1
|
Zhang X, Wu P, Bai R, Gan Q, Yang Y, Li H, Ni J, Huang Q, Shen Y. PerR functions as a redox-sensing transcription factor regulating metal homeostasis in the thermoacidophilic archaeon Saccharolobus islandicus REY15A. Nucleic Acids Res 2025; 53:gkae1263. [PMID: 39727184 PMCID: PMC11724291 DOI: 10.1093/nar/gkae1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Thermoacidophilic archaea thrive in environments with high temperatures and low pH where cells are prone to severe oxidative stress due to elevated levels of reactive oxygen species (ROS). While the oxidative stress responses have been extensively studied in bacteria and eukaryotes, the mechanisms in archaea remain largely unexplored. Here, using a multidisciplinary approach, we reveal that SisPerR, the homolog of bacterial PerR in Saccharolobus islandicus REY15A, is responsible for ROS response of transcriptional regulation. We show that with H2O2 treatment and sisperR deletion, expression of genes encoding proteins predicted to be involved in cellular metal ion homeostasis regulation, Dps, NirD, VIT1/CCC1 and MntH, is significantly upregulated, while expression of ROS-scavenging enzymes remains unaffected. Conversely, the expression of these genes is repressed when SisPerR is overexpressed. Notably, the genes coding for Dps, NirD and MntH are direct targets of SisPerR. Moreover, we identified three novel residues critical for ferrous ion binding and one novel residue for zinc ion binding. In summary, this study has established that SisPerR is a repressive redox-sensing transcription factor regulating intracellular metal ion homeostasis in Sa. islandicus for oxidative stress defense. These findings have shed new light on our understanding of microbial adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Ruining Bai
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Haodun Li
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| |
Collapse
|
2
|
Taylor JC, Gu Liu C, Chang JD, Thompson BE, Maresso AW. Gene discovery from microbial gene libraries I: protection against reactive oxygen species-driven DNA damage. Microbiol Spectr 2024; 12:e0036524. [PMID: 39283089 PMCID: PMC11536983 DOI: 10.1128/spectrum.00365-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 11/07/2024] Open
Abstract
Reactive oxygen species (ROS) pose a lethal risk for all life forms by causing damage to cell processes, genome-wide DNA damage-driving mutation, replicative instability, and death. Thus, the development of mechanisms to resist or repair ROS-induced DNA damage is critical for the reliable replication of nucleic acids. DNA repair and protection mechanisms have been discovered in all forms of life. However, the vast array of microbes that may harbor novel repair or protection mechanisms, especially bacterial viruses, have not been adequately assessed. Here, we screened a microbial gene library composed primarily of phage open reading frames (ORFs) to uncover elements that overcome a DNA damage blockade. We report the discovery of one such protein, termed F21, which promotes bacterial survival by possibly repairing or protecting DNA in the face of ROS-induced DNA damage.IMPORTANCEDiscovery of proteins that promote DNA damage repair and protection in the face of reactive oxygen species (ROS) is of vital importance. Our group is in possession of a unique microbial DNA library with which we can screen for undiscovered genes that encode novel proteins with DNA damage repair and protective functions. This library is composed of diverse DNA from a variety of sources, namely bacteriophages, which must be assessed for their novel functions. This work focuses on the discovery of DNA damage repair and protection, but the possibilities for discovery are endless, thus highlighting the significance of this work.
Collapse
Affiliation(s)
- John C. Taylor
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILΦR: Tailored Antibacterials and Innovative Laboratories for phage (Φ) Research, Baylor College of Medicine, Houston, Texas, USA
| | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Brianna E. Thompson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILΦR: Tailored Antibacterials and Innovative Laboratories for phage (Φ) Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Bonomo MM, Sachi ITDC, Paulino MG, Fernandes JB, Carlos RM, Fernandes MN. Multi-biomarkers approach to access the impact of novel metal-insecticide based on flavonoid hesperidin on fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115758. [PMID: 33022572 DOI: 10.1016/j.envpol.2020.115758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Aquatic ecosystem health is the main concern to increasing pesticides application to control agricultural pests as it is the ultimate receptor of such materials. This study evaluated the impact of new metal-insecticide, the [Mg(hesp)2(phen)], referred as MgHP, on fish using physiological, genetic, biochemical, and morphological biomarkers. The fish, Prochilodus lineatus, was exposed to 0 (control), 1, 10, 100, 1000 μg L-1 MgHP, for 24 and 96 h. MgHP was not lethal but caused genotoxicity, altered hematological variables and, the activity of antioxidant and biotransformation enzymes and histology of liver, depending on concentration and time exposure. Hematocrit and erythrocyte number (RBC) increased without change hemoglobin content resulting in changes in hematimetric indexes after 24 h; after 96 h, only RBC was changed. Erythrocyte nuclear abnormalities and crenate cells increased after 24 h but, not after 96 h. Erythrocytes and hepatocytes indicated instability in DNA integrity however, the absence of micronuclei suggested DNA damage repairment. After 24 h, the antioxidant defense system and the phase II biotransformation enzyme was responsiveness and catalase activity decreased at high MgHP concentrations; the antioxidant response was triggered after 96 h. Hepatocyte hypertrophy, intracellular cytoplasmic substances, cytoplasm degeneration, melanomacrophage and hyperemia increased in fish exposed from 10 μg L-1 to higher MgHP concentrations; the organ alteration index increased as MgHP concentration increased showing dose-dependence. Most of hematological and genotoxic effects occurred after 24 h exposure evidencing potential recover capability of organism by activation of the antioxidant defense system and DNA repairment mechanisms. Nevertheless, the histopathological changes in the liver was maintained over time at high MgHP concentrations, a concentration usually no environmental relevant. In conclusion, this data reinforced the importance of continuing research on MgHP effects in other organisms considering the promising use of such compound to control the leaf-cutter ants and other insects.
