1
|
Carvalho G, Nguyen TVH, Repolês B, Forslund JME, Wijethunga WMRR, Ranjbarian F, Mendes IC, Gorospe CM, Chaudhari N, Falabella M, Doimo M, Wanrooij S, Pitceathly RDS, Hofer A, Wanrooij PH. Activating AMPK improves pathological phenotypes due to mtDNA depletion. FEBS J 2025; 292:2359-2380. [PMID: 39918244 PMCID: PMC12062783 DOI: 10.1111/febs.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 05/11/2025]
Abstract
AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis that also plays a role in preserving mitochondrial function and integrity. Upon a disturbance in the cellular energy state that increases AMP levels, AMPK activity promotes a switch from anabolic to catabolic metabolism to restore energy homeostasis. However, the level of severity of mitochondrial dysfunction required to trigger AMPK activation is currently unclear, as is whether stimulation of AMPK using specific agonists can improve the cellular phenotype following mitochondrial dysfunction. Using a cellular model of mitochondrial disease characterized by progressive mitochondrial DNA (mtDNA) depletion and deteriorating mitochondrial metabolism, we show that mitochondria-associated AMPK becomes activated early in the course of the advancing mitochondrial dysfunction, before any quantifiable decrease in the ATP/(AMP + ADP) ratio or respiratory chain activity. Moreover, stimulation of AMPK activity using the specific small-molecule agonist A-769662 alleviated the mitochondrial phenotypes caused by the mtDNA depletion and restored normal mitochondrial membrane potential. Notably, the agonist treatment was able to partially restore mtDNA levels in cells with severe mtDNA depletion, while it had no impact on mtDNA levels of control cells. The beneficial impact of the agonist on mitochondrial membrane potential was also observed in cells from patients suffering from mtDNA depletion. These findings improve our understanding of the effects of specific small-molecule activators of AMPK on mitochondrial and cellular function and suggest a potential application for these compounds in disease states involving mtDNA depletion.
Collapse
Affiliation(s)
- Gustavo Carvalho
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Tran V. H. Nguyen
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Bruno Repolês
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | | | | | | | - Isabela C. Mendes
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | | | - Namrata Chaudhari
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Micol Falabella
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Mara Doimo
- Clinical Genetics Unit, Department of Women and Children's HealthPadua UniversityPaduaItaly
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | - Robert D. S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular DiseasesThe National Hospital for Neurology and NeurosurgeryLondonUK
| | - Anders Hofer
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
| | | |
Collapse
|
2
|
Wang N, Wang X, Lan B, Gao Y, Cai Y. DRP1, fission and apoptosis. Cell Death Discov 2025; 11:150. [PMID: 40195359 PMCID: PMC11977278 DOI: 10.1038/s41420-025-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Mitochondrial fission is a critical physiological process in eukaryotic cells, participating in various vital activities such as mitosis, mitochondria quality control, and mitophagy. Recent studies have revealed a tight connection between mitochondrial fission and the mitochondrial metabolism, as well as apoptosis, which involves multiple cellular events and interactions between organelles. As a pivotal molecule in the process of mitochondrial fission, the function of DRP1 is regulated at multiple levels, including transcription, post-translational modifications. This review follows the guidelines for Human Gene Nomenclature and will focus on DRP1, discussing its activity regulation, its role in mitochondrial fission, and the relationship between mitochondrial fission and apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Beiwu Lan
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yufei Gao
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Yuanyuan Cai
- The First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Liu D, Liu Z, Hu Y, Xiong W, Wang D, Zeng Z. MOMP: A critical event in cell death regulation and anticancer treatment. Biochim Biophys Acta Rev Cancer 2025; 1880:189280. [PMID: 39947442 DOI: 10.1016/j.bbcan.2025.189280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Mitochondrial outer membrane permeabilization (MOMP) refers to the increase in permeability of the mitochondrial outer membrane, allowing proteins, DNA, and other molecules to pass through the intermembrane space into the cytosol. As a crucial event in the induction of apoptosis, MOMP plays a significant role in regulating various forms of cell death, including apoptosis, ferroptosis, and pyroptosis. Importantly, MOMP is not a binary process of "all-or-nothing." Under sub-lethal stress stimuli, cells may experience a phenomenon referred to as minority MOMP (miMOMP), where only a subset of mitochondria undergo functional impairment, thereby disrupting the normal life cycle of the cell. This can lead to pathological and physiological changes such as tumor formation, cellular senescence, innate immune dysfunction, and chronic inflammation. This review focuses on the diversity of MOMP events to elucidate how varying degrees of MOMP under different stress conditions influence cell fate. Additionally, it summarizes the current research progress on novel antitumor therapeutic strategies targeting MOMP in clinical contexts.
Collapse
Affiliation(s)
- Dan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yan Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Liu Y, Cao Y, Li H, Liu H, Chen T, Lin Q, Gong C, Yu F, Cai H, Jin L, Peng R. Mitochondrial homeostatic imbalance-mediated developmental toxicity to H 2S in embryonic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125588. [PMID: 39725203 DOI: 10.1016/j.envpol.2024.125588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Hydrogen sulfide (H2S) is a pervasive environmental and industrial pollutant that poses a substantial threat to human health. Even short-term exposure to H2S can result in severe respiratory and neurological damage. However, the underlying mechanisms of its biotoxicity remain unclear. Our study demonstrated that continuous exposure to 30 μM (1.02 ppm), whin environmentally H2S concentration range, results in notable developmental toxicity, including high mortality rates, morphological deformities, and behavioral abnormalities, in zebrafish larvae. Through transcriptomic analysis, examination of mitochondrial structure and function, and tissue and cellular staining, we found that H2S exposure disrupted mitochondrial dynamics, autophagy, and biogenesis, leading to an imbalance in mitochondrial homeostasis. This disruption induced oxidative stress and extensive apoptosis. Nitric oxide (NO) is a multifunctional signaling molecule known to target and regulate mitochondrial regeneration. In our study, we discovered that sodium nitroprusside (SNP), an NO donor, can activate the NO-sGC-cGMP signaling pathway. This activation improves the homeostatic regulation of mitochondrial dynamics, autophagy, and biogenesis, thereby enhancing mitochondrial function and effectively mitigating H2S-induced biotoxicity. Our research not only elucidates the biotoxicity mechanisms of H2S exposure but also provides valuable insights into potential therapeutic strategies that alleviate or eliminate its toxic effects.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Ting Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qizhuan Lin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Changyong Gong
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Fan Yu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Helei Cai
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Chen J, Yang J, Ma J, Sun X, Wang Y, Luan C, Chen J, Liu W, Shan Q, Ma X. Troxerutin Delays Skin Keratinocyte Senescence Induced by Ionizing Radiation Both In Vitro and In Vivo. J Cosmet Dermatol 2025; 24:e16584. [PMID: 39291439 PMCID: PMC11743059 DOI: 10.1111/jocd.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUNDS With the increasing demand for beauty and a healthy lifespan, studies regarding anti-skin aging have drawn much more attention than ever before. Skin cellular senescence, the primary cause of skin aging, is characterized by a cell cycle arrest in proliferating cells along with a senescence-associated secretory phenotype (SASP), which can be triggered by various internal or external stimuli. AIMS Recent studies have made significant progress in the fields of anti-senescence and anti-aging. However, little is known about the roles and functions of natural compounds, particularly flavonoids, in skin cellular senescence studies. METHODS In this study, using strategies including ionizing radiation (IR), senescence-associated β galactosidase assay (SA-β-Gal), immunofluorescence (IF), flow cytometry, PCR array, as well as in vivo experiments, we investigated the effects and roles of troxerutin (Trx), a natural flavonoid, in skin keratinocyte senescence. RESULTS We found that Trx delays skin keratinocyte senescence induced by IR. Mechanistically, Trx protects the skin keratinocyte cells from senescence by alleviating reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and DNA damage caused by IR. In addition, Trx was also proved to relieve skin senescence and SASP secretion in vivo induced by IR stimulation. CONCLUSIONS Altogether, our findings pointed to a new function of Trx in delaying stress-induced skin keratinocyte senescence, and should thus provide theoretical foundations for exploring novel strategies against skin aging.
