of HUVECs, reduced the expression levels of vascular marker (FLT-1, VCAM-1 and VEGFR-2) in HUVECs. Furthermore, the level of miR-375-3p was significantly upregulated in Exo-TCPT. Rescue assays showed that high expression of miR-375-3p in HUVECs inhibited migration and lumen formation abilities, which was consistent with the effects of Exo-TCPT, whereas applying miR-375-3p inhibitors displayed opposite effects. DISCUSSION AND CONCLUSION TCPT exhibits anti-angiogenesis in CRC, possibly through upregulating exosomal miR-375-3p. Our findings will shed light on new target exosomes miRNA-mediated tumour microenvironment and the therapeutic application of Pileostegia tomentella in CRC.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, PR China
| | - Dao-hai Cheng
- Department of Pharmacy, First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Zheng-ying Su
- Department of Pharmacy, Guangxi International Zhuang Medicine Hospital, Nanning, PR China
| | - Ji-hua Lv
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, PR China
| | - Li Wang
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, PR China
| | - Yu-yin Deng
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, PR China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, PR China
| | - Li Li
- Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, PR China
| |
Collapse
|
16
|
Smith JG. Emerging interactions between circadian rhythms and extracellular vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 393:73-93. [PMID: 40390464 DOI: 10.1016/bs.ircmb.2024.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Circadian rhythms are present across species, tuning internal processes to daily changes in the environment. Driven by genetically encoded circadian clocks present throughout the body, and modulated by external inputs, the circadian system is a key player in metabolic control. However, the molecular mediators underlying coordination between cells and tissues are not well known. Extracellular vesicles (EVs) have emerged over recent years as important players in cell-cell and organ-organ communication, however the influence of circadian rhythms on EVs is not yet understood. Research into this area is still scarce, yet already offers glimpses into the potential impact of circadian rhythms on EV biology. In this review, recent discoveries that reveal, directly or indirectly, a potential role for circadian rhythms in EV abundance, properties, cargo and signalling functions are first discussed. Next, the feedback of EV signalling on circadian clocks is considered. Last, unanswered questions regarding the interaction between circadian rhythms and EVs are examined alongside potential approaches to address them. Overall, the circadian impact on EV signalling is an exciting yet understudied aspect that warrants further investigation.
Collapse
Affiliation(s)
- Jacob G Smith
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Buck AH, Nolte-'t Hoen ENM. The Nature and Nurture of Extracellular Vesicle-Mediated Signaling. Annu Rev Genet 2024; 58:409-432. [PMID: 39231450 DOI: 10.1146/annurev-genet-111523-102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (a) EV release that serves a function for producing cells, (b) EV modification of the extracellular environment, and (c) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.
Collapse
Affiliation(s)
- Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom;
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands;
| |
Collapse
|
18
|
Hang NLT, Chuang AEY, Chang CJ, Yen Y, Wong CC, Yang TS. Photobiomodulation associated with alginate-based engineered tissue on promoting chondrocytes-derived biological responses for cartilage regeneration. Int J Biol Macromol 2024; 280:135982. [PMID: 39341321 DOI: 10.1016/j.ijbiomac.2024.135982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Articular cartilage is a connective tissue with limited self-healing potential, frequently affected by trauma and degenerative changes, leading to osteoarthritis. Photobiomodulation paired with engineered tissue can improve cartilage's poor intrinsic healing and overcome its restricted self-regeneration. In this study, alginate-based scaffolds were fabricated with varying concentrations of CaCl₂ to achieve optimal mechanical, biocompatible, and biodegradable properties. The fluence-dependence of near-infrared (NIR) laser irradiation (830 nm) on chondrocyte viability and proliferation was investigated in a 2D environment across fluences (2.5-10 J/cm2). Optimal conditions of 3 % w/v CaCl₂ and 5 J/cm2 were identified to construct alginate scaffolds and promote chondrocyte growth in 2D and 3D cultures. Single PBM (830 nm, 5 J/cm2) further exhibited a significant relative intensity of collagen type II immunostaining and stimulation of Col2a1 expression in 2D culture. Multiple PBM sessions (830 nm, 5 J/cm2) significantly enhanced chondrocyte proliferation and glycosaminoglycan production in alginate scaffolds, with a protocol of one session every four days being the most effective. Scanning electron microscopy revealed PBM-induced secretory granule formation, corresponding to a significant increase in extracellular vesicle release. Consequently, integrating PBM and alginate-based scaffolds is a promising technique for accelerating and optimizing cartilage regeneration, with potential application in tissue engineering.
Collapse
Affiliation(s)
- Nguyen Le Thanh Hang
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan; Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Cheng-Jen Chang
- Department of Plastic Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yun Yen
- College of Medical Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chin-Chean Wong
- Department of Orthopedics, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Research Center of Biomedical Devices Prototyping Production, Taipei Medical University, Taipei 110, Taiwan; International PhD Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Tzu-Sen Yang
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan; School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan; Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
19
|
Mehta K, Yentsch H, Lee J, Yook Y, Lee KY, Gao TT, Tsai NP, Zhang K. Phosphatidylinositol-3-phosphate mediates Arc capsid secretion through the multivesicular body pathway. Proc Natl Acad Sci U S A 2024; 121:e2322422121. [PMID: 39178227 PMCID: PMC11363301 DOI: 10.1073/pnas.2322422121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene that plays a vital role in learning and memory. Arc protein has structural and functional properties similar to viral Group-specific antigen (Gag) protein and mediates the intercellular RNA transfer through virus-like capsids. However, the regulators and secretion pathway through which Arc capsids maneuver cargos are unclear. Here, we identified that phosphatidylinositol-3-phosphate (PI3P) mediates Arc capsid assembly and secretion through the endosomal-multivesicular body (MVB) pathway. Indeed, reconstituted Arc protein preferably binds to PI3P. In HEK293T cells, Arc forms puncta that colocalize with FYVE, an endosomal PI3P marker, as well as Rab5 and CD63, early endosomal and MVB markers, respectively. Superresolution imaging resolves Arc accumulates within the intraluminal vesicles of MVB. CRISPR double knockout of RalA and RalB, crucial GTPases for MVB biogenesis and exocytosis, severely reduces the Arc-mediated RNA transfer efficiency. RalA/B double knockdown in cultured rat cortical neurons increases the percentage of mature dendritic spines. Intake of extracellular vesicles purified from Arc-expressing wild-type, but not RalA/B double knockdown, cells in mouse cortical neurons reduces their surface GlutA1 levels. These results suggest that unlike the HIV Gag, whose membrane targeting requires interaction with plasma-membrane-specific phosphatidyl inositol (4,5) bisphosphate (PI(4,5)P2), the assembly of Arc capsids is mediated by PI3P at endocytic membranes. Understanding Arc's secretion pathway helps gain insights into its role in intercellular cargo transfer and highlights the commonality and distinction of trafficking mechanisms between structurally resembled capsid proteins.