Collapse
Affiliation(s)
- Marina Marques Bonomo
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Washington Luiz Highway, km 235, 13565-905, São Carlos, SP, Brazil; Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| | - Ivelise Teresa de Castro Sachi
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Washington Luiz Highway, km 235, 13565-905, São Carlos, SP, Brazil; Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| | - Marcelo Gustavo Paulino
- Federal University of Tocantins, Campus Araguaína, Avenida Paraguai, s/n°, Setor Cimba, 77824-838, Araguaína, TO, Brazil.
| | - João Batista Fernandes
- Chemistry Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| | - Rose Maria Carlos
- Chemistry Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| | - Marisa Narciso Fernandes
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Washington Luiz Highway, km 235, 13565-905, São Carlos, SP, Brazil; Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
4
|
Bonomo MM, Fernandes JB, Carlos RM, Fernandes MN. Biochemical and genotoxic biomarkers and cell cycle assessment in the zebrafish liver (ZF-L) cell line exposed to the novel metal-insecticide magnesium-hespiridin complex. CHEMOSPHERE 2020; 250:126416. [PMID: 32380589 DOI: 10.1016/j.chemosphere.2020.126416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The flavonoid metal-insecticide magnesium-hesperidin complex (MgHP) has recently been considered as a novel insecticide to replace some persistent pesticides. However, it is important to evaluate its action on non-target species, mainly those living in an aquatic environment, as these ecosystems are the final receptors of most chemicals. Reactive oxygen species, antioxidant and oxidative stress biomarkers, genotoxicity as well as cell cycle was evaluated in the liver cell line from zebrafish (Danio rerio; ZF-L) exposed to 0, 0.1, 1, 10, 100 and 1000 ng mL-1 MgHP. MgHP affected cell stability by increasing reactive oxygen species (ROS) in both exposure times (24 and 96 h) at high concentrations. Catalase (CAT) activity decreased after 24 h exposure, and glutathione and metallothionein values increased, avoiding the lipid peroxidation. Genotoxicity increased as MgHP concentration increased, after 24 h exposure, exhibiting nuclear abnormalities; it was recovered after 96 h exposure, evidencing possible stimulation of DNA repair mechanisms. The alteration in the cell cycle (increasing in the Sub-G1 phase and decreasing in the S-phase) was associated with chromosomal instability. In conclusion, the responses of ROS and the antioxidant defense system depended on MgHP concentration and time exposure, while DNA exhibited some instability after 24 h exposure, which was recovered after 96 h.
Collapse
Affiliation(s)
- Marina Marques Bonomo
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Av. Washington Luiz, km 235, 13563-905, São Carlos, SP, Brazil; Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, SP, Brazil.
| | - João Batista Fernandes
- Chemistry Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Rose Maria Carlos
- Chemistry Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Marisa Narciso Fernandes
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Av. Washington Luiz, km 235, 13563-905, São Carlos, SP, Brazil; Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Cooper DJ, Chen IC, Hernandez C, Wang Y, Walter CA, McCarrey JR. Pluripotent cells display enhanced resistance to mutagenesis. Stem Cell Res 2017; 19:113-117. [PMID: 28129601 DOI: 10.1016/j.scr.2016.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/19/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022] Open
Abstract
Pluripotent cells have been reported to exhibit lower frequencies of point mutations and higher levels of DNA repair than differentiated cells. This predicts that pluripotent cells are less susceptible to mutagenic exposures than differentiated cells. To test this prediction, we used a lacI mutation-reporter transgene system to assess the frequency of point mutations in multiple lines of mouse pluripotent embryonic stem cells and induced pluripotent cells, as well as in multiple lines of differentiated fibroblast cells, before and after exposure to a moderate dose of the mutagen, methyl methanesulfonate. We also measured levels of key enzymes in the base excision repair (BER) pathway in each cell line before and after exposure to the mutagen. Our results confirm that pluripotent cells normally maintain lower frequencies of point mutations than differentiated cells, and show that differentiated cells exhibit a large increase in mutation frequency following a moderate mutagenic exposure, whereas pluripotent cells subjected to the same exposure show no increase in mutations. This result likely reflects the higher levels of BER proteins detectable in pluripotent cells prior to exposure and supports our thesis that maintenance of enhanced genetic integrity is a fundamental characteristic of pluripotent cells.
Collapse
Affiliation(s)
- Daniel J Cooper
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - I-Chung Chen
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Christine Hernandez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Yufeng Wang
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Christi A Walter
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
6
|
Zhao X, Takabayashi F, Ibuki Y. Coexposure to silver nanoparticles and ultraviolet A synergistically enhances the phosphorylation of histone H2AX. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:213-222. [PMID: 27383448 DOI: 10.1016/j.jphotobiol.2016.06.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/25/2016] [Indexed: 11/19/2022]
Abstract
Owing to the wide application of silver nanoparticles (AgNPs), the assessment of health risks associated with their use is of great importance. In this study, we revealed that the potential genotoxicity of AgNPs was enhanced by ultraviolet A (UVA) exposure. Three cultured cell lines were treated with AgNPs, followed by exposure to UVA. AgNPs induced phosphorylation of histone H2AX (γ-H2AX) following the formation of DNA double-strand breaks (DSBs), which was synergistically enhanced by UVA exposure. Enhanced γ-H2AX was observed only in cell lines that positively took up AgNPs, and microsized Ag particles, which were difficult to incorporate into cells, showed no γ-H2AX. Incorporation of AgNPs was not increased by UVA exposure. AgNO3 treatment followed by UVA exposure also induced a marked increase in γ-H2AX, indicating that the enhanced γ-H2AX was attributed to Ag ions released from AgNPs. Ag ions reacted with the -SH group of antioxidant molecules, such as glutathione, and induced intracellular oxidative conditions. 8-Hydroxy-2'-deoxyguanosine was formed in the cells treated with AgNPs, which was augmented by UVA irradiation, suggesting that intracellular oxidation caused oxidative DNA damage, leading to the enhanced formation of DSBs and γ-H2AX. Ag has been considered a safe metal; however, our results provide important insights into the influence of sunlight on the genotoxic potency of AgNPs.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| | - Fumiyo Takabayashi
- School of Nursing, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan.