Collapse
Affiliation(s)
- Juping Chen
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Jinghui Yang
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Jiang Ma
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Xiaoming Sun
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Yuxuan Wang
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Changjiao Luan
- Department of LungThe Third People's Hospital of YangzhouYangzhouChina
| | - Jiaxiao Chen
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Weili Liu
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Qing Shan
- Department of GeriatricsThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Xingjie Ma
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| |
Collapse
|
6
|
Zhang T, Huang Q, Lu L, Zhou K, Hu K, Gan K. ROS-responsive Hydrogel Loaded with Allicin Suppresses Cell Apoptosis for the Treatment of Intervertebral Disc Degeneration in a Rat Model. World Neurosurg 2025; 193:675-686. [PMID: 39490768 DOI: 10.1016/j.wneu.2024.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common cause of lower back pain, and cell apoptosis plays a key role in its progression. This study explores the therapeutic potential of a reactive oxygen species (ROS)-responsive hydrogel loaded with allicin for treating IVDD. METHODS Allicin was encapsulated in an ROS-responsive hydrogel, and its controlled release was studied in vitro. Nucleus pulposus cells were treated with hydrogen peroxide to induce apoptosis, and the effects of the hydrogel were examined using quantitative polymerase chain reaction and Western blotting. An in vivo rat model of IVDD was also established to assess the efficacy of the treatment. RESULTS The ROS-responsive hydrogel effectively inhibited apoptosis in nucleus pulposus cells by reducing ROS levels and modulating the expression of apoptotic and antiapoptotic genes. In the rat model, the hydrogel loaded with allicin significantly reduced IVDD, preserving disc morphology and matrix integrity. CONCLUSIONS ROS-responsive hydrogel loaded with allicin shows potential as a therapeutic approach for IVDD by inhibiting cell apoptosis and reducing disc degeneration in vivo.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Qing Huang
- Department of Gynecology, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Liangjie Lu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Ke Zhou
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Keqi Hu
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Kaifeng Gan
- Department of Orthopaedics, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
7
|
Yao X, Huo W, Wang Y, Xia D, Chen Y, Tang Y, Tang H, Yang W, Liu Y, Xue J, Yuan Q, Gao X, Cao K. Environmental Low-Dose Radiation Activates Th1 Immunity through the Mitochondria-STING Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22907-22918. [PMID: 39689952 DOI: 10.1021/acs.est.4c08009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The presence of low-dose radiation (LDR) in the environment has become more prevalent. However, the effect of LDR exposure on the immune system remains elusive. Here, we interestingly found that LDR specifically elevated the percentage of CD4+IFNγ+ Th1 splenocytes, both in vitro and in vivo, without affecting the percentage of CD8+IFNγ+ Tc1 cells and regulatory T cells. A similar phenomenon was found in T cells from peripheral blood. Mechanistically, we found that LDR can induce mitochondrial damage, which stimulated the STING signaling pathway, leading to the enhanced expression of T-bet, the master transcriptional factor of Th1-cell differentiation. The specific STING signal inhibitor can abrogate the effect of LDR on Th1 differentiation, confirming the central role of the STING pathway. To further validate the immunoregulatory role of LDR, we exposed mice with whole body LDR and evaluated if LDR could protect mice against triple-negative breast cancer through enhanced antitumor immunity. As expected, LDR significantly delayed tumor development and promoted cell death. Meanwhile, LDR resulted in increased tumor-infiltrating Th1 cells, while the proportion of Tc1 and Treg cells remained unchanged. Furthermore, the infiltration of antitumor macrophages was also increased. In summary, we revealed that environmental LDR could specifically regulate Th1 T-cell activities, providing critical information for the potential application of LDR in both clinical and nonclinical settings.
Collapse
Affiliation(s)
- Xiuxiu Yao
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wendi Huo
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Wang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Chen
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuhua Tang
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huayong Tang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wenjiang Yang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jingquan Xue
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yuan
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Alsowaida D, Larsen BD, Hachmer S, Azimi M, Arezza E, Brunette S, Tur S, Palii CG, Albraidy B, Sorensen CS, Brand M, Dilworth FJ, Megeney LA. Caspase-Activated DNase localizes to cancer causing translocation breakpoints during cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614809. [PMID: 39386486 PMCID: PMC11463586 DOI: 10.1101/2024.09.24.614809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Caspase activated DNase (CAD) induced DNA breaks promote cell differentiation and therapy-induced cancer cell resistance. CAD targeting activity is assumed to be unique to each condition, as differentiation and cancer genesis are divergent cell fates. Here, we made the surprising discovery that a subset of CAD-bound targets in differentiating muscle cells are the same genes involved in the genesis of cancer-causing translocations. In muscle cells, a prominent CAD-bound gene pair is Pax7 and Foxo1a, the mismatched reciprocal loci that give rise to alveolar rhabdomyosarcoma. We show that CAD-targeted breaks in the Pax7 gene are physiologic to reduce Pax7 expression, a prerequisite for muscle cell differentiation. A cohort of these CAD gene targets are also conserved in early differentiating T cells and include genes that spur leukemia/lymphoma translocations. Our results suggest the CAD targeting of translocation prone oncogenic genes is non-pathologic biology and aligns with initiation of cell fate transitions.
Collapse
Affiliation(s)
- Dalal Alsowaida
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Brian D. Larsen
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
| | - Sarah Hachmer
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mehri Azimi
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
| | - Eric Arezza
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
| | - Steve Brunette
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
| | - Steven Tur
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Wisconsin Blood Cancer Research Institute, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, Madison, WI
| | - Carmen G. Palii
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Wisconsin Blood Cancer Research Institute, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, Madison, WI
| | - Bassam Albraidy
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
| | - Claus S. Sorensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen Denmark
| | - Marjorie Brand
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Wisconsin Blood Cancer Research Institute, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Carbone Cancer Center, Madison, WI
| | - F. Jeffrey Dilworth
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- The Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Lynn A. Megeney
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Smyth Road, Ottawa, ON., K1H 8L6
- The Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON
- The Department of Medicine, University of Ottawa, Ottawa, ON
| |
Collapse
|
9
|
Zhang B, Chen J, Chen J, Shen Y, Chen Y, Wang S, Zhang C, He Y, Feng H, Wang J, Cai Z. CD7-targeting pro-apoptotic extracellular vesicles: A novel approach for T-cell haematological malignancy therapy. J Extracell Vesicles 2024; 13:e70025. [PMID: 39676736 DOI: 10.1002/jev2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
T-cell haematological malignancies progress rapidly and have a high mortality rate and effective treatments are still lacking. Here, we developed a drug delivery system utilizing 293T cell-derived extracellular vesicles (EVs) modified with an anti-CD7 single-chain variable fragment (αCD7/EVs). Given the challenges of chemotherapy resistance in patients with T-cell malignancy, we selected cytochrome C (CytC) and Bcl2 siRNA (siBcl2) as therapeutic agents and loaded them into αCD7/EVs (αCD7/EVs/CytC/siBcl2). We found that αCD7/EVs efficiently targeted and were internalized by human T-ALL Molt-4 cells. In addition, the interaction between αCD7 and CD7 switched the EV entry pathway in Molt-4 cells from macropinocytosis-dependent endocytosis to clathrin-mediated endocytosis, thereby reducing EV-lysosome colocalization, ultimately improving CytC delivery efficiency and increasing the cytotoxicity of nascent EVs from EV-treated Molt-4 cells. Notably, αCD7/EVs/CytC/siBcl2 demonstrated similar efficacy against both Molt-4 and chemotherapy-resistant Molt-4 cells (CR-Molt-4). Furthermore, αCD7/EVs/CytC/siBcl2 exhibited high safety, low immunogenicity and minimal impact on human T cells. Therefore, αCD7/EVs/CytC/siBcl2 are promising therapeutic approaches for treating CD7+ T-cell malignancies.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianqiang Chen
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiming Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian province university, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Diseases Xiamen Medical College, Xiamen, China
- Organiod platform of medical laboratory science, Xiamen medical college, Xiamen, China
| | - Yingying Shen
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Yinghu Chen
- Department of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Shibo Wang
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyan Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuzhou He
- Department of Emergency, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huajun Feng
- Ecological-Environment & Health College, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Jiaoli Wang
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Zhijian Cai
- Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Cao K, Luo K, Zheng Y, Xue L, Huo W, Ruan P, Wang Y, Xue Y, Yao X, Xia D, Gao X. Disturbing microtubule-endoplasmic reticulum dynamics by gold nanoclusters for improved triple-negative breast cancer treatment. J Mater Chem B 2024; 12:11648-11658. [PMID: 39415636 DOI: 10.1039/d4tb01492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Microtubules are highly dynamic structures, and their dynamic instability is indispensable for not only cell growth and movement, but also stress responses, such as endoplasmic reticulum (ER) stress. Docetaxel, a microtubule targeting agent (MTA), is the first-line drug for cancer treatment by simultaneously promoting microtubule dysregulation- and ER stress-induced cell death. However, it also causes adverse effects and drug resistance, especially in triple-negative breast cancer (TNBC) with a poor prognosis and high mortality rate. In this study, we developed a peptide-templated gold nanocluster, namely GA. GA significantly sensitizes TNBC cells to docetaxel, causing severe cell death. This effect is further validated by a 3D tumor spheroid model. Mechanistically, GA disrupted microtubule dynamic instability, meanwhile promoting PERK-mediated ER stress. Interestingly, ER stress inhibitors profoundly suppressed microtubule dysregulation, suggesting a retrograde regulation of ER stress on microtubules. In vivo, the combined administration of docetaxel and GA significantly suppresses tumor growth while docetaxel alone cannot. GA similarly elevated the level of caspases and PERK within tumors as in vitro. Importantly, GA treatment also profoundly promoted the production of anti-tumor inflammatory cytokines. Collectively, we developed an ER-microtubule regulatory nanomaterial that enhanced the therapeutic effect of docetaxel by elevating tumor cell death and anti-tumor cytokine production, providing a potential supplemental strategy for TNBC treatment.
Collapse
Affiliation(s)
- Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Kaidi Luo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Yichen Zheng
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Liyuan Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Wendi Huo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Panpan Ruan
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Yuchen Wang
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Yilin Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Xiuxiu Yao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Dongfang Xia
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
11
|
Wei H, Weaver YM, Weaver BP. Xeroderma pigmentosum protein XPD controls caspase-mediated stress responses. Nat Commun 2024; 15:9344. [PMID: 39472562 PMCID: PMC11522282 DOI: 10.1038/s41467-024-53755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Caspases regulate and execute a spectrum of functions including cell deaths, non-apoptotic developmental functions, and stress responses. Despite these disparate roles, the same core cell-death machinery is required to enzymatically activate caspase proteolytic activities. Thus, it remains enigmatic how distinct caspase functions are differentially regulated. In this study, we show that Xeroderma pigmentosum protein XPD has a conserved function in activating the expression of stress-responsive caspases in C. elegans and human cells without triggering cell death. Using C. elegans, we show XPD-1-dependent activation of CED-3 caspase promotes survival upon genotoxic UV irradiation and inversely suppresses responses to non-genotoxic insults such as ER and osmotic stressors. Unlike the TFDP ortholog DPL-1 which is required for developmental apoptosis in C. elegans, XPD-1 only activates stress-responsive functions of caspase. This tradeoff balancing responses to genotoxic and non-genotoxic stress may explain the seemingly contradictory nature of caspase-mediated stress resilience versus sensitivity under different stressors.