Collapse
Affiliation(s)
- Kritika Mehta
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- NSF Science and Technology Center for Quantitative Cell Biology (STC-QCB) Center, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Henry Yentsch
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Jungbin Lee
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Yeeun Yook
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Tianyu Terry Gao
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Kai Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- NSF Science and Technology Center for Quantitative Cell Biology (STC-QCB) Center, University of Illinois Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Quantitative Biology, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801
- Neuroscience Program, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
20
|
Fazzio A, Caponnetto A, Ferrara C, Purrello M, Di Pietro C, Battaglia R. From Germ Cells to Implantation: The Role of Extracellular Vesicles. J Dev Biol 2024; 12:22. [PMID: 39311117 PMCID: PMC11417829 DOI: 10.3390/jdb12030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles represent a large heterogeneous class of near and long-distance intercellular communication mediators, released by both prokaryotic and eukaryotic cells. Specifically, the scientific community has shown growing interest in exosomes, which are nano-sized vesicles with an endosomal origin. Not so long ago, the physiological goal of exosome generation was largely unknown and required more investigation; at first, it was hypothesized that exosomes are able to remove excess, reject and unnecessary constituents from cells to preserve cellular homeostasis. However, thanks to recent studies, the central role of exosomes in regulating cellular communication has emerged. Exosomes act as vectors in cell-cell signaling by their cargo, proteins, lipids, and nucleic acids, and influence physiological and pathological processes. The findings on exosomes are widespread in a large spectrum of biomedical applications from diagnosis and prognosis to therapies. In this review, we describe exosome biogenesis and the current methods for their isolation and characterization, emphasizing the role of their cargo in female reproductive processes, from gametogenesis to implantation, and the potential involvement in human female disorders.
Collapse
Affiliation(s)
- Anna Fazzio
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “G. Sichel”, University of Catania, 95123 Catania, Italy; (A.F.); (A.C.); (C.F.); (M.P.); (R.B.)
| |
Collapse
|
21
|
Sun S, Li Q, Liu G, Huang X, Li A, Guo H, Qi L, Zhang J, Song J, Su X, Zhang Y. Endosomal protein DENND10/FAM45A integrates extracellular vesicle release with cancer cell migration. BMC Biol 2024; 22:154. [PMID: 38987765 PMCID: PMC11234546 DOI: 10.1186/s12915-024-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Affiliation(s)
- Shenqing Sun
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Qian Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Ganggang Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaoheng Huang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Aiqing Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Haoran Guo
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lijuan Qi
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jianrui Song
- Wisdom Lake Academy of Pharmacy, Jiangsu Provincial Higher Education Key Laboratory of Cell Therapy Nanoformulation, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Xiong Su
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- Suzhou Key Laboratory of Systems Biomedicine, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Yanling Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
- Suzhou Key Laboratory of Systems Biomedicine, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
22
|
Biondi A, Vacante M, Catania R, Sangiorgio G. Extracellular Vesicles and Immune System Function: Exploring Novel Approaches to Colorectal Cancer Immunotherapy. Biomedicines 2024; 12:1473. [PMID: 39062046 PMCID: PMC11275211 DOI: 10.3390/biomedicines12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the emerging role of extracellular vesicles (EVs) in modulating immune system function and their application in novel cancer immunotherapy strategies, with a focus on colorectal cancer (CRC). EVs, as carriers of bioactive molecules, have shown potential in enhancing immune responses and overcoming the limitations of traditional therapies. We discuss the biogenesis, types, and functional roles of immune cell-derived EVs, their interactions with cancer cells, and their implications in antitumor immunity. Challenges such as tumor heterogeneity and immune evasion are addressed, alongside the promising therapeutic prospects of EV-based strategies. This comprehensive analysis underscores the transformative potential of EVs in cancer treatment paradigms.
Collapse
Affiliation(s)
- Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Marco Vacante
- Unit of Internal Medicine Critical Area—ARNAS Garibaldi, Piazza Santa Maria di Gesù, 5, 95124 Catania, Italy;
| | - Roberta Catania
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
| | - Giuseppe Sangiorgio
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (A.B.); (R.C.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
23
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
24
|
Almeida PP, Moraes JA, Barja-Fidalgo TC, Renovato-Martins M. Extracellular vesicles as modulators of monocyte and macrophage function in tumors. AN ACAD BRAS CIENC 2024; 96:e20231212. [PMID: 38922279 DOI: 10.1590/0001-3765202420231212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/17/2024] [Indexed: 06/27/2024] Open
Abstract
The tumor microenvironment (TME) harbors several cell types, such as tumor cells, immune cells, and non-immune cells. These cells communicate through several mechanisms, such as cell-cell contact, cytokines, chemokines, and extracellular vesicles (EVs). Tumor-derived vesicles are known to have the ability to modulate the immune response. Monocytes are a subset of circulating innate immune cells and play a crucial role in immune surveillance, being recruited to tissues where they differentiate into macrophages. In the context of tumors, it has been observed that tumor cells can attract monocytes to the TME and induce their differentiation into tumor-associated macrophages with a pro-tumor phenotype. Tumor-derived EVs have emerged as essential structures mediating this process. Through the transfer of specific molecules and signaling factors, tumor-derived EVs can shape the phenotype and function of monocytes, inducing the expression of cytokines and molecules by these cells, thus modulating the TME towards an immunosuppressive environment.