| |
Collapse
|
7
|
Costa SRD, Monteiro MDC, da Silva Júnior FMR, Sandrini JZ. Methylene blue toxicity in zebrafish cell line is dependent on light exposure. Cell Biol Int 2016; 40:895-905. [PMID: 27238358 DOI: 10.1002/cbin.10629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/20/2016] [Indexed: 12/12/2022]
Abstract
Methylene blue (MB) has been widely applied in the clinical area and is currently being used in aquaculture as biocide. Some recent studies have emphasized the importance of understanding the action mechanism and the MB cellular targets. In this sense, zebrafish is considered a relevant model to study the intrinsic pathway of apoptosis as well as the cellular responses involving DNA damage and repair. So, the aim of the present study was to compare MB action mechanisms in a zebrafish cell line, both in the absence (MB alone; dark toxicity) and in the presence of photosynthetically active radiation (MB+PAR; phototoxicity). There was a significant increase of the levels of reactive oxygen and nitrogen species 3 h after MB treatment, whereas this increase was only observed 12 h after treatment with MB+PAR. All treatments with MB resulted in an increase in DNA damage after 3 and 6 h. However, cell death by apoptosis was observed from 6 h after treatment with MB+PAR and 12 h after treatment with MB alone. The expression of genes related to apoptosis was altered after MB and MB+PAR treatment. Therefore, this zebrafish cell line is sensitive to the photodynamic action of MB; MB is able to generate DNA damage and induce apoptosis in this cell line both alone and in the presence of PAR. However, the pathways leading to apoptosis in this model appear to be dependent on the type of MB exposure (in the presence or absence of PAR).
Collapse
Affiliation(s)
- Simone Rutz da Costa
- Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada, Universidade Federal do Rio Grande-FURG, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Mauricio da Costa Monteiro
- Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada, Universidade Federal do Rio Grande-FURG, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | | | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas-Fisiologia Animal Comparada, Universidade Federal do Rio Grande-FURG, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Chan CTY, Deng W, Li F, DeMott MS, Babu IR, Begley TJ, Dedon PC. Highly Predictive Reprogramming of tRNA Modifications Is Linked to Selective Expression of Codon-Biased Genes. Chem Res Toxicol 2015; 28:978-88. [PMID: 25772370 PMCID: PMC4438938 DOI: 10.1021/acs.chemrestox.5b00004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Cells respond to stress by controlling
gene expression at several
levels, with little known about the role of translation. Here, we
demonstrate a coordinated translational stress response system involving
stress-specific reprogramming of tRNA wobble modifications that leads
to selective translation of codon-biased mRNAs representing different
classes of critical response proteins. In budding yeast exposed to
four oxidants and five alkylating agents, tRNA modification patterns
accurately distinguished among chemically similar stressors, with
14 modified ribonucleosides forming the basis for a data-driven model
that predicts toxicant chemistry with >80% sensitivity and specificity.
tRNA modification subpatterns also distinguish SN1 from
SN2 alkylating agents, with SN2-induced increases
in m3C in tRNA mechanistically linked to selective translation
of threonine-rich membrane proteins from genes enriched with ACC and
ACT degenerate codons for threonine. These results establish tRNA
modifications as predictive biomarkers of exposure and illustrate
a novel regulatory mechanism for translational control of cell stress
response.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas J Begley
- ∥College of Nanoscale Science, State University of New York, Albany, New York 12203, United States
| | | |
Collapse
|
9
|
Hendriks IA, Treffers LW, Verlaan-de Vries M, Olsen JV, Vertegaal ACO. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. Cell Rep 2015; 10:1778-1791. [PMID: 25772364 DOI: 10.1016/j.celrep.2015.02.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 12/17/2014] [Accepted: 02/11/2015] [Indexed: 02/09/2023] Open
Abstract
Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR). To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment with the DNA damaging agent methyl methanesulfonate (MMS). We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO-targeted ubiquitin ligase RNF4 and degraded by the proteasome in response to DNA damage, JARID1C was SUMOylated and recruited to the chromatin to demethylate histone H3K4.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Louise W Treffers
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Matty Verlaan-de Vries
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
10
|
Subramanian M, Srinivasan T, Sudarsanam D. Examining the Gm18 and m(1)G Modification Positions in tRNA Sequences. Genomics Inform 2014; 12:71-5. [PMID: 25031570 PMCID: PMC4099351 DOI: 10.5808/gi.2014.12.2.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/30/2022] Open
Abstract
The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA m1G37 methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves itself in methylation process at the 2'-OH group of ribose at the 18th position of guanosine (G) in tRNAs. TrmD methylates the G residue next to the anticodon in selected tRNA subsets. Initially, m1G37 modification was reported to take place on three conserved tRNA subsets (tRNAArg, tRNALeu, tRNAPro); later on, few archaea and eukaryotes organisms revealed that other tRNAs also have the m1G37 modification. The present study reveals Gm18, m1G37 modification, and positions of m1G that take place next to the anticodon in tRNA sequences. We selected extremophile organisms and attempted to retrieve the m1G and Gm18 modification bases in tRNA sequences. Results showed that the Gm18 modification G residue occurs in all tRNA subsets except three tRNAs (tRNAMet, tRNAPro, tRNAVal). Whereas the m1G37 modification base G is formed only on tRNAArg, tRNALeu, tRNAPro, and tRNAHis, the rest of the tRNAs contain adenine (A) next to the anticodon. Thus, we hypothesize that Gm18 modification and m1G modification occur irrespective of a G residue in tRNAs.
Collapse
Affiliation(s)
- Mayavan Subramanian
- Synthetic Biology and Biofuel Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110 067, India
| | - Thangavelu Srinivasan
- DST-FIST Bioinformatics and Principal Investigator, School of Genomics and Bioinformatics, Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600 034, India
| | - Dorairaj Sudarsanam
- DST-FIST Bioinformatics and Principal Investigator, School of Genomics and Bioinformatics, Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600 034, India
| |
Collapse
|
11
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Unraveling DNA damage response-signaling networks through systems approaches. Arch Toxicol 2013; 87:1635-48. [DOI: 10.1007/s00204-013-1106-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
13
|
Formigari A, Gregianin E, Irato P. The effect of zinc and the role of p53 in copper-induced cellular stress responses. J Appl Toxicol 2013; 33:527-536. [PMID: 23401182 DOI: 10.1002/jat.2854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 12/17/2022]
Abstract
Metals can directly or indirectly cause an increase in reactive oxygen species (ROS) accumulation in cells, and this may result in programmed cell death. A number of previous studies have shown that zinc (Zn) modulates mitogenic activity via several signalling pathways, such as AKT, mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF -κB), AP-1 and p53. The exact role that Zn plays in the regulation of apoptosis remains ambiguous. Intracellular free Zn modulates p53 activity and stability, and excess Zn alters the p53 protein structure and down-regulates p53's binding to DNA. Copper (Cu) accumulation causes apoptosis that seems to be mediated by DNA damage and subsequent p53 activation. Cu can also displace Zn from its normal binding site on p53, resulting in abnormal protein folding and disruption of p53 function. In spite of the induction of the tumour suppressor p53, hepatic Cu accumulation significantly increases the risk of cancerous neoplasm both in humans and rats, suggesting that p53 function may be impaired in these cells. It is generally understood that imbalances in Cu and Zn levels may lead to a higher prevalence of p53 mutations. An increased number of p53 mutations have been found in liver samples from Wilson's disease (WD) patients. High levels of the p53 mutation most probably contribute to the pathogenesis of cancer in individuals with WD, but the cause and effect are not clear. The protein p53 also plays a crucial role in the transcriptional regulation of metallothionein, which indicates a novel regulatory role for p53. This review discusses the central role of p53 and the redox-inert metal Zn in the cellular stress responses induced by the redox active biometal Cu.