Collapse
Affiliation(s)
- Hai Wei
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Tambe M, Unterberger S, Kriegbaum MC, Vänttinen I, Olgac EJ, Vähä-Koskela M, Kontro M, Wennerberg K, Heckman CA. Venetoclax triggers sublethal apoptotic signaling in venetoclax-resistant acute myeloid leukemia cells and induces vulnerability to PARP inhibition and azacitidine. Cell Death Dis 2024; 15:750. [PMID: 39414773 PMCID: PMC11484809 DOI: 10.1038/s41419-024-07140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Venetoclax plus azacitidine treatment is clinically beneficial for elderly and unfit acute myeloid leukemia (AML) patients. However, the treatment is rarely curative, and relapse due to resistant disease eventually emerges. Since no current clinically feasible treatments are known to be effective at the state of acquired venetoclax resistance, this is becoming a major challenge in AML treatment. Studying venetoclax-resistant AML cell lines, we observed that venetoclax induced sublethal apoptotic signaling and DNA damage even though cell survival and growth were unaffected. This effect could be due to venetoclax inducing a sublethal degree of mitochondrial outer membrane permeabilization. Based on these results, we hypothesized that the sublethal apoptotic signaling induced by venetoclax could constitute a vulnerability in venetoclax-resistant AML cells. This was supported by screens with a broad collection of drugs, where we observed a synergistic effect between venetoclax and PARP inhibition in venetoclax-resistant cells. Additionally, the venetoclax-PARP inhibitor combination prevented the acquisition of venetoclax resistance in treatment naïve AML cell lines. Furthermore, the addition of azacitidine to the venetoclax-PARP inhibitor combination enhanced venetoclax induced DNA damage and exhibited exceptional sensitivity and long-term responses in the venetoclax-resistant AML cell lines and samples from AML patients that had clinically relapsed under venetoclax-azacitidine therapy. In conclusion, we mechanistically identify a new vulnerability in acquired venetoclax-resistant AML cells and identify PARP inhibition as a potential therapeutic approach to overcome acquired venetoclax resistance in AML.
Collapse
MESH Headings
- Humans
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Azacitidine/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Cell Line, Tumor
- DNA Damage/drug effects
- Drug Resistance, Neoplasm/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Signal Transduction/drug effects
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Mahesh Tambe
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Sarah Unterberger
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Mette C Kriegbaum
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ida Vänttinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Ezgi June Olgac
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Mika Kontro
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Hematology, Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Xue L, Luo K, Hou K, Huo W, Ruan P, Xue Y, Yao X, Meng C, Xia D, Tang Y, Zhao W, Yuan H, Zhao L, Gao L, Yuan Q, Gao X, Cao K. Targeted Gold Nanoclusters for Synergistic High-Risk Neuroblastoma Therapy through Noncanonical Ferroptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53555-53566. [PMID: 39327976 DOI: 10.1021/acsami.4c11979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Children with extracranial high-risk neuroblastoma (NB) have a poor prognosis due to resistance against apoptosis. Recently, ferroptosis, another form of programmed cell death, has been tested in clinical trials for high-risk NB; however, drug resistance and side effects have also been observed. Here, we find that the gold element in gold nanoclusters can significantly affect iron metabolism and sensitize high-risk NB cells to ferroptosis. Accordingly, we developed a gold nanocluster conjugated with a modified NB-targeting peptide. This gold nanocluster, namely, NANT, shows excellent NB targeting efficiency and dramatically promotes ferroptosis. Surprisingly, this effect is exerted by elevating the noncanonical ferroptosis pathway, which is dependent on heme oxygenase-1-regulated Fe(II) accumulation. Furthermore, NANT dramatically inhibits the growth of high-risk NB in both tumor spheroid and xenograft models by promoting noncanonical ferroptosis evidenced by enhanced intratumoral Fe(II) and heme oxygenase-1. Importantly, this strategy shows excellent cardiosafety, offering a promising strategy to overcome ferroptosis resistance for the efficient and safe treatment of children with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Liyuan Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kaidi Luo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kaixiao Hou
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Wendi Huo
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Panpan Ruan
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yilin Xue
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xiuxiu Yao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Cong Meng
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yuhua Tang
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Wencong Zhao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Hui Yuan
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
14
|
Zheng H, Wu J, Feng J, Cheng H. Cellular Senescence and Anti-Aging Strategies in Aesthetic Medicine: A Bibliometric Analysis and Brief Review. Clin Cosmet Investig Dermatol 2024; 17:2243-2259. [PMID: 39399066 PMCID: PMC11471065 DOI: 10.2147/ccid.s403417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Background Skin aging is the most obvious feature of human aging, and delaying aging has become a hot and difficult research topic in aesthetic medicine. The accumulation of dysfunctional senescent cells is one of the important mechanisms of skin aging, based on which a series of anti-aging strategies have been generated. In this paper, from the perspective of cellular senescence, we utilize bibliometrics and research review to explore the research hotspots and trends in this field, with a view to providing references for skin health and aesthetic medicine. Methods We obtained literature related to this field from the Web of Science Core Collection database from 1994 to 2024. Bibliometrix packages in R, CiteSpace, VOSviewer, Origin, and Scimago Graphica were utilized for data mining and visualization. Results A total of 2,796 documents were included in the analysis. The overall trend of publications showed a continuous and rapid increase from 2016-2023, but the total citations improved poorly over time. In this field, Journal of Cosmetic Dermatology, Journal of Investigative Dermatology, Experimental Gerontology are core journals. Kim J, Lee JH, Lee S, Rattan SIS, Chung JH and Kim JH are the core authors in this field. Seoul National University is the first in terms of publications. Korea is the country with the most publications, but USA has the most total citations. Top 10 keywords include: gene-expression, skin, cellular senescence, cell, oxidative stress, antioxidants, in vitro, fibroblasts, mechanism, cancer. Current research trends are focused on neurodegeneration, skin rejuvenation, molecular docking, fibrosis, wound healing, SASP, skin barrier, and antioxidants. The core literature and references reflect topics such as the major molecular pathways in the aging process, and the relationship with tumors. Conclusion This field of research has been rapidly rising in recent years. Relevant research hotspots focus on oxidative stress, fibroblasts, and senescence-associated secretory phenotype. Anti-aging strategies targeting cellular senescence hold great promise, including removal of senescent cells or attenuation of SASP factors, corresponding to senolytics and senomorphics therapies, respectively.
Collapse
Affiliation(s)
- Huilan Zheng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jinhong Feng
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| |
Collapse
|
15
|
Khatun J, Gelles JD, Chipuk JE. Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell 2024; 59:2549-2565. [PMID: 39378840 PMCID: PMC11469553 DOI: 10.1016/j.devcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die. In this review, we will focus on apoptosis and ferroptosis, two distinct forms of RCD that utilize divergent signaling to kill a targeted cell. We will highlight how proteins and processes involved in mitochondrial dynamics maintain biochemically diverse subcellular compartments to support apoptosis and ferroptosis machinery, as well as unite disparate RCD pathways through dual control of organelle biochemistry and the decision to die.
Collapse
Affiliation(s)
- Jesminara Khatun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
16
|
Delgado-Waldo I, Dokudovskaya S, Loissell-Baltazar YA, Pérez-Arteaga E, Coronel-Hernández J, Martínez-Vázquez M, Pérez-Yépez EA, Lopez-Saavedra A, Jacobo-Herrera N, Pérez Plasencia C. Laherradurin Inhibits Colorectal Cancer Cell Growth by Induction of Mitochondrial Dysfunction and Autophagy Induction. Cells 2024; 13:1649. [PMID: 39404412 PMCID: PMC11475353 DOI: 10.3390/cells13191649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
LAH, an acetogenin from the Annonaceae family, has demonstrated antitumor activity in several cancer cell lines and in vivo models, where it reduced the tumor size and induced programmed cell death. We focused on the effects of LAH on mitochondrial dynamics, mTOR signaling, autophagy, and apoptosis in colorectal cancer (CRC) cells to explore its anticancer potential. METHODS CRC cells were treated with LAH, and its effects on mitochondrial respiration and glycolysis were measured using Seahorse XF technology. The changes in mitochondrial dynamics were observed through fluorescent imaging, while Western blot analysis was used to examine key autophagy and apoptosis markers. RESULTS LAH significantly inhibited mitochondrial complex I activity, inducing ATP depletion and a compensatory increase in glycolysis. This disruption caused mitochondrial fragmentation, a trigger for autophagy, as shown by increased LC3-II expression and mTOR suppression. Apoptosis was also confirmed through the cleavage of caspase-3, contributing to reduced cancer cell viability. CONCLUSIONS LAH's anticancer effects in CRC cells are driven by its disruption of mitochondrial function, triggering both autophagy and apoptosis. These findings highlight its potential as a therapeutic compound for further exploration in cancer treatment.