Collapse
Affiliation(s)
- Palloma P Almeida
- Universidade Federal Fluminense, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Laboratório de Inflamação e Metabolismo, Rua Professor Marcos Waldemar de Freitas Reis, s/n, 24020-140 Niterói, RJ, Brazil
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Biologia Redox, Av. Carlos Chagas Filho, 373, Prédio do ICB - Anexo B1F3, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
- Universidade do Estado do Rio de Janeiro, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes - IBRAG, Laboratório de Farmacologia Celular e Molecular, Av. 28 de setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - João Alfredo Moraes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Biologia Redox, Av. Carlos Chagas Filho, 373, Prédio do ICB - Anexo B1F3, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Thereza Christina Barja-Fidalgo
- Universidade do Estado do Rio de Janeiro, Departamento de Biologia Celular, Instituto de Biologia Roberto Alcantara Gomes - IBRAG, Laboratório de Farmacologia Celular e Molecular, Av. 28 de setembro, 87, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Mariana Renovato-Martins
- Universidade Federal Fluminense, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Laboratório de Inflamação e Metabolismo, Rua Professor Marcos Waldemar de Freitas Reis, s/n, 24020-140 Niterói, RJ, Brazil
| |
Collapse
|
25
|
Guo S, Wang D. Novel insights into the potential applications of stem cells in pulmonary hypertension therapy. Respir Res 2024; 25:237. [PMID: 38849894 PMCID: PMC11162078 DOI: 10.1186/s12931-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Pulmonary hypertension (PH) refers to a group of deadly lung diseases characterized by vascular lesions in the microvasculature and a progressive increase in pulmonary vascular resistance. The prevalence of PH has increased over time. Currently, the treatment options available for PH patients have limited efficacy, and none of them can fundamentally reverse pulmonary vascular remodeling. Stem cells represent an ideal seed with proven efficacy in clinical studies focusing on liver, cardiovascular, and nerve diseases. Since the potential therapeutic effect of mesenchymal stem cells (MSCs) on PH was first reported in 2006, many studies have demonstrated the efficacy of stem cells in PH animal models and suggested that stem cells can help slow the deterioration of lung tissue. Existing PH treatment studies basically focus on the paracrine action of stem cells, including protein regulation, exosome pathway, and cell signaling; however, the specific mechanisms have not yet been clarified. Apoptotic and afunctional pulmonary microvascular endothelial cells (PMVECs) and alveolar epithelial cells (AECs) are two fundamental promoters of PH although they have not been extensively studied by researchers. This review mainly focuses on the supportive communication and interaction between PMVECs and AECs as well as the potential restorative effect of stem cells on their injury. In the future, more studies are needed to prove these effects and explore more radical cures for PH.
Collapse
Affiliation(s)
- Sijia Guo
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Dachun Wang
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
26
|
Chen DX, Lu CH, Na N, Yin RX, Huang F. Endothelial progenitor cell-derived extracellular vesicles: the world of potential prospects for the treatment of cardiovascular diseases. Cell Biosci 2024; 14:72. [PMID: 38840175 DOI: 10.1186/s13578-024-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs. This comprehensive review systematically explores the origins, characteristics, and functions of EPCs, alongside the classification, properties, biogenesis, and extraction techniques of EVs, with particular emphasis on their protective roles in CVDs. Additionally, we delve into the essential bioactive components of EPC-EVs, including microRNAs, long non-coding RNAs, and proteins, analyzing their beneficial effects in promoting angiogenesis, anti-inflammatory and anti-oxidant activities, anti-fibrosis, anti-apoptosis, and myocardial regeneration. Furthermore, this review comprehensively investigates the therapeutic potential of EPC-EVs across various CVDs, encompassing acute myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, non-ischemic cardiomyopathies, and diabetic cardiovascular disease. Lastly, we summarize the potential challenges associated with the clinical application of EPC-EVs and outline future directions, aiming to offer a valuable resource for both theoretical insights and practical applications of EPC-EVs in managing CVDs.
Collapse
Affiliation(s)
- De-Xin Chen
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuang-Hong Lu
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Na
- Department of Neuroscience, Scripps Research Institute, No.10550 North Torrey Pines Road, La Jolla, San Diego, CA, 92037, USA
| | - Rui-Xing Yin
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Feng Huang
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
27
|
Ye Z, Chen W, Li G, Huang J, Lei J. Tissue-derived extracellular vesicles in cancer progression: mechanisms, roles, and potential applications. Cancer Metastasis Rev 2024; 43:575-595. [PMID: 37851319 DOI: 10.1007/s10555-023-10147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-enclosed vesicles that mediate vital cellular communication by transferring cargo between cells. Among these, tissue-derived extracellular vesicles (Ti-EVs) stand out due to their origin from the tissue microenvironment, providing a more accurate reflection of changes in this setting. This unique advantage makes Ti-EVs valuable in investigating the intricate relationship between extracellular vesicles and cancer progression. Despite considerable research efforts exploring the association between Ti-EVs and cancers, a comprehensive clustering or grouping of these studies remains lacking. In this review, we aim to fill this gap by presenting a comprehensive synthesis of the mechanisms underlying Ti-EV generation, release, and transport within cancer tissues. Moreover, we delve into the pivotal roles that Ti-EVs play in cancer progression, shedding light on their potential as diagnostic and therapeutic tools. The review culminates in the construction of a comprehensive functional spectrum of Ti-EVs, providing a valuable reference for future research endeavors. By summarizing the current state of knowledge on Ti-EVs and their significance in tumor biology, this work contributes to a deeper understanding of cancer microenvironment dynamics and opens up avenues for harnessing Ti-EVs in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Dhungel N, Dragoi AM. Exploring the multifaceted role of direct interaction between cancer cells and fibroblasts in cancer progression. Front Mol Biosci 2024; 11:1379971. [PMID: 38863965 PMCID: PMC11165130 DOI: 10.3389/fmolb.2024.1379971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The interaction between the tumor microenvironment (TME) and the cancer cells is a complex and mutually beneficial system that leads to rapid cancer cells proliferation, metastasis, and resistance to therapy. It is now recognized that cancer cells are not isolated, and tumor progression is governed among others, by many components of the TME. The reciprocal cross-talk between cancer cells and their microenvironment can be indirect through the secretion of extracellular matrix (ECM) proteins and paracrine signaling through exosomes, cytokines, and growth factors, or direct by cell-to-cell contact mediated by cell surface receptors and adhesion molecules. Among TME components, cancer-associated fibroblasts (CAFs) are of unique interest. As one of the most abundant components of the TME, CAFs play key roles in the reorganization of the extracellular matrix, facilitating metastasis and chemotherapy evasion. Both direct and indirect roles have been described for CAFs in modulating tumor progression. In this review, we focus on recent advances in understanding the role of direct contact between cancer cells and cancer-associated fibroblasts (CAFs) in driving tumor development and metastasis. We also summarize recent findings on the role of direct contact between cancer cells and CAFs in chemotherapy resistance.
Collapse
Affiliation(s)
- Nilu Dhungel
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, United States
| |
Collapse
|
29
|
Németh A, Bányai GL, Dobos NK, Kós T, Gaál A, Varga Z, Buzás EI, Khamari D, Dank M, Takács I, Szász AM, Garay T. Extracellular vesicles promote migration despite BRAF inhibitor treatment in malignant melanoma cells. Cell Commun Signal 2024; 22:282. [PMID: 38778340 PMCID: PMC11110207 DOI: 10.1186/s12964-024-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.