Collapse
Affiliation(s)
- Alessia Formigari
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | | | | |
Collapse
|
14
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
15
|
Wittenburg LA, Ptitsyn AA, Thamm DH. A systems biology approach to identify molecular pathways altered by HDAC inhibition in osteosarcoma. J Cell Biochem 2012; 113:773-83. [PMID: 21976144 DOI: 10.1002/jcb.23403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary tumor in humans and dogs affecting the skeleton, and spontaneously occurring OS in dogs serves as an extremely useful model. Unacceptable toxicities using current treatment protocols prevent further dose-intensification from being a viable option to improve patient survival and thus, novel treatment strategies must be developed. Histone deacetylase inhibitors (HDACi) have recently emerged as a promising class of therapeutics demonstrating an ability to enhance the anti-tumor activity of traditional chemotherapeutics. To date, gene expression analysis of OS cell lines treated with HDACi has not been reported, and evaluation of the resultant gene expression changes may provide insight into the mechanisms that lead to success of HDACi. Canine OS cells, treated with a clinically relevant concentration of the HDACi valproic acid (VPA), were used for expression analysis on the Affymetrix canine v2.0 genechip. Differentially expressed genes were grouped into pathways based upon functional annotation; pathway analysis was performed with MetaCore and Ingenuity Pathways Analysis software. Validation of microarray results was performed by a combination of qRT-PCR and functional/biochemical assays revealing oxidative phosphorylation, cytoskeleton remodeling, cell cycle, and ubiquitin-proteasome among those pathways most affected by HDACi. The mitomycin C-bioactivating enzyme NQ01 also demonstrated upregulation following VPA treatment, leading to synergistic reductions in cell viability. These results provide a better understanding of the mechanisms by which HDACi exert their effect in OS, and have the potential to identify biomarkers that may serve as novel targets and/or predictors of response to HDACi-containing combination therapies in OS.
Collapse
Affiliation(s)
- Luke A Wittenburg
- Animal Cancer Center, Department of Clinical Sciences, Colorado State University Animal Cancer Center, 300 W. Drake Rd., Fort Collins, Colorado 80523-1620, USA.
| | | | | |
Collapse
|
16
|
Rashi-Elkeles S, Elkon R, Shavit S, Lerenthal Y, Linhart C, Kupershtein A, Amariglio N, Rechavi G, Shamir R, Shiloh Y. Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol 2011; 5:336-48. [PMID: 21795128 DOI: 10.1016/j.molonc.2011.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 01/30/2023] Open
Abstract
The cellular response to DNA damage is vital for maintaining genomic stability and preventing undue cell death or cancer formation. The DNA damage response (DDR), most robustly mobilized by double-strand breaks (DSBs), rapidly activates an extensive signaling network that affects numerous cellular systems, leading to cell survival or programmed cell death. A major component of the DDR is the widespread modulation of gene expression. We analyzed together six datasets that probed transcriptional responses to ionizing radiation (IR) - our novel experimental data and 5 published datasets - to elucidate the scope of this response and identify its gene targets. According to the mRNA expression profiles we recorded from 5 cancerous and non-cancerous human cell lines after exposure to 5 Gy of IR, most of the responses were cell line-specific. Computational analysis identified significant enrichment for p53 target genes and cell cycle-related pathways among groups of up-regulated and down-regulated genes, respectively. Computational promoter analysis of the six datasets disclosed that a statistically significant number of the induced genes contained p53 binding site signatures. p53-mediated regulation had previously been documented for subsets of these gene groups, making our lists a source of novel potential p53 targets. Real-time qPCR and chromatin immunoprecipitation (ChIP) assays validated the IR-induced p53-dependent induction and p53 binding to the respective promoters of 11 selected genes. Our results demonstrate the power of a combined computational and experimental approach to identify new transcriptional targets in the DNA damage response network.
Collapse
Affiliation(s)
- Sharon Rashi-Elkeles
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Room 1022, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ward WO, Swartz CD, Hanley NM, Whitaker JW, Franzén R, DeMarini DM. Mutagen structure and transcriptional response: induction of distinct transcriptional profiles in Salmonella TA100 by the drinking-water mutagen MX and its homologues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:69-79. [PMID: 19598237 DOI: 10.1002/em.20512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The relationship between chemical structure and biological activity has been examined for various compounds and endpoints for decades. To explore this question relative to global gene expression, we performed microarray analysis of Salmonella TA100 after treatment under conditions of mutagenesis by the drinking-water mutagen MX and two of its structural homologues, BA-1, and BA-4. Approximately 50% of the genes expressed differentially following MX treatment were unique to MX; the corresponding percentages for BA-1 and BA-4 were 91 and 80, respectively. Among these mutagens, there was no overlap of altered Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways or RegulonDB regulons. Among the 25 Comprehensive Microbial Resource functions altered by these mutagens, only four were altered by more than one mutagen. Thus, the three structural homologues produced distinctly different transcriptional profiles, with none having a single altered KEGG pathway in common. We tested whether structural similarity between a xenobiotic and endogenous metabolites could explain transcriptional changes. For the 830 intracellular metabolites in Salmonella that we examined, BA-1 had a high degree of structural similarity to 2-isopropylmaleate, which is the substrate for isopropylmalate isomerase. The transcription of the gene for this enzyme was suppressed twofold in BA-1-treated cells. Finally, the distinct transcriptional responses of the three structural homologues were not predicted by a set of phenotypic anchors, including mutagenic potency, cytotoxicity, mutation spectra, and physicochemical properties. Ultimately, explanations for varying transcriptional responses induced by compounds with similar structures await an improved understanding of the interactions between small molecules and the cellular machinery.