Collapse
Affiliation(s)
- Izamary Delgado-Waldo
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (I.D.-W.); (E.P.-A.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Copilco Universidad, Coyoacán, Ciudad de México 04510, Mexico
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; (S.D.); (Y.A.L.-B.)
| | - Yahir A. Loissell-Baltazar
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; (S.D.); (Y.A.L.-B.)
| | - Eduardo Pérez-Arteaga
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (I.D.-W.); (E.P.-A.)
| | - Jossimar Coronel-Hernández
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Instituto Nacional Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (J.C.-H.); (E.A.P.-Y.)
| | - Mariano Martínez-Vázquez
- Instituto de Química, Universidad Nacional Autónoma de México, C. Exterior, C. Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Eloy Andrés Pérez-Yépez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Instituto Nacional Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (J.C.-H.); (E.A.P.-Y.)
| | - Alejandro Lopez-Saavedra
- Advanced Microscopy Applications Unit (ADMIRA), Instituto Nacional de Cancerología, San Fernando 22. Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey Ciudad de Mexico, C. Puente #222, Coapa, Arboledas del Sur, Tlalpan, Ciudad de Mexico 14380, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (I.D.-W.); (E.P.-A.)
| | - Carlos Pérez Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Instituto Nacional Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (J.C.-H.); (E.A.P.-Y.)
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla Estado de México 54090, Mexico
| |
Collapse
|
17
|
Li H, Wang M, Huang Y. Anthracycline-induced cardiotoxicity: An overview from cellular structural perspective. Biomed Pharmacother 2024; 179:117312. [PMID: 39167843 DOI: 10.1016/j.biopha.2024.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Anthracyclines are broad-spectrum anticancer drugs, but their clinical use is limited due to their severe cardiotoxicity. Anthracycline-induced cardiotoxicity (AIC) remains a significant cause of heart disease-related mortality in many cancer survivors. The underlying mechanisms of AIC have been explored over the past few decades. Reactive oxygen species and drug-induced inhibition of topoisomerase II beta are well-studied mechanisms, with mitochondria being a prominently investigated organelle. Emerging mechanisms such as ferroptosis, Ca2+ overload, autophagy and inflammation mediators have been implicated in recent years. In this review, our goal is to summarize and update the roles of various mechanisms in AIC, focusing on different cellular levels and further explore promising therapeutic approaches targeting these organelles or pathways.
Collapse
Affiliation(s)
- Hansheng Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Meilun Wang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
18
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
19
|
Shen M, Fu J, Zhang Y, Chang Y, Li X, Cheng H, Qiu Y, Shao M, Han Y, Zhou Y, Luo Z. A novel senolytic drug for pulmonary fibrosis: BTSA1 targets apoptosis of senescent myofibroblasts by activating BAX. Aging Cell 2024; 23:e14229. [PMID: 38831635 PMCID: PMC11488301 DOI: 10.1111/acel.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and age-related disease that results from impaired lung repair following injury. Targeting senescent myofibroblasts with senolytic drugs attenuates pulmonary fibrosis, revealing a detrimental role of these cells in pulmonary fibrosis. The mechanisms underlying the occurrence and persistence of senescent myofibroblasts in fibrotic lung tissue require further clarification. In this study, we demonstrated that senescent myofibroblasts are resistant to apoptosis by upregulating the proapoptotic protein BAX and antiapoptotic protein BCL-2 and BCL-XL, leading to BAX inactivation. We further showed that high levels of inactive BAX-mediated minority mitochondrial outer membrane permeabilization (minority MOMP) promoted DNA damage and myofibroblasts senescence after insult by a sublethal stimulus. Intervention of minority MOMP via the inhibition of caspase activity by quinolyl-valyl-O-methylaspartyl-[2,6-difluorophenoxy]-methyl ketone (QVD-OPH) or BAX knockdown significantly reduced DNA damage and ultimately delayed the progression of senescence. Moreover, the BAX activator BTSA1 selectively promoted the apoptosis of senescent myofibroblasts, as BTSA1-activated BAX converted minority MOMP to complete MOMP while not injuring other cells with low levels of BAX. Furthermore, therapeutic activation of BAX with BTSA1 effectively reduced the number of senescent myofibroblasts in the lung tissue and alleviated both reversible and irreversible pulmonary fibrosis. These findings advance the understanding of apoptosis resistance and cellular senescence mechanisms in senescent myofibroblasts in pulmonary fibrosis and demonstrate a novel senolytic drug for pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Mengxia Shen
- Department of Physiology, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Jiafeng Fu
- Department of Physiology, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Yunna Zhang
- Department of Physiology, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Yanfen Chang
- Department of Physiology, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Xiaohong Li
- Department of Pathology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yujia Qiu
- Department of Physiology, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Min Shao
- Department of Physiology, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Yang Han
- Department of Physiology, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Yan Zhou
- Department of Physiology, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Organ FibrosisChangshaChina
| |
Collapse
|
20
|
Glover HL, Schreiner A, Dewson G, Tait SWG. Mitochondria and cell death. Nat Cell Biol 2024; 26:1434-1446. [PMID: 38902422 DOI: 10.1038/s41556-024-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
Mitochondria are cellular factories for energy production, calcium homeostasis and iron metabolism, but they also have an unequivocal and central role in intrinsic apoptosis through the release of cytochrome c. While the subsequent activation of proteolytic caspases ensures that cell death proceeds in the absence of collateral inflammation, other phlogistic cell death pathways have been implicated in using, or engaging, mitochondria. Here we discuss the emerging complexities of intrinsic apoptosis controlled by the BCL-2 family of proteins. We highlight the emerging theory that non-lethal mitochondrial apoptotic signalling has diverse biological roles that impact cancer, innate immunity and ageing. Finally, we delineate the role of mitochondria in other forms of cell death, such as pyroptosis, ferroptosis and necroptosis, and discuss mitochondria as central hubs for the intersection and coordination of cell death signalling pathways, underscoring their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Hannah L Glover
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Annabell Schreiner
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen W G Tait
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
21
|
Gao C, Shang J, Sun Z, Xia M, Gao D, Sun R, Li W, Wang F, Zhang J. Presenilin2 D439A Mutation Induces Dysfunction of Mitochondrial Fusion/Fission Dynamics and Abnormal Regulation of GTPase Activity. Mol Neurobiol 2024; 61:5047-5070. [PMID: 38159198 PMCID: PMC11249618 DOI: 10.1007/s12035-023-03858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease, and approximately 10% of AD cases are early-onset familial AD (EOFAD), which is mainly linked to point mutations in genes encoding presenilins (PS1 and PS2). Mutations in PS2 are extremely rare and have not received enough attention. Recently, studies have found that Rho GTPase activity is closely related to the pathogenesis of AD. In this study, we used transcriptome sequencing in PS2 siRNA-transfected SH-SY5Y cells and found a group of differentially expressed genes (DEGs) related to the regulation of GTPase activity. Among those DEGs, the most significantly downregulated was Rho guanine nucleotide exchange factor 5 (ARHGEF5). GTPase activity in PS2 siRNA-transfected cells was significantly decreased. Then, we found that the expression of ARHGEF5 and the GTPase activity of Mitochondrial Rho GTPase 2 (Miro2) in PS2 D439A mutant SH-SY5Y cells were significantly decreased. We found for the first time that PS2 can bind to Miro2, and the PS2 D439A mutation reduced the binding between PS2 and Miro2, reduced the expression of Miro2, and resulted in an imbalance in mitochondrial fusion/fission dynamics. In conclusion, PS2 gene knockdown may participate in the pathogenesis of AD through the regulation of GTPase activity. The imbalance in mitochondrial dynamics mediated by the PS2 D439A mutation through regulation of the expression and GTPase activity of Miro2 may be a potential pathogenic mechanism of AD.
Collapse
Affiliation(s)
- Chenhao Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Junkui Shang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhengyu Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Mingrong Xia
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dandan Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Wei Li
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fengyu Wang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China.
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
22
|
Yan B, Liao P, Cheng F, Wang C, Zhang J, Han Z, Liu Y, Zhang L, Zhang W, Li M, Li D, Chen F, Lei P. Identification of toll-like receptor 2 as a key regulator of neuronal apoptosis in vascular dementia by bioinformatics analysis and experimental validation. Exp Gerontol 2024; 193:112464. [PMID: 38797288 DOI: 10.1016/j.exger.2024.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Vascular dementia (VaD), the second most prevalent type of dementia, lacks a well-defined cause and effective treatment. Our objective was to utilize bioinformatics analysis to discover the fundamental disease-causing genes and pathological mechanisms in individuals diagnosed with VaD. METHODS To identify potential pathogenic genes associated with VaD, we conducted weighted gene co-expression network analysis (WGCNA), differential expression analysis, and protein-protein interaction (PPI) analysis. The exploration of potential biological mechanisms involved the utilization of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. Moreover, a bilateral common carotid artery stenosis (BCAS) mouse model of VaD was established, and the expression of the hub gene, its relationship with cognitive function and its potential pathogenic mechanism were verified by cognitive behavior tests, cerebral blood flow measurement, Western blotting, and immunofluorescence experiments. RESULTS This study identified 293 DEGs from the brain cortex of VaD patients and healthy controls, among these genes, the Toll-like receptor 2 (TLR2) gene was identified as hub gene, and it was associated with the apoptosis-related pathway PI3K/AKT.The BCAS model demonstrated that the use of TLR2 inhibitors greatly enhanced the cognitive function of the mice (p < 0.05). Additionally, there was a notable decrease in the number of apoptotic cells in the brain cortex of the mice (p < 0.01). Moreover, significant alterations in the levels of proteins related to the PI3K/AKT pathway and cleaved-caspase3 proteins were detected (p < 0.05). CONCLUSIONS TLR2 plays a role in the pathophysiology of VaD by enhancing the neuronal apoptotic pathway, suggesting it could be a promising therapeutic target.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Jieying Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Center for Cardiovascular Diseases, Tianjin Medical University, 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Wei Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Meimei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Fanglian Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China..