Collapse
Affiliation(s)
- Afrodité Németh
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gréta L Bányai
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Nikolett K Dobos
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Tamás Kós
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry; Biological Nanochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry; Biological Nanochemistry Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Magdolna Dank
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - A Marcell Szász
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary
| | - Tamás Garay
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
- Department of Internal Medicine and Oncology, Division of Oncology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
30
|
Kashyap A, Wang W, Camley BA. Trade-offs in concentration sensing in dynamic environments. Biophys J 2024; 123:1184-1194. [PMID: 38532627 PMCID: PMC11140415 DOI: 10.1016/j.bpj.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
When cells measure concentrations of chemical signals, they may average multiple measurements over time in order to reduce noise in their measurements. However, when cells are in an environment that changes over time, past measurements may not reflect current conditions-creating a new source of error that trades off against noise in chemical sensing. What statistics in the cell's environment control this trade-off? What properties of the environment make it variable enough that this trade-off is relevant? We model a single eukaryotic cell sensing a chemical secreted from bacteria (e.g., folic acid). In this case, the environment changes because the bacteria swim-leading to changes in the true concentration at the cell. We develop analytical calculations and stochastic simulations of sensing in this environment. We find that cells can have a huge variety of optimal sensing strategies ranging from not time averaging at all to averaging over an arbitrarily long time or having a finite optimal averaging time. The factors that primarily control the ideal averaging are the ratio of sensing noise to environmental variation and the ratio of timescales of sensing to the timescale of environmental variation. Sensing noise depends on the receptor-ligand kinetics, while environmental variation depends on the density of bacteria and the degradation and diffusion properties of the secreted chemoattractant. Our results suggest that fluctuating environmental concentrations may be a relevant source of noise even in a relatively static environment.
Collapse
Affiliation(s)
- Aparajita Kashyap
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Wei Wang
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland; William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
31
|
Hisey CL, Rima XY, Doon-Ralls J, Nagaraj CK, Mayone S, Nguyen KT, Wiggins S, Dorayappan KDP, Selvendiran K, Wood D, Hu C, Patel D, Palmer A, Hansford D, Reategui E. Light-induced Extracellular Vesicle Adsorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590318. [PMID: 38712200 PMCID: PMC11071350 DOI: 10.1101/2024.04.24.590318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The role of extracellular vesicles (EVs) in human health and disease has garnered considerable attention over the past two decades. However, while several types of EVs are known to interact dynamically with the extracellular matrix and there is great potential value in producing high-fidelity EV micropatterns, there are currently no label-free, high-resolution, and tunable platform technologies with this capability. We introduce Light-induced Extracellular Vesicle Adsorption (LEVA) as a powerful solution to rapidly advance the study of matrix- and surface-bound EVs and other particles. The versatility of LEVA is demonstrated using commercial GFP-EV standards, EVs from glioblastoma bioreactors, and E. coli outer membrane vesicles (OMVs), with the resulting patterns used for single EV characterization, single cell migration on migrasome-mimetic trails, and OMV-mediated neutrophil swarming. LEVA will enable rapid advancements in the study of matrix- and surface-bound EVs and other particles, and should encourage researchers from many disciplines to create novel diagnostic, biomimetic, immunoengineering, and therapeutic screening assays.
Collapse
|
32
|
Ram Kumar RM, Logesh R, Joghee S. Breast cancer derived exosomes: Theragnostic perspectives and implications. Clin Chim Acta 2024; 557:117875. [PMID: 38493944 DOI: 10.1016/j.cca.2024.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Breast cancer (BC) is the most prevalent malignancy affecting women worldwide. Although conventional treatments such as chemotherapy, surgery, hormone therapy, radiation therapy, and biological therapy are commonly used, they often entail significant side effects. Therefore, there is a critical need to investigate more cost-effective and efficient treatment modalities in BC. Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, play a crucial role in modulating recipient cell behaviour and driving cancer progression. Among the EVs, exosomes provide valuable insights into cellular dynamics under both healthy and diseased conditions. In cancer, exosomes play a critical role in driving tumor progression and facilitating the development of drug resistance. BC-derived exosomes (BCex) dynamically influence BC progression by regulating cell proliferation, immunosuppression, angiogenesis, metastasis, and the development of treatment resistance. Additionally, BCex serve as promising diagnostic markers in BC which are detectable in bodily fluids such as urine and saliva. Targeted manipulation of BCex holds significant therapeutic potential. This review explores the therapeutic and diagnostic implications of exosomes in BC, underscoring their relevance to the disease. Furthermore, it discusses future directions for exosome-based research in BC, emphasizing the necessity for further exploration in this area.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India.
| | - Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Suresh Joghee
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| |
Collapse
|
33
|
Li J, Wu Y, Yuan Q, Li L, Qin W, Jia J, Chen K, Wu D, Yuan X. Gelatin Microspheres Based on H8-Loaded Macrophage Membrane Vesicles to Promote Wound Healing in Diabetic Mice. ACS Biomater Sci Eng 2024; 10:2251-2269. [PMID: 38450619 DOI: 10.1021/acsbiomaterials.3c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Diabetic wound healing remains a worldwide challenge for both clinicians and researchers. The high expression of matrix metalloproteinase 9 (MMP9) and a high inflammatory response are indicative of poor diabetic wound healing. H8, a curcumin analogue, is able to treat diabetes and is anti-inflammatory, and our pretest showed that it has the potential to treat diabetic wound healing. However, H8 is highly expressed in organs such as the liver and kidney, resulting in its unfocused use in diabetic wound targeting. (These data were not published, see Table S1 in the Supporting Information.) Accordingly, it is important to pursue effective carrier vehicles to facilitate the therapeutic uses of H8. The use of H8 delivered by macrophage membrane-derived nanovesicles provides a potential strategy for repairing diabetic wounds with improved drug efficacy and fast healing. In this study, we fabricated an injectable gelatin microsphere (GM) with sustained MMP9-responsive H8 macrophage membrane-derived nanovesicles (H8NVs) with a targeted release to promote angiogenesis that also reduces oxidative stress damage and inflammation, promoting diabetic wound healing. Gelatin microspheres loaded with H8NV (GMH8NV) stimulated by MMP9 can significantly facilitate the migration of NIH-3T3 cells and facilitate the development of tubular structures by HUVEC in vitro. In addition, our results demonstrated that GMH8NV stimulated by MMP9 protected cells from oxidative damage and polarized macrophages to the M2 phenotype, leading to an inflammation inhibition. By stimulating angiogenesis and collagen deposition, inhibiting inflammation, and reducing MMP9 expression, GMH8NV accelerated wound healing. This study showed that GMH8NVs were targeted to release H8NV after MMP9 stimulation, suggesting promising potential in achieving satisfactory healing in diabetic treatment.