Collapse
Affiliation(s)
- William O Ward
- Integrated Systems Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
18
|
Cooley N, Elder RH, Povey AC. The effect of Msh2 knockdown on methylating agent induced toxicity in DNA glycosylase deficient cells. Toxicology 2009; 268:111-7. [PMID: 20025921 DOI: 10.1016/j.tox.2009.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/18/2009] [Accepted: 12/10/2009] [Indexed: 01/17/2023]
Abstract
The DNA structure recognition protein MSH2 is an important protein in DNA mismatch repair due to its role in initiating the repair process. To examine the potential interactions between mismatch repair and base excision repair (BER) we have examined the effect of MSH2 knockdown on 6-thioguanine (6-TG), temozolomide (TMZ) and methylmethane sulphonate (MMS) induced toxicity in BER proficient and deficient cell lines. An shRNA expression vector containing Msh2 target sequences was designed and used to transfect mouse embryonic fibroblasts lacking either alkylpurine DNA N-glycosylase (Mpg) or endonuclease III homologue (Nth1). Significant knockdown of Msh2 gene expression was achieved with three different target sequences, with the highest level being shown by Msh2(283). Clonal selection resulted in differing levels of knockdown in Mpg(-/-) cells: (69.0+/-12.1% from 5 cell clones). Transfection of the Msh2(283) sequence in Mpg+/+, Nth1+/+ and Nth1(-/-) cells resulted in average knockdowns of 45.1+/-40.5% (3 clones), 58.0+/-21.4% (5 clones) and 74.9+/-14.8% (3 clones), respectively. Msh2 knockdown resulted in increased resistance to 6-TG in BER (MPG and NTH1) proficient and deficient cell lines with similar levels of knockdown (84+/-4%) but increased resistance to TMZ only in Mpg+/+ and Nth1(-/-) cell lines and not Mpg(-/-) or Nth1+/+ cells as assessed by an MTT assay. Msh2 knockdown had no effect on sensitivity to MMS induced toxicity. In a clonogenic assay, Msh2 silenced Mpg+/+, Mpg(-/-), Nth1+/+ and Nth1(-/-) cells were more resistant to TMZ. These results confirm previous studies showing that MSH2 is a key protein in influencing 6-TG and O(6)-methylguanine induced toxicity but also suggest that the effect of this protein depends upon the presence of other proteins in different DNA repair pathways.
Collapse
Affiliation(s)
- N Cooley
- Centre for Occupational and Environmental Health, School of Community Based Medicine, Faculty of Medical and Human Sciences, University of Manchester, Manchester M139PL, United Kingdom
| | | | | |
Collapse
|
19
|
González-Siso MI, García-Leiro A, Tarrío N, Cerdán ME. Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Fact 2009; 8:46. [PMID: 19715615 PMCID: PMC2754438 DOI: 10.1186/1475-2859-8-46] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/30/2009] [Indexed: 12/04/2022] Open
Abstract
A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed.
Collapse
Affiliation(s)
- M Isabel González-Siso
- Department of Molecular and Cell Biology, University of A Coruña, Campus da Zapateira s/n, 15071- A Coruña, Spain.
| | | | | | | |
Collapse
|
20
|
Ravi D, Wiles AM, Bhavani S, Ruan J, Leder P, Bishop AJR. A network of conserved damage survival pathways revealed by a genomic RNAi screen. PLoS Genet 2009; 5:e1000527. [PMID: 19543366 PMCID: PMC2688755 DOI: 10.1371/journal.pgen.1000527] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 05/19/2009] [Indexed: 11/18/2022] Open
Abstract
Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS-induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into "pathway nodes" qualitatively improved the interactome organization, revealing a highly organized "MMS survival network." We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis.
Collapse
Affiliation(s)
- Dashnamoorthy Ravi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Amy M. Wiles
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Selvaraj Bhavani
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Philip Leder
- Harvard Medical School, Department of Genetics, Harvard University, Boston, Massachusetts, United States of America
| | - Alexander J. R. Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Harvard Medical School, Department of Genetics, Harvard University, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Cardenas PP, Carrasco B, Sanchez H, Deikus G, Bechhofer DH, Alonso JC. Bacillus subtilis polynucleotide phosphorylase 3'-to-5' DNase activity is involved in DNA repair. Nucleic Acids Res 2009; 37:4157-69. [PMID: 19433509 PMCID: PMC2709576 DOI: 10.1093/nar/gkp314] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the presence of Mn2+, an activity in a preparation of purified Bacillus subtilis RecN degrades single-stranded (ss) DNA with a 3′ → 5′ polarity. This activity is not associated with RecN itself, because RecN purified from cells lacking polynucleotide phosphorylase (PNPase) does not show the exonuclease activity. We show here that, in the presence of Mn2+ and low-level inorganic phosphate (Pi), PNPase degrades ssDNA. The limited end-processing of DNA is regulated by ATP and is inactive in the presence of Mg2+ or high-level Pi. In contrast, the RNase activity of PNPase requires Mg2+ and Pi, suggesting that PNPase degradation of RNA and ssDNA occur by mutually exclusive mechanisms. A null pnpA mutation (ΔpnpA) is not epistatic with ΔrecA, but is epistatic with ΔrecN and Δku, which by themselves are non-epistatic. The addA5, ΔrecO, ΔrecQ (ΔrecJ), ΔrecU and ΔrecG mutations (representative of different epistatic groups), in the context of ΔpnpA, demonstrate gain- or loss-of-function by inactivation of repair-by-recombination, depending on acute or chronic exposure to the damaging agent and the nature of the DNA lesion. Our data suggest that PNPase is involved in various nucleic acid metabolic pathways, and its limited ssDNA exonuclease activity plays an important role in RecA-dependent and RecA-independent repair pathways.