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, People's Republic of China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China.
| |
Collapse
|
23
|
Xing Y, Xie SY, Deng W, Tang QZ. Cardiolipin in myocardial ischaemia-reperfusion injury: From molecular mechanisms to clinical strategies. Biomed Pharmacother 2024; 176:116936. [PMID: 38878685 DOI: 10.1016/j.biopha.2024.116936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
Collapse
Affiliation(s)
- Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
24
|
Wang W, Zhan Y, Gao D, Lu F, Peng L, Chen Y, Han J, Xue Z. Unveiling the hidden effects of hypoxia: Pituitary damage and hormonal imbalance in fat greenling (Hexagrammos otakii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172381. [PMID: 38604374 DOI: 10.1016/j.scitotenv.2024.172381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND In fisheries, hypoxia stress is one of the most common environmental stresses that often lead to the death of large numbers of fish and cause significant economic losses. The pituitary, an important endocrine gland, lies below the hypothalamus region of the brain. It plays a crucial part in controlling vital physiological functions in fish, such as growth, reproduction, and responses to stress. However, the detailed mechanisms of how hypoxia affects these physiological processes via the pituitary remain largely unknown. METHODS Fat greenlings (Hexagrammous otakii) were exposed to different dissolved oxygen (DO = 7. 6 mg/L and DO = 2 mg/L) for 24 h. miRNA-mRNA association analysis of H. otakii pituitary after hypoxia stress. Detecting apoptosis in H. otakii pituitary using Tunel and qPCR. Subsequent detection of hormones in H. otakii liver, gonads and serum by ELISA. RESULTS In this study, hypoxia causes immune system disorders and inflammatory responses through the combined analysis of miRNAs and mRNAs. Subsequent verification indicated a significant accumulation of reactive oxygen species (ROS) subsequent to hypoxia treatment. The overproduction of ROS cause oxidative stress and apoptosis in the pituitary, ultimately causing pituitary damage and reduced growth hormone and luteinising hormone release. CONCLUSIONS According to the association study of miRNA-mRNA, apoptosis problems caused by hypoxia stress result in H. otakii pituitary damage. In the meantime, this work clarifies the possible impact of hypoxia-stress on the pituitary cells, as well as on the gonadal development and growth of H. otakii.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yu Zhan
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Dongxu Gao
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Fengzhi Lu
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lei Peng
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jian Han
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Fish in Northern Liaoning Province, Dalian Ocean University, Dalian 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
25
|
Jenner A, Garcia-Saez AJ. The regulation of the apoptotic pore-An immunological tightrope walk. Adv Immunol 2024; 162:59-108. [PMID: 38866439 DOI: 10.1016/bs.ai.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Apoptotic pore formation in mitochondria is the pivotal point for cell death during mitochondrial apoptosis. It is regulated by BCL-2 family proteins in response to various cellular stress triggers and mediates mitochondrial outer membrane permeabilization (MOMP). This allows the release of mitochondrial contents into the cytosol, which triggers rapid cell death and clearance through the activation of caspases. However, under conditions of low caspase activity, the mitochondrial contents released into the cytosol through apoptotic pores serve as inflammatory signals and activate various inflammatory responses. In this chapter, we discuss how the formation of the apoptotic pore is regulated by BCL-2 proteins as well as other cellular or mitochondrial proteins and membrane lipids. Moreover, we highlight the importance of sublethal MOMP in the regulation of mitochondrial-activated inflammation and discuss its physiological consequences in the context of pathogen infection and disease and how it can potentially be exploited therapeutically, for example to improve cancer treatment.
Collapse
Affiliation(s)
- Andreas Jenner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
26
|
Zhao Y, Wang X, He M, Zeng G, Xu Z, Zhang L, Kang Y, Xue P. Vacancy-Rich Bismuth-Based Nanosheets for Mitochondrial Destruction via CO Poisoning, Ca 2+ Dyshomeostasis, and Oxidative Damage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307404. [PMID: 38054772 DOI: 10.1002/smll.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Mitochondria are core regulators of tumor cell homeostasis, and their damage has become an arresting therapeutic modality against cancer. Despite the development of many mitochondrial-targeted pharmaceutical agents, the exploration of more powerful and multifunctional medications is still underway. Herein, oxygen vacancy-rich BiO2-x wrapped with CaCO3 (named BiO2-x@CaCO3/PEG, BCP) is developed for full-fledged attack on mitochondrial function. After endocytosis of BCP by tumor cells, the CaCO3 shell can be decomposed in the acidic lysosomal compartment, leading to immediate Ca2+ release and CO2 production in the cytoplasm. Near-infrared irradiation enhances the adsorption of CO2 onto BiO2-x defects, which enables highly efficient photocatalysis of CO2-to-CO. Meanwhile, such BiO2-x nanosheets possess catalase-, peroxidase- and oxidase-like catalytic activities under acidic pH conditions, allowing hypoxia relief and the accumulation of diverse reactive oxygen species (ROS) in the tumor microenvironment. Ca2+ overload-induced ion dyshomeostasis, CO-mediated respiratory chain poisoning, ROS-triggered oxidative stress aggravation, and cytosolic hyperoxia can cause severe mitochondrial disorders, which further lead to type I cell death in carcinoma. Not only does BCP cause irreversible apoptosis, but immunogenic cell death is simultaneously triggered to activate antitumor immunity for metastasis inhibition. Collectively, this platform promises high benefits in malignant tumor therapy and may expand the medical applications of bismuth-based nanoagents.
Collapse
Affiliation(s)
- Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Wang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Mengting He
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Guicheng Zeng
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
- Yibin Academy of Southwest University, Yibin, 644000, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
- Yibin Academy of Southwest University, Yibin, 644000, China
| |
Collapse
|
27
|
Wu Z, Cardona EA, Pierce JT. Non-apoptotic role of EGL-1 in exopher production and neuronal health in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590348. [PMID: 38712027 PMCID: PMC11071422 DOI: 10.1101/2024.04.19.590348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
While traditionally studied for their pro-apoptotic functions, recent research suggests BH3-only proteins also have non-apoptotic roles. Here, we find that EGL-1, the BH3-only protein in Caenorhabditis elegans, promotes the cell-autonomous production of exophers in adult neurons. Exophers are large, micron-scale vesicles that are ejected from the cell and contain cellular components such as mitochondria. EGL-1 facilitates exopher production potentially through regulation of mitochondrial dynamics. Moreover, an endogenous, low level of EGL-1 expression appears to benefit dendritic health. Our findings provide insights into the mechanistic role of BH3-only protein in mitochondrial dynamics, downstream exopher production, and ultimately neuronal health.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX
| | - Eric A. Cardona
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX
| | - Jonathan T. Pierce
- Department of Neuroscience, Center for Learning and Memory, Waggoner Center for Alcohol & Addiction Research, University of Texas at Austin, Austin, TX
| |
Collapse
|
28
|
Cavallo MR, Yo JC, Gallant KC, Cunanan CJ, Amirfallah A, Daniali M, Sanders AB, Aplin AE, Pribitkin EA, Hartsough EJ. Mcl-1 mediates intrinsic resistance to RAF inhibitors in mutant BRAF papillary thyroid carcinoma. Cell Death Discov 2024; 10:175. [PMID: 38622136 PMCID: PMC11018618 DOI: 10.1038/s41420-024-01945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most frequent form of thyroid cancer. PTC commonly presents with mutations of the serine/threonine kinase BRAF (BRAFV600E), which drive ERK1/2 pathway activation to support growth and suppress apoptosis. PTC patients often undergo surgical resection; however, since the average age of PTC patients is under 50, adverse effects associated with prolonged maintenance therapy following total thyroidectomy are a concern. The development of mutant-selective BRAF inhibitors (BRAFi), like vemurafenib, has been efficacious in patients with metastatic melanoma, but the response rate is low for mutant BRAF PTC patients. Here, we assay the therapeutic response of BRAFi in a panel of human PTC cell lines and freshly biopsied patient samples. We observed heterogeneous responses to BRAFi, and multi-omic comparisons between susceptible and resistant mutant BRAF PTC revealed overrepresented stress response pathways and the absence of compensatory RTK activation - features that may underpin innate resistance. Importantly, resistant cell lines and patient samples had increased hallmarks of failed apoptosis; a cellular state defined by sublethal caspase activation and DNA damage. Further analysis suggests that the failed apoptotic phenotypes may have features of "minority mitochondrial outer membrane permeabilization (MOMP)" - a stress-related response characterized by fragmented and porous mitochondria known to contribute to cancer aggressiveness. We found that cells presenting with minority MOMP-like phenotypes are dependent on the apoptotic regulator, Mcl-1, as treatment with the Mcl-1 inhibitor, AZD5991, potently induced cell death in resistant cells. Furthermore, PI3K/AKT inhibitors sensitized resistant cells to BRAFi; an effect that was at least in part associated with reduced Mcl-1 levels. Together, these data implicate minority MOMP as a mechanism associated with intrinsic drug resistance and underscore the benefits of targeting Mcl-1 in mutant BRAF PTC.