Collapse
Affiliation(s)
- Jiali Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
- Clinical Laboratory, Maoming Third People's Hospital, Maoming 525000, People's Republic of China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Qi Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Wenqi Qin
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Jia Jia
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Dan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| |
Collapse
|
34
|
Wang L, Li F, Wang L, Wu B, Du M, Xing H, Pan S. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviate Rheumatoid Arthritis Symptoms via Shuttling Proteins. J Proteome Res 2024; 23:1298-1312. [PMID: 38500415 DOI: 10.1021/acs.jproteome.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Our prior investigations have evidenced that bone marrow mesenchymal stem cell (BMSC) therapy can significantly improve the outcomes of rheumatoid arthritis (RA). This study aims to conduct a comprehensive analysis of the proteomics between BMSCs and BMSCs-Exos, and to further elucidate the potential therapeutic effect of BMSCs-Exos on RA, so as to establish a theoretical framework for the prevention and therapy of BMSCs-Exos on RA. The 4D label-free LC-MS/MS technique was used for comparative proteomic analysis of BMSCs and BMSCs-Exos. Collagen-induced arthritis (CIA) rat model was used to investigate the therapeutic effect of BMSCs-Exos on RA. Our results showed that some homology and differences were observed between BMSCs and BMSCs-Exos proteins, among which proteins highly enriched in BMSCs-Exos were related to extracellular matrix and extracellular adhesion. BMSCs-Exos can be taken up by chondrocytes, promoting cell proliferation and migration. In vivo results revealed that BMSCs-Exos significantly improved the clinical symptoms of RA, showing a certain repair effect on the injury of articular cartilage. In short, our study revealed, for the first time, that BMSCs-Exos possess remarkable efficacy in alleviating RA symptoms, probably through shuttling proteins related to cell adhesion and tissue repair ability in CIA rats, suggesting that BMSCs-Exos carrying expressed proteins may become a useful biomaterial for RA treatment.
Collapse
Affiliation(s)
- Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liting Wang
- Department of Rehabilitation, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Bingxing Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman ,Washington 99163, United States
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
35
|
Yu MSC, Edelbacher TV, Grätz C, Chiang DM, Reithmair M, Pfaffl MW. Summary report of the 1st MOVE symposium in Málaga from 24-27th October 2023 - Foster the European mobility for young scientists in extracellular vesicles research. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:95-113. [PMID: 39698417 PMCID: PMC11648475 DOI: 10.20517/evcna.2024.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Mia S. C. Yu
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Authors contributed equally
| | - Tanja V. Edelbacher
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Division of Functional Microbiology, Institute for Microbiology, Center for Pathobiology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Authors contributed equally
| | - Christian Grätz
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Dapi M. Chiang
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich 80336, Germany
- Department of Biomedicine, University of Basel, Basel 4031, Switzerland
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, LMU Munich, Munich 80336, Germany
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
36
|
Liang J, Deng Y, Zhang Y, Wu B, Zhou J. Identification and clinical value of a new ceRNA axis (TIMP3/hsa-miR-181b-5p/PAX8-AS1) in thyroid cancer. Health Sci Rep 2024; 7:e1859. [PMID: 38410497 PMCID: PMC10895078 DOI: 10.1002/hsr2.1859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Background Thyroid cancer (TC) is a prevalent and increasingly common malignant tumor. In most cases, TC progresses slowly and runs a virtually benign course. However, challenges remain with the treatment of refractory TC, which does not respond to traditional management or is subject to relapse or metastasis. Therefore, new therapeutic regimens for TC patients with poor outcomes are urgently needed. Methods The differentially expressed RNAs were identified from the expression profile data of RNA from TC downloaded from The Cancer Genome Atlas database. Multiple databases were utilized to investigate the regulatory relationship among RNAs. Subsequently, a competitive endogenous RNA (ceRNA) network was established to elucidate the ceRNA axis that is responsible for the clinical prognosis of TC. To understand the potential mechanism of ceRNA axis in TC, location analysis, functional enrichment analysis, and immune-related analysis were conducted. Results A ceRNA network of TC was constructed, and the TIMP3/hsa-miR-181b-5p/PAX8-AS1 ceRNA axis associated with the prognosis of TC was successfully identified. Our results showed that the axis might influence the prognosis of TC through its regulation of regulating tumor immunity. Conclusions Our findings provide evidence that TIMP3/hsa-miR-181b-5p/PAX8-AS1 axis is significantly related to the prognosis of TC. The molecules involved in this axis may serve as novel therapeutic approaches for TC treatment.
Collapse
Affiliation(s)
- Jiamin Liang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Deng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yubi Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Breast and Thyroid Surgery, People's Hospital of Dongxihu District Wuhan City and Union Dongxihu HospitalHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
37
|
Kawano T, Okamura K, Shinchi H, Ueda K, Nomura T, Shiba K. Differentiation of large extracellular vesicles in oral fluid: Combined protocol of small force centrifugation and sedimentation pattern analysis. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e143. [PMID: 38939901 PMCID: PMC11080912 DOI: 10.1002/jex2.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) in biofluids are highly heterogeneous entities in terms of their origins and physicochemical properties. Considering the application of EVs in diagnostic and therapeutic fields, it is of extreme importance to establish differentiating methods by which focused EV subclasses are operationally defined. Several differentiation protocols have been proposed; however, they have mainly focused on smaller types of EVs, and the heterogeneous nature of large EVs has not yet been fully explored. In this report, to classify large EVs into subgroups based on their physicochemical properties, we have developed a protocol, named EV differentiation by sedimentation patterns (ESP), in which entities in the crude large EV fraction are first moved through a density gradient of iodixanol with small centrifugation forces, and then the migration patterns of molecules through the gradients are analysed using a non-hierarchical data clustering algorithm. Based on this method, proteins in the large EV fractions of oral fluids clustered into three groups: proteins shared with small EV cargos and enriched in immuno-related proteins (Group 1), proteins involved in energy metabolism and protein synthesis (Group 2), and proteins required for vesicle trafficking (Group 3). These observations indicate that the physiochemical properties of EVs, which are defined through low-speed gradient centrifugation, are well associated with their functions within cells. This protocol enables the detailed subclassification of EV populations that are difficult to differentiate using conventional separation methods.