Collapse
Affiliation(s)
- Paula P Cardenas
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Huang C, Hales BF. Teratogen responsive signaling pathways in organogenesis stage mouse limbs. Reprod Toxicol 2009; 27:103-10. [PMID: 19429390 DOI: 10.1016/j.reprotox.2009.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/14/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
|
23
|
Stuart GR, Copeland WC, Strand MK. Construction and application of a protein and genetic interaction network (yeast interactome). Nucleic Acids Res 2009; 37:e54. [PMID: 19273534 PMCID: PMC2673449 DOI: 10.1093/nar/gkp140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cytoscape is a bioinformatic data analysis and visualization platform that is well-suited to the analysis of gene expression data. To facilitate the analysis of yeast microarray data using Cytoscape, we constructed an interaction network (interactome) using the curated interaction data available from the Saccharomyces Genome Database (www.yeastgenome.org) and the database of yeast transcription factors at YEASTRACT (www.yeastract.com). These data were formatted and imported into Cytoscape using semi-automated methods, including Linux-based scripts, that simplified the process while minimizing the introduction of processing errors. The methods described for the construction of this yeast interactome are generally applicable to the construction of any interactome. Using Cytoscape, we illustrate the use of this interactome through the analysis of expression data from a recent yeast diauxic shift experiment. We also report and briefly describe the complex associations among transcription factors that result in the regulation of thousands of genes through coordinated changes in expression of dozens of transcription factors. These cells are thus able to sensitively regulate cellular metabolism in response to changes in genetic or environmental conditions through relatively small changes in the expression of large numbers of genes, affecting the entire yeast metabolome.
Collapse
Affiliation(s)
- Gregory R Stuart
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences and Life Sciences Division, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
24
|
Sandrini JZ, Trindade GS, Nery LEM, Marins LF. Time-course Expression of DNA Repair-related Genes in Hepatocytes of Zebrafish (Danio rerio) After UV-B Exposure. Photochem Photobiol 2009; 85:220-6. [DOI: 10.1111/j.1751-1097.2008.00422.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Ding W, Liu W, Cooper KL, Qin XJ, de Souza Bergo PL, Hudson LG, Liu KJ. Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage. J Biol Chem 2008; 284:6809-17. [PMID: 19056730 DOI: 10.1074/jbc.m805566200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Arsenic enhances skin tumor formation when combined with other carcinogens, including UV radiation (UVR). In this study we report that low micromolar concentrations of arsenite synergistically increases UVR-induced oxidative DNA damage in human keratinocytes as detected by 8-hydroxyl-2'-deoxyguanine (8-OHdG) formation. Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in base excision repair, a process that repairs 8-OHdG lesions. Arsenite suppresses UVR-induced PARP-1 activation in a concentration-dependent manner. Inhibition of PARP-1 activity by 3-aminobenzamide or small interfering RNA silencing of PARP-1 expression significantly increases UVR-induced 8-OHdG formation, suggesting that inhibition of PARP-1 activity by arsenite contributes to oxidative DNA damage. PARP-1 is a zinc finger protein, and mass spectrometry analysis reveals that arsenite can occupy a synthetic apopeptide representing the first zinc finger of PARP-1 (PARPzf). When the PARPzf peptide is preincubated with Zn(II) followed by incubation with increasing concentrations of arsenite, the ZnPARPzf signal is decreased while the AsPARPzf signal intensity is increased as a function of arsenite dose, suggesting a competition between zinc and arsenite for the same binding site. Addition of Zn(II) abolished arsenite enhancement of UVR-stimulated 8-OHdG generation and restored PARP-1 activity. Our findings demonstrate that arsenite inhibits oxidative DNA damage repair and suggest that interaction of arsenite with the PARP-1 zinc finger domain contributes to the inhibition of PARP-1 activity by arsenite. Arsenite inhibition of poly(ADP-ribosyl)ation is one likely mechanism for the reported co-carcinogenic activities of arsenic in UVR-induced skin carcinogenesis.
Collapse
Affiliation(s)
- Wei Ding
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131-0704, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Rowe LA, Degtyareva N, Doetsch PW. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic Biol Med 2008; 45:1167-77. [PMID: 18708137 PMCID: PMC2643028 DOI: 10.1016/j.freeradbiomed.2008.07.018] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/02/2008] [Accepted: 07/11/2008] [Indexed: 01/13/2023]
Abstract
Cells are exposed to both endogenous and exogenous sources of reactive oxygen species (ROS). At high levels, ROS can lead to impaired physiological function through cellular damage of DNA, proteins, lipids, and other macromolecules, which can lead to certain human pathologies including cancers, neurodegenerative disorders, and cardiovascular disease, as well as aging. We have employed Saccharomyces cerevisiae as a model system to examine the levels and types of ROS that are produced in response to DNA damage in isogenic strains with different DNA repair capacities. We find that when DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular ROS which is not directly related to cell death. We have examined the spectrum of ROS in order to elucidate its role in the cellular response to DNA damage. As an independent verification of the DNA damage-induced ROS response, we show that a major activator of the oxidative stress response, Yap1, relocalizes to the nucleus following exposure to the DNA-alkylating agent methyl methanesulfonate. Our results indicate that the DNA damage-induced increase in intracellular ROS levels is a generalized stress response that is likely to function in various signaling pathways.
Collapse
Affiliation(s)
- Lori A Rowe
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
27
|
Caba E, Aubrecht J. Functional Genomic Approaches for Studying Genotoxicity and Carcinogenesis. Genomics 2008. [DOI: 10.3109/9781420067064-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Caba E, Aubrecht J. Genomic Approaches for Investigating Mechanisms of Genotoxicity. Toxicol Mech Methods 2008; 16:69-77. [DOI: 10.1080/15376520600558291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Tan K, Feizi H, Luo C, Fan SH, Ravasi T, Ideker TG. A systems approach to delineate functions of paralogous transcription factors: role of the Yap family in the DNA damage response. Proc Natl Acad Sci U S A 2008; 105:2934-9. [PMID: 18287073 PMCID: PMC2268563 DOI: 10.1073/pnas.0708670105] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Indexed: 11/18/2022] Open
Abstract
Duplication of genes encoding transcription factors plays an essential role in driving phenotypic variation. Because regulation can occur at multiple levels, it is often difficult to discern how each duplicated factor achieves its regulatory specificity. In these cases, a "systems approach" may distinguish the role of each factor by integrating complementary large-scale measurements of the regulatory network. To explore such an approach, we integrate growth phenotypes, promoter binding profiles, and gene expression patterns to model the DNA damage response network controlled by the Yeast-specific AP-1 (YAP) family of transcription factors. This analysis reveals that YAP regulatory specificity is achieved by at least three mechanisms: (i) divergence of DNA-binding sequences into two subfamilies; (ii) condition-specific combinatorial regulation by multiple Yap factors; and (iii) interactions of Yap 1, 4, and 6 with chromatin remodeling proteins. Additional microarray experiments establish that Yap 4 and 6 regulate gene expression through interactions with the histone deacetylase, Hda1. The data further highlight differences among Yap paralogs in terms of their regulatory mode of action (activation vs. repression). This study suggests how other large TF families might be disentangled in the future.