Collapse
Affiliation(s)
- Maria R Cavallo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Jacob C Yo
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kayla C Gallant
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Camille J Cunanan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Amirali Amirfallah
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Marzieh Daniali
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Alyssa B Sanders
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Andrew E Aplin
- Sidney Kimmel Cancer Center, Philadelphia, PA, 19107, USA
- Departments of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Edmund A Pribitkin
- Departments of Otolargynology-Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Edward J Hartsough
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, 19107, USA.
| |
Collapse
|
29
|
Popgeorgiev N, Gil C, Berthenet K, Bertolin G, Ichim G. Shedding light on mitochondrial outer-membrane permeabilization and membrane potential: State of the art methods and biosensors. Semin Cell Dev Biol 2024; 156:58-65. [PMID: 37438211 DOI: 10.1016/j.semcdb.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Membrane structural integrity is essential for optimal mitochondrial function. These organelles produce the energy needed for all vital processes, provided their outer and inner membranes are intact. This prevents the release of mitochondrial apoptogenic factors into the cytosol and ensures intact mitochondrial membrane potential (ΔΨm) to sustain ATP production. Cell death by apoptosis is generally triggered by outer mitochondrial membrane permeabilization (MOMP), tightly coupled with loss of ΔΨ m. As these two processes are essential for both mitochondrial function and cell death, researchers have devised various techniques to assess them. Here, we discuss current methods and biosensors available for detecting MOMP and measuring ΔΨ m, focusing on their advantages and limitations and discuss what new imaging tools are needed to improve our knowledge of mitochondrial function.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France; Institut Universitaire de France (IUF), Paris, France
| | - Clara Gil
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France
| | - Kevin Berthenet
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France
| | - Giulia Bertolin
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes), Rennes, France.
| | - Gabriel Ichim
- Cancer Cell Death laboratory, part of LabEX DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, CRCL, U1052 INSERM, UMR CNRS 5286, Centre Léon Bérard, Université Lyon I, Institut Convergence PLAsCAN Lyon, France.
| |
Collapse
|
30
|
Nano M, Montell DJ. Apoptotic signaling: Beyond cell death. Semin Cell Dev Biol 2024; 156:22-34. [PMID: 37988794 DOI: 10.1016/j.semcdb.2023.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Apoptosis is the best described form of regulated cell death, and was, until relatively recently, considered irreversible once particular biochemical points-of-no-return were activated. In this manuscript, we examine the mechanisms cells use to escape from a self-amplifying death signaling module. We discuss the role of feedback, dynamics, propagation, and noise in apoptotic signaling. We conclude with a revised model for the role of apoptosis in animal development, homeostasis, and disease.
Collapse
Affiliation(s)
- Maddalena Nano
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| | - Denise J Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
31
|
Sun G. Death and survival from executioner caspase activation. Semin Cell Dev Biol 2024; 156:66-73. [PMID: 37468421 DOI: 10.1016/j.semcdb.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Executioner caspases are evolutionarily conserved regulators of cell death under apoptotic stress. Activated executioner caspases drive apoptotic cell death through cleavage of diverse protein substrates or pyroptotic cell death in the presence of gasdermin E. On the other hand, activation of executioner caspases can also trigger pro-survival and pro-proliferation signals. In recent years, a growing body of studies have demonstrated that cells can survive from executioner caspase activation in response to stress and that the survivors undergo molecular and phenotypic alterations. This review focuses on death and survival from executioner caspase activation, summarizing the role of executioner caspases in apoptotic and pyroptotic cell death and discussing the potential mechanism and consequences of survival from stress-induced executioner caspase activation.
Collapse
Affiliation(s)
- Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
32
|
Grasset EM, Barillé-Nion S, Juin PP. Stress in the metastatic journey - the role of cell communication and clustering in breast cancer progression and treatment resistance. Dis Model Mech 2024; 17:dmm050542. [PMID: 38506114 PMCID: PMC10979546 DOI: 10.1242/dmm.050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Breast cancer stands as the most prevalent malignancy afflicting women. Despite significant advancements in its diagnosis and treatment, breast cancer metastasis continues to be a leading cause of mortality among women. To metastasize, cancer cells face numerous challenges: breaking away from the primary tumor, surviving in the circulation, establishing in a distant location, evading immune detection and, finally, thriving to initiate a new tumor. Each of these sequential steps requires cancer cells to adapt to a myriad of stressors and develop survival mechanisms. In addition, most patients with breast cancer undergo surgical removal of their primary tumor and have various therapeutic interventions designed to eradicate cancer cells. Despite this plethora of attacks and stresses, certain cancer cells not only manage to persist but also proliferate robustly, giving rise to substantial tumors that frequently culminate in the patient's demise. To enhance patient outcomes, there is an imperative need for a deeper understanding of the molecular and cellular mechanisms that empower cancer cells to not only survive but also expand. Herein, we delve into the intrinsic stresses that cancer cells encounter throughout the metastatic journey and the additional stresses induced by therapeutic interventions. We focus on elucidating the remarkable strategies adopted by cancer cells, such as cell-cell clustering and intricate cell-cell communication mechanisms, to ensure their survival.
Collapse
Affiliation(s)
- Eloïse M. Grasset
- Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France
- Équipe Labellisée LIGUE Contre le Cancer CRCI2NA, 44000 Nantes, France
| | - Sophie Barillé-Nion
- Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France
- Équipe Labellisée LIGUE Contre le Cancer CRCI2NA, 44000 Nantes, France
| | - Philippe P. Juin
- Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France
- Équipe Labellisée LIGUE Contre le Cancer CRCI2NA, 44000 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint Herblain, France
| |
Collapse
|
33
|
Vringer E, Heilig R, Riley JS, Black A, Cloix C, Skalka G, Montes-Gómez AE, Aguado A, Lilla S, Walczak H, Gyrd-Hansen M, Murphy DJ, Huang DT, Zanivan S, Tait SW. Mitochondrial outer membrane integrity regulates a ubiquitin-dependent and NF-κB-mediated inflammatory response. EMBO J 2024; 43:904-930. [PMID: 38337057 PMCID: PMC10943237 DOI: 10.1038/s44318-024-00044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined. We find that upon MOMP, many proteins localised either to inner or outer mitochondrial membranes are ubiquitylated in a promiscuous manner. This extensive ubiquitylation serves to recruit the essential adaptor molecule NEMO, leading to the activation of pro-inflammatory NF-κB signalling. We show that disruption of mitochondrial outer membrane integrity through different means leads to the engagement of a similar pro-inflammatory signalling platform. Therefore, mitochondrial integrity directly controls inflammation, such that permeabilised mitochondria initiate NF-κB signalling.
Collapse
Affiliation(s)
- Esmee Vringer
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Rosalie Heilig
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Joel S Riley
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Annabel Black
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Catherine Cloix
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - George Skalka
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Alfredo E Montes-Gómez
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Aurore Aguado
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Sergio Lilla
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mads Gyrd-Hansen
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Daniel J Murphy
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Danny T Huang
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK
| | - Stephen Wg Tait
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK.
| |
Collapse
|
34
|
Killarney ST, Tait SWG, Green DR, Wood KC. Sublethal engagement of apoptotic pathways in residual cancer. Trends Cell Biol 2024; 34:225-238. [PMID: 37573235 PMCID: PMC10858294 DOI: 10.1016/j.tcb.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Cytotoxic chemo-, radio-, and targeted therapies frequently elicit apoptotic cancer cell death. Mitochondrial outer membrane permeabilization (MOMP) is a critical, regulated step in this apoptotic pathway. The residual cancer cells that survive treatment serve as the seeds of eventual relapse and are often functionally characterized by their transient tolerance of multiple therapeutic treatments. New studies suggest that, in these cells, a sublethal degree of MOMP, reflective of incomplete apoptotic commitment, is widely observed. Here, we review recent evidence that this sublethal MOMP drives the aggressive features of residual cancer cells while templating a host of unique vulnerabilities, highlighting how failed apoptosis may counterintuitively enable new therapeutic strategies to target residual disease (RD).
Collapse
Affiliation(s)
- Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
35
|
McPhedran SJ, Carleton GA, Lum JJ. Metabolic engineering for optimized CAR-T cell therapy. Nat Metab 2024; 6:396-408. [PMID: 38388705 DOI: 10.1038/s42255-024-00976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
The broad effectiveness of T cell-based therapy for treating solid tumour cancers remains limited. This is partly due to the growing appreciation that immune cells must inhabit and traverse a metabolically demanding tumour environment. Accordingly, recent efforts have centred on using genome-editing technologies to augment T cell-mediated cytotoxicity by manipulating specific metabolic genes. However, solid tumours exhibit numerous characteristics restricting immune cell-mediated cytotoxicity, implying a need for metabolic engineering at the pathway level rather than single gene targets. This emerging concept has yet to be put into clinical practice as many questions concerning the complex interplay between metabolic networks and T cell function remain unsolved. This Perspective will highlight key foundational studies that examine the relevant metabolic pathways required for effective T cell cytotoxicity and persistence in the human tumour microenvironment, feasible strategies for metabolic engineering to increase the efficiency of chimeric antigen receptor T cell-based approaches, and the challenges lying ahead for clinical implementation.
Collapse
Affiliation(s)
- Sarah J McPhedran
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gillian A Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
36
|
Ha CT, Tageldein MM, Harding SM. The entanglement of DNA damage and pattern recognition receptor signaling. DNA Repair (Amst) 2024; 133:103595. [PMID: 37988925 DOI: 10.1016/j.dnarep.2023.103595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Cells are under constant pressure to suppress DNA damage originating from both exogenous and endogenous sources. Cellular responses to DNA damage help to prevent mutagenesis and cell death that arises when DNA damage is either left unrepaired or repaired inaccurately. During the "acute phase" of DNA damage signaling, lesions are recognized, processed, and repaired to restore the primary DNA sequence whilst cell cycle checkpoints delay mitotic progression, cell death and the propagation of errors to daughter cells. Increasingly, there is recognition of a "chronic phase" of DNA damage signaling, exemplified by the secretion of dozens of cytokines days after the inciting damage event. In this review, we focus on the cellular origin of these chronic responses, the molecular pathways that control them and the increasing appreciation for the interconnection between acute and chronic DNA damage responses.