Collapse
Affiliation(s)
- Takamasa Kawano
- Division of Protein Engineering, Cancer InstituteJapanese Foundation for Cancer ResearchKoto‐kuTokyoJapan
- Department of Oral OncologyOral and Maxillofacial Surgery, Tokyo Dental CollegeIchikawaChibaJapan
| | - Kohji Okamura
- Department of Systems BioMedicineNational Center for Child Health and DevelopmentSetagaya‐kuTokyoJapan
| | - Hiroki Shinchi
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchKoto‐kuTokyoJapan
| | - Koji Ueda
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchKoto‐kuTokyoJapan
| | - Takeshi Nomura
- Department of Oral OncologyOral and Maxillofacial Surgery, Tokyo Dental CollegeIchikawaChibaJapan
| | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer InstituteJapanese Foundation for Cancer ResearchKoto‐kuTokyoJapan
| |
Collapse
|
38
|
Thind MK, Uhlig HH, Glogauer M, Palaniyar N, Bourdon C, Gwela A, Lancioni CL, Berkley JA, Bandsma RHJ, Farooqui A. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front Immunol 2024; 14:1334205. [PMID: 38259490 PMCID: PMC10800387 DOI: 10.3389/fimmu.2023.1334205] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Agnes Gwela
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - James A Berkley
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Omega Laboratories Inc, Mississauga, ON, Canada
| |
Collapse
|
39
|
König T, McBride HM. Mitochondrial-derived vesicles in metabolism, disease, and aging. Cell Metab 2024; 36:21-35. [PMID: 38171335 DOI: 10.1016/j.cmet.2023.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Mitochondria are central hubs of cellular metabolism and are tightly connected to signaling pathways. The dynamic plasticity of mitochondria to fuse, divide, and contact other organelles to flux metabolites is central to their function. To ensure bona fide functionality and signaling interconnectivity, diverse molecular mechanisms evolved. An ancient and long-overlooked mechanism is the generation of mitochondrial-derived vesicles (MDVs) that shuttle selected mitochondrial cargoes to target organelles. Just recently, we gained significant insight into the mechanisms and functions of MDV transport, ranging from their role in mitochondrial quality control to immune signaling, thus demonstrating unexpected and diverse physiological aspects of MDV transport. This review highlights the origin of MDVs, their biogenesis, and their cargo selection, with a specific focus on the contribution of MDV transport to signaling across cell and organ barriers. Additionally, the implications of MDVs in peroxisome biogenesis, neurodegeneration, metabolism, aging, and cancer are discussed.
Collapse
Affiliation(s)
- Tim König
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
40
|
Breton V, Nazac P, Boulet D, Danglot L. Molecular mapping of neuronal architecture using STORM microscopy and new fluorescent probes for SMLM imaging. NEUROPHOTONICS 2024; 11:014414. [PMID: 38464866 PMCID: PMC10923464 DOI: 10.1117/1.nph.11.1.014414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Imaging neuronal architecture has been a recurrent challenge over the years, and the localization of synaptic proteins is a frequent challenge in neuroscience. To quantitatively detect and analyze the structure of synapses, we recently developed free SODA software to detect the association of pre and postsynaptic proteins. To fully take advantage of spatial distribution analysis in complex cells, such as neurons, we also selected some new dyes for plasma membrane labeling. Using Icy SODA plugin, we could detect and analyze synaptic association in both conventional and single molecule localization microscopy, giving access to a molecular map at the nanoscale level. To replace those molecular distributions within the neuronal three-dimensional (3D) shape, we used MemBright probes and 3D STORM analysis to decipher the entire 3D shape of various dendritic spine types at the single-molecule resolution level. We report here the example of synaptic proteins within neuronal mask, but these tools have a broader spectrum of interest since they can be used whatever the proteins or the cellular type. Altogether with SODA plugin, MemBright probes thus provide the perfect toolkit to decipher a nanometric molecular map of proteins within a 3D cellular context.
Collapse
Affiliation(s)
- Victor Breton
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
| | - David Boulet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, NeurImag Core Facility, Paris, France
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, NeurImag Core Facility, Paris, France
| |
Collapse
|
41
|
Wu W, Krijgsveld J. Secretome Analysis: Reading Cellular Sign Language to Understand Intercellular Communication. Mol Cell Proteomics 2024; 23:100692. [PMID: 38081362 PMCID: PMC10793180 DOI: 10.1016/j.mcpro.2023.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
A significant portion of mammalian proteomes is secreted to the extracellular space to fulfill crucial roles in cell-to-cell communication. To best recapitulate the intricate and multi-faceted crosstalk between cells in a live organism, there is an ever-increasing need for methods to study protein secretion in model systems that include multiple cell types. In addition, posttranslational modifications further expand the complexity and versatility of cellular communication. This review aims to summarize recent strategies and model systems that employ cellular coculture, chemical biology tools, protein enrichment, and proteomic methods to characterize the composition and function of cellular secretomes. This is all geared towards gaining better understanding of organismal biology in vivo mediated by secretory signaling.
Collapse
Affiliation(s)
- Wei Wu
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
42
|
Mehta K, Yentsch H, Lee J, Gao TT, Zhang K. Phosphatidylinositol 3-phosphate mediates Arc capsids secretion through the multivesicular body pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572392. [PMID: 38187623 PMCID: PMC10769229 DOI: 10.1101/2023.12.19.572392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) is an immediate early gene that plays a vital role in learning and memory. The recent discovery that Arc mediates the inter-neuronal RNA transfer implies its role in regulating neuronal functions across long distances. Arc protein has structural and functional properties similar to viral Group-specific antigen (Gag). By assembling into high-order, virus-like capsids, Arc mediates the intercellular RNA transfer. However, the exact secretion pathway through which Arc capsids maneuver cargos is unclear. Here, we identified that Arc capsids assemble and secrete through the endosomal-multivesicular body (MVB) pathway. Arc's endosomal entry is likely mediated by phosphatidylinositol-3-phosphate (PI3P). Indeed, reconstituted Arc protein preferably binds to PI3P. In mammalian cells, Arc forms puncta that colocalizes with FYVE, an endosomal PI3P marker, and competitive binding to PI3P via prolonged FYVE expression reduces the average number of Arc puncta per cell. Overexpression of MTMR1, a PI3P phosphatase, significantly reduces Arc capsid secretion. Arc capsids secrete through the endosomal-MVB axis as extracellular vesicles. Live-cell imaging shows that fluorescently labeled Arc primarily colocalizes Rab5 and CD63, early endosomal and MVB markers, respectively. Superresolution imaging resolves Arc accumulates within the intraluminal vesicles of MVB. CRISPR double knockout of RalA and RalB, crucial GTPases for MVB biogenesis and exocytosis, severely reduces Arc-mediated RNA transfer efficiency. These results suggest that, unlike the Human Immunodeficiency Virus Gag, which assembles on and bud off from the plasma membrane, Arc capsids assemble at the endocytic membranes of the endosomal-MVB pathway mediated by PI3P. Understanding Arc's secretion pathway helps gain insights into its role in intercellular cargo transfer and highlights the commonality and distinction of trafficking mechanisms between structurally resembled capsid proteins.