Collapse
Affiliation(s)
- Kai Tan
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Hoda Feizi
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Colin Luo
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Stephanie H. Fan
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Timothy Ravasi
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Trey G. Ideker
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
30
|
Hong I, Seo HW, Lee MH, Kim JW, Chung JH, Lee BH, Lee MO. Establishment of Reporter Cell Lines that Monitor Activities of Hypoxia Inducible Factor-1, P53 and Nur77 for Assessment of Carcinogenicity. Toxicol Res 2007. [DOI: 10.5487/tr.2007.23.3.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Lin X, Wood CG, Shao L, Huang M, Yang H, Dinney CP, Wu X. Risk assessment of renal cell carcinoma using alkaline comet assay. Cancer 2007; 110:282-8. [PMID: 17549681 DOI: 10.1002/cncr.22792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND DNA damage induced by mutagens has been associated with an individual's susceptibility to cancer. METHODS In the current study, which involved 193 renal cell carcinoma (RCC) patients and 193 controls, DNA damage before mutagen induction (baseline), after benzo(alpha)pyrene dio epoxide (BPDE) treatment, and after gamma-radiation induction were assayed by comet assay in peripheral blood lymphocytes. Olive tail moments were used as DNA damage parameters. The 5 variables that were analyzed for their associations with RCC risk were baseline, BPDE-induced, gamma-radiation-induced, net BPDE-induced (BPDE-induced subtract baseline), and net gamma-radiation-induced (gamma-radiation-induced subtract baseline) Olive tail moments. RESULTS Significantly higher Olive tail moments were observed in cases compared with controls at baseline (1.95 vs 1.65; P = .008), after BPDE induction (3.10 vs 2.38; P < .001), and after gamma-radiation induction (4.25 vs 3.47; P < .001). The net BPDE-induced and gamma-radiation-induced DNA damage was also found to be significantly higher in cases compared with controls (P < .001 for both mutagens). Using the 75th percentile Olive tail moments in the controls as the cutoff point, the authors found that high levels of baseline DNA damage, BPDE-induced DNA damage, and gamma-radiation-induced DNA damage were associated with significantly increased risks of RCC, with odds ratios of 1.96 (95% confidence interval [95% CI], 1.26-3.06), 2.70 (95% CI, 1.72-4.23), and 3.13 (95% CI, 1.99-4.92), respectively. Similarly, net BPDE-induced and net gamma-radiation-induced DNA damages were also found to be significantly associated with elevated risks of RCC. CONCLUSIONS The results of the current study suggest that both baseline and mutagen-induced DNA damages assessed by comet assay are associated with an increased risk of RCC.
Collapse
Affiliation(s)
- Xin Lin
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Shiloh Y. The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 2006; 31:402-10. [PMID: 16774833 DOI: 10.1016/j.tibs.2006.05.004] [Citation(s) in RCA: 429] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/03/2006] [Accepted: 05/25/2006] [Indexed: 01/22/2023]
Abstract
Cellular responses to DNA damage are crucial for maintaining homeostasis and preventing the development of cancer. Our understanding of the DNA-damage response has evolved: whereas previously the focus was on DNA repair, we now appreciate that the response to DNA lesions involves a complex, highly branched signaling network. Defects in this response lead to severely debilitating, cancer-predisposing "genomic instability syndromes". Double strand breaks (DSBs) in DNA are potent triggers of the DNA-damage response, which is why they are used to study this pathway. The chief transducer of the DSB signal is the nuclear protein kinase ataxia-telangiectasia mutated (ATM). Genetic, biochemical and structural studies have recently provided insights into the ATM-mediated DSB response, reshaping our view of this signaling pathway while raising new questions.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Genetic Research, Department of Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
33
|
Aubrecht J, Caba E. Gene expression profile analysis: an emerging approach to investigate mechanisms of genotoxicity. Pharmacogenomics 2006; 6:419-28. [PMID: 16004560 DOI: 10.1517/14622416.6.4.419] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The response to stress triggers transcriptional activation of genes involved in cell survival and/or cell death. Thus, the monitoring of gene expression levels in large gene sets or whole genomes in response to various agents (toxicogenomics) has been proposed as a tool for investigating mechanisms of toxicity. Although standard in vitro genetic toxicity testing provides relatively simple and accurate hazard detection, interpretation of positive findings, i.e., in vitro chromosome aberrations, in terms of relevant risk to humans is difficult, due to the limited insight into the underlying mechanisms. Therefore, the development of experimental approaches capable of differentiating a wide range of genotoxic mechanisms is expected to significantly improve risk assessment. The goal of this review is to summarize current developments in toxicogenomic analysis of genotoxic stress, and to provide a perspective on the application of gene expression profile analysis in genetic toxicology.
Collapse
Affiliation(s)
- Jiri Aubrecht
- Pfizer Global Research and Development, Eastern Point Rd, MS 8274-1246 Groton, CT 06340-8014, USA. jiri.aubrecht @pfizer.com
| | | |
Collapse
|
34
|
Valenti A, Napoli A, Ferrara MC, Nadal M, Rossi M, Ciaramella M. Selective degradation of reverse gyrase and DNA fragmentation induced by alkylating agent in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 2006; 34:2098-108. [PMID: 16617150 PMCID: PMC1440885 DOI: 10.1093/nar/gkl115] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reverse gyrase is a peculiar DNA topoisomerase, specific of hyperthermophilic Archaea and Bacteria, which has the unique ability of introducing positive supercoiling into DNA molecules. Although the function of the enzyme has not been established directly, it has been suggested to be involved in DNA protection and repair. We show here that the enzyme is degraded after treatment of Sulfolobus solfataricus cells with the alkylating agent MMS. MMS-induced reverse gyrase degradation is highly specific, since (i) neither hydroxyurea (HU) nor puromycin have a similar effect, and (ii) topoisomerase VI and two chromatin components are not degraded. Reverse gyrase degradation does not depend on protein synthesis. Experiments in vitro show that direct exposure of cell extracts to MMS does not induce reverse gyrase degradation; instead, extracts from MMS-treated cells contain some factor(s) able to degrade the enzyme in extracts from control cells. In vitro, degradation is blocked by incubation with divalent metal chelators, suggesting that reverse gyrase is selectively degraded by a metal-dependent protease in MMS-treated cells. In addition, we find a striking concurrence of extensive genomic DNA degradation and reverse gyrase loss in MMS-treated cells. These results support the hypothesis that reverse gyrase plays an essential role in DNA thermoprotection and repair in hyperthermophilic organisms.