Collapse
Affiliation(s)
- Cindy T Ha
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Maha M Tageldein
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Shane M Harding
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Departments of Radiation Oncology and Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Martic I, Papaccio F, Bellei B, Cavinato M. Mitochondrial dynamics and metabolism across skin cells: implications for skin homeostasis and aging. Front Physiol 2023; 14:1284410. [PMID: 38046945 PMCID: PMC10693346 DOI: 10.3389/fphys.2023.1284410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Aging of human skin is a complex process leading to a decline in homeostasis and regenerative potential of this tissue. Mitochondria are important cell organelles that have a crucial role in several cellular mechanisms such as energy production and free radical maintenance. However, mitochondrial metabolism as well as processes of mitochondrial dynamics, biogenesis, and degradation varies considerably among the different types of cells that populate the skin. Disturbed mitochondrial function is known to promote aging and inflammation of the skin, leading to impairment of physiological skin function and the onset of skin pathologies. In this review, we discuss the essential role of mitochondria in different skin cell types and how impairment of mitochondrial morphology, physiology, and metabolism in each of these cellular compartments of the skin contributes to the process of skin aging.
Collapse
Affiliation(s)
- Ines Martic
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Cavinato
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| |
Collapse
|
38
|
Jiang Q, Wang H, Qiao Z, Hou Y, Sui Z, Zhao B, Liang Z, Jiang B, Zhang Y, Zhang L. Metal organic layers enabled cell surface engineering coupling biomembrane fusion for dynamic membrane proteome profiling. Chem Sci 2023; 14:11727-11736. [PMID: 37920345 PMCID: PMC10619618 DOI: 10.1039/d3sc03725h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/30/2023] [Indexed: 11/04/2023] Open
Abstract
Systematically dissecting the highly dynamic and tightly communicating membrane proteome of living cells is essential for the system-level understanding of fundamental cellular processes and intricate relationship between membrane-bound organelles constructed through membrane traffic. While extensive efforts have been made to enrich membrane proteins, their comprehensive analysis with high selectivity and deep coverage remains a challenge, especially at the living cell state. To address this problem, we developed the cell surface engineering coupling biomembrane fusion method to map the whole membrane proteome from the plasma membrane to various organelle membranes taking advantage of the exquisite interaction between two-dimensional metal-organic layers and phospholipid bilayers on the membrane. This approach, which bypassed conventional biochemical fractionation and ultracentrifugation, facilitated the enrichment of membrane proteins in their native phospholipid bilayer environment, helping to map the membrane proteome with a specificity of 77% and realizing the deep coverage of the HeLa membrane proteome (5087 membrane proteins). Furthermore, membrane N-phosphoproteome was profiled by integrating the N-phosphoproteome analysis strategy, and the dynamic membrane proteome during apoptosis was deciphered in combination with quantitative proteomics. The features of membrane protein N-phosphorylation modifications and many differential proteins during apoptosis associated with mitochondrial dynamics and ER homeostasis were found. The method provided a simple and robust strategy for efficient analysis of membrane proteome, offered a reliable platform for research on membrane-related cell dynamic events and expanded the application of metal-organic layers.
Collapse
Affiliation(s)
- Qianqian Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - He Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zichun Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yutong Hou
- Dalian Medical University Dalian 116044 China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
39
|
Benada J, Alsowaida D, Megeney LA, Sørensen CS. Self-inflicted DNA breaks in cell differentiation and cancer. Trends Cell Biol 2023; 33:850-859. [PMID: 36997393 DOI: 10.1016/j.tcb.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Self-inflicted DNA strand breaks are canonically linked with cell death pathways and the establishment of genetic diversity in immune and germline cells. Moreover, this form of DNA damage is an established source of genome instability in cancer development. However, recent studies indicate that nonlethal self-inflicted DNA strand breaks play an indispensable but underappreciated role in a variety of cell processes, including differentiation and cancer therapy responses. Mechanistically, these physiological DNA breaks originate from the activation of nucleases, which are best characterized for inducing DNA fragmentation in apoptotic cell death. In this review, we outline the emerging biology of one critical nuclease, caspase-activated DNase (CAD), and how directed activation or deployment of this enzyme can lead to divergent cell fate outcomes.
Collapse
Affiliation(s)
- Jan Benada
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark
| | - Dalal Alsowaida
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Lynn A Megeney
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute and the Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8L6, Canada.
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200 N, Denmark.
| |
Collapse
|
40
|
Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming. Antioxid Redox Signal 2023; 39:684-707. [PMID: 37212238 DOI: 10.1089/ars.2023.0268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
Collapse
Affiliation(s)
- Ippei Kawano
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bazila Bazila
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
41
|
Victorelli S, Salmonowicz H, Chapman J, Martini H, Vizioli MG, Riley JS, Cloix C, Hall-Younger E, Machado Espindola-Netto J, Jurk D, Lagnado AB, Sales Gomez L, Farr JN, Saul D, Reed R, Kelly G, Eppard M, Greaves LC, Dou Z, Pirius N, Szczepanowska K, Porritt RA, Huang H, Huang TY, Mann DA, Masuda CA, Khosla S, Dai H, Kaufmann SH, Zacharioudakis E, Gavathiotis E, LeBrasseur NK, Lei X, Sainz AG, Korolchuk VI, Adams PD, Shadel GS, Tait SWG, Passos JF. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 2023; 622:627-636. [PMID: 37821702 PMCID: PMC10584674 DOI: 10.1038/s41586-023-06621-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.
Collapse
Affiliation(s)
- Stella Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Hanna Salmonowicz
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - James Chapman
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Maria Grazia Vizioli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Joel S Riley
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Catherine Cloix
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ella Hall-Younger
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Anthony B Lagnado
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Lilian Sales Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Dominik Saul
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Rebecca Reed
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - George Kelly
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Madeline Eppard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Zhixun Dou
- Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Nicholas Pirius
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Karolina Szczepanowska
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Rebecca A Porritt
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Huijie Huang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Timothy Y Huang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey
| | - Claudio Akio Masuda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Haiming Dai
- Division of Oncology Research and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Scott H Kaufmann
- Division of Oncology Research and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Cancer Center, Wilf Family Cardiovascular Research Institute, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Xue Lei
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Alva G Sainz
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Peter D Adams
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Stephen W G Tait
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
42
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
43
|
Lu C, Xue L, Luo K, Liu Y, Lai J, Yao X, Xue Y, Huo W, Meng C, Xia D, Gao X, Yuan Q, Cao K. Colon-Accumulated Gold Nanoclusters Alleviate Intestinal Inflammation and Prevent Secondary Colorectal Carcinogenesis via Nrf2-Dependent Macrophage Reprogramming. ACS NANO 2023; 17:18421-18432. [PMID: 37690027 DOI: 10.1021/acsnano.3c06025] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inflammatory bowel disease (IBD) is one of the main factors leading to colitis-associated colorectal cancer (CAC). Therefore, it is critical to develop an effective treatment for IBD to prevent secondary colorectal carcinogenesis. M2 macrophages play crucial roles in the resolution phase of intestinal inflammation. However, traditional drugs rarely target intestinal M2 macrophages, and they are not easily cleared. Gold nanoclusters are known for their in vivo safety and intrinsic biomedical activities. In this study, a glutathione-protected gold nanocluster is synthesized and evaluated, namely, GA. Interestingly, GA specifically accumulates in the colon during IBD. Furthermore, GA not only promotes M2 differentiation of IL-4-treated peritoneal macrophages but also reprograms macrophage polarization from M1 to M2 in a pro-inflammatory environment. Mechanistically, this regulatory effect is exerted through activating the antioxidant Nrf2 signaling pathway, but not traditional STAT6. When applied in IBD mice, we found that GA elevates M2 macrophages and alleviates IBD in an Nrf2-dependent manner, evidenced by the abolished therapeutic effect upon Nrf2 inhibitor treatment. Most importantly, GA administration significantly suppresses AOM/DSS-induced CAC, without causing obvious tissue damage, providing critical evidence for the potential application of gold nanoclusters as nanomedicine for the treatment of IBD and CAC.
Collapse
Affiliation(s)
- Cao Lu
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Xue
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kaidi Luo
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yu Liu
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Jing Lai
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xiuxiu Yao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yilin Xue
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Wendi Huo
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Cong Meng
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- College of Chemistry and Material Science, Shandong Agricultural University, Shandong, Taian 271018, China
| | - Xueyun Gao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
44
|
Wang SF, Tseng LM, Lee HC. Role of mitochondrial alterations in human cancer progression and cancer immunity. J Biomed Sci 2023; 30:61. [PMID: 37525297 PMCID: PMC10392014 DOI: 10.1186/s12929-023-00956-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Dysregulating cellular metabolism is one of the emerging cancer hallmarks. Mitochondria are essential organelles responsible for numerous physiologic processes, such as energy production, cellular metabolism, apoptosis, and calcium and redox homeostasis. Although the "Warburg effect," in which cancer cells prefer aerobic glycolysis even under normal oxygen circumstances, was proposed a century ago, how mitochondrial dysfunction contributes to cancer progression is still unclear. This review discusses recent progress in the alterations of mitochondrial DNA (mtDNA) and mitochondrial dynamics in cancer malignant progression. Moreover, we integrate the possible regulatory mechanism of mitochondrial dysfunction-mediated mitochondrial retrograde signaling pathways, including mitochondrion-derived molecules (reactive oxygen species, calcium, oncometabolites, and mtDNA) and mitochondrial stress response pathways (mitochondrial unfolded protein response and integrated stress response) in cancer progression and provide the possible therapeutic targets. Furthermore, we discuss recent findings on the role of mitochondria in the immune regulatory function of immune cells and reveal the impact of the tumor microenvironment and metabolism remodeling on cancer immunity. Targeting the mitochondria and metabolism might improve cancer immunotherapy. These findings suggest that targeting mitochondrial retrograde signaling in cancer malignancy and modulating metabolism and mitochondria in cancer immunity might be promising treatment strategies for cancer patients and provide precise and personalized medicine against cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- School of Pharmacy, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei, 110, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou Dist., Taipei, 112, Taiwan
- Department of Surgery, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei, 112, Taiwan.