Collapse
|
43
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat Commun 2023; 14:7909. [PMID: 38036511 PMCID: PMC10689845 DOI: 10.1038/s41467-023-43615-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The plasma membrane is widely regarded as the hub of the numerous signal transduction activities. Yet, the fundamental biophysical mechanisms that spatiotemporally compartmentalize different classes of membrane proteins remain unclear. Using multimodal live-cell imaging, here we first show that several lipid-anchored membrane proteins are consistently depleted from the membrane regions where the Ras/PI3K/Akt/F-actin network is activated. The dynamic polarization of these proteins does not depend upon the F-actin-based cytoskeletal structures, recurring shuttling between membrane and cytosol, or directed vesicular trafficking. Photoconversion microscopy and single-molecule measurements demonstrate that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane which enable their selective segregation. When these diffusion coefficients are incorporated into an excitable network-based stochastic reaction-diffusion model, simulations reveal that the altered affinity mediated selective partitioning is sufficient to drive familiar propagating wave patterns. Furthermore, normally uniform integral and lipid-anchored membrane proteins partition successfully when membrane domain-specific peptides are optogenetically recruited to them. We propose "dynamic partitioning" as a new mechanism that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins during various physiological processes where membrane polarizes.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
44
|
Zhang X, Yao L, Meng Y, Li B, Yang Y, Gao F. Migrasome: a new functional extracellular vesicle. Cell Death Discov 2023; 9:381. [PMID: 37852963 PMCID: PMC10584828 DOI: 10.1038/s41420-023-01673-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Migrasome is a novel cellular organelle produced during cell migration, and its biogenesis depends on the migration process. It is generated in a variety of cells such as immune cells, metastatic tumor cells, other special functional cells like podocytes and cells in developing organisms. It plays important roles in various fields especially in the information exchange between cells. The discovery of migrasome, as an important supplement to the extracellular vesicle system, provides new mechanisms and targets for comprehending various biological or pathological processes. In this article, we will review the discovery, structure, distribution, detection, biogenesis, and removal of migrasomes and mainly focus on summarizing its biological functions in cell-to-cell communication, homeostatic maintenance, embryonic development and multiple diseases. This review also creates prospects for the possible research directions and clinical applications of migrasomes in the future.
Collapse
Affiliation(s)
- Xide Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Liuhuan Yao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China
| | - Yuanyuan Meng
- Naval Medical University, Department of Traditional Chinese Medicine, Affiliated Hospital 1, 200433, Shanghai, P. R. China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 200433, Shanghai, P. R. China.
| |
Collapse
|
45
|
Liguori GL, Kralj-Iglič V. Pathological and Therapeutic Significance of Tumor-Derived Extracellular Vesicles in Cancer Cell Migration and Metastasis. Cancers (Basel) 2023; 15:4425. [PMID: 37760395 PMCID: PMC10648223 DOI: 10.3390/cancers15184425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The infiltration of primary tumors and metastasis formation at distant sites strongly impact the prognosis and the quality of life of cancer patients. Current therapies including surgery, radiotherapy, and chemotherapy are limited in targeting the complex cell migration mechanisms responsible for cancer cell invasiveness and metastasis. A better understanding of these mechanisms and the development of new therapies are urgently needed. Extracellular vesicles (EVs) are lipid-enveloped particles involved in inter-tissue and inter-cell communication. This review article focuses on the impact of EVs released by tumor cells, specifically on cancer cell migration and metastasis. We first introduce cell migration processes and EV subtypes, and we give an overview of how tumor-derived EVs (TDEVs) may impact cancer cell migration. Then, we discuss ongoing EV-based cancer therapeutic approaches, including the inhibition of general EV-related mechanisms as well as the use of EVs for anti-cancer drug delivery, focusing on the harnessing of TDEVs. We propose a protein-EV shuttle as a route alternative to secretion or cell membrane binding, influencing downstream signaling and the final effect on target cells, with strong implications in tumorigenesis. Finally, we highlight the pitfalls and limitations of therapeutic EV exploitation that must be overcome to realize the promise of EVs for cancer therapy.
Collapse
Affiliation(s)
- Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
46
|
Badosa C, Roldán M, Fernández-Irigoyen J, Santamaria E, Jimenez-Mallebrera C. Proteomic and functional characterisation of extracellular vesicles from collagen VI deficient human fibroblasts reveals a role in cell motility. Sci Rep 2023; 13:14622. [PMID: 37670049 PMCID: PMC10480450 DOI: 10.1038/s41598-023-41632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Extracellular vesicles (EVs) are key mediators of cell-to-cell communication. Their content reflects the state of diseased cells representing a window into disease progression. Collagen-VI Related Muscular Dystrophy (COL6-RD) is a multi-systemic disease involving different cell types. The role of EVs in this disease has not been explored. We compared by quantitative proteomics the protein cargo of EVs released from fibroblasts from patients with COL6-RD and controls. Isolated EVs contained a significant proportion of the most frequently reported proteins in EVs according to Exocarta and Vesiclepedia. We identified 67 differentially abundant proteins associated with vesicle transport and exocytosis, actin remodelling and the cytoskeleton, hemostasis and oxidative stress. Treatment of control fibroblasts with EVs from either patient or healthy fibroblasts altered significantly the motility of cells on a cell migration assay highlighting the functional relevance of EVs. In parallel, we analysed the secretome from the same cells and found a distinctly different set of 48 differentially abundant proteins related to extracellular matrix organisation and remodelling, growth factor response, RNA metabolism and the proteasome. The EVs and secretome sets of proteins only shared two identifiers indicating that the sorting of proteins towards EVs or the secretory pathway is tightly regulated for different functions.
Collapse
Affiliation(s)
- Carmen Badosa
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, PCCB, 3rd Floor, Calle Santa Rosa 39-57, 08950, Barcelona, Spain
| | - Mónica Roldán
- Confocal Microscopy and Cellular Imaging Unit, IPER, Department of Genetic and Molecular Medicine, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Proteored-ISCIII, Clinical Neuroproteomics Unit, Navarrabiomed (CHN-UPNA-idiSNA), Pamplona, Spain
| | - Enrique Santamaria
- Proteomics Platform, Proteored-ISCIII, Clinical Neuroproteomics Unit, Navarrabiomed (CHN-UPNA-idiSNA), Pamplona, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, PCCB, 3rd Floor, Calle Santa Rosa 39-57, 08950, Barcelona, Spain.
- Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
47
|
Luo M, Luan X, Jiang G, Yang L, Yan K, Li S, Xiang W, Zhou J. The Dual Effects of Exosomes on Glioma: A Comprehensive Review. J Cancer 2023; 14:2707-2719. [PMID: 37779868 PMCID: PMC10539397 DOI: 10.7150/jca.86996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Glioma is a frequently occurring type of cancer that affects the central nervous system. Despite the availability of standardized treatment options including surgical resection, concurrent radiotherapy, and adjuvant temozolomide (TMZ) therapy, the prognosis for glioma patients is often unfavorable. Exosomes act as vehicles for intercellular communication, contributing to tissue repair, immune modulation, and the transfer of metabolic cargo to recipient cells. However, the transmission of abnormal substances can also contribute to pathologic states such as cancer, metabolic diseases, and neurodegenerative disorders. The field of exosome research in oncology has seen significant advancements, with exosomes identified as dynamic modulators of tumor cell proliferation, migration, and invasion, as well as angiogenesis and drug resistance. Exosomes have negligible cytotoxicity, low immunogenicity, and small size, rendering them an ideal therapeutic candidate for glioma. This comprehensive review discusses the dual effects of exosomes in glioma, with an emphasis on their role in facilitating drug resistance. Furthermore, the clinical applications and current limitations of exosomes in glioma therapy are also discussed in detail.
Collapse
Affiliation(s)
- Maowen Luo
- Southwest Medical University, Luzhou 646000, China
| | - Xingzhao Luan
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Neurosurgery, the Affiliated Hospital of PanZhiHua University, PanZhiHua 617000, China
| | - Gen Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Luxia Yang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kekun Yan
- Department of Neurosurgery, the Affiliated Hospital of PanZhiHua University, PanZhiHua 617000, China
| | - Shenjie Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Wei Xiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Jie Zhou
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Sichuan Clinical Research Center for Neurosurgery, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
48
|
Kulus J, Kranc W, Kulus M, Bukowska D, Piotrowska-Kempisty H, Mozdziak P, Kempisty B, Antosik P. New Gene Markers of Exosomal Regulation Are Involved in Porcine Granulosa Cell Adhesion, Migration, and Proliferation. Int J Mol Sci 2023; 24:11873. [PMID: 37511632 PMCID: PMC10380331 DOI: 10.3390/ijms241411873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomal regulation is intimately involved in key cellular processes, such as migration, proliferation, and adhesion. By participating in the regulation of basic mechanisms, extracellular vesicles are important in intercellular signaling and the functioning of the mammalian reproductive system. The complexity of intercellular interactions in the ovarian follicle is also based on multilevel intercellular signaling, including the mechanisms involving cadherins, integrins, and the extracellular matrix. The processes in the ovary leading to the formation of a fertilization-ready oocyte are extremely complex at the molecular level and depend on the oocyte's ongoing relationship with granulosa cells. An analysis of gene expression from material obtained from a primary in vitro culture of porcine granulosa cells was employed using microarray technology. Genes with the highest expression (LIPG, HSD3B1, CLIP4, LOX, ANKRD1, FMOD, SHAS2, TAGLN, ITGA8, MXRA5, and NEXN) and the lowest expression levels (DAPL1, HSD17B1, SNX31, FST, NEBL, CXCL10, RGS2, MAL2, IHH, and TRIB2) were selected for further analysis. The gene expression results obtained from the microarrays were validated using quantitative RT-qPCR. Exosomes may play important roles regarding intercellular signaling between granulosa cells. Therefore, exosomes may have significant applications in regenerative medicine, targeted therapy, and assisted reproduction technologies.
Collapse
Affiliation(s)
- Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
49
|
Soukup R, Gerner I, Mohr T, Gueltekin S, Grillari J, Jenner F. Mesenchymal Stem Cell Conditioned Medium Modulates Inflammation in Tenocytes: Complete Conditioned Medium Has Superior Therapeutic Efficacy than Its Extracellular Vesicle Fraction. Int J Mol Sci 2023; 24:10857. [PMID: 37446034 PMCID: PMC10342101 DOI: 10.3390/ijms241310857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells (MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs), have shown promise in tissue regeneration and immunomodulation. However, it remains unclear which components of the secretome contribute to their therapeutic effects. This study aimed to compare the efficacy of CM, EVs, and the soluble protein fraction (PF) in treating inflamed tenocytes. CM exhibited the highest protein and particle concentrations, followed by PF and EVs. Inflammation significantly altered gene expression in tenocytes, with CM showing the most distinct separation from the inflamed control group. Treatment with CM resulted in the most significant differential gene expression, with both upregulated and downregulated genes related to inflammation and tissue regeneration. EV treatment also demonstrated a therapeutic effect, albeit to a lesser extent. These findings suggest that CM holds superior therapeutic efficacy compared with its EV fraction alone, emphasizing the importance of the complete secretome in tendon injury treatment.
Collapse
Affiliation(s)
- Robert Soukup
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Thomas Mohr
- Science Consult DI Thomas Mohr KG, 2353 Guntramsdorf, Austria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Sinan Gueltekin
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1090 Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria (I.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
50
|
Kira A, Tatsutomi I, Saito K, Murata M, Hattori I, Kajita H, Muraki N, Oda Y, Satoh S, Tsukamoto Y, Kimura S, Onoue K, Yonemura S, Arakawa S, Kato H, Hirashima T, Kawane K. Apoptotic extracellular vesicle formation via local phosphatidylserine exposure drives efficient cell extrusion. Dev Cell 2023:S1534-5807(23)00241-1. [PMID: 37315563 DOI: 10.1016/j.devcel.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 01/29/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Cell extrusion is a universal mode of cell removal from tissues, and it plays an important role in regulating cell numbers and eliminating unwanted cells. However, the underlying mechanisms of cell delamination from the cell layer are unclear. Here, we report a conserved execution mechanism of apoptotic cell extrusion. We found extracellular vesicle (EV) formation in extruding mammalian and Drosophila cells at a site opposite to the extrusion direction. Lipid-scramblase-mediated local exposure of phosphatidylserine is responsible for EV formation and is crucial for executing cell extrusion. Inhibition of this process disrupts prompt cell delamination and tissue homeostasis. Although the EV has hallmarks of an apoptotic body, its formation is governed by the mechanism of microvesicle formation. Experimental and mathematical modeling analysis illustrated that EV formation promotes neighboring cells' invasion. This study showed that membrane dynamics play a crucial role in cell exit by connecting the actions of the extruding cell and neighboring cells.
Collapse
Affiliation(s)
- Akihito Kira
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Ichiko Tatsutomi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Keisuke Saito
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Machiko Murata
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Izumi Hattori
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Haruna Kajita
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Naoko Muraki
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Yukako Oda
- Department of Cell Growth and Differentiation, Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| | - Saya Satoh
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Yuta Tsukamoto
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan; Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Satoko Arakawa
- Research Core, Institute of Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan.
| | - Kohki Kawane
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|