Collapse
Affiliation(s)
| | | | | | - Marc Nadal
- Université de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, CNRSFRE 2445, Equipe MicrobiologieBâtiment Buffon, 45 Avenue des Etats-Unis 78035 Versailles Cedex, France
| | | | - Maria Ciaramella
- To whom correspondence should be addressed. Tel: 390816132247; Fax: 390816132248;
| |
Collapse
|
35
|
Abstract
The mammalian nucleus is arguably the most complex cellular organelle. It houses the vast majority of an organism's genetic material and is the site of all major genome regulatory processes. Reductionist approaches have been spectacularly successful at dissecting at the molecular level many of the key processes that occur within the nucleus, particularly gene expression. At the same time, the limitations of analyzing single nuclear processes in spatial and temporal isolation and the validity of generalizing observations of single gene loci are becoming evident. The next level of understanding of genome function is to integrate our knowledge of their sequences and the molecular mechanisms involved in nuclear processes with our insights into the spatial and temporal organization of the nucleus and to elucidate the interplay between protein and gene networks in regulatory circuits. To do so, catalogues of genomes and proteomes as well as a precise understanding of the behavior of molecules in living cells are required. Converging technological developments in genomics, proteomics, dynamics and computation are now leading towards such an integrated biological understanding of genome biology and nuclear function.
Collapse
Affiliation(s)
- Stanislaw Gorski
- National Cancer Institute, NIH, 41 Library Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
36
|
Abstract
Genome-wide studies of mRNA regulation and phenotypic responses have shown that eukaryotic cells mount a robust and multifaceted response upon exposure to DNA-damaging agents. The integration of theses studies over frameworks provided by protein-protein interactions, protein-DNA interactions, and subcellular localization information have led to the identification of networked responses to damage. Taken together, these studies illustrate that cellular protection from DNA and other macromolecular damage involves an intricate network of proteins involved in many different cellular functions, some of them expected (e.g., DNA repair and cell cycle checkpoints) but many of them unexpected (e.g., protein trafficking and degradation). This review highlights many of the studies that detail genome-wide responses to DNA-damaging agents and examines how these datasets have been used to build a systems view of cellular responses to damage.
Collapse
Affiliation(s)
- Rebecca C Fry
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
37
|
Cookson S, Ostroff N, Pang WL, Volfson D, Hasty J. Monitoring dynamics of single-cell gene expression over multiple cell cycles. Mol Syst Biol 2005; 1:2005.0024. [PMID: 16729059 PMCID: PMC1681470 DOI: 10.1038/msb4100032] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/27/2005] [Indexed: 01/20/2023] Open
Abstract
Recent progress in reconstructing gene regulatory networks has established a framework for a quantitative description of the dynamics of many important cellular processes. Such a description will require novel experimental techniques that enable the generation of time-series data for the governing regulatory proteins in a large number of individual living cells. Here, we utilize microfabrication to construct a Tesla microchemostat that permits single-cell fluorescence imaging of gene expression over many cellular generations. The device is used to capture and constrain asymmetrically dividing or motile cells within a trapping region and to deliver nutrients and regulate the cellular population within this region. We illustrate the operation of the microchemostat with Saccharomyces cerevisiae and explore the evolution of single-cell gene expression and cycle time as a function of generation. Our findings highlight the importance of novel assays for quantifying the dynamics of gene expression and cellular growth, and establish a methodology for exploring the effects of gene expression on long-term processes such as cellular aging.
Collapse
Affiliation(s)
- Scott Cookson
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Natalie Ostroff
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Wyming Lee Pang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| | - Dmitri Volfson
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
- Institute for Nonlinear Science, University of California at San Diego, La Jolla, CA, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
38
|
Caba E, Dickinson DA, Warnes GR, Aubrecht J. Differentiating mechanisms of toxicity using global gene expression analysis in Saccharomyces cerevisiae. Mutat Res 2005; 575:34-46. [PMID: 15878181 DOI: 10.1016/j.mrfmmm.2005.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/03/2005] [Accepted: 02/23/2005] [Indexed: 05/02/2023]
Abstract
Genotoxic stress triggers a variety of biological responses including the transcriptional activation of genes regulating DNA repair, cell survival and cell death. Genomic approaches, which monitor gene expressions across large numbers of genes, can serve as a powerful tool for exploring mechanisms of toxicity. Here, using five different agents, we investigated whether the analysis of genome-wide expression profiles in Saccharomyces cerevisiae could provide insights into mechanisms of genotoxicity versus cytotoxicity. To differentiate the genotoxic stress-associated expression signatures from that of a general cytotoxic stress, we compared gene expression profiles following the treatment with DNA-reactive (cisplatin, MMS, bleomycin) and DNA non-reactive (ethanol and sodium chloride) compounds. Although each of the tested chemicals produced a distinct gene expression profile, we were able to identify a gene expression signature consisting of a relatively small number of biologically relevant genes capable of differentiating genotoxic and cytotoxic stress. The gene set includes such upregulated genes as HUG1, ECM4 and previously uncharacterized gene, YLR297W in the genotoxic and GAP1, CGR1 in the cytotoxic group. Our results indicate the potential of gene expression profile analysis for elucidating mechanism of action of genotoxic agents.
Collapse
Affiliation(s)
- Ebru Caba
- Pfizer Global Research and Development, Eastern Point Road, MS 8274-1246, Groton, CT 06340-8014, USA
| | | | | | | |
Collapse
|
39
|
Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast. BMC Genet 2005; 6:31. [PMID: 15932646 PMCID: PMC1173102 DOI: 10.1186/1471-2156-6-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 06/02/2005] [Indexed: 11/16/2022] Open
Abstract
Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP) and 2-amino-6-hydroxylaminopurine (AHA), are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.
Collapse
|