| |
Collapse
|
45
|
Park JD, Jang HJ, Choi SH, Jo GH, Choi JH, Hwang S, Park W, Park KS. The ELK3-DRP1 axis determines the chemosensitivity of triple-negative breast cancer cells to CDDP by regulating mitochondrial dynamics. Cell Death Discov 2023; 9:237. [PMID: 37422450 DOI: 10.1038/s41420-023-01536-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most lethal form of breast cancer. TNBC patients have higher rates of metastasis and restricted therapy options. Although chemotherapy is the conventional treatment for TNBC, the frequent occurrence of chemoresistance significantly lowers the efficacy of treatment. Here, we demonstrated that ELK3, an oncogenic transcriptional repressor that is highly expressed in TNBC, determined the chemosensitivity of two representative TNBC cell lines (MDA-MB231 and Hs578T) to cisplatin (CDDP) by regulating mitochondrial dynamics. We observed that the knockdown of ELK3 in MDA-MB231 and Hs578T rendered these cell lines more susceptible to the effects of CDDP. We further demonstrated that the chemosensitivity of TNBC cells was caused by the CDDP-mediated acceleration of mitochondrial fission, excessive mitochondrial reactive oxygen species production, and subsequent DNA damage. In addition, we identified DNM1L, a gene encoding the dynamin-related protein 1 (a major regulator of mitochondrial fission), as a direct downstream target of ELK3. Based on these results, we propose that the suppression of ELK3 expression could be used as a potential therapeutic strategy for overcoming the chemoresistance or inducing the chemosensitivity of TNBC.
Collapse
Affiliation(s)
- Joo Dong Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Hye Jung Jang
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Seung Hee Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Gae Hoon Jo
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Jin-Ho Choi
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
46
|
Nguyen TTM, Gadet R, Lanfranchi M, Lahaye RA, Yandiev S, Lohez O, Mikaelian I, Jabbour L, Rimokh R, Courchet J, Saudou F, Popgeorgiev N, Gillet G. Mitochondrial Bcl-xL promotes brain synaptogenesis by controlling non-lethal caspase activation. iScience 2023; 26:106674. [PMID: 37182099 PMCID: PMC10173740 DOI: 10.1016/j.isci.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Non-lethal caspase activation (NLCA) has been linked to neurodevelopmental processes. However, how neurons control NLCA remains elusive. Here, we focused on Bcl-xL, a Bcl-2 homolog regulating caspase activation through the mitochondria. We generated a mouse model, referred to as ER-xL, in which Bcl-xL is absent in the mitochondria, yet present in the endoplasmic reticulum. Unlike bclx knockout mice that died at E13.5, ER-xL mice survived embryonic development but died post-partum because of altered feeding behavior. Enhanced caspase-3 activity was observed in the brain and the spinal cord white matter, but not the gray matter. No increase in cell death was observed in ER-xL cortical neurons, suggesting that the observed caspase-3 activation was apoptosis-independent. ER-xL neurons displayed increased caspase-3 activity in the neurites, resulting in impaired axon arborescence and synaptogenesis. Together, our findings suggest that mitochondrial Bcl-xL finely tunes caspase-3 through Drp-1-dependent mitochondrial fission, which is critical to neural network design.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Rudy Gadet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Marine Lanfranchi
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Romane A. Lahaye
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Sozerko Yandiev
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Olivier Lohez
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Lea Jabbour
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ruth Rimokh
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Julien Courchet
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Frédéric Saudou
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Nikolay Popgeorgiev
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 5, France
| | - Germain Gillet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Hospices civils de Lyon, Laboratoire d’anatomie et cytologie pathologiques, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, 69495 Pierre Bénite, France
| |
Collapse
|
47
|
Cui J, Liu Y, Hao Z, Liu Y, Qiu M, Kang L, Teng X, Tang Y. Cadmium induced time-dependent kidney injury in common carp via mitochondrial pathway: Impaired mitochondrial energy metabolism and mitochondrion-dependent apoptosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023:106570. [PMID: 37202229 DOI: 10.1016/j.aquatox.2023.106570] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Toxic effect of heavy metal cadmium (Cd) on fish kidneys had been reported. Mitochondrion is an important organelle for maintaining kidney function, while its role in Cd-induced kidney injury in common carp remained unclarified. In this experiment, we established a poisoning model of common carp with Cd exposure (0.26 mg/L) for 15, 30, and 45 days. Serum biochemistry determination, histological observation, TUNEL assay, qRT-PCR, Western blot, and integrated biomarker response (IBR) were applied to assess the nephrotoxicity of Cd to common carp. Our results displayed that Cd exposure increased the levels of serum biochemical indexes (UREA, CRE, and UA), indicating kidney injury. We further revealed via histological observation that Cd damaged structural integrity of kidneys, as evidenced by renal glomerulus and renal tubular injury, hallmark phenotypes of apoptosis, and mitochondrial damage, suggesting that mitochondria damage and apoptosis were involved in Cd-induced kidney injury. Moreover, Cd exposure decreased ATPase (Na+/K+-ATPase, Ca2+-ATPase, Mg2+-ATPase, and Ca2+Mg2+-ATPase) activities as well as PGC-1a and Mfn2 levels, while increased Drp1 and PINK1 levels as well as LC3-II/LC3-I ratio, which indicated that Cd-impaired renal energy metabolism was related to mitochondrial dysfunction. Additionally, we found that Cd induced oxidative stress (abnormal levels of SOD, CAT, GPX, MDA, and H2O2) in kidneys, which was involved in triggering mitochondrial dysfunction and further impairing mitochondrial energy metabolism. Moreover, the occurrence of mitochondria-dependent apoptosis was found after Cd-exposure in common carp kidneys, as indicated by enhanced levels of Bax, CytC, APAF1, Caspase-9, and Caspase-3, while declined level of Bcl-2. Subsequently, we confirmed a time-dependent nephrotoxicity of Cd to common carp via IBR assessment. In conclusion, Cd induced time-dependent nephrotoxicity in common carp via mitochondrial pathway. This mitochondria-oriented study shed light on underlying mechanisms of Cd-induced renal pathologies and provided a theoretical basis for evaluating Cd toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China
| | - Lu Kang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR. China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR. China.
| | - You Tang
- Digital Agriculture key discipline of Jilin Province, JiLin Agricultural Science and Technology University, Jilin 132101, PR. China.
| |
Collapse
|
48
|
Maneechote C, Chattipakorn SC, Chattipakorn N. Recent Advances in Mitochondrial Fission/Fusion-Targeted Therapy in Doxorubicin-Induced Cardiotoxicity. Pharmaceutics 2023; 15:pharmaceutics15041182. [PMID: 37111670 PMCID: PMC10143663 DOI: 10.3390/pharmaceutics15041182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Doxorubicin (DOX) has been recognized as one of the most effective chemotherapies and extensively used in the clinical settings of human cancer. However, DOX-mediated cardiotoxicity is known to compromise the clinical effectiveness of chemotherapy, resulting in cardiomyopathy and heart failure. Recently, accumulation of dysfunctional mitochondria via alteration of the mitochondrial fission/fusion dynamic processes has been identified as a potential mechanism underlying DOX cardiotoxicity. DOX-induced excessive fission in conjunction with impaired fusion could severely promote mitochondrial fragmentation and cardiomyocyte death, while modulation of mitochondrial dynamic proteins using either fission inhibitors (e.g., Mdivi-1) or fusion promoters (e.g., M1) can provide cardioprotection against DOX-induced cardiotoxicity. In this review, we focus particularly on the roles of mitochondrial dynamic pathways and the current advanced therapies in mitochondrial dynamics-targeted anti-cardiotoxicity of DOX. This review summarizes all the novel insights into the development of anti-cardiotoxic effects of DOX via the targeting of mitochondrial dynamic pathways, thereby encouraging and guiding future clinical investigations to focus on the potential application of mitochondrial dynamic modulators in the setting of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
49
|
Flores-Romero H, Dadsena S, García-Sáez AJ. Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol Cell 2023; 83:843-856. [PMID: 36931255 DOI: 10.1016/j.molcel.2023.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are cellular organelles with a major role in many cellular processes, including not only energy production, metabolism, and calcium homeostasis but also regulated cell death and innate immunity. Their proteobacterial origin makes them a rich source of potent immune agonists, normally hidden within the mitochondrial membrane barriers. Alteration of mitochondrial permeability through mitochondrial pores thus provides efficient mechanisms not only to communicate mitochondrial stress to the cell but also as a key event in the integration of cellular responses. In this regard, eukaryotic cells have developed diverse signaling networks that sense and respond to the release of mitochondrial components into the cytosol and play a key role in controlling cell death and inflammatory pathways. Modulating pore formation at mitochondria through direct or indirect mechanisms may thus open new opportunities for therapy. In this review, we discuss the current understanding of the structure and molecular mechanisms of mitochondrial pores and how they function at the interface between cell death and inflammatory signaling to regulate cellular outcomes.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Shashank Dadsena
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany.
| |
Collapse
|
50
|
Waguia Kontchou C, Häcker G. Role of mitochondrial outer membrane permeabilization during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:83-127. [PMID: 36858657 DOI: 10.1016/bs.ircmb.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.
Collapse
